xref: /openbmc/linux/arch/mips/mm/tlbex.c (revision 97da55fc)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Synthesize TLB refill handlers at runtime.
7  *
8  * Copyright (C) 2004, 2005, 2006, 2008	 Thiemo Seufer
9  * Copyright (C) 2005, 2007, 2008, 2009	 Maciej W. Rozycki
10  * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
11  * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12  * Copyright (C) 2011  MIPS Technologies, Inc.
13  *
14  * ... and the days got worse and worse and now you see
15  * I've gone completly out of my mind.
16  *
17  * They're coming to take me a away haha
18  * they're coming to take me a away hoho hihi haha
19  * to the funny farm where code is beautiful all the time ...
20  *
21  * (Condolences to Napoleon XIV)
22  */
23 
24 #include <linux/bug.h>
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/smp.h>
28 #include <linux/string.h>
29 #include <linux/init.h>
30 #include <linux/cache.h>
31 
32 #include <asm/cacheflush.h>
33 #include <asm/pgtable.h>
34 #include <asm/war.h>
35 #include <asm/uasm.h>
36 #include <asm/setup.h>
37 
38 /*
39  * TLB load/store/modify handlers.
40  *
41  * Only the fastpath gets synthesized at runtime, the slowpath for
42  * do_page_fault remains normal asm.
43  */
44 extern void tlb_do_page_fault_0(void);
45 extern void tlb_do_page_fault_1(void);
46 
47 struct work_registers {
48 	int r1;
49 	int r2;
50 	int r3;
51 };
52 
53 struct tlb_reg_save {
54 	unsigned long a;
55 	unsigned long b;
56 } ____cacheline_aligned_in_smp;
57 
58 static struct tlb_reg_save handler_reg_save[NR_CPUS];
59 
60 static inline int r45k_bvahwbug(void)
61 {
62 	/* XXX: We should probe for the presence of this bug, but we don't. */
63 	return 0;
64 }
65 
66 static inline int r4k_250MHZhwbug(void)
67 {
68 	/* XXX: We should probe for the presence of this bug, but we don't. */
69 	return 0;
70 }
71 
72 static inline int __maybe_unused bcm1250_m3_war(void)
73 {
74 	return BCM1250_M3_WAR;
75 }
76 
77 static inline int __maybe_unused r10000_llsc_war(void)
78 {
79 	return R10000_LLSC_WAR;
80 }
81 
82 static int use_bbit_insns(void)
83 {
84 	switch (current_cpu_type()) {
85 	case CPU_CAVIUM_OCTEON:
86 	case CPU_CAVIUM_OCTEON_PLUS:
87 	case CPU_CAVIUM_OCTEON2:
88 		return 1;
89 	default:
90 		return 0;
91 	}
92 }
93 
94 static int use_lwx_insns(void)
95 {
96 	switch (current_cpu_type()) {
97 	case CPU_CAVIUM_OCTEON2:
98 		return 1;
99 	default:
100 		return 0;
101 	}
102 }
103 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
104     CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
105 static bool scratchpad_available(void)
106 {
107 	return true;
108 }
109 static int scratchpad_offset(int i)
110 {
111 	/*
112 	 * CVMSEG starts at address -32768 and extends for
113 	 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
114 	 */
115 	i += 1; /* Kernel use starts at the top and works down. */
116 	return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
117 }
118 #else
119 static bool scratchpad_available(void)
120 {
121 	return false;
122 }
123 static int scratchpad_offset(int i)
124 {
125 	BUG();
126 	/* Really unreachable, but evidently some GCC want this. */
127 	return 0;
128 }
129 #endif
130 /*
131  * Found by experiment: At least some revisions of the 4kc throw under
132  * some circumstances a machine check exception, triggered by invalid
133  * values in the index register.  Delaying the tlbp instruction until
134  * after the next branch,  plus adding an additional nop in front of
135  * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
136  * why; it's not an issue caused by the core RTL.
137  *
138  */
139 static int __cpuinit m4kc_tlbp_war(void)
140 {
141 	return (current_cpu_data.processor_id & 0xffff00) ==
142 	       (PRID_COMP_MIPS | PRID_IMP_4KC);
143 }
144 
145 /* Handle labels (which must be positive integers). */
146 enum label_id {
147 	label_second_part = 1,
148 	label_leave,
149 	label_vmalloc,
150 	label_vmalloc_done,
151 	label_tlbw_hazard_0,
152 	label_split = label_tlbw_hazard_0 + 8,
153 	label_tlbl_goaround1,
154 	label_tlbl_goaround2,
155 	label_nopage_tlbl,
156 	label_nopage_tlbs,
157 	label_nopage_tlbm,
158 	label_smp_pgtable_change,
159 	label_r3000_write_probe_fail,
160 	label_large_segbits_fault,
161 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
162 	label_tlb_huge_update,
163 #endif
164 };
165 
166 UASM_L_LA(_second_part)
167 UASM_L_LA(_leave)
168 UASM_L_LA(_vmalloc)
169 UASM_L_LA(_vmalloc_done)
170 /* _tlbw_hazard_x is handled differently.  */
171 UASM_L_LA(_split)
172 UASM_L_LA(_tlbl_goaround1)
173 UASM_L_LA(_tlbl_goaround2)
174 UASM_L_LA(_nopage_tlbl)
175 UASM_L_LA(_nopage_tlbs)
176 UASM_L_LA(_nopage_tlbm)
177 UASM_L_LA(_smp_pgtable_change)
178 UASM_L_LA(_r3000_write_probe_fail)
179 UASM_L_LA(_large_segbits_fault)
180 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
181 UASM_L_LA(_tlb_huge_update)
182 #endif
183 
184 static int __cpuinitdata hazard_instance;
185 
186 static void __cpuinit uasm_bgezl_hazard(u32 **p,
187 					struct uasm_reloc **r,
188 					int instance)
189 {
190 	switch (instance) {
191 	case 0 ... 7:
192 		uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
193 		return;
194 	default:
195 		BUG();
196 	}
197 }
198 
199 static void __cpuinit uasm_bgezl_label(struct uasm_label **l,
200 				       u32 **p,
201 				       int instance)
202 {
203 	switch (instance) {
204 	case 0 ... 7:
205 		uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
206 		break;
207 	default:
208 		BUG();
209 	}
210 }
211 
212 /*
213  * pgtable bits are assigned dynamically depending on processor feature
214  * and statically based on kernel configuration.  This spits out the actual
215  * values the kernel is using.	Required to make sense from disassembled
216  * TLB exception handlers.
217  */
218 static void output_pgtable_bits_defines(void)
219 {
220 #define pr_define(fmt, ...)					\
221 	pr_debug("#define " fmt, ##__VA_ARGS__)
222 
223 	pr_debug("#include <asm/asm.h>\n");
224 	pr_debug("#include <asm/regdef.h>\n");
225 	pr_debug("\n");
226 
227 	pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
228 	pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT);
229 	pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
230 	pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
231 	pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
232 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
233 	pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
234 	pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT);
235 #endif
236 	if (cpu_has_rixi) {
237 #ifdef _PAGE_NO_EXEC_SHIFT
238 		pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
239 #endif
240 #ifdef _PAGE_NO_READ_SHIFT
241 		pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
242 #endif
243 	}
244 	pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
245 	pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
246 	pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
247 	pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
248 	pr_debug("\n");
249 }
250 
251 static inline void dump_handler(const char *symbol, const u32 *handler, int count)
252 {
253 	int i;
254 
255 	pr_debug("LEAF(%s)\n", symbol);
256 
257 	pr_debug("\t.set push\n");
258 	pr_debug("\t.set noreorder\n");
259 
260 	for (i = 0; i < count; i++)
261 		pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
262 
263 	pr_debug("\t.set\tpop\n");
264 
265 	pr_debug("\tEND(%s)\n", symbol);
266 }
267 
268 /* The only general purpose registers allowed in TLB handlers. */
269 #define K0		26
270 #define K1		27
271 
272 /* Some CP0 registers */
273 #define C0_INDEX	0, 0
274 #define C0_ENTRYLO0	2, 0
275 #define C0_TCBIND	2, 2
276 #define C0_ENTRYLO1	3, 0
277 #define C0_CONTEXT	4, 0
278 #define C0_PAGEMASK	5, 0
279 #define C0_BADVADDR	8, 0
280 #define C0_ENTRYHI	10, 0
281 #define C0_EPC		14, 0
282 #define C0_XCONTEXT	20, 0
283 
284 #ifdef CONFIG_64BIT
285 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
286 #else
287 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
288 #endif
289 
290 /* The worst case length of the handler is around 18 instructions for
291  * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
292  * Maximum space available is 32 instructions for R3000 and 64
293  * instructions for R4000.
294  *
295  * We deliberately chose a buffer size of 128, so we won't scribble
296  * over anything important on overflow before we panic.
