xref: /openbmc/linux/arch/mips/mm/tlbex.c (revision 80ecbd24)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Synthesize TLB refill handlers at runtime.
7  *
8  * Copyright (C) 2004, 2005, 2006, 2008	 Thiemo Seufer
9  * Copyright (C) 2005, 2007, 2008, 2009	 Maciej W. Rozycki
10  * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
11  * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12  * Copyright (C) 2011  MIPS Technologies, Inc.
13  *
14  * ... and the days got worse and worse and now you see
15  * I've gone completly out of my mind.
16  *
17  * They're coming to take me a away haha
18  * they're coming to take me a away hoho hihi haha
19  * to the funny farm where code is beautiful all the time ...
20  *
21  * (