xref: /openbmc/linux/arch/mips/mm/tlbex.c (revision 87c2ce3b)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Synthesize TLB refill handlers at runtime.
7  *
8  * Copyright (C) 2004,2005 by Thiemo Seufer
9  * Copyright (C) 2005  Maciej W. Rozycki
10  */
11 
12 #include <stdarg.h>
13 
14 #include <linux/config.h>
15 #include <linux/mm.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/string.h>
19 #include <linux/init.h>
20 
21 #include <asm/pgtable.h>
22 #include <asm/cacheflush.h>
23 #include <asm/mmu_context.h>
24 #include <asm/inst.h>
25 #include <asm/elf.h>
26 #include <asm/smp.h>
27 #include <asm/war.h>
28 
29 /* #define DEBUG_TLB */
30 
31 static __init int __attribute__((unused)) r45k_bvahwbug(void)
32 {
33 	/* XXX: We should probe for the presence of this bug, but we don't. */
34 	return 0;
35 }
36 
37 static __init int __attribute__((unused)) r4k_250MHZhwbug(void)
38 {
39 	/* XXX: We should probe for the presence of this bug, but we don't. */
40 	return 0;
41 }
42 
43 static __init int __attribute__((unused)) bcm1250_m3_war(void)
44 {
45 	return BCM1250_M3_WAR;
46 }
47 
48 static __init int __attribute__((unused)) r10000_llsc_war(void)
49 {
50 	return R10000_LLSC_WAR;
51 }
52 
53 /*
54  * A little micro-assembler, intended for TLB refill handler
55  * synthesizing. It is intentionally kept simple, does only support
56  * a subset of instructions, and does not try to hide pipeline effects
57  * like branch delay slots.
58  */
59 
60 enum fields
61 {
62 	RS = 0x001,
63 	RT = 0x002,
64 	RD = 0x004,
65 	RE = 0x008,
66 	SIMM = 0x010,
67 	UIMM = 0x020,
68 	BIMM = 0x040,
69 	JIMM = 0x080,
70 	FUNC = 0x100,
71 };
72 
73 #define OP_MASK		0x2f
74 #define OP_SH		26
75 #define RS_MASK		0x1f
76 #define RS_SH		21
77 #define RT_MASK		0x1f
78 #define RT_SH		16
79 #define RD_MASK		0x1f
80 #define RD_SH		11
81 #define RE_MASK		0x1f
82 #define RE_SH		6
83 #define IMM_MASK	0xffff
84 #define IMM_SH		0
85 #define JIMM_MASK	0x3ffffff
86 #define JIMM_SH		0
87 #define FUNC_MASK	0x2f
88 #define FUNC_SH		0
89 
90 enum opcode {
91 	insn_invalid,
92 	insn_addu, insn_addiu, insn_and, insn_andi, insn_beq,
93 	insn_beql, insn_bgez, insn_bgezl, insn_bltz, insn_bltzl,
94 	insn_bne, insn_daddu, insn_daddiu, insn_dmfc0, insn_dmtc0,
95 	insn_dsll, insn_dsll32, insn_dsra, insn_dsrl,
96 	insn_dsubu, insn_eret, insn_j, insn_jal, insn_jr, insn_ld,
97 	insn_ll, insn_lld, insn_lui, insn_lw, insn_mfc0, insn_mtc0,
98 	insn_ori, insn_rfe, insn_sc, insn_scd, insn_sd, insn_sll,
99 	insn_sra, insn_srl, insn_subu, insn_sw, insn_tlbp, insn_tlbwi,
100 	insn_tlbwr, insn_xor, insn_xori
101 };
102 
103 struct insn {
104 	enum opcode opcode;
105 	u32 match;
106 	enum fields fields;
107 };
108 
109 /* This macro sets the non-variable bits of an instruction. */
110 #define M(a, b, c, d, e, f)					\
111 	((a) << OP_SH						\
112 	 | (b) << RS_SH						\
113 	 | (c) << RT_SH						\
114 	 | (d) << RD_SH						\
115 	 | (e) << RE_SH						\
116 	 | (f) << FUNC_SH)
117 
118 static __initdata struct insn insn_table[] = {
119 	{ insn_addiu, M(addiu_op,0,0,0,0,0), RS | RT | SIMM },
120 	{ insn_addu, M(spec_op,0,0,0,0,addu_op), RS | RT | RD },
121 	{ insn_and, M(spec_op,0,0,0,0,and_op), RS | RT | RD },
122 	{ insn_andi, M(andi_op,0,0,0,0,0), RS | RT | UIMM },
123 	{ insn_beq, M(beq_op,0,0,0,0,0), RS | RT | BIMM },
124 	{ insn_beql, M(beql_op,0,0,0,0,0), RS | RT | BIMM },
125 	{ insn_bgez, M(bcond_op,0,bgez_op,0,0,0), RS | BIMM },
126 	{ insn_bgezl, M(bcond_op,0,bgezl_op,0,0,0), RS | BIMM },
127 	{ insn_bltz, M(bcond_op,0,bltz_op,0,0,0), RS | BIMM },
128 	{ insn_bltzl, M(bcond_op,0,bltzl_op,0,0,0), RS | BIMM },
129 	{ insn_bne, M(bne_op,0,0,0,0,0), RS | RT | BIMM },
130 	{ insn_daddiu, M(daddiu_op,0,0,0,0,0), RS | RT | SIMM },
131 	{ insn_daddu, M(spec_op,0,0,0,0,daddu_op), RS | RT | RD },
132 	{ insn_dmfc0, M(cop0_op,dmfc_op,0,0,0,0), RT | RD },
133 	{ insn_dmtc0, M(cop0_op,dmtc_op,0,0,0,0), RT | RD },
134 	{ insn_dsll, M(spec_op,0,0,0,0,dsll_op), RT | RD | RE },
135 	{ insn_dsll32, M(spec_op,0,0,0,0,dsll32_op), RT | RD | RE },
136 	{ insn_dsra, M(spec_op,0,0,0,0,dsra_op), RT | RD | RE },
137 	{ insn_dsrl, M(spec_op,0,0,0,0,dsrl_op), RT | RD | RE },
138 	{ insn_dsubu, M(spec_op,0,0,0,0,dsubu_op), RS | RT | RD },
139 	{ insn_eret, M(cop0_op,cop_op,0,0,0,eret_op), 0 },
140 	{ insn_j, M(j_op,0,0,0,0,0), JIMM },
141 	{ insn_jal, M(jal_op,0,0,0,0,0), JIMM },
142 	{ insn_jr, M(spec_op,0,0,0,0,jr_op), RS },
143 	{ insn_ld, M(ld_op,0,0,0,0,0), RS | RT | SIMM },
144 	{ insn_ll, M(ll_op,0,0,0,0,0), RS | RT | SIMM },
145 	{ insn_lld, M(lld_op,0,0,0,0,0), RS | RT | SIMM },
146 	{ insn_lui, M(lui_op,0,0,0,0,0), RT | SIMM },
147 	{ insn_lw, M(lw_op,0,0,0,0,0), RS | RT | SIMM },
148 	{ insn_mfc0, M(cop0_op,mfc_op,0,0,0,0), RT | RD },
149 	{ insn_mtc0, M(cop0_op,mtc_op,0,0,0,0), RT | RD },
150 	{ insn_ori, M(ori_op,0,0,0,0,0), RS | RT | UIMM },
151 	{ insn_rfe, M(cop0_op,cop_op,0,0,0,rfe_op), 0 },
152 	{ insn_sc, M(sc_op,0,0,0,0,0), RS | RT | SIMM },
153 	{ insn_scd, M(scd_op,0,0,0,0,0), RS | RT | SIMM },
154 	{ insn_sd, M(sd_op,0,0,0,0,0), RS | RT | SIMM },
155 	{ insn_sll, M(spec_op,0,0,0,0,sll_op), RT | RD | RE },
156 	{ insn_sra, M(spec_op,0,0,0,0,sra_op), RT | RD | RE },
157 	{ insn_srl, M(spec_op,0,0,0,0,srl_op), RT | RD | RE },
158 	{ insn_subu, M(spec_op,0,0,0,0,subu_op), RS | RT | RD },
159 	{ insn_sw, M(sw_op,0,0,0,0,0), RS | RT | SIMM },
160 	{ insn_tlbp, M(cop0_op,cop_op,0,0,0,tlbp_op), 0 },
161 	{ insn_tlbwi, M(cop0_op,cop_op,0,0,0,tlbwi_op), 0 },
162 	{ insn_tlbwr, M(cop0_op,cop_op,0,0,0,tlbwr_op), 0 },
163 	{ insn_xor, M(spec_op,0,0,0,0,xor_op), RS | RT | RD },
164 	{ insn_xori, M(xori_op,0,0,0,0,0), RS | RT | UIMM },
165 	{ insn_invalid, 0, 0 }
166 };
167 
168 #undef M
169 
170 static __init u32 build_rs(u32 arg)
171 {
172 	if (arg & ~RS_MASK)
173 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
174 
175 	return (arg & RS_MASK) << RS_SH;
176 }
177 
178 static __init u32 build_rt(u32 arg)
179 {
180 	if (arg & ~RT_MASK)
181 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
182 
183 	return (arg & RT_MASK) << RT_SH;
184 }
185 
186 static __init u32 build_rd(u32 arg)
187 {
188 	if (arg & ~RD_MASK)
189 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
190 
191 	return (arg & RD_MASK) << RD_SH;
192 }
193 
194 static __init u32 build_re(u32 arg)
195 {
196 	if (arg & ~RE_MASK)
197 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
198 
199 	return (arg & RE_MASK) << RE_SH;
200 }
201 
202 static __init u32 build_simm(s32 arg)
203 {
204 	if (arg > 0x7fff || arg < -0x8000)
205 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
206 
207 	return arg & 0xffff;
208 }
209 
210 static __init u32 build_uimm(u32 arg)
211 {
212 	if (arg & ~IMM_MASK)
213 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
214 
215 	return arg & IMM_MASK;
216 }
217 
218 static __init u32 build_bimm(s32 arg)
219 {
220 	if (arg > 0x1ffff || arg < -0x20000)
221 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
222 
223 	if (arg & 0x3)
224 		printk(KERN_WARNING "Invalid TLB synthesizer branch target\n");
225 
226 	return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
227 }
228 
229 static __init u32 build_jimm(u32 arg)
230 {
231 	if (arg & ~((JIMM_MASK) << 2))
232 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
233 
234 	return (arg >> 2) & JIMM_MASK;
235 }
236 
237 static __init u32 build_func(u32 arg)
238 {
239 	if (arg & ~FUNC_MASK)
240 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
241 
242 	return arg & FUNC_MASK;
243 }
244 
245 /*
246  * The order of opcode arguments is implicitly left to right,
247  * starting with RS and ending with FUNC or IMM.