297  */
298 static u32 tlb_handler[128] __cpuinitdata;
299 
300 /* simply assume worst case size for labels and relocs */
301 static struct uasm_label labels[128] __cpuinitdata;
302 static struct uasm_reloc relocs[128] __cpuinitdata;
303 
304 #ifdef CONFIG_64BIT
305 static int check_for_high_segbits __cpuinitdata;
306 #endif
307 
308 static int check_for_high_segbits __cpuinitdata;
309 
310 static unsigned int kscratch_used_mask __cpuinitdata;
311 
312 static int __cpuinit allocate_kscratch(void)
313 {
314 	int r;
315 	unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
316 
317 	r = ffs(a);
318 
319 	if (r == 0)
320 		return -1;
321 
322 	r--; /* make it zero based */
323 
324 	kscratch_used_mask |= (1 << r);
325 
326 	return r;
327 }
328 
329 static int scratch_reg __cpuinitdata;
330 static int pgd_reg __cpuinitdata;
331 enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
332 
333 static struct work_registers __cpuinit build_get_work_registers(u32 **p)
334 {
335 	struct work_registers r;
336 
337 	int smp_processor_id_reg;
338 	int smp_processor_id_sel;
339 	int smp_processor_id_shift;
340 
341 	if (scratch_reg > 0) {
342 		/* Save in CPU local C0_KScratch? */
343 		UASM_i_MTC0(p, 1, 31, scratch_reg);
344 		r.r1 = K0;
345 		r.r2 = K1;
346 		r.r3 = 1;
347 		return r;
348 	}
349 
350 	if (num_possible_cpus() > 1) {
351 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
352 		smp_processor_id_shift = 51;
353 		smp_processor_id_reg = 20; /* XContext */
354 		smp_processor_id_sel = 0;
355 #else
356 # ifdef CONFIG_32BIT
357 		smp_processor_id_shift = 25;
358 		smp_processor_id_reg = 4; /* Context */
359 		smp_processor_id_sel = 0;
360 # endif
361 # ifdef CONFIG_64BIT
362 		smp_processor_id_shift = 26;
363 		smp_processor_id_reg = 4; /* Context */
364 		smp_processor_id_sel = 0;
365 # endif
366 #endif
367 		/* Get smp_processor_id */
368 		UASM_i_MFC0(p, K0, smp_processor_id_reg, smp_processor_id_sel);
369 		UASM_i_SRL_SAFE(p, K0, K0, smp_processor_id_shift);
370 
371 		/* handler_reg_save index in K0 */
372 		UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
373 
374 		UASM_i_LA(p, K1, (long)&handler_reg_save);
375 		UASM_i_ADDU(p, K0, K0, K1);
376 	} else {
377 		UASM_i_LA(p, K0, (long)&handler_reg_save);
378 	}
379 	/* K0 now points to save area, save $1 and $2  */
380 	UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
381 	UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
382 
383 	r.r1 = K1;
384 	r.r2 = 1;
385 	r.r3 = 2;
386 	return r;
387 }
388 
389 static void __cpuinit build_restore_work_registers(u32 **p)
390 {
391 	if (scratch_reg > 0) {
392 		UASM_i_MFC0(p, 1, 31, scratch_reg);
393 		return;
394 	}
395 	/* K0 already points to save area, restore $1 and $2  */
396 	UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
397 	UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
398 }
399 
400 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
401 
402 /*
403  * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
404  * we cannot do r3000 under these circumstances.
405  *
406  * Declare pgd_current here instead of including mmu_context.h to avoid type
407  * conflicts for tlbmiss_handler_setup_pgd
408  */
409 extern unsigned long pgd_current[];
410 
411 /*
412  * The R3000 TLB handler is simple.
413  */
414 static void __cpuinit build_r3000_tlb_refill_handler(void)
415 {
416 	long pgdc = (long)pgd_current;
417 	u32 *p;
418 
419 	memset(tlb_handler, 0, sizeof(tlb_handler));
420 	p = tlb_handler;
421 
422 	uasm_i_mfc0(&p, K0, C0_BADVADDR);
423 	uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
424 	uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
425 	uasm_i_srl(&p, K0, K0, 22); /* load delay */
426 	uasm_i_sll(&p, K0, K0, 2);
427 	uasm_i_addu(&p, K1, K1, K0);
428 	uasm_i_mfc0(&p, K0, C0_CONTEXT);
429 	uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
430 	uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
431 	uasm_i_addu(&p, K1, K1, K0);
432 	uasm_i_lw(&p, K0, 0, K1);
433 	uasm_i_nop(&p); /* load delay */
434 	uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
435 	uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
436 	uasm_i_tlbwr(&p); /* cp0 delay */
437 	uasm_i_jr(&p, K1);
438 	uasm_i_rfe(&p); /* branch delay */
439 
440 	if (p > tlb_handler + 32)
441 		panic("TLB refill handler space exceeded");
442 
443 	pr_debug("Wrote TLB refill handler (%u instructions).\n",
444 		 (unsigned int)(p - tlb_handler));
445 
446 	memcpy((void *)ebase, tlb_handler, 0x80);
447 
448 	dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
449 }
450 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
451 
452 /*
453  * The R4000 TLB handler is much more complicated. We have two
454  * consecutive handler areas with 32 instructions space each.
455  * Since they aren't used at the same time, we can overflow in the
456  * other one.To keep things simple, we first assume linear space,
457  * then we relocate it to the final handler layout as needed.
458  */
459 static u32 final_handler[64] __cpuinitdata;
460 
461 /*
462  * Hazards
463  *
464  * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
465  * 2. A timing hazard exists for the TLBP instruction.
466  *
467  *	stalling_instruction
468  *	TLBP
469  *
470  * The JTLB is being read for the TLBP throughout the stall generated by the
471  * previous instruction. This is not really correct as the stalling instruction
472  * can modify the address used to access the JTLB.  The failure symptom is that
473  * the TLBP instruction will use an address created for the stalling instruction
474  * and not the address held in C0_ENHI and thus report the wrong results.
475  *
476  * The software work-around is to not allow the instruction preceding the TLBP
477  * to stall - make it an NOP or some other instruction guaranteed not to stall.
478  *
479  * Errata 2 will not be fixed.	This errata is also on the R5000.
480  *
481  * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
482  */
483 static void __cpuinit __maybe_unused build_tlb_probe_entry(u32 **p)
484 {
485 	switch (current_cpu_type()) {
486 	/* Found by experiment: R4600 v2.0/R4700 needs this, too.  */
487 	case CPU_R4600:
488 	case CPU_R4700:
489 	case CPU_R5000:
490 	case CPU_NEVADA:
491 		uasm_i_nop(p);
492 		uasm_i_tlbp(p);
493 		break;
494 
495 	default:
496 		uasm_i_tlbp(p);
497 		break;
498 	}
499 }
500 
501 /*
502  * Write random or indexed TLB entry, and care about the hazards from
503  * the preceding mtc0 and for the following eret.
504  */
505 enum tlb_write_entry { tlb_random, tlb_indexed };
506 
507 static void __cpuinit build_tlb_write_entry(u32 **p, struct uasm_label **l,
508 					 struct uasm_reloc **r,
509 					 enum tlb_write_entry wmode)
510 {
511 	void(*tlbw)(u32 **) = NULL;
512 
513 	switch (wmode) {
514 	case tlb_random: tlbw = uasm_i_tlbwr; break;
515 	case tlb_indexed: tlbw = uasm_i_tlbwi; break;
516 	}
517 
518 	if (cpu_has_mips_r2) {
519 		/*
520 		 * The architecture spec says an ehb is required here,
521 		 * but a number of cores do not have the hazard and
522 		 * using an ehb causes an expensive pipeline stall.
523 		 */
524 		switch (current_cpu_type()) {
525 		case CPU_M14KC:
526 		case CPU_74K:
527 			break;
528 
529 		default:
530 			uasm_i_ehb(p);
531 			break;
532 		}
533 		tlbw(p);
534 		return;
535 	}
536 
537 	switch (current_cpu_type()) {
538 	case CPU_R4000PC:
539 	case CPU_R4000SC:
540 	case CPU_R4000MC:
541 	case CPU_R4400PC:
542 	case CPU_R4400SC:
543 	case CPU_R4400MC:
544 		/*
545 		 * This branch uses up a mtc0 hazard nop slot and saves
546 		 * two nops after the tlbw instruction.