248  */
249 static void __init build_insn(u32 **buf, enum opcode opc, ...)
250 {
251 	struct insn *ip = NULL;
252 	unsigned int i;
253 	va_list ap;
254 	u32 op;
255 
256 	for (i = 0; insn_table[i].opcode != insn_invalid; i++)
257 		if (insn_table[i].opcode == opc) {
258 			ip = &insn_table[i];
259 			break;
260 		}
261 
262 	if (!ip)
263 		panic("Unsupported TLB synthesizer instruction %d", opc);
264 
265 	op = ip->match;
266 	va_start(ap, opc);
267 	if (ip->fields & RS) op |= build_rs(va_arg(ap, u32));
268 	if (ip->fields & RT) op |= build_rt(va_arg(ap, u32));
269 	if (ip->fields & RD) op |= build_rd(va_arg(ap, u32));
270 	if (ip->fields & RE) op |= build_re(va_arg(ap, u32));
271 	if (ip->fields & SIMM) op |= build_simm(va_arg(ap, s32));
272 	if (ip->fields & UIMM) op |= build_uimm(va_arg(ap, u32));
273 	if (ip->fields & BIMM) op |= build_bimm(va_arg(ap, s32));
274 	if (ip->fields & JIMM) op |= build_jimm(va_arg(ap, u32));
275 	if (ip->fields & FUNC) op |= build_func(va_arg(ap, u32));
276 	va_end(ap);
277 
278 	**buf = op;
279 	(*buf)++;
280 }
281 
282 #define I_u1u2u3(op)						\
283 	static inline void i##op(u32 **buf, unsigned int a,	\
284 	 	unsigned int b, unsigned int c)			\
285 	{							\
286 		build_insn(buf, insn##op, a, b, c);		\
287 	}
288 
289 #define I_u2u1u3(op)						\
290 	static inline void i##op(u32 **buf, unsigned int a,	\
291 	 	unsigned int b, unsigned int c)			\
292 	{							\
293 		build_insn(buf, insn##op, b, a, c);		\
294 	}
295 
296 #define I_u3u1u2(op)						\
297 	static inline void i##op(u32 **buf, unsigned int a,	\
298 	 	unsigned int b, unsigned int c)			\
299 	{							\
300 		build_insn(buf, insn##op, b, c, a);		\
301 	}
302 
303 #define I_u1u2s3(op)						\
304 	static inline void i##op(u32 **buf, unsigned int a,	\
305 	 	unsigned int b, signed int c)			\
306 	{							\
307 		build_insn(buf, insn##op, a, b, c);		\
308 	}
309 
310 #define I_u2s3u1(op)						\
311 	static inline void i##op(u32 **buf, unsigned int a,	\
312 	 	signed int b, unsigned int c)			\
313 	{							\
314 		build_insn(buf, insn##op, c, a, b);		\
315 	}
316 
317 #define I_u2u1s3(op)						\
318 	static inline void i##op(u32 **buf, unsigned int a,	\
319 	 	unsigned int b, signed int c)			\
320 	{							\
321 		build_insn(buf, insn##op, b, a, c);		\
322 	}
323 
324 #define I_u1u2(op)						\
325 	static inline void i##op(u32 **buf, unsigned int a,	\
326 	 	unsigned int b)					\
327 	{							\
328 		build_insn(buf, insn##op, a, b);		\
329 	}
330 
331 #define I_u1s2(op)						\
332 	static inline void i##op(u32 **buf, unsigned int a,	\
333 	 	signed int b)					\
334 	{							\
335 		build_insn(buf, insn##op, a, b);		\
336 	}
337 
338 #define I_u1(op)						\
339 	static inline void i##op(u32 **buf, unsigned int a)	\
340 	{							\
341 		build_insn(buf, insn##op, a);			\
342 	}
343 
344 #define I_0(op)							\
345 	static inline void i##op(u32 **buf)			\
346 	{							\
347 		build_insn(buf, insn##op);			\
348 	}
349 
350 I_u2u1s3(_addiu);
351 I_u3u1u2(_addu);
352 I_u2u1u3(_andi);
353 I_u3u1u2(_and);
354 I_u1u2s3(_beq);
355 I_u1u2s3(_beql);
356 I_u1s2(_bgez);
357 I_u1s2(_bgezl);
358 I_u1s2(_bltz);
359 I_u1s2(_bltzl);
360 I_u1u2s3(_bne);
361 I_u1u2(_dmfc0);
362 I_u1u2(_dmtc0);
363 I_u2u1s3(_daddiu);
364 I_u3u1u2(_daddu);
365 I_u2u1u3(_dsll);
366 I_u2u1u3(_dsll32);
367 I_u2u1u3(_dsra);
368 I_u2u1u3(_dsrl);
369 I_u3u1u2(_dsubu);
370 I_0(_eret);
371 I_u1(_j);
372 I_u1(_jal);
373 I_u1(_jr);
374 I_u2s3u1(_ld);
375 I_u2s3u1(_ll);
376 I_u2s3u1(_lld);
377 I_u1s2(_lui);
378 I_u2s3u1(_lw);
379 I_u1u2(_mfc0);
380 I_u1u2(_mtc0);
381 I_u2u1u3(_ori);
382 I_0(_rfe);
383 I_u2s3u1(_sc);
384 I_u2s3u1(_scd);
385 I_u2s3u1(_sd);
386 I_u2u1u3(_sll);
387 I_u2u1u3(_sra);
388 I_u2u1u3(_srl);
389 I_u3u1u2(_subu);
390 I_u2s3u1(_sw);
391 I_0(_tlbp);
392 I_0(_tlbwi);
393 I_0(_tlbwr);
394 I_u3u1u2(_xor)
395 I_u2u1u3(_xori);
396 
397 /*
398  * handling labels
399  */
400 
401 enum label_id {
402 	label_invalid,
403 	label_second_part,
404 	label_leave,
405 	label_vmalloc,
406 	label_vmalloc_done,
407 	label_tlbw_hazard,
408 	label_split,
409 	label_nopage_tlbl,
410 	label_nopage_tlbs,
411 	label_nopage_tlbm,
412 	label_smp_pgtable_change,
413 	label_r3000_write_probe_fail,
414 };
415 
416 struct label {
417 	u32 *addr;
418 	enum label_id lab;
419 };
420 
421 static __init void build_label(struct label **lab, u32 *addr,
422 			       enum label_id l)
423 {
424 	(*lab)->addr = addr;
425 	(*lab)->lab = l;
426 	(*lab)++;
427 }
428 
429 #define L_LA(lb)						\
430 	static inline void l##lb(struct label **lab, u32 *addr) \
431 	{							\
432 		build_label(lab, addr, label##lb);		\
433 	}
434 
435 L_LA(_second_part)
436 L_LA(_leave)
437 L_LA(_vmalloc)
438 L_LA(_vmalloc_done)
439 L_LA(_tlbw_hazard)
440 L_LA(_split)
441 L_LA(_nopage_tlbl)
442 L_LA(_nopage_tlbs)
443 L_LA(_nopage_tlbm)
444 L_LA(_smp_pgtable_change)
445 L_LA(_r3000_write_probe_fail)
446 
447 /* convenience macros for instructions */
448 #ifdef CONFIG_64BIT
449 # define i_LW(buf, rs, rt, off) i_ld(buf, rs, rt, off)
450 # define i_SW(buf, rs, rt, off) i_sd(buf, rs, rt, off)
451 # define i_SLL(buf, rs, rt, sh) i_dsll(buf, rs, rt, sh)
452 # define i_SRA(buf, rs, rt, sh) i_dsra(buf, rs, rt, sh)
453 # define i_SRL(buf, rs, rt, sh) i_dsrl(buf, rs, rt, sh)
454 # define i_MFC0(buf, rt, rd) i_dmfc0(buf, rt, rd)
455 # define i_MTC0(buf, rt, rd) i_dmtc0(buf, rt, rd)
456 # define i_ADDIU(buf, rs, rt, val) i_daddiu(buf, rs, rt, val)
457 # define i_ADDU(buf, rs, rt, rd) i_daddu(buf, rs, rt, rd)
458 # define i_SUBU(buf, rs, rt, rd) i_dsubu(buf, rs, rt, rd)
459 # define i_LL(buf, rs, rt, off) i_lld(buf, rs, rt, off)
460 # define i_SC(buf, rs, rt, off) i_scd(buf, rs, rt, off)
461 #else
462 # define i_LW(buf, rs, rt, off) i_lw(buf, rs, rt, off)
463 # define i_SW(buf, rs, rt, off) i_sw(buf, rs, rt, off)
464 # define i_SLL(buf, rs, rt, sh) i_sll(buf, rs, rt, sh)
465 # define i_SRA(buf, rs, rt, sh) i_sra(buf, rs, rt, sh)
466 # define i_SRL(buf, rs, rt, sh) i_srl(buf, rs, rt, sh)
467 # define i_MFC0(buf, rt, rd) i_mfc0(buf, rt, rd)
468 # define i_MTC0(buf, rt, rd) i_mtc0(buf, rt, rd)
469 # define i_ADDIU(buf, rs, rt, val) i_addiu(buf, rs, rt, val)
470 # define i_ADDU(buf, rs, rt, rd) i_addu(buf, rs, rt, rd)