547 		 */
548 		uasm_bgezl_hazard(p, r, hazard_instance);
549 		tlbw(p);
550 		uasm_bgezl_label(l, p, hazard_instance);
551 		hazard_instance++;
552 		uasm_i_nop(p);
553 		break;
554 
555 	case CPU_R4600:
556 	case CPU_R4700:
557 		uasm_i_nop(p);
558 		tlbw(p);
559 		uasm_i_nop(p);
560 		break;
561 
562 	case CPU_R5000:
563 	case CPU_NEVADA:
564 		uasm_i_nop(p); /* QED specifies 2 nops hazard */
565 		uasm_i_nop(p); /* QED specifies 2 nops hazard */
566 		tlbw(p);
567 		break;
568 
569 	case CPU_R4300:
570 	case CPU_5KC:
571 	case CPU_TX49XX:
572 	case CPU_PR4450:
573 	case CPU_XLR:
574 		uasm_i_nop(p);
575 		tlbw(p);
576 		break;
577 
578 	case CPU_R10000:
579 	case CPU_R12000:
580 	case CPU_R14000:
581 	case CPU_4KC:
582 	case CPU_4KEC:
583 	case CPU_M14KC:
584 	case CPU_M14KEC:
585 	case CPU_SB1:
586 	case CPU_SB1A:
587 	case CPU_4KSC:
588 	case CPU_20KC:
589 	case CPU_25KF:
590 	case CPU_BMIPS32:
591 	case CPU_BMIPS3300:
592 	case CPU_BMIPS4350:
593 	case CPU_BMIPS4380:
594 	case CPU_BMIPS5000:
595 	case CPU_LOONGSON2:
596 	case CPU_R5500:
597 		if (m4kc_tlbp_war())
598 			uasm_i_nop(p);
599 	case CPU_ALCHEMY:
600 		tlbw(p);
601 		break;
602 
603 	case CPU_RM7000:
604 		uasm_i_nop(p);
605 		uasm_i_nop(p);
606 		uasm_i_nop(p);
607 		uasm_i_nop(p);
608 		tlbw(p);
609 		break;
610 
611 	case CPU_VR4111:
612 	case CPU_VR4121:
613 	case CPU_VR4122:
614 	case CPU_VR4181:
615 	case CPU_VR4181A:
616 		uasm_i_nop(p);
617 		uasm_i_nop(p);
618 		tlbw(p);
619 		uasm_i_nop(p);
620 		uasm_i_nop(p);
621 		break;
622 
623 	case CPU_VR4131:
624 	case CPU_VR4133:
625 	case CPU_R5432:
626 		uasm_i_nop(p);
627 		uasm_i_nop(p);
628 		tlbw(p);
629 		break;
630 
631 	case CPU_JZRISC:
632 		tlbw(p);
633 		uasm_i_nop(p);
634 		break;
635 
636 	default:
637 		panic("No TLB refill handler yet (CPU type: %d)",
638 		      current_cpu_data.cputype);
639 		break;
640 	}
641 }
642 
643 static __cpuinit __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
644 								  unsigned int reg)
645 {
646 	if (cpu_has_rixi) {
647 		UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
648 	} else {
649 #ifdef CONFIG_64BIT_PHYS_ADDR
650 		uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
651 #else
652 		UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
653 #endif
654 	}
655 }
656 
657 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
658 
659 static __cpuinit void build_restore_pagemask(u32 **p,
660 					     struct uasm_reloc **r,
661 					     unsigned int tmp,
662 					     enum label_id lid,
663 					     int restore_scratch)
664 {
665 	if (restore_scratch) {
666 		/* Reset default page size */
667 		if (PM_DEFAULT_MASK >> 16) {
668 			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
669 			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
670 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
671 			uasm_il_b(p, r, lid);
672 		} else if (PM_DEFAULT_MASK) {
673 			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
674 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
675 			uasm_il_b(p, r, lid);
676 		} else {
677 			uasm_i_mtc0(p, 0, C0_PAGEMASK);
678 			uasm_il_b(p, r, lid);
679 		}
680 		if (scratch_reg > 0)
681 			UASM_i_MFC0(p, 1, 31, scratch_reg);
682 		else
683 			UASM_i_LW(p, 1, scratchpad_offset(0), 0);
684 	} else {
685 		/* Reset default page size */
686 		if (PM_DEFAULT_MASK >> 16) {
687 			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
688 			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
689 			uasm_il_b(p, r, lid);
690 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
691 		} else if (PM_DEFAULT_MASK) {
692 			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
693 			uasm_il_b(p, r, lid);
694 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
695 		} else {
696 			uasm_il_b(p, r, lid);
697 			uasm_i_mtc0(p, 0, C0_PAGEMASK);
698 		}
699 	}
700 }
701 
702 static __cpuinit void build_huge_tlb_write_entry(u32 **p,
703 						 struct uasm_label **l,
704 						 struct uasm_reloc **r,
705 						 unsigned int tmp,
706 						 enum tlb_write_entry wmode,
707 						 int restore_scratch)
708 {
709 	/* Set huge page tlb entry size */
710 	uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
711 	uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
712 	uasm_i_mtc0(p, tmp, C0_PAGEMASK);
713 
714 	build_tlb_write_entry(p, l, r, wmode);
715 
716 	build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
717 }
718 
719 /*
720  * Check if Huge PTE is present, if so then jump to LABEL.
721  */
722 static void __cpuinit
723 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
724 		unsigned int pmd, int lid)
725 {
726 	UASM_i_LW(p, tmp, 0, pmd);
727 	if (use_bbit_insns()) {
728 		uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
729 	} else {
730 		uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
731 		uasm_il_bnez(p, r, tmp, lid);
732 	}
733 }
734 
735 static __cpuinit void build_huge_update_entries(u32 **p,
736 						unsigned int pte,
737 						unsigned int tmp)
738 {
739 	int small_sequence;
740 
741 	/*
742 	 * A huge PTE describes an area the size of the
743 	 * configured huge page size. This is twice the
744 	 * of the large TLB entry size we intend to use.
745 	 * A TLB entry half the size of the configured
746 	 * huge page size is configured into entrylo0
747 	 * and entrylo1 to cover the contiguous huge PTE
748 	 * address space.
749 	 */
750 	small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
751 
752 	/* We can clobber tmp.	It isn't used after this.*/
753 	if (!small_sequence)
754 		uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
755 
756 	build_convert_pte_to_entrylo(p, pte);
757 	UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
758 	/* convert to entrylo1 */
759 	if (small_sequence)
760 		UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
761 	else
762 		UASM_i_ADDU(p, pte, pte, tmp);
763 
764 	UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
765 }
766 
767 static __cpuinit void build_huge_handler_tail(u32 **p,
768 					      struct uasm_reloc **r,
769 					      struct uasm_label **l,
770 					      unsigned int pte,
771 					      unsigned int ptr)
772 {
773 #ifdef CONFIG_SMP
774 	UASM_i_SC(p, pte, 0, ptr);
775 	uasm_il_beqz(p, r, pte, label_tlb_huge_update);
776 	UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
777 #else
778 	UASM_i_SW(p, pte, 0, ptr);
779 #endif
780 	build_huge_update_entries(p, pte, ptr);
781 	build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
782 }
783 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
784 
785 #ifdef CONFIG_64BIT
786 /*
787  * TMP and PTR are scratch.
788  * TMP will be clobbered, PTR will hold the pmd entry.
789  */
790 static void __cpuinit
791 build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
792 		 unsigned int tmp, unsigned int ptr)
793 {
794 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
795 	long pgdc = (long)pgd_current;
796 #endif
797 	/*
798 	 * The vmalloc handling is not in the hotpath.
799 	 */
800 	uasm_i_dmfc0(p, tmp, C0_BADVADDR);
801 
802 	if (check_for_high_segbits) {
803 		/*
804 		 * The kernel currently implicitely assumes that the
805 		 * MIPS SEGBITS parameter for the processor is
806 		 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
807 		 * allocate virtual addresses outside the maximum
808 		 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
809 		 * that doesn't prevent user code from accessing the
810 		 * higher xuseg addresses.  Here, we make sure that
811 		 * everything but the lower xuseg addresses goes down
812 		 * the module_alloc/vmalloc path.
813 		 */
814 		uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
815 		uasm_il_bnez(p, r, ptr, label_vmalloc);
816 	} else {
817 		uasm_il_bltz(p, r, tmp, label_vmalloc);
818 	}
819 	/* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
820 
821 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
822 	if (pgd_reg != -1) {
823 		/* pgd is in pgd_reg */
824 		UASM_i_MFC0(p, ptr, 31, pgd_reg);
825 	} else {
826 		/*
827 		 * &pgd << 11 stored in CONTEXT [23..63].
828 		 */
829 		UASM_i_MFC0(p, ptr, C0_CONTEXT);
830 
831 		/* Clear lower 23 bits of context. */
832 		uasm_i_dins(p, ptr, 0, 0, 23);
833 
834 		/* 1 0	1 0 1  << 6  xkphys cached */
835 		uasm_i_ori(p, ptr, ptr, 0x540);
836 		uasm_i_drotr(p, ptr, ptr, 11);
837 	}
838 #elif defined(CONFIG_SMP)
839 # ifdef	 CONFIG_MIPS_MT_SMTC
840 	/*
841 	 * SMTC uses TCBind value as "CPU" index
842 	 */
843 	uasm_i_mfc0(p, ptr, C0_TCBIND);
844 	uasm_i_dsrl_safe(p, ptr, ptr, 19);
845 # else
846 	/*
847 	 * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
848 	 * stored in CONTEXT.
849 	 */
850 	uasm_i_dmfc0(p, ptr, C0_CONTEXT);
851 	uasm_i_dsrl_safe(p, ptr, ptr, 23);
852 # endif
853 	UASM_i_LA_mostly(p, tmp, pgdc);
854 	uasm_i_daddu(p, ptr, ptr, tmp);
855 	uasm_i_dmfc0(p, tmp, C0_BADVADDR);
856 	uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
857 #else
858 	UASM_i_LA_mostly(p, ptr, pgdc);
859 	uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
860 #endif
861 
862 	uasm_l_vmalloc_done(l, *p);
863 
864 	/* get pgd offset in bytes */
865 	uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
866 
867 	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
868 	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
869 #ifndef __PAGETABLE_PMD_FOLDED
870 	uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
871 	uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
872 	uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
873 	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
874 	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
875 #endif
876 }
877 
878 /*
879  * BVADDR is the faulting address, PTR is scratch.