471 # define i_SUBU(buf, rs, rt, rd) i_subu(buf, rs, rt, rd)
472 # define i_LL(buf, rs, rt, off) i_ll(buf, rs, rt, off)
473 # define i_SC(buf, rs, rt, off) i_sc(buf, rs, rt, off)
474 #endif
475 
476 #define i_b(buf, off) i_beq(buf, 0, 0, off)
477 #define i_beqz(buf, rs, off) i_beq(buf, rs, 0, off)
478 #define i_beqzl(buf, rs, off) i_beql(buf, rs, 0, off)
479 #define i_bnez(buf, rs, off) i_bne(buf, rs, 0, off)
480 #define i_bnezl(buf, rs, off) i_bnel(buf, rs, 0, off)
481 #define i_move(buf, a, b) i_ADDU(buf, a, 0, b)
482 #define i_nop(buf) i_sll(buf, 0, 0, 0)
483 #define i_ssnop(buf) i_sll(buf, 0, 0, 1)
484 #define i_ehb(buf) i_sll(buf, 0, 0, 3)
485 
486 #ifdef CONFIG_64BIT
487 static __init int __attribute__((unused)) in_compat_space_p(long addr)
488 {
489 	/* Is this address in 32bit compat space? */
490 	return (((addr) & 0xffffffff00000000L) == 0xffffffff00000000L);
491 }
492 
493 static __init int __attribute__((unused)) rel_highest(long val)
494 {
495 	return ((((val + 0x800080008000L) >> 48) & 0xffff) ^ 0x8000) - 0x8000;
496 }
497 
498 static __init int __attribute__((unused)) rel_higher(long val)
499 {
500 	return ((((val + 0x80008000L) >> 32) & 0xffff) ^ 0x8000) - 0x8000;
501 }
502 #endif
503 
504 static __init int rel_hi(long val)
505 {
506 	return ((((val + 0x8000L) >> 16) & 0xffff) ^ 0x8000) - 0x8000;
507 }
508 
509 static __init int rel_lo(long val)
510 {
511 	return ((val & 0xffff) ^ 0x8000) - 0x8000;
512 }
513 
514 static __init void i_LA_mostly(u32 **buf, unsigned int rs, long addr)
515 {
516 #ifdef CONFIG_64BIT
517 	if (!in_compat_space_p(addr)) {
518 		i_lui(buf, rs, rel_highest(addr));
519 		if (rel_higher(addr))
520 			i_daddiu(buf, rs, rs, rel_higher(addr));
521 		if (rel_hi(addr)) {
522 			i_dsll(buf, rs, rs, 16);
523 			i_daddiu(buf, rs, rs, rel_hi(addr));
524 			i_dsll(buf, rs, rs, 16);
525 		} else
526 			i_dsll32(buf, rs, rs, 0);
527 	} else
528 #endif
529 		i_lui(buf, rs, rel_hi(addr));
530 }
531 
532 static __init void __attribute__((unused)) i_LA(u32 **buf, unsigned int rs,
533 						long addr)
534 {
535 	i_LA_mostly(buf, rs, addr);
536 	if (rel_lo(addr))
537 		i_ADDIU(buf, rs, rs, rel_lo(addr));
538 }
539 
540 /*
541  * handle relocations
542  */
543 
544 struct reloc {
545 	u32 *addr;
546 	unsigned int type;
547 	enum label_id lab;
548 };
549 
550 static __init void r_mips_pc16(struct reloc **rel, u32 *addr,
551 			       enum label_id l)
552 {
553 	(*rel)->addr = addr;
554 	(*rel)->type = R_MIPS_PC16;
555 	(*rel)->lab = l;
556 	(*rel)++;
557 }
558 
559 static inline void __resolve_relocs(struct reloc *rel, struct label *lab)
560 {
561 	long laddr = (long)lab->addr;
562 	long raddr = (long)rel->addr;
563 
564 	switch (rel->type) {
565 	case R_MIPS_PC16:
566 		*rel->addr |= build_bimm(laddr - (raddr + 4));
567 		break;
568 
569 	default:
570 		panic("Unsupported TLB synthesizer relocation %d",
571 		      rel->type);
572 	}
573 }
574 
575 static __init void resolve_relocs(struct reloc *rel, struct label *lab)
576 {
577 	struct label *l;
578 
579 	for (; rel->lab != label_invalid; rel++)
580 		for (l = lab; l->lab != label_invalid; l++)
581 			if (rel->lab == l->lab)
582 				__resolve_relocs(rel, l);
583 }
584 
585 static __init void move_relocs(struct reloc *rel, u32 *first, u32 *end,
586 			       long off)
587 {
588 	for (; rel->lab != label_invalid; rel++)
589 		if (rel->addr >= first && rel->addr < end)
590 			rel->addr += off;
591 }
592 
593 static __init void move_labels(struct label *lab, u32 *first, u32 *end,
594 			       long off)
595 {
596 	for (; lab->lab != label_invalid; lab++)
597 		if (lab->addr >= first && lab->addr < end)
598 			lab->addr += off;
599 }
600 
601 static __init void copy_handler(struct reloc *rel, struct label *lab,
602 				u32 *first, u32 *end, u32 *target)
603 {
604 	long off = (long)(target - first);
605 
606 	memcpy(target, first, (end - first) * sizeof(u32));
607 
608 	move_relocs(rel, first, end, off);
609 	move_labels(lab, first, end, off);
610 }
611 
612 static __init int __attribute__((unused)) insn_has_bdelay(struct reloc *rel,
613 							  u32 *addr)
614 {
615 	for (; rel->lab != label_invalid; rel++) {
616 		if (rel->addr == addr
617 		    && (rel->type == R_MIPS_PC16
618 			|| rel->type == R_MIPS_26))
619 			return 1;
620 	}
621 
622 	return 0;
623 }
624 
625 /* convenience functions for labeled branches */
626 static void __attribute__((unused)) il_bltz(u32 **p, struct reloc **r,
627 					    unsigned int reg, enum label_id l)
628 {
629 	r_mips_pc16(r, *p, l);
630 	i_bltz(p, reg, 0);
631 }
632 
633 static void __attribute__((unused)) il_b(u32 **p, struct reloc **r,
634 					 enum label_id l)
635 {
636 	r_mips_pc16(r, *p, l);
637 	i_b(p, 0);
638 }
639 
640 static void il_beqz(u32 **p, struct reloc **r, unsigned int reg,
641 		    enum label_id l)
642 {
643 	r_mips_pc16(r, *p, l);
644 	i_beqz(p, reg, 0);
645 }
646 
647 static void __attribute__((unused))
648 il_beqzl(u32 **p, struct reloc **r, unsigned int reg, enum label_id l)
649 {
650 	r_mips_pc16(r, *p, l);
651 	i_beqzl(p, reg, 0);
652 }
653 
654 static void il_bnez(u32 **p, struct reloc **r, unsigned int reg,
655 		    enum label_id l)
656 {
657 	r_mips_pc16(r, *p, l);
658 	i_bnez(p, reg, 0);
659 }
660 
661 static void il_bgezl(u32 **p, struct reloc **r, unsigned int reg,
662 		     enum label_id l)
663 {
664 	r_mips_pc16(r, *p, l);
665 	i_bgezl(p, reg, 0);
666 }
667 
668 /* The only general purpose registers allowed in TLB handlers. */
669 #define K0		26
670 #define K1		27
671 
672 /* Some CP0 registers */
673 #define C0_INDEX	0
674 #define C0_ENTRYLO0	2
675 #define C0_ENTRYLO1	3
676 #define C0_CONTEXT	4
677 #define C0_BADVADDR	8
678 #define C0_ENTRYHI	10
679 #define C0_EPC		14
680 #define C0_XCONTEXT	20
681 
682 #ifdef CONFIG_64BIT
683 # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_XCONTEXT)
684 #else
685 # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_CONTEXT)
686 #endif
687 
688 /* The worst case length of the handler is around 18 instructions for
689  * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
690  * Maximum space available is 32 instructions for R3000 and 64
691  * instructions for R4000.
692  *
693  * We deliberately chose a buffer size of 128, so we won't scribble
694  * over anything important on overflow before we panic.
695  */
696 static __initdata u32 tlb_handler[128];
697 
698 /* simply assume worst case size for labels and relocs */
699 static __initdata struct label labels[128];
700 static __initdata struct reloc relocs[128];
701 
702 /*
703  * The R3000 TLB handler is simple.
704  */
705 static void __init build_r3000_tlb_refill_handler(void)
706 {
707 	long pgdc = (long)pgd_current;
708 	u32 *p;
709 
710 	memset(tlb_handler, 0, sizeof(tlb_handler));
711 	p = tlb_handler;
712 
713 	i_mfc0(&p, K0, C0_BADVADDR);
714 	i_lui(&p, K1, rel_hi(pgdc)); /* cp0 delay */
715 	i_lw(&p, K1, rel_lo(pgdc), K1);
716 	i_srl(&p, K0, K0, 22); /* load delay */
717 	i_sll(&p, K0, K0, 2);
718 	i_addu(&p, K1, K1, K0);
719 	i_mfc0(&p, K0, C0_CONTEXT);
720 	i_lw(&p, K1, 0, K1); /* cp0 delay */
721 	i_andi(&p, K0, K0, 0xffc); /* load delay */
722 	i_addu(&p, K1, K1, K0);
723 	i_lw(&p, K0, 0, K1);
724 	i_nop(&p); /* load delay */
725 	i_mtc0(&p, K0, C0_ENTRYLO0);
726 	i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
727 	i_tlbwr(&p); /* cp0 delay */
728 	i_jr(&p, K1);
729 	i_rfe(&p); /* branch delay */
730 
731 	if (p > tlb_handler + 32)
732 		panic("TLB refill handler space exceeded");
733 
734 	printk("Synthesized TLB refill handler (%u instructions).\n",
735 	       (unsigned int)(p - tlb_handler));
736 #ifdef DEBUG_TLB
737 	{
738 		int i;
739 
740 		for (i = 0; i < (p - tlb_handler); i++)
741 			printk("%08x\n", tlb_handler[i]);
742 	}
743 #endif
744 
745 	memcpy((void *)CAC_BASE, tlb_handler, 0x80);
746 }
747 
748 /*
749  * The R4000 TLB handler is much more complicated. We have two
750  * consecutive handler areas with 32 instructions space each.
751  * Since they aren't used at the same time, we can overflow in the
752  * other one.To keep things simple, we first assume linear space,
753  * then we relocate it to the final handler layout as needed.
754  */
755 static __initdata u32 final_handler[64];
756 
757 /*
758  * Hazards
759  *
760  * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
761  * 2. A timing hazard exists for the TLBP instruction.
762  *
763  *      stalling_instruction
764  *      TLBP
765  *
766  * The JTLB is being read for the TLBP throughout the stall generated by the
767  * previous instruction. This is not really correct as the stalling instruction
768  * can modify the address used to access the JTLB.  The failure symptom is that
769  * the TLBP instruction will use an address created for the stalling instruction
770  * and not the address held in C0_ENHI and thus report the wrong results.
771  *
772  * The software work-around is to not allow the instruction preceding the TLBP
773  * to stall - make it an NOP or some other instruction guaranteed not to stall.
774  *
775  * Errata 2 will not be fixed.  This errata is also on the R5000.
776  *
777  * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
778  */
779 static __init void __attribute__((unused)) build_tlb_probe_entry(u32 **p)
780 {
781 	switch (current_cpu_data.cputype) {
782 	/* Found by experiment: R4600 v2.0 needs this, too.  */
783 	case CPU_R4600:
784 	case CPU_R5000:
785 	case CPU_R5000A:
786 	case CPU_NEVADA:
787 		i_nop(p);
788 		i_tlbp(p);
789 		break;
790 
791 	default:
792 		i_tlbp(p);
793 		break;
794 	}
795 }
796 
797 /*
798  * Write random or indexed TLB entry, and care about the hazards from
799  * the preceeding mtc0 and for the following eret.
800  */
801 enum tlb_write_entry { tlb_random, tlb_indexed };
802 
803 static __init void build_tlb_write_entry(u32 **p, struct label **l,
804 					 struct reloc **r,
805 					 enum tlb_write_entry wmode)
806 {
807 	void(*tlbw)(u32 **) = NULL;
808 
809 	switch (wmode) {
810 	case tlb_random: tlbw = i_tlbwr; break;
811 	case tlb_indexed: tlbw = i_tlbwi; break;
812 	}
813 
814 	switch (current_cpu_data.cputype) {
815 	case CPU_R4000PC:
816 	case CPU_R4000SC:
817 	case CPU_R4000MC:
818 	case CPU_R4400PC:
819 	case CPU_R4400SC:
820 	case CPU_R4400MC:
821 		/*
822 		 * This branch uses up a mtc0 hazard nop slot and saves
823 		 * two nops after the tlbw instruction.
824 		 */
825 		il_bgezl(p, r, 0, label_tlbw_hazard);
826 		tlbw(p);
827 		l_tlbw_hazard(l, *p);
828 		i_nop(p);
829 		break;
830 
831 	case CPU_R4600:
832 	case CPU_R4700:
833 	case CPU_R5000:
834 	case CPU_R5000A:
835 		i_nop(p);
836 		tlbw(p);
837 		i_nop(p);
838 		break;
839 
840 	case CPU_R4300:
841 	case CPU_5KC:
842 	case CPU_TX49XX:
843 	case CPU_AU1000:
844 	case CPU_AU1100:
845 	case CPU_AU1500:
846 	case CPU_AU1550:
847 	case CPU_AU1200:
848 	case CPU_PR4450:
849 		i_nop(p);
850 		tlbw(p);
851 		break;
852 
853 	case CPU_R10000:
854 	case CPU_R12000:
855 	case CPU_4KC:
856 	case CPU_SB1:
857 	case CPU_SB1A:
858 	case CPU_4KSC:
859 	case CPU_20KC:
860 	case CPU_25KF:
861 		tlbw(p);
862 		break;
863 
864 	case CPU_NEVADA:
865 		i_nop(p); /* QED specifies 2 nops hazard */
866 		/*
867 		 * This branch uses up a mtc0 hazard nop slot and saves
868 		 * a nop after the tlbw instruction.