880  * PTR will hold the pgd for vmalloc.
881  */
882 static void __cpuinit
883 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
884 			unsigned int bvaddr, unsigned int ptr,
885 			enum vmalloc64_mode mode)
886 {
887 	long swpd = (long)swapper_pg_dir;
888 	int single_insn_swpd;
889 	int did_vmalloc_branch = 0;
890 
891 	single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
892 
893 	uasm_l_vmalloc(l, *p);
894 
895 	if (mode != not_refill && check_for_high_segbits) {
896 		if (single_insn_swpd) {
897 			uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
898 			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
899 			did_vmalloc_branch = 1;
900 			/* fall through */
901 		} else {
902 			uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
903 		}
904 	}
905 	if (!did_vmalloc_branch) {
906 		if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
907 			uasm_il_b(p, r, label_vmalloc_done);
908 			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
909 		} else {
910 			UASM_i_LA_mostly(p, ptr, swpd);
911 			uasm_il_b(p, r, label_vmalloc_done);
912 			if (uasm_in_compat_space_p(swpd))
913 				uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
914 			else
915 				uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
916 		}
917 	}
918 	if (mode != not_refill && check_for_high_segbits) {
919 		uasm_l_large_segbits_fault(l, *p);
920 		/*
921 		 * We get here if we are an xsseg address, or if we are
922 		 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
923 		 *
924 		 * Ignoring xsseg (assume disabled so would generate
925 		 * (address errors?), the only remaining possibility
926 		 * is the upper xuseg addresses.  On processors with
927 		 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
928 		 * addresses would have taken an address error. We try
929 		 * to mimic that here by taking a load/istream page
930 		 * fault.
931 		 */
932 		UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
933 		uasm_i_jr(p, ptr);
934 
935 		if (mode == refill_scratch) {
936 			if (scratch_reg > 0)
937 				UASM_i_MFC0(p, 1, 31, scratch_reg);
938 			else
939 				UASM_i_LW(p, 1, scratchpad_offset(0), 0);
940 		} else {
941 			uasm_i_nop(p);
942 		}
943 	}
944 }
945 
946 #else /* !CONFIG_64BIT */
947 
948 /*
949  * TMP and PTR are scratch.
950  * TMP will be clobbered, PTR will hold the pgd entry.
951  */
952 static void __cpuinit __maybe_unused
953 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
954 {
955 	long pgdc = (long)pgd_current;
956 
957 	/* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
958 #ifdef CONFIG_SMP
959 #ifdef	CONFIG_MIPS_MT_SMTC
960 	/*
961 	 * SMTC uses TCBind value as "CPU" index
962 	 */
963 	uasm_i_mfc0(p, ptr, C0_TCBIND);
964 	UASM_i_LA_mostly(p, tmp, pgdc);
965 	uasm_i_srl(p, ptr, ptr, 19);
966 #else
967 	/*
968 	 * smp_processor_id() << 3 is stored in CONTEXT.
969 	 */
970 	uasm_i_mfc0(p, ptr, C0_CONTEXT);
971 	UASM_i_LA_mostly(p, tmp, pgdc);
972 	uasm_i_srl(p, ptr, ptr, 23);
973 #endif
974 	uasm_i_addu(p, ptr, tmp, ptr);
975 #else
976 	UASM_i_LA_mostly(p, ptr, pgdc);
977 #endif
978 	uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
979 	uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
980 	uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
981 	uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
982 	uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
983 }
984 
985 #endif /* !CONFIG_64BIT */
986 
987 static void __cpuinit build_adjust_context(u32 **p, unsigned int ctx)
988 {
989 	unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
990 	unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
991 
992 	switch (current_cpu_type()) {
993 	case CPU_VR41XX:
994 	case CPU_VR4111:
995 	case CPU_VR4121:
996 	case CPU_VR4122:
997 	case CPU_VR4131:
998 	case CPU_VR4181:
999 	case CPU_VR4181A:
1000 	case CPU_VR4133:
1001 		shift += 2;
1002 		break;
1003 
1004 	default:
1005 		break;
1006 	}
1007 
1008 	if (shift)
1009 		UASM_i_SRL(p, ctx, ctx, shift);
1010 	uasm_i_andi(p, ctx, ctx, mask);
1011 }
1012 
1013 static void __cpuinit build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
1014 {
1015 	/*
1016 	 * Bug workaround for the Nevada. It seems as if under certain
1017 	 * circumstances the move from cp0_context might produce a
1018 	 * bogus result when the mfc0 instruction and its consumer are
1019 	 * in a different cacheline or a load instruction, probably any
1020 	 * memory reference, is between them.
1021 	 */
1022 	switch (current_cpu_type()) {
1023 	case CPU_NEVADA:
1024 		UASM_i_LW(p, ptr, 0, ptr);
1025 		GET_CONTEXT(p, tmp); /* get context reg */
1026 		break;
1027 
1028 	default:
1029 		GET_CONTEXT(p, tmp); /* get context reg */
1030 		UASM_i_LW(p, ptr, 0, ptr);
1031 		break;
1032 	}
1033 
1034 	build_adjust_context(p, tmp);
1035 	UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1036 }
1037 
1038 static void __cpuinit build_update_entries(u32 **p, unsigned int tmp,
1039 					unsigned int ptep)
1040 {
1041 	/*
1042 	 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1043 	 * Kernel is a special case. Only a few CPUs use it.
1044 	 */
1045 #ifdef CONFIG_64BIT_PHYS_ADDR
1046 	if (cpu_has_64bits) {
1047 		uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
1048 		uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1049 		if (cpu_has_rixi) {
1050 			UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1051 			UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1052 			UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1053 		} else {
1054 			uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1055 			UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1056 			uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1057 		}
1058 		UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1059 	} else {
1060 		int pte_off_even = sizeof(pte_t) / 2;
1061 		int pte_off_odd = pte_off_even + sizeof(pte_t);
1062 
1063 		/* The pte entries are pre-shifted */
1064 		uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1065 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1066 		uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1067 		UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1068 	}
1069 #else
1070 	UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
1071 	UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1072 	if (r45k_bvahwbug())
1073 		build_tlb_probe_entry(p);
1074 	if (cpu_has_rixi) {
1075 		UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1076 		if (r4k_250MHZhwbug())
1077 			UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1078 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1079 		UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1080 	} else {
1081 		UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1082 		if (r4k_250MHZhwbug())
1083 			UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1084 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1085 		UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1086 		if (r45k_bvahwbug())
1087 			uasm_i_mfc0(p, tmp, C0_INDEX);
1088 	}
1089 	if (r4k_250MHZhwbug())
1090 		UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1091 	UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1092 #endif
1093 }
1094 
1095 struct mips_huge_tlb_info {
1096 	int huge_pte;
1097 	int restore_scratch;
1098 };
1099 
1100 static struct mips_huge_tlb_info __cpuinit
1101 build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1102 			       struct uasm_reloc **r, unsigned int tmp,
1103 			       unsigned int ptr, int c0_scratch)
1104 {
1105 	struct mips_huge_tlb_info rv;
1106 	unsigned int even, odd;
1107 	int vmalloc_branch_delay_filled = 0;
1108 	const int scratch = 1; /* Our extra working register */
1109 
1110 	rv.huge_pte = scratch;
1111 	rv.restore_scratch = 0;
1112 
1113 	if (check_for_high_segbits) {
1114 		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1115 
1116 		if (pgd_reg != -1)
1117 			UASM_i_MFC0(p, ptr, 31, pgd_reg);
1118 		else
1119 			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1120 
1121 		if (c0_scratch >= 0)
1122 			UASM_i_MTC0(p, scratch, 31, c0_scratch);
1123 		else
1124 			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1125 
1126 		uasm_i_dsrl_safe(p, scratch, tmp,
1127 				 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1128 		uasm_il_bnez(p, r, scratch, label_vmalloc);
1129 
1130 		if (pgd_reg == -1) {
1131 			vmalloc_branch_delay_filled = 1;
1132 			/* Clear lower 23 bits of context. */
1133 			uasm_i_dins(p, ptr, 0, 0, 23);
1134 		}
1135 	} else {
1136 		if (pgd_reg != -1)
1137 			UASM_i_MFC0(p, ptr, 31, pgd_reg);
1138 		else
1139 			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1140 
1141 		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1142 
1143 		if (c0_scratch >= 0)
1144 			UASM_i_MTC0(p, scratch, 31, c0_scratch);
1145 		else
1146 			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1147 
1148 		if (pgd_reg == -1)
1149 			/* Clear lower 23 bits of context. */
1150 			uasm_i_dins(p, ptr, 0, 0, 23);
1151 
1152 		uasm_il_bltz(p, r, tmp, label_vmalloc);
1153 	}
1154 
1155 	if (pgd_reg == -1) {
1156 		vmalloc_branch_delay_filled = 1;
1157 		/* 1 0	1 0 1  << 6  xkphys cached */
1158 		uasm_i_ori(p, ptr, ptr, 0x540);
1159 		uasm_i_drotr(p, ptr, ptr, 11);
1160 	}
1161 
1162 #ifdef __PAGETABLE_PMD_FOLDED
1163 #define LOC_PTEP scratch
1164 #else
1165 #define LOC_PTEP ptr
1166 #endif
1167 
1168 	if (!vmalloc_branch_delay_filled)
1169 		/* get pgd offset in bytes */
1170 		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1171 
1172 	uasm_l_vmalloc_done(l, *p);
1173 
1174 	/*
1175 	 *			   tmp		ptr
1176 	 * fall-through case =	 badvaddr  *pgd_current
1177 	 * vmalloc case	     =	 badvaddr  swapper_pg_dir
1178 	 */
1179 
1180 	if (vmalloc_branch_delay_filled)
1181 		/* get pgd offset in bytes */
1182 		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1183 
1184 #ifdef __PAGETABLE_PMD_FOLDED
1185 	GET_CONTEXT(p, tmp); /* get context reg */
1186 #endif
1187 	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1188 
1189 	if (use_lwx_insns()) {
1190 		UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1191 	} else {
1192 		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1193 		uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1194 	}
1195 
1196 #ifndef __PAGETABLE_PMD_FOLDED
1197 	/* get pmd offset in bytes */
1198 	uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1199 	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1200 	GET_CONTEXT(p, tmp); /* get context reg */
1201 
1202 	if (use_lwx_insns()) {
1203 		UASM_i_LWX(p, scratch, scratch, ptr);
1204 	} else {
1205 		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1206 		UASM_i_LW(p, scratch, 0, ptr);
1207 	}
1208 #endif
1209 	/* Adjust the context during the load latency. */
1210 	build_adjust_context(p, tmp);
1211 
1212 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1213 	uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1214 	/*
1215 	 * The in the LWX case we don't want to do the load in the
1216 	 * delay slot.	It cannot issue in the same cycle and may be
1217 	 * speculative and unneeded.