869 		 */
870 		il_bgezl(p, r, 0, label_tlbw_hazard);
871 		tlbw(p);
872 		l_tlbw_hazard(l, *p);
873 		break;
874 
875 	case CPU_RM7000:
876 		i_nop(p);
877 		i_nop(p);
878 		i_nop(p);
879 		i_nop(p);
880 		tlbw(p);
881 		break;
882 
883 	case CPU_4KEC:
884 	case CPU_24K:
885 	case CPU_34K:
886 		i_ehb(p);
887 		tlbw(p);
888 		break;
889 
890 	case CPU_RM9000:
891 		/*
892 		 * When the JTLB is updated by tlbwi or tlbwr, a subsequent
893 		 * use of the JTLB for instructions should not occur for 4
894 		 * cpu cycles and use for data translations should not occur
895 		 * for 3 cpu cycles.
896 		 */
897 		i_ssnop(p);
898 		i_ssnop(p);
899 		i_ssnop(p);
900 		i_ssnop(p);
901 		tlbw(p);
902 		i_ssnop(p);
903 		i_ssnop(p);
904 		i_ssnop(p);
905 		i_ssnop(p);
906 		break;
907 
908 	case CPU_VR4111:
909 	case CPU_VR4121:
910 	case CPU_VR4122:
911 	case CPU_VR4181:
912 	case CPU_VR4181A:
913 		i_nop(p);
914 		i_nop(p);
915 		tlbw(p);
916 		i_nop(p);
917 		i_nop(p);
918 		break;
919 
920 	case CPU_VR4131:
921 	case CPU_VR4133:
922 	case CPU_R5432:
923 		i_nop(p);
924 		i_nop(p);
925 		tlbw(p);
926 		break;
927 
928 	default:
929 		panic("No TLB refill handler yet (CPU type: %d)",
930 		      current_cpu_data.cputype);
931 		break;
932 	}
933 }
934 
935 #ifdef CONFIG_64BIT
936 /*
937  * TMP and PTR are scratch.
938  * TMP will be clobbered, PTR will hold the pmd entry.
939  */
940 static __init void
941 build_get_pmde64(u32 **p, struct label **l, struct reloc **r,
942 		 unsigned int tmp, unsigned int ptr)
943 {
944 	long pgdc = (long)pgd_current;
945 
946 	/*
947 	 * The vmalloc handling is not in the hotpath.
948 	 */
949 	i_dmfc0(p, tmp, C0_BADVADDR);
950 	il_bltz(p, r, tmp, label_vmalloc);
951 	/* No i_nop needed here, since the next insn doesn't touch TMP. */
952 
953 #ifdef CONFIG_SMP
954 # ifdef CONFIG_BUILD_ELF64
955 	/*
956 	 * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
957 	 * stored in CONTEXT.
958 	 */
959 	i_dmfc0(p, ptr, C0_CONTEXT);
960 	i_dsrl(p, ptr, ptr, 23);
961 	i_LA_mostly(p, tmp, pgdc);
962 	i_daddu(p, ptr, ptr, tmp);
963 	i_dmfc0(p, tmp, C0_BADVADDR);
964 	i_ld(p, ptr, rel_lo(pgdc), ptr);
965 # else
966 	/*
967 	 * 64 bit SMP running in compat space has the lower part of
968 	 * &pgd_current[smp_processor_id()] stored in CONTEXT.
969 	 */
970 	if (!in_compat_space_p(pgdc))
971 		panic("Invalid page directory address!");
972 
973 	i_dmfc0(p, ptr, C0_CONTEXT);
974 	i_dsra(p, ptr, ptr, 23);
975 	i_ld(p, ptr, 0, ptr);
976 # endif
977 #else
978 	i_LA_mostly(p, ptr, pgdc);
979 	i_ld(p, ptr, rel_lo(pgdc), ptr);
980 #endif
981 
982 	l_vmalloc_done(l, *p);
983 	i_dsrl(p, tmp, tmp, PGDIR_SHIFT-3); /* get pgd offset in bytes */
984 	i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
985 	i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
986 	i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
987 	i_ld(p, ptr, 0, ptr); /* get pmd pointer */
988 	i_dsrl(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
989 	i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
990 	i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
991 }
992 
993 /*
994  * BVADDR is the faulting address, PTR is scratch.
995  * PTR will hold the pgd for vmalloc.
996  */
997 static __init void
998 build_get_pgd_vmalloc64(u32 **p, struct label **l, struct reloc **r,
999 			unsigned int bvaddr, unsigned int ptr)
1000 {
1001 	long swpd = (long)swapper_pg_dir;
1002 
1003 	l_vmalloc(l, *p);
1004 	i_LA(p, ptr, VMALLOC_START);
1005 	i_dsubu(p, bvaddr, bvaddr, ptr);
1006 
1007 	if (in_compat_space_p(swpd) && !rel_lo(swpd)) {
1008 		il_b(p, r, label_vmalloc_done);
1009 		i_lui(p, ptr, rel_hi(swpd));
1010 	} else {
1011 		i_LA_mostly(p, ptr, swpd);
1012 		il_b(p, r, label_vmalloc_done);
1013 		i_daddiu(p, ptr, ptr, rel_lo(swpd));
1014 	}
1015 }
1016 
1017 #else /* !CONFIG_64BIT */
1018 
1019 /*
1020  * TMP and PTR are scratch.
1021  * TMP will be clobbered, PTR will hold the pgd entry.
1022  */
1023 static __init void __attribute__((unused))
1024 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
1025 {
1026 	long pgdc = (long)pgd_current;
1027 
1028 	/* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
1029 #ifdef CONFIG_SMP
1030 	i_mfc0(p, ptr, C0_CONTEXT);
1031 	i_LA_mostly(p, tmp, pgdc);
1032 	i_srl(p, ptr, ptr, 23);
1033 	i_addu(p, ptr, tmp, ptr);
1034 #else
1035 	i_LA_mostly(p, ptr, pgdc);
1036 #endif
1037 	i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
1038 	i_lw(p, ptr, rel_lo(pgdc), ptr);
1039 	i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
1040 	i_sll(p, tmp, tmp, PGD_T_LOG2);
1041 	i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
1042 }
1043 
1044 #endif /* !CONFIG_64BIT */
1045 
1046 static __init void build_adjust_context(u32 **p, unsigned int ctx)
1047 {
1048 	unsigned int shift = 4 - (PTE_T_LOG2 + 1);
1049 	unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
1050 
1051 	switch (current_cpu_data.cputype) {
1052 	case CPU_VR41XX:
1053 	case CPU_VR4111:
1054 	case CPU_VR4121:
1055 	case CPU_VR4122:
1056 	case CPU_VR4131:
1057 	case CPU_VR4181:
1058 	case CPU_VR4181A:
1059 	case CPU_VR4133:
1060 		shift += 2;
1061 		break;
1062 
1063 	default:
1064 		break;
1065 	}
1066 
1067 	if (shift)
1068 		i_SRL(p, ctx, ctx, shift);
1069 	i_andi(p, ctx, ctx, mask);
1070 }
1071 
1072 static __init void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
1073 {
1074 	/*
1075 	 * Bug workaround for the Nevada. It seems as if under certain
1076 	 * circumstances the move from cp0_context might produce a
1077 	 * bogus result when the mfc0 instruction and its consumer are
1078 	 * in a different cacheline or a load instruction, probably any
1079 	 * memory reference, is between them.
1080 	 */
1081 	switch (current_cpu_data.cputype) {
1082 	case CPU_NEVADA:
1083 		i_LW(p, ptr, 0, ptr);
1084 		GET_CONTEXT(p, tmp); /* get context reg */
1085 		break;
1086 
1087 	default:
1088 		GET_CONTEXT(p, tmp); /* get context reg */
1089 		i_LW(p, ptr, 0, ptr);
1090 		break;
1091 	}
1092 
1093 	build_adjust_context(p, tmp);
1094 	i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1095 }
1096 
1097 static __init void build_update_entries(u32 **p, unsigned int tmp,
1098 					unsigned int ptep)
1099 {
1100 	/*
1101 	 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1102 	 * Kernel is a special case. Only a few CPUs use it.