1218 	 */
1219 	if (use_lwx_insns())
1220 		uasm_i_nop(p);
1221 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1222 
1223 
1224 	/* build_update_entries */
1225 	if (use_lwx_insns()) {
1226 		even = ptr;
1227 		odd = tmp;
1228 		UASM_i_LWX(p, even, scratch, tmp);
1229 		UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1230 		UASM_i_LWX(p, odd, scratch, tmp);
1231 	} else {
1232 		UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1233 		even = tmp;
1234 		odd = ptr;
1235 		UASM_i_LW(p, even, 0, ptr); /* get even pte */
1236 		UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1237 	}
1238 	if (cpu_has_rixi) {
1239 		uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1240 		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1241 		uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1242 	} else {
1243 		uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1244 		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1245 		uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1246 	}
1247 	UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1248 
1249 	if (c0_scratch >= 0) {
1250 		UASM_i_MFC0(p, scratch, 31, c0_scratch);
1251 		build_tlb_write_entry(p, l, r, tlb_random);
1252 		uasm_l_leave(l, *p);
1253 		rv.restore_scratch = 1;
1254 	} else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13)  {
1255 		build_tlb_write_entry(p, l, r, tlb_random);
1256 		uasm_l_leave(l, *p);
1257 		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1258 	} else {
1259 		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1260 		build_tlb_write_entry(p, l, r, tlb_random);
1261 		uasm_l_leave(l, *p);
1262 		rv.restore_scratch = 1;
1263 	}
1264 
1265 	uasm_i_eret(p); /* return from trap */
1266 
1267 	return rv;
1268 }
1269 
1270 /*
1271  * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1272  * because EXL == 0.  If we wrap, we can also use the 32 instruction
1273  * slots before the XTLB refill exception handler which belong to the
1274  * unused TLB refill exception.
1275  */
1276 #define MIPS64_REFILL_INSNS 32
1277 
1278 static void __cpuinit build_r4000_tlb_refill_handler(void)
1279 {
1280 	u32 *p = tlb_handler;
1281 	struct uasm_label *l = labels;
1282 	struct uasm_reloc *r = relocs;
1283 	u32 *f;
1284 	unsigned int final_len;
1285 	struct mips_huge_tlb_info htlb_info __maybe_unused;
1286 	enum vmalloc64_mode vmalloc_mode __maybe_unused;
1287 
1288 	memset(tlb_handler, 0, sizeof(tlb_handler));
1289 	memset(labels, 0, sizeof(labels));
1290 	memset(relocs, 0, sizeof(relocs));
1291 	memset(final_handler, 0, sizeof(final_handler));
1292 
1293 	if ((scratch_reg > 0 || scratchpad_available()) && use_bbit_insns()) {
1294 		htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1295 							  scratch_reg);
1296 		vmalloc_mode = refill_scratch;
1297 	} else {
1298 		htlb_info.huge_pte = K0;
1299 		htlb_info.restore_scratch = 0;
1300 		vmalloc_mode = refill_noscratch;
1301 		/*
1302 		 * create the plain linear handler
1303 		 */
1304 		if (bcm1250_m3_war()) {
1305 			unsigned int segbits = 44;
1306 
1307 			uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1308 			uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1309 			uasm_i_xor(&p, K0, K0, K1);
1310 			uasm_i_dsrl_safe(&p, K1, K0, 62);
1311 			uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1312 			uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1313 			uasm_i_or(&p, K0, K0, K1);
1314 			uasm_il_bnez(&p, &r, K0, label_leave);
1315 			/* No need for uasm_i_nop */
1316 		}
1317 
1318 #ifdef CONFIG_64BIT
1319 		build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1320 #else
1321 		build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1322 #endif
1323 
1324 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1325 		build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1326 #endif
1327 
1328 		build_get_ptep(&p, K0, K1);
1329 		build_update_entries(&p, K0, K1);
1330 		build_tlb_write_entry(&p, &l, &r, tlb_random);
1331 		uasm_l_leave(&l, p);
1332 		uasm_i_eret(&p); /* return from trap */
1333 	}
1334 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1335 	uasm_l_tlb_huge_update(&l, p);
1336 	build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1337 	build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1338 				   htlb_info.restore_scratch);
1339 #endif
1340 
1341 #ifdef CONFIG_64BIT
1342 	build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1343 #endif
1344 
1345 	/*
1346 	 * Overflow check: For the 64bit handler, we need at least one
1347 	 * free instruction slot for the wrap-around branch. In worst
1348 	 * case, if the intended insertion point is a delay slot, we
1349 	 * need three, with the second nop'ed and the third being
1350 	 * unused.
1351 	 */
1352 	/* Loongson2 ebase is different than r4k, we have more space */
1353 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1354 	if ((p - tlb_handler) > 64)
1355 		panic("TLB refill handler space exceeded");
1356 #else
1357 	if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1358 	    || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1359 		&& uasm_insn_has_bdelay(relocs,
1360 					tlb_handler + MIPS64_REFILL_INSNS - 3)))
1361 		panic("TLB refill handler space exceeded");
1362 #endif
1363 
1364 	/*
1365 	 * Now fold the handler in the TLB refill handler space.
1366 	 */
1367 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1368 	f = final_handler;
1369 	/* Simplest case, just copy the handler. */
1370 	uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1371 	final_len = p - tlb_handler;
1372 #else /* CONFIG_64BIT */
1373 	f = final_handler + MIPS64_REFILL_INSNS;
1374 	if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1375 		/* Just copy the handler. */
1376 		uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1377 		final_len = p - tlb_handler;
1378 	} else {
1379 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1380 		const enum label_id ls = label_tlb_huge_update;
1381 #else
1382 		const enum label_id ls = label_vmalloc;
1383 #endif
1384 		u32 *split;
1385 		int ov = 0;
1386 		int i;
1387 
1388 		for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1389 			;
1390 		BUG_ON(i == ARRAY_SIZE(labels));
1391 		split = labels[i].addr;
1392 
1393 		/*
1394 		 * See if we have overflown one way or the other.
1395 		 */
1396 		if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1397 		    split < p - MIPS64_REFILL_INSNS)
1398 			ov = 1;
1399 
1400 		if (ov) {
1401 			/*
1402 			 * Split two instructions before the end.  One
1403 			 * for the branch and one for the instruction
1404 			 * in the delay slot.
1405 			 */
1406 			split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1407 
1408 			/*
1409 			 * If the branch would fall in a delay slot,
1410 			 * we must back up an additional instruction
1411 			 * so that it is no longer in a delay slot.
1412 			 */
1413 			if (uasm_insn_has_bdelay(relocs, split - 1))
1414 				split--;
1415 		}
1416 		/* Copy first part of the handler. */
1417 		uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1418 		f += split - tlb_handler;
1419 
1420 		if (ov) {
1421 			/* Insert branch. */
1422 			uasm_l_split(&l, final_handler);
1423 			uasm_il_b(&f, &r, label_split);
1424 			if (uasm_insn_has_bdelay(relocs, split))
1425 				uasm_i_nop(&f);
1426 			else {
1427 				uasm_copy_handler(relocs, labels,
1428 						  split, split + 1, f);
1429 				uasm_move_labels(labels, f, f + 1, -1);
1430 				f++;
1431 				split++;
1432 			}
1433 		}
1434 
1435 		/* Copy the rest of the handler. */
1436 		uasm_copy_handler(relocs, labels, split, p, final_handler);
1437 		final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1438 			    (p - split);
1439 	}
1440 #endif /* CONFIG_64BIT */
1441 
1442 	uasm_resolve_relocs(relocs, labels);
1443 	pr_debug("Wrote TLB refill handler (%u instructions).\n",
1444 		 final_len);
1445 
1446 	memcpy((void *)ebase, final_handler, 0x100);
1447 
1448 	dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
1449 }
1450 
1451 /*
1452  * 128 instructions for the fastpath handler is generous and should
1453  * never be exceeded.