1103 	 */
1104 #ifdef CONFIG_64BIT_PHYS_ADDR
1105 	if (cpu_has_64bits) {
1106 		i_ld(p, tmp, 0, ptep); /* get even pte */
1107 		i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1108 		i_dsrl(p, tmp, tmp, 6); /* convert to entrylo0 */
1109 		i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1110 		i_dsrl(p, ptep, ptep, 6); /* convert to entrylo1 */
1111 		i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1112 	} else {
1113 		int pte_off_even = sizeof(pte_t) / 2;
1114 		int pte_off_odd = pte_off_even + sizeof(pte_t);
1115 
1116 		/* The pte entries are pre-shifted */
1117 		i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1118 		i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1119 		i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1120 		i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1121 	}
1122 #else
1123 	i_LW(p, tmp, 0, ptep); /* get even pte */
1124 	i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1125 	if (r45k_bvahwbug())
1126 		build_tlb_probe_entry(p);
1127 	i_SRL(p, tmp, tmp, 6); /* convert to entrylo0 */
1128 	if (r4k_250MHZhwbug())
1129 		i_mtc0(p, 0, C0_ENTRYLO0);
1130 	i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1131 	i_SRL(p, ptep, ptep, 6); /* convert to entrylo1 */
1132 	if (r45k_bvahwbug())
1133 		i_mfc0(p, tmp, C0_INDEX);
1134 	if (r4k_250MHZhwbug())
1135 		i_mtc0(p, 0, C0_ENTRYLO1);
1136 	i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1137 #endif
1138 }
1139 
1140 static void __init build_r4000_tlb_refill_handler(void)
1141 {
1142 	u32 *p = tlb_handler;
1143 	struct label *l = labels;
1144 	struct reloc *r = relocs;
1145 	u32 *f;
1146 	unsigned int final_len;
1147 
1148 	memset(tlb_handler, 0, sizeof(tlb_handler));
1149 	memset(labels, 0, sizeof(labels));
1150 	memset(relocs, 0, sizeof(relocs));
1151 	memset(final_handler, 0, sizeof(final_handler));
1152 
1153 	/*
1154 	 * create the plain linear handler
1155 	 */
1156 	if (bcm1250_m3_war()) {
1157 		i_MFC0(&p, K0, C0_BADVADDR);
1158 		i_MFC0(&p, K1, C0_ENTRYHI);
1159 		i_xor(&p, K0, K0, K1);
1160 		i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
1161 		il_bnez(&p, &r, K0, label_leave);
1162 		/* No need for i_nop */
1163 	}
1164 
1165 #ifdef CONFIG_64BIT
1166 	build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1167 #else
1168 	build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1169 #endif
1170 
1171 	build_get_ptep(&p, K0, K1);
1172 	build_update_entries(&p, K0, K1);
1173 	build_tlb_write_entry(&p, &l, &r, tlb_random);
1174 	l_leave(&l, p);
1175 	i_eret(&p); /* return from trap */
1176 
1177 #ifdef CONFIG_64BIT
1178 	build_get_pgd_vmalloc64(&p, &l, &r, K0, K1);
1179 #endif
1180 
1181 	/*
1182 	 * Overflow check: For the 64bit handler, we need at least one
1183 	 * free instruction slot for the wrap-around branch. In worst
1184 	 * case, if the intended insertion point is a delay slot, we
1185 	 * need three, with the the second nop'ed and the third being
1186 	 * unused.
1187 	 */
1188 #ifdef CONFIG_32BIT
1189 	if ((p - tlb_handler) > 64)
1190 		panic("TLB refill handler space exceeded");
1191 #else
1192 	if (((p - tlb_handler) > 63)
1193 	    || (((p - tlb_handler) > 61)
1194 		&& insn_has_bdelay(relocs, tlb_handler + 29)))
1195 		panic("TLB refill handler space exceeded");
1196 #endif
1197 
1198 	/*
1199 	 * Now fold the handler in the TLB refill handler space.
1200 	 */
1201 #ifdef CONFIG_32BIT
1202 	f = final_handler;
1203 	/* Simplest case, just copy the handler. */
1204 	copy_handler(relocs, labels, tlb_handler, p, f);
1205 	final_len = p - tlb_handler;
1206 #else /* CONFIG_64BIT */
1207 	f = final_handler + 32;
1208 	if ((p - tlb_handler) <= 32) {
1209 		/* Just copy the handler. */
1210 		copy_handler(relocs, labels, tlb_handler, p, f);
1211 		final_len = p - tlb_handler;
1212 	} else {
1213 		u32 *split = tlb_handler + 30;
1214 
1215 		/*
1216 		 * Find the split point.
1217 		 */
1218 		if (insn_has_bdelay(relocs, split - 1))
1219 			split--;
1220 
1221 		/* Copy first part of the handler. */
1222 		copy_handler(relocs, labels, tlb_handler, split, f);
1223 		f += split - tlb_handler;
1224 
1225 		/* Insert branch. */
1226 		l_split(&l, final_handler);
1227 		il_b(&f, &r, label_split);
1228 		if (insn_has_bdelay(relocs, split))
1229 			i_nop(&f);
1230 		else {
1231 			copy_handler(relocs, labels, split, split + 1, f);
1232 			move_labels(labels, f, f + 1, -1);
1233 			f++;
1234 			split++;
1235 		}
1236 
1237 		/* Copy the rest of the handler. */
1238 		copy_handler(relocs, labels, split, p, final_handler);
1239 		final_len = (f - (final_handler + 32)) + (p - split);
1240 	}
1241 #endif /* CONFIG_64BIT */
1242 
1243 	resolve_relocs(relocs, labels);
1244 	printk("Synthesized TLB refill handler (%u instructions).\n",
1245 	       final_len);
1246 
1247 #ifdef DEBUG_TLB
1248 	{
1249 		int i;
1250 
1251 		f = final_handler;
1252 #ifdef CONFIG_64BIT
1253 		if (final_len > 32)
1254 			final_len = 64;
1255 		else
1256 			f = final_handler + 32;
1257 #endif /* CONFIG_64BIT */
1258 		for (i = 0; i < final_len; i++)
1259 			printk("%08x\n", f[i]);
1260 	}
1261 #endif
1262 
1263 	memcpy((void *)CAC_BASE, final_handler, 0x100);
1264 }
1265 
1266 /*
1267  * TLB load/store/modify handlers.
1268  *
1269  * Only the fastpath gets synthesized at runtime, the slowpath for
1270  * do_page_fault remains normal asm.
1271  */
1272 extern void tlb_do_page_fault_0(void);
1273 extern void tlb_do_page_fault_1(void);
1274 
1275 #define __tlb_handler_align \
1276 	__attribute__((__aligned__(1 << CONFIG_MIPS_L1_CACHE_SHIFT)))
1277 
1278 /*
1279  * 128 instructions for the fastpath handler is generous and should
1280  * never be exceeded.
1281  */
1282 #define FASTPATH_SIZE 128
1283 
1284 u32 __tlb_handler_align handle_tlbl[FASTPATH_SIZE];
1285 u32 __tlb_handler_align handle_tlbs[FASTPATH_SIZE];
1286 u32 __tlb_handler_align handle_tlbm[FASTPATH_SIZE];
1287 
1288 static void __init
1289 iPTE_LW(u32 **p, struct label **l, unsigned int pte, unsigned int ptr)
1290 {
1291 #ifdef CONFIG_SMP
1292 # ifdef CONFIG_64BIT_PHYS_ADDR
1293 	if (cpu_has_64bits)
1294 		i_lld(p, pte, 0, ptr);
1295 	else
1296 # endif
1297 		i_LL(p, pte, 0, ptr);
1298 #else
1299 # ifdef CONFIG_64BIT_PHYS_ADDR
1300 	if (cpu_has_64bits)
1301 		i_ld(p, pte, 0, ptr);
1302 	else
1303 # endif
1304 		i_LW(p, pte, 0, ptr);
1305 #endif
1306 }
1307 
1308 static void __init
1309 iPTE_SW(u32 **p, struct reloc **r, unsigned int pte, unsigned int ptr,
1310 	unsigned int mode)
1311 {
1312 #ifdef CONFIG_64BIT_PHYS_ADDR
1313 	unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1314 #endif
1315 
1316 	i_ori(p, pte, pte, mode);
1317 #ifdef CONFIG_SMP
1318 # ifdef CONFIG_64BIT_PHYS_ADDR
1319 	if (cpu_has_64bits)
1320 		i_scd(p, pte, 0, ptr);
1321 	else
1322 # endif
1323 		i_SC(p, pte, 0, ptr);
1324 
1325 	if (r10000_llsc_war())
1326 		il_beqzl(p, r, pte, label_smp_pgtable_change);
1327 	else
1328 		il_beqz(p, r, pte, label_smp_pgtable_change);
1329 
1330 # ifdef CONFIG_64BIT_PHYS_ADDR
1331 	if (!cpu_has_64bits) {
1332 		/* no i_nop needed */
1333 		i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1334 		i_ori(p, pte, pte, hwmode);
1335 		i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1336 		il_beqz(p, r, pte, label_smp_pgtable_change);
1337 		/* no i_nop needed */
1338 		i_lw(p, pte, 0, ptr);
1339 	} else
1340 		i_nop(p);
1341 # else
1342 	i_nop(p);
1343 # endif
1344 #else
1345 # ifdef CONFIG_64BIT_PHYS_ADDR
1346 	if (cpu_has_64bits)
1347 		i_sd(p, pte, 0, ptr);
1348 	else
1349 # endif
1350 		i_SW(p, pte, 0, ptr);
1351 
1352 # ifdef CONFIG_64BIT_PHYS_ADDR
1353 	if (!cpu_has_64bits) {
1354 		i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1355 		i_ori(p, pte, pte, hwmode);
1356 		i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1357 		i_lw(p, pte, 0, ptr);
1358 	}
1359 # endif
1360 #endif
1361 }
1362 
1363 /*
1364  * Check if PTE is present, if not then jump to LABEL. PTR points to
1365  * the page table where this PTE is located, PTE will be re-loaded
1366  * with it's original value.
1367  */
1368 static void __init
1369 build_pte_present(u32 **p, struct label **l, struct reloc **r,
1370 		  unsigned int pte, unsigned int ptr, enum label_id lid)
1371 {
1372 	i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
1373 	i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
1374 	il_bnez(p, r, pte, lid);
1375 	iPTE_LW(p, l, pte, ptr);
1376 }
1377 
1378 /* Make PTE valid, store result in PTR. */
1379 static void __init
1380 build_make_valid(u32 **p, struct reloc **r, unsigned int pte,
1381 		 unsigned int ptr)
1382 {
1383 	unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1384 
1385 	iPTE_SW(p, r, pte, ptr, mode);
1386 }
1387 
1388 /*
1389  * Check if PTE can be written to, if not branch to LABEL. Regardless
1390  * restore PTE with value from PTR when done.
1391  */
1392 static void __init
1393 build_pte_writable(u32 **p, struct label **l, struct reloc **r,
1394 		   unsigned int pte, unsigned int ptr, enum label_id lid)
1395 {
1396 	i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
1397 	i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
1398 	il_bnez(p, r, pte, lid);
1399 	iPTE_LW(p, l, pte, ptr);
1400 }
1401 
1402 /* Make PTE writable, update software status bits as well, then store
1403  * at PTR.
1404  */
1405 static void __init
1406 build_make_write(u32 **p, struct reloc **r, unsigned int pte,
1407 		 unsigned int ptr)
1408 {
1409 	unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1410 			     | _PAGE_DIRTY);
1411 
1412 	iPTE_SW(p, r, pte, ptr, mode);
1413 }
1414 
1415 /*
1416  * Check if PTE can be modified, if not branch to LABEL. Regardless
1417  * restore PTE with value from PTR when done.
1418  */
1419 static void __init
1420 build_pte_modifiable(u32 **p, struct label **l, struct reloc **r,
1421 		     unsigned int pte, unsigned int ptr, enum label_id lid)
1422 {
1423 	i_andi(p, pte, pte, _PAGE_WRITE);
1424 	il_beqz(p, r, pte, lid);
1425 	iPTE_LW(p, l, pte, ptr);
1426 }
1427 
1428 /*
1429  * R3000 style TLB load/store/modify handlers.
1430  */
1431 
1432 /*
1433  * This places the pte into ENTRYLO0 and writes it with tlbwi.
1434  * Then it returns.
1435  */
1436 static void __init
1437 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1438 {
1439 	i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1440 	i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1441 	i_tlbwi(p);
1442 	i_jr(p, tmp);
1443 	i_rfe(p); /* branch delay */
1444 }
1445 
1446 /*
1447  * This places the pte into ENTRYLO0 and writes it with tlbwi
1448  * or tlbwr as appropriate.  This is because the index register
1449  * may have the probe fail bit set as a result of a trap on a
1450  * kseg2 access, i.e. without refill.  Then it returns.
1451  */
1452 static void __init
1453 build_r3000_tlb_reload_write(u32 **p, struct label **l, struct reloc **r,
1454 			     unsigned int pte, unsigned int tmp)
1455 {
1456 	i_mfc0(p, tmp, C0_INDEX);
1457 	i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1458 	il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1459 	i_mfc0(p, tmp, C0_EPC); /* branch delay */
1460 	i_tlbwi(p); /* cp0 delay */
1461 	i_jr(p, tmp);
1462 	i_rfe(p); /* branch delay */
1463 	l_r3000_write_probe_fail(l, *p);
1464 	i_tlbwr(p); /* cp0 delay */
1465 	i_jr(p, tmp);
1466 	i_rfe(p); /* branch delay */
1467 }
1468 
1469 static void __init
1470 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1471 				   unsigned int ptr)
1472 {
1473 	long pgdc = (long)pgd_current;
1474 
1475 	i_mfc0(p, pte, C0_BADVADDR);
1476 	i_lui(p, ptr, rel_hi(pgdc)); /* cp0 delay */
1477 	i_lw(p, ptr, rel_lo(pgdc), ptr);
1478 	i_srl(p, pte, pte, 22); /* load delay */
1479 	i_sll(p, pte, pte, 2);
1480 	i_addu(p, ptr, ptr, pte);
1481 	i_mfc0(p, pte, C0_CONTEXT);
1482 	i_lw(p, ptr, 0, ptr); /* cp0 delay */
1483 	i_andi(p, pte, pte, 0xffc); /* load delay */
1484 	i_addu(p, ptr, ptr, pte);
1485 	i_lw(p, pte, 0, ptr);
1486 	i_tlbp(p); /* load delay */
1487 }
1488 
1489 static void __init build_r3000_tlb_load_handler(void)
1490 {
1491 	u32 *p = handle_tlbl;
1492 	struct label *l = labels;
1493 	struct reloc *r = relocs;
1494 
1495 	memset(handle_tlbl, 0, sizeof(handle_tlbl));
1496 	memset(labels, 0, sizeof(labels));
1497 	memset(relocs, 0, sizeof(relocs));
1498 
1499 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1500 	build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
1501 	i_nop(&p); /* load delay */
1502 	build_make_valid(&p, &r, K0, K1);
1503 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1504 
1505 	l_nopage_tlbl(&l, p);
1506 	i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1507 	i_nop(&p);
1508 
1509 	if ((p - handle_tlbl) > FASTPATH_SIZE)
1510 		panic("TLB load handler fastpath space exceeded");
1511 
1512 	resolve_relocs(relocs, labels);
1513 	printk("Synthesized TLB load handler fastpath (%u instructions).\n",
1514 	       (unsigned int)(p - handle_tlbl));
1515 
1516 #ifdef DEBUG_TLB
1517 	{
1518 		int i;
1519 
1520 		for (i = 0; i < (p - handle_tlbl); i++)
1521 			printk("%08x\n", handle_tlbl[i]);
1522 	}
1523 #endif
1524 }
1525 
1526 static void __init build_r3000_tlb_store_handler(void)
1527 {
1528 	u32 *p = handle_tlbs;
1529 	struct label *l = labels;
1530 	struct reloc *r = relocs;
1531 
1532 	memset(handle_tlbs, 0, sizeof(handle_tlbs));
1533 	memset(labels, 0, sizeof(labels));
1534 	memset(relocs, 0, sizeof(relocs));
1535 
1536 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1537 	build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
1538 	i_nop(&p); /* load delay */
1539 	build_make_write(&p, &r, K0, K1);
1540 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1541 
1542 	l_nopage_tlbs(&l, p);
1543 	i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1544 	i_nop(&p);
1545 
1546 	if ((p - handle_tlbs) > FASTPATH_SIZE)
1547 		panic("TLB store handler fastpath space exceeded");
1548 
1549 	resolve_relocs(relocs, labels);
1550 	printk("Synthesized TLB store handler fastpath (%u instructions).\n",
1551 	       (unsigned int)(p - handle_tlbs));
1552 
1553 #ifdef DEBUG_TLB
1554 	{
1555 		int i;
1556 
1557 		for (i = 0; i < (p - handle_tlbs); i++)
1558 			printk("%08x\n", handle_tlbs[i]);
1559 	}
1560 #endif
1561 }
1562 
1563 static void __init build_r3000_tlb_modify_handler(void)
1564 {
1565 	u32 *p = handle_tlbm;
1566 	struct label *l = labels;
1567 	struct reloc *r = relocs;
1568 
1569 	memset(handle_tlbm, 0, sizeof(handle_tlbm));
1570 	memset(labels, 0, sizeof(labels));
1571 	memset(relocs, 0, sizeof(relocs));
1572 
1573 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1574 	build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
1575 	i_nop(&p); /* load delay */
1576 	build_make_write(&p, &r, K0, K1);
1577 	build_r3000_pte_reload_tlbwi(&p, K0, K1);
1578 
1579 	l_nopage_tlbm(&l, p);
1580 	i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1581 	i_nop(&p);
1582 
1583 	if ((p - handle_tlbm) > FASTPATH_SIZE)
1584 		panic("TLB modify handler fastpath space exceeded");
1585 
1586 	resolve_relocs(relocs, labels);
1587 	printk("Synthesized TLB modify handler fastpath (%u instructions).\n",
1588 	       (unsigned int)(p - handle_tlbm));
1589 
1590 #ifdef DEBUG_TLB
1591 	{
1592 		int i;
1593 
1594 		for (i = 0; i < (p - handle_tlbm); i++)
1595 			printk("%08x\n", handle_tlbm[i]);
1596 	}
1597 #endif
1598 }
1599 
1600 /*
1601  * R4000 style TLB load/store/modify handlers.