1454  */
1455 #define FASTPATH_SIZE 128
1456 
1457 u32 handle_tlbl[FASTPATH_SIZE] __cacheline_aligned;
1458 u32 handle_tlbs[FASTPATH_SIZE] __cacheline_aligned;
1459 u32 handle_tlbm[FASTPATH_SIZE] __cacheline_aligned;
1460 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1461 u32 tlbmiss_handler_setup_pgd[16] __cacheline_aligned;
1462 
1463 static void __cpuinit build_r4000_setup_pgd(void)
1464 {
1465 	const int a0 = 4;
1466 	const int a1 = 5;
1467 	u32 *p = tlbmiss_handler_setup_pgd;
1468 	struct uasm_label *l = labels;
1469 	struct uasm_reloc *r = relocs;
1470 
1471 	memset(tlbmiss_handler_setup_pgd, 0, sizeof(tlbmiss_handler_setup_pgd));
1472 	memset(labels, 0, sizeof(labels));
1473 	memset(relocs, 0, sizeof(relocs));
1474 
1475 	pgd_reg = allocate_kscratch();
1476 
1477 	if (pgd_reg == -1) {
1478 		/* PGD << 11 in c0_Context */
1479 		/*
1480 		 * If it is a ckseg0 address, convert to a physical
1481 		 * address.  Shifting right by 29 and adding 4 will
1482 		 * result in zero for these addresses.
1483 		 *
1484 		 */
1485 		UASM_i_SRA(&p, a1, a0, 29);
1486 		UASM_i_ADDIU(&p, a1, a1, 4);
1487 		uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1488 		uasm_i_nop(&p);
1489 		uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1490 		uasm_l_tlbl_goaround1(&l, p);
1491 		UASM_i_SLL(&p, a0, a0, 11);
1492 		uasm_i_jr(&p, 31);
1493 		UASM_i_MTC0(&p, a0, C0_CONTEXT);
1494 	} else {
1495 		/* PGD in c0_KScratch */
1496 		uasm_i_jr(&p, 31);
1497 		UASM_i_MTC0(&p, a0, 31, pgd_reg);
1498 	}
1499 	if (p - tlbmiss_handler_setup_pgd > ARRAY_SIZE(tlbmiss_handler_setup_pgd))
1500 		panic("tlbmiss_handler_setup_pgd space exceeded");
1501 	uasm_resolve_relocs(relocs, labels);
1502 	pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1503 		 (unsigned int)(p - tlbmiss_handler_setup_pgd));
1504 
1505 	dump_handler("tlbmiss_handler",
1506 		     tlbmiss_handler_setup_pgd,
1507 		     ARRAY_SIZE(tlbmiss_handler_setup_pgd));
1508 }
1509 #endif
1510 
1511 static void __cpuinit
1512 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1513 {
1514 #ifdef CONFIG_SMP
1515 # ifdef CONFIG_64BIT_PHYS_ADDR
1516 	if (cpu_has_64bits)
1517 		uasm_i_lld(p, pte, 0, ptr);
1518 	else
1519 # endif
1520 		UASM_i_LL(p, pte, 0, ptr);
1521 #else
1522 # ifdef CONFIG_64BIT_PHYS_ADDR
1523 	if (cpu_has_64bits)
1524 		uasm_i_ld(p, pte, 0, ptr);
1525 	else
1526 # endif
1527 		UASM_i_LW(p, pte, 0, ptr);
1528 #endif
1529 }
1530 
1531 static void __cpuinit
1532 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1533 	unsigned int mode)
1534 {
1535 #ifdef CONFIG_64BIT_PHYS_ADDR
1536 	unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1537 #endif
1538 
1539 	uasm_i_ori(p, pte, pte, mode);
1540 #ifdef CONFIG_SMP
1541 # ifdef CONFIG_64BIT_PHYS_ADDR
1542 	if (cpu_has_64bits)
1543 		uasm_i_scd(p, pte, 0, ptr);
1544 	else
1545 # endif
1546 		UASM_i_SC(p, pte, 0, ptr);
1547 
1548 	if (r10000_llsc_war())
1549 		uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1550 	else
1551 		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1552 
1553 # ifdef CONFIG_64BIT_PHYS_ADDR
1554 	if (!cpu_has_64bits) {
1555 		/* no uasm_i_nop needed */
1556 		uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1557 		uasm_i_ori(p, pte, pte, hwmode);
1558 		uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1559 		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1560 		/* no uasm_i_nop needed */
1561 		uasm_i_lw(p, pte, 0, ptr);
1562 	} else
1563 		uasm_i_nop(p);
1564 # else
1565 	uasm_i_nop(p);
1566 # endif
1567 #else
1568 # ifdef CONFIG_64BIT_PHYS_ADDR
1569 	if (cpu_has_64bits)
1570 		uasm_i_sd(p, pte, 0, ptr);
1571 	else
1572 # endif
1573 		UASM_i_SW(p, pte, 0, ptr);
1574 
1575 # ifdef CONFIG_64BIT_PHYS_ADDR
1576 	if (!cpu_has_64bits) {
1577 		uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1578 		uasm_i_ori(p, pte, pte, hwmode);
1579 		uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1580 		uasm_i_lw(p, pte, 0, ptr);
1581 	}
1582 # endif
1583 #endif
1584 }
1585 
1586 /*
1587  * Check if PTE is present, if not then jump to LABEL. PTR points to
1588  * the page table where this PTE is located, PTE will be re-loaded
1589  * with it's original value.
1590  */
1591 static void __cpuinit
1592 build_pte_present(u32 **p, struct uasm_reloc **r,
1593 		  int pte, int ptr, int scratch, enum label_id lid)
1594 {
1595 	int t = scratch >= 0 ? scratch : pte;
1596 
1597 	if (cpu_has_rixi) {
1598 		if (use_bbit_insns()) {
1599 			uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1600 			uasm_i_nop(p);
1601 		} else {
1602 			uasm_i_andi(p, t, pte, _PAGE_PRESENT);
1603 			uasm_il_beqz(p, r, t, lid);
1604 			if (pte == t)
1605 				/* You lose the SMP race :-(*/
1606 				iPTE_LW(p, pte, ptr);
1607 		}
1608 	} else {
1609 		uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ);
1610 		uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ);
1611 		uasm_il_bnez(p, r, t, lid);
1612 		if (pte == t)
1613 			/* You lose the SMP race :-(*/
1614 			iPTE_LW(p, pte, ptr);
1615 	}
1616 }
1617 
1618 /* Make PTE valid, store result in PTR. */
1619 static void __cpuinit
1620 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1621 		 unsigned int ptr)
1622 {
1623 	unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1624 
1625 	iPTE_SW(p, r, pte, ptr, mode);
1626 }
1627 
1628 /*
1629  * Check if PTE can be written to, if not branch to LABEL. Regardless
1630  * restore PTE with value from PTR when done.
1631  */
1632 static void __cpuinit
1633 build_pte_writable(u32 **p, struct uasm_reloc **r,
1634 		   unsigned int pte, unsigned int ptr, int scratch,
1635 		   enum label_id lid)
1636 {
1637 	int t = scratch >= 0 ? scratch : pte;
1638 
1639 	uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE);
1640 	uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE);
1641 	uasm_il_bnez(p, r, t, lid);
1642 	if (pte == t)
1643 		/* You lose the SMP race :-(*/
1644 		iPTE_LW(p, pte, ptr);
1645 	else
1646 		uasm_i_nop(p);
1647 }
1648 
1649 /* Make PTE writable, update software status bits as well, then store
1650  * at PTR.
1651  */
1652 static void __cpuinit
1653 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1654 		 unsigned int ptr)
1655 {
1656 	unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1657 			     | _PAGE_DIRTY);
1658 
1659 	iPTE_SW(p, r, pte, ptr, mode);
1660 }
1661 
1662 /*
1663  * Check if PTE can be modified, if not branch to LABEL. Regardless
1664  * restore PTE with value from PTR when done.
1665  */
1666 static void __cpuinit
1667 build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1668 		     unsigned int pte, unsigned int ptr, int scratch,
1669 		     enum label_id lid)
1670 {
1671 	if (use_bbit_insns()) {
1672 		uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1673 		uasm_i_nop(p);
1674 	} else {
1675 		int t = scratch >= 0 ? scratch : pte;
1676 		uasm_i_andi(p, t, pte, _PAGE_WRITE);
1677 		uasm_il_beqz(p, r, t, lid);
1678 		if (pte == t)
1679 			/* You lose the SMP race :-(*/
1680 			iPTE_LW(p, pte, ptr);
1681 	}
1682 }
1683 
1684 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1685 
1686 
1687 /*
1688  * R3000 style TLB load/store/modify handlers.
1689  */
1690 
1691 /*
1692  * This places the pte into ENTRYLO0 and writes it with tlbwi.
1693  * Then it returns.