1602  */
1603 static void __init
1604 build_r4000_tlbchange_handler_head(u32 **p, struct label **l,
1605 				   struct reloc **r, unsigned int pte,
1606 				   unsigned int ptr)
1607 {
1608 #ifdef CONFIG_64BIT
1609 	build_get_pmde64(p, l, r, pte, ptr); /* get pmd in ptr */
1610 #else
1611 	build_get_pgde32(p, pte, ptr); /* get pgd in ptr */
1612 #endif
1613 
1614 	i_MFC0(p, pte, C0_BADVADDR);
1615 	i_LW(p, ptr, 0, ptr);
1616 	i_SRL(p, pte, pte, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1617 	i_andi(p, pte, pte, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1618 	i_ADDU(p, ptr, ptr, pte);
1619 
1620 #ifdef CONFIG_SMP
1621 	l_smp_pgtable_change(l, *p);
1622 # endif
1623 	iPTE_LW(p, l, pte, ptr); /* get even pte */
1624 	build_tlb_probe_entry(p);
1625 }
1626 
1627 static void __init
1628 build_r4000_tlbchange_handler_tail(u32 **p, struct label **l,
1629 				   struct reloc **r, unsigned int tmp,
1630 				   unsigned int ptr)
1631 {
1632 	i_ori(p, ptr, ptr, sizeof(pte_t));
1633 	i_xori(p, ptr, ptr, sizeof(pte_t));
1634 	build_update_entries(p, tmp, ptr);
1635 	build_tlb_write_entry(p, l, r, tlb_indexed);
1636 	l_leave(l, *p);
1637 	i_eret(p); /* return from trap */
1638 
1639 #ifdef CONFIG_64BIT
1640 	build_get_pgd_vmalloc64(p, l, r, tmp, ptr);
1641 #endif
1642 }
1643 
1644 static void __init build_r4000_tlb_load_handler(void)
1645 {
1646 	u32 *p = handle_tlbl;
1647 	struct label *l = labels;
1648 	struct reloc *r = relocs;
1649 
1650 	memset(handle_tlbl, 0, sizeof(handle_tlbl));
1651 	memset(labels, 0, sizeof(labels));
1652 	memset(relocs, 0, sizeof(relocs));
1653 
1654 	if (bcm1250_m3_war()) {
1655 		i_MFC0(&p, K0, C0_BADVADDR);
1656 		i_MFC0(&p, K1, C0_ENTRYHI);
1657 		i_xor(&p, K0, K0, K1);
1658 		i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
1659 		il_bnez(&p, &r, K0, label_leave);
1660 		/* No need for i_nop */
1661 	}
1662 
1663 	build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1664 	build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
1665 	build_make_valid(&p, &r, K0, K1);
1666 	build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1667 
1668 	l_nopage_tlbl(&l, p);
1669 	i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1670 	i_nop(&p);
1671 
1672 	if ((p - handle_tlbl) > FASTPATH_SIZE)
1673 		panic("TLB load handler fastpath space exceeded");
1674 
1675 	resolve_relocs(relocs, labels);
1676 	printk("Synthesized TLB load handler fastpath (%u instructions).\n",
1677 	       (unsigned int)(p - handle_tlbl));
1678 
1679 #ifdef DEBUG_TLB
1680 	{
1681 		int i;
1682 
1683 		for (i = 0; i < (p - handle_tlbl); i++)
1684 			printk("%08x\n", handle_tlbl[i]);
1685 	}
1686 #endif
1687 }
1688 
1689 static void __init build_r4000_tlb_store_handler(void)
1690 {
1691 	u32 *p = handle_tlbs;
1692 	struct label *l = labels;
1693 	struct reloc *r = relocs;
1694 
1695 	memset(handle_tlbs, 0, sizeof(handle_tlbs));
1696 	memset(labels, 0, sizeof(labels));
1697 	memset(relocs, 0, sizeof(relocs));
1698 
1699 	build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1700 	build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
1701 	build_make_write(&p, &r, K0, K1);
1702 	build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1703 
1704 	l_nopage_tlbs(&l, p);
1705 	i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1706 	i_nop(&p);
1707 
1708 	if ((p - handle_tlbs) > FASTPATH_SIZE)
1709 		panic("TLB store handler fastpath space exceeded");
1710 
1711 	resolve_relocs(relocs, labels);
1712 	printk("Synthesized TLB store handler fastpath (%u instructions).\n",
1713 	       (unsigned int)(p - handle_tlbs));
1714 
1715 #ifdef DEBUG_TLB
1716 	{
1717 		int i;
1718 
1719 		for (i = 0; i < (p - handle_tlbs); i++)
1720 			printk("%08x\n", handle_tlbs[i]);
1721 	}
1722 #endif
1723 }
1724 
1725 static void __init build_r4000_tlb_modify_handler(void)
1726 {
1727 	u32 *p = handle_tlbm;
1728 	struct label *l = labels;
1729 	struct reloc *r = relocs;
1730 
1731 	memset(handle_tlbm, 0, sizeof(handle_tlbm));
1732 	memset(labels, 0, sizeof(labels));
1733 	memset(relocs, 0, sizeof(relocs));
1734 
1735 	build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1736 	build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
1737 	/* Present and writable bits set, set accessed and dirty bits. */
1738 	build_make_write(&p, &r, K0, K1);
1739 	build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1740 
1741 	l_nopage_tlbm(&l, p);
1742 	i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1743 	i_nop(&p);
1744 
1745 	if ((p - handle_tlbm) > FASTPATH_SIZE)
1746 		panic("TLB modify handler fastpath space exceeded");
1747 
1748 	resolve_relocs(relocs, labels);
1749 	printk("Synthesized TLB modify handler fastpath (%u instructions).\n",
1750 	       (unsigned int)(p - handle_tlbm));
1751 
1752 #ifdef DEBUG_TLB
1753 	{
1754 		int i;
1755 
1756 		for (i = 0; i < (p - handle_tlbm); i++)
1757 			printk("%08x\n", handle_tlbm[i]);
1758 	}
1759 #endif
1760 }
1761 
1762 void __init build_tlb_refill_handler(void)
1763 {
1764 	/*
1765 	 * The refill handler is generated per-CPU, multi-node systems
1766 	 * may have local storage for it. The other handlers are only
1767 	 * needed once.
1768 	 */
1769 	static int run_once = 0;
1770 
1771 	switch (current_cpu_data.cputype) {
1772 	case CPU_R2000:
1773 	case CPU_R3000:
1774 	case CPU_R3000A:
1775 	case CPU_R3081E:
1776 	case CPU_TX3912:
1777 	case CPU_TX3922:
1778 	case CPU_TX3927:
1779 		build_r3000_tlb_refill_handler();
1780 		if (!run_once) {
1781 			build_r3000_tlb_load_handler();
1782 			build_r3000_tlb_store_handler();
1783 			build_r3000_tlb_modify_handler();
1784 			run_once++;
1785 		}
1786 		break;
1787 
1788 	case CPU_R6000:
1789 	case CPU_R6000A:
1790 		panic("No R6000 TLB refill handler yet");
1791 		break;
1792 
1793 	case CPU_R8000:
1794 		panic("No R8000 TLB refill handler yet");
1795 		break;
1796 
1797 	default:
1798 		build_r4000_tlb_refill_handler();
1799 		if (!run_once) {
1800 			build_r4000_tlb_load_handler();
1801 			build_r4000_tlb_store_handler();
1802 			build_r4000_tlb_modify_handler();
1803 			run_once++;
1804 		}
1805 	}
1806 }
1807 
1808 void __init flush_tlb_handlers(void)
1809 {
1810 	flush_icache_range((unsigned long)handle_tlbl,
1811 			   (unsigned long)handle_tlbl + sizeof(handle_tlbl));
1812 	flush_icache_range((unsigned long)handle_tlbs,
1813 			   (unsigned long)handle_tlbs + sizeof(handle_tlbs));
1814 	flush_icache_range((unsigned long)handle_tlbm,
1815 			   (unsigned long)handle_tlbm + sizeof(handle_tlbm));
1816 }
1817