1694  */
1695 static void __cpuinit
1696 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1697 {
1698 	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1699 	uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1700 	uasm_i_tlbwi(p);
1701 	uasm_i_jr(p, tmp);
1702 	uasm_i_rfe(p); /* branch delay */
1703 }
1704 
1705 /*
1706  * This places the pte into ENTRYLO0 and writes it with tlbwi
1707  * or tlbwr as appropriate.  This is because the index register
1708  * may have the probe fail bit set as a result of a trap on a
1709  * kseg2 access, i.e. without refill.  Then it returns.
1710  */
1711 static void __cpuinit
1712 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1713 			     struct uasm_reloc **r, unsigned int pte,
1714 			     unsigned int tmp)
1715 {
1716 	uasm_i_mfc0(p, tmp, C0_INDEX);
1717 	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1718 	uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1719 	uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1720 	uasm_i_tlbwi(p); /* cp0 delay */
1721 	uasm_i_jr(p, tmp);
1722 	uasm_i_rfe(p); /* branch delay */
1723 	uasm_l_r3000_write_probe_fail(l, *p);
1724 	uasm_i_tlbwr(p); /* cp0 delay */
1725 	uasm_i_jr(p, tmp);
1726 	uasm_i_rfe(p); /* branch delay */
1727 }
1728 
1729 static void __cpuinit
1730 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1731 				   unsigned int ptr)
1732 {
1733 	long pgdc = (long)pgd_current;
1734 
1735 	uasm_i_mfc0(p, pte, C0_BADVADDR);
1736 	uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1737 	uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1738 	uasm_i_srl(p, pte, pte, 22); /* load delay */
1739 	uasm_i_sll(p, pte, pte, 2);
1740 	uasm_i_addu(p, ptr, ptr, pte);
1741 	uasm_i_mfc0(p, pte, C0_CONTEXT);
1742 	uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1743 	uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1744 	uasm_i_addu(p, ptr, ptr, pte);
1745 	uasm_i_lw(p, pte, 0, ptr);
1746 	uasm_i_tlbp(p); /* load delay */
1747 }
1748 
1749 static void __cpuinit build_r3000_tlb_load_handler(void)
1750 {
1751 	u32 *p = handle_tlbl;
1752 	struct uasm_label *l = labels;
1753 	struct uasm_reloc *r = relocs;
1754 
1755 	memset(handle_tlbl, 0, sizeof(handle_tlbl));
1756 	memset(labels, 0, sizeof(labels));
1757 	memset(relocs, 0, sizeof(relocs));
1758 
1759 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1760 	build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1761 	uasm_i_nop(&p); /* load delay */
1762 	build_make_valid(&p, &r, K0, K1);
1763 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1764 
1765 	uasm_l_nopage_tlbl(&l, p);
1766 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1767 	uasm_i_nop(&p);
1768 
1769 	if ((p - handle_tlbl) > FASTPATH_SIZE)
1770 		panic("TLB load handler fastpath space exceeded");
1771 
1772 	uasm_resolve_relocs(relocs, labels);
1773 	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1774 		 (unsigned int)(p - handle_tlbl));
1775 
1776 	dump_handler("r3000_tlb_load", handle_tlbl, ARRAY_SIZE(handle_tlbl));
1777 }
1778 
1779 static void __cpuinit build_r3000_tlb_store_handler(void)
1780 {
1781 	u32 *p = handle_tlbs;
1782 	struct uasm_label *l = labels;
1783 	struct uasm_reloc *r = relocs;
1784 
1785 	memset(handle_tlbs, 0, sizeof(handle_tlbs));
1786 	memset(labels, 0, sizeof(labels));
1787 	memset(relocs, 0, sizeof(relocs));
1788 
1789 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1790 	build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1791 	uasm_i_nop(&p); /* load delay */
1792 	build_make_write(&p, &r, K0, K1);
1793 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1794 
1795 	uasm_l_nopage_tlbs(&l, p);
1796 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1797 	uasm_i_nop(&p);
1798 
1799 	if ((p - handle_tlbs) > FASTPATH_SIZE)
1800 		panic("TLB store handler fastpath space exceeded");
1801 
1802 	uasm_resolve_relocs(relocs, labels);
1803 	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1804 		 (unsigned int)(p - handle_tlbs));
1805 
1806 	dump_handler("r3000_tlb_store", handle_tlbs, ARRAY_SIZE(handle_tlbs));
1807 }
1808 
1809 static void __cpuinit build_r3000_tlb_modify_handler(void)
1810 {
1811 	u32 *p = handle_tlbm;
1812 	struct uasm_label *l = labels;
1813 	struct uasm_reloc *r = relocs;
1814 
1815 	memset(handle_tlbm, 0, sizeof(handle_tlbm));
1816 	memset(labels, 0, sizeof(labels));
1817 	memset(relocs, 0, sizeof(relocs));
1818 
1819 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1820 	build_pte_modifiable(&p, &r, K0, K1,  -1, label_nopage_tlbm);
1821 	uasm_i_nop(&p); /* load delay */
1822 	build_make_write(&p, &r, K0, K1);
1823 	build_r3000_pte_reload_tlbwi(&p, K0, K1);
1824 
1825 	uasm_l_nopage_tlbm(&l, p);
1826 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1827 	uasm_i_nop(&p);
1828 
1829 	if ((p - handle_tlbm) > FASTPATH_SIZE)
1830 		panic("TLB modify handler fastpath space exceeded");
1831 
1832 	uasm_resolve_relocs(relocs, labels);
1833 	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1834 		 (unsigned int)(p - handle_tlbm));
1835 
1836 	dump_handler("r3000_tlb_modify", handle_tlbm, ARRAY_SIZE(handle_tlbm));
1837 }
1838 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1839 
1840 /*
1841  * R4000 style TLB load/store/modify handlers.
1842  */
1843 static struct work_registers __cpuinit
1844 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1845 				   struct uasm_reloc **r)
1846 {
1847 	struct work_registers wr = build_get_work_registers(p);
1848 
1849 #ifdef CONFIG_64BIT
1850 	build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
1851 #else
1852 	build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
1853 #endif
1854 
1855 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1856 	/*
1857 	 * For huge tlb entries, pmd doesn't contain an address but
1858 	 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1859 	 * see if we need to jump to huge tlb processing.
1860 	 */
1861 	build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
1862 #endif
1863 
1864 	UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
1865 	UASM_i_LW(p, wr.r2, 0, wr.r2);
1866 	UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1867 	uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1868 	UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
1869 
1870 #ifdef CONFIG_SMP
1871 	uasm_l_smp_pgtable_change(l, *p);
1872 #endif
1873 	iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
1874 	if (!m4kc_tlbp_war())
1875 		build_tlb_probe_entry(p);
1876 	return wr;
1877 }
1878 
1879 static void __cpuinit
1880 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1881 				   struct uasm_reloc **r, unsigned int tmp,
1882 				   unsigned int ptr)
1883 {
1884 	uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1885 	uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1886 	build_update_entries(p, tmp, ptr);
1887 	build_tlb_write_entry(p, l, r, tlb_indexed);
1888 	uasm_l_leave(l, *p);
1889 	build_restore_work_registers(p);
1890 	uasm_i_eret(p); /* return from trap */
1891 
1892 #ifdef CONFIG_64BIT
1893 	build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
1894 #endif
1895 }
1896 
1897 static void __cpuinit build_r4000_tlb_load_handler(void)
1898 {
1899 	u32 *p = handle_tlbl;
1900 	struct uasm_label *l = labels;
1901 	struct uasm_reloc *r = relocs;
1902 	struct work_registers wr;
1903 
1904 	memset(handle_tlbl, 0, sizeof(handle_tlbl));
1905 	memset(labels, 0, sizeof(labels));
1906 	memset(relocs, 0, sizeof(relocs));
1907 
1908 	if (bcm1250_m3_war()) {
1909 		unsigned int segbits = 44;
1910 
1911 		uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1912 		uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1913 		uasm_i_xor(&p, K0, K0, K1);
1914 		uasm_i_dsrl_safe(&p, K1, K0, 62);
1915 		uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1916 		uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1917 		uasm_i_or(&p, K0, K0, K1);
1918 		uasm_il_bnez(&p, &r, K0, label_leave);
1919 		/* No need for uasm_i_nop */
1920 	}
1921 
1922 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
1923 	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1924 	if (m4kc_tlbp_war())
1925 		build_tlb_probe_entry(&p);
1926 
1927 	if (cpu_has_rixi) {
1928 		/*
1929 		 * If the page is not _PAGE_VALID, RI or XI could not
1930 		 * have triggered it.  Skip the expensive test..
1931 		 */
1932 		if (use_bbit_insns()) {
1933 			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1934 				      label_tlbl_goaround1);
1935 		} else {
1936 			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1937 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
1938 		}
1939 		uasm_i_nop(&p);
1940 
1941 		uasm_i_tlbr(&p);
1942 		/* Examine  entrylo 0 or 1 based on ptr. */
1943 		if (use_bbit_insns()) {
1944 			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1945 		} else {
1946 			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1947 			uasm_i_beqz(&p, wr.r3, 8);
1948 		}
1949 		/* load it in the delay slot*/
1950 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1951 		/* load it if ptr is odd */
1952 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1953 		/*
1954 		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1955 		 * XI must have triggered it.
1956 		 */
1957 		if (use_bbit_insns()) {
1958 			uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
1959 			uasm_i_nop(&p);
1960 			uasm_l_tlbl_goaround1(&l, p);
1961 		} else {
1962 			uasm_i_andi(&p, wr.r3, wr.r3, 2);
1963 			uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
1964 			uasm_i_nop(&p);
1965 		}
1966 		uasm_l_tlbl_goaround1(&l, p);
1967 	}
1968 	build_make_valid(&p, &r, wr.r1, wr.r2);
1969 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
1970 
1971 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1972 	/*
1973 	 * This is the entry point when build_r4000_tlbchange_handler_head
1974 	 * spots a huge page.
1975 	 */
1976 	uasm_l_tlb_huge_update(&l, p);
1977 	iPTE_LW(&p, wr.r1, wr.r2);
1978 	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1979 	build_tlb_probe_entry(&p);
1980 
1981 	if (cpu_has_rixi) {
1982 		/*
1983 		 * If the page is not _PAGE_VALID, RI or XI could not
1984 		 * have triggered it.  Skip the expensive test..
1985 		 */
1986 		if (use_bbit_insns()) {
1987 			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1988 				      label_tlbl_goaround2);
1989 		} else {
1990 			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1991 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
1992 		}
1993 		uasm_i_nop(&p);
1994 
1995 		uasm_i_tlbr(&p);
1996 		/* Examine  entrylo 0 or 1 based on ptr. */
1997 		if (use_bbit_insns()) {
1998 			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1999 		} else {
2000 			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2001 			uasm_i_beqz(&p, wr.r3, 8);
2002 		}
2003 		/* load it in the delay slot*/
2004 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2005 		/* load it if ptr is odd */
2006 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2007 		/*
2008 		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2009 		 * XI must have triggered it.
2010 		 */
2011 		if (use_bbit_insns()) {
2012 			uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2013 		} else {
2014 			uasm_i_andi(&p, wr.r3, wr.r3, 2);
2015 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2016 		}
2017 		if (PM_DEFAULT_MASK == 0)
2018 			uasm_i_nop(&p);
2019 		/*
2020 		 * We clobbered C0_PAGEMASK, restore it.  On the other branch
2021 		 * it is restored in build_huge_tlb_write_entry.
2022 		 */
2023 		build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2024 
2025 		uasm_l_tlbl_goaround2(&l, p);
2026 	}
2027 	uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2028 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2029 #endif
2030 
2031 	uasm_l_nopage_tlbl(&l, p);
2032 	build_restore_work_registers(&p);
2033 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2034 	uasm_i_nop(&p);
2035 
2036 	if ((p - handle_tlbl) > FASTPATH_SIZE)
2037 		panic("TLB load handler fastpath space exceeded");
2038 
2039 	uasm_resolve_relocs(relocs, labels);
2040 	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2041 		 (unsigned int)(p - handle_tlbl));
2042 
2043 	dump_handler("r4000_tlb_load", handle_tlbl, ARRAY_SIZE(handle_tlbl));
2044 }
2045 
2046 static void __cpuinit build_r4000_tlb_store_handler(void)
2047 {
2048 	u32 *p = handle_tlbs;
2049 	struct uasm_label *l = labels;
2050 	struct uasm_reloc *r = relocs;
2051 	struct work_registers wr;
2052 
2053 	memset(handle_tlbs, 0, sizeof(handle_tlbs));
2054 	memset(labels, 0, sizeof(labels));
2055 	memset(relocs, 0, sizeof(relocs));
2056 
2057 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2058 	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2059 	if (m4kc_tlbp_war())
2060 		build_tlb_probe_entry(&p);
2061 	build_make_write(&p, &r, wr.r1, wr.r2);
2062 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2063 
2064 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2065 	/*
2066 	 * This is the entry point when
2067 	 * build_r4000_tlbchange_handler_head spots a huge page.
2068 	 */
2069 	uasm_l_tlb_huge_update(&l, p);
2070 	iPTE_LW(&p, wr.r1, wr.r2);
2071 	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2072 	build_tlb_probe_entry(&p);
2073 	uasm_i_ori(&p, wr.r1, wr.r1,
2074 		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2075 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2076 #endif
2077 
2078 	uasm_l_nopage_tlbs(&l, p);
2079 	build_restore_work_registers(&p);
2080 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2081 	uasm_i_nop(&p);
2082 
2083 	if ((p - handle_tlbs) > FASTPATH_SIZE)
2084 		panic("TLB store handler fastpath space exceeded");
2085 
2086 	uasm_resolve_relocs(relocs, labels);
2087 	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2088 		 (unsigned int)(p - handle_tlbs));
2089 
2090 	dump_handler("r4000_tlb_store", handle_tlbs, ARRAY_SIZE(handle_tlbs));
2091 }
2092 
2093 static void __cpuinit build_r4000_tlb_modify_handler(void)
2094 {
2095 	u32 *p = handle_tlbm;
2096 	struct uasm_label *l = labels;
2097 	struct uasm_reloc *r = relocs;
2098 	struct work_registers wr;
2099 
2100 	memset(handle_tlbm, 0, sizeof(handle_tlbm));
2101 	memset(labels, 0, sizeof(labels));
2102 	memset(relocs, 0, sizeof(relocs));
2103 
2104 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2105 	build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2106 	if (m4kc_tlbp_war())
2107 		build_tlb_probe_entry(&p);
2108 	/* Present and writable bits set, set accessed and dirty bits. */
2109 	build_make_write(&p, &r, wr.r1, wr.r2);
2110 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2111 
2112 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2113 	/*
2114 	 * This is the entry point when
2115 	 * build_r4000_tlbchange_handler_head spots a huge page.
2116 	 */
2117 	uasm_l_tlb_huge_update(&l, p);
2118 	iPTE_LW(&p, wr.r1, wr.r2);
2119 	build_pte_modifiable(&p, &r, wr.r1, wr.r2,  wr.r3, label_nopage_tlbm);
2120 	build_tlb_probe_entry(&p);
2121 	uasm_i_ori(&p, wr.r1, wr.r1,
2122 		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2123 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2124 #endif
2125 
2126 	uasm_l_nopage_tlbm(&l, p);
2127 	build_restore_work_registers(&p);
2128 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2129 	uasm_i_nop(&p);
2130 
2131 	if ((p - handle_tlbm) > FASTPATH_SIZE)
2132 		panic("TLB modify handler fastpath space exceeded");
2133 
2134 	uasm_resolve_relocs(relocs, labels);
2135 	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2136 		 (unsigned int)(p - handle_tlbm));
2137 
2138 	dump_handler("r4000_tlb_modify", handle_tlbm, ARRAY_SIZE(handle_tlbm));
2139 }
2140 
2141 void __cpuinit build_tlb_refill_handler(void)
2142 {
2143 	/*
2144 	 * The refill handler is generated per-CPU, multi-node systems
2145 	 * may have local storage for it. The other handlers are only
2146 	 * needed once.
2147 	 */
2148 	static int run_once = 0;
2149 
2150 	output_pgtable_bits_defines();
2151 
2152 #ifdef CONFIG_64BIT
2153 	check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2154 #endif
2155 
2156 	switch (current_cpu_type()) {
2157 	case CPU_R2000:
2158 	case CPU_R3000:
2159 	case CPU_R3000A:
2160 	case CPU_R3081E:
2161 	case CPU_TX3912:
2162 	case CPU_TX3922:
2163 	case CPU_TX3927:
2164 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2165 		build_r3000_tlb_refill_handler();
2166 		if (!run_once) {
2167 			build_r3000_tlb_load_handler();
2168 			build_r3000_tlb_store_handler();
2169 			build_r3000_tlb_modify_handler();
2170 			run_once++;
2171 		}
2172 #else
2173 		panic("No R3000 TLB refill handler");
2174 #endif
2175 		break;
2176 
2177 	case CPU_R6000:
2178 	case CPU_R6000A:
2179 		panic("No R6000 TLB refill handler yet");
2180 		break;
2181 
2182 	case CPU_R8000:
2183 		panic("No R8000 TLB refill handler yet");
2184 		break;
2185 
2186 	default:
2187 		if (!run_once) {
2188 			scratch_reg = allocate_kscratch();
2189 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2190 			build_r4000_setup_pgd();
2191 #endif
2192 			build_r4000_tlb_load_handler();
2193 			build_r4000_tlb_store_handler();
2194 			build_r4000_tlb_modify_handler();
2195 			run_once++;
2196 		}
2197 		build_r4000_tlb_refill_handler();
2198 	}
2199 }
2200 
2201 void __cpuinit flush_tlb_handlers(void)
2202 {
2203 	local_flush_icache_range((unsigned long)handle_tlbl,
2204 			   (unsigned long)handle_tlbl + sizeof(handle_tlbl));
2205 	local_flush_icache_range((unsigned long)handle_tlbs,
2206 			   (unsigned long)handle_tlbs + sizeof(handle_tlbs));
2207 	local_flush_icache_range((unsigned long)handle_tlbm,
2208 			   (unsigned long)handle_tlbm + sizeof(handle_tlbm));
2209 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2210 	local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2211 			   (unsigned long)tlbmiss_handler_setup_pgd + sizeof(handle_tlbm));
2212 #endif
2213 }
2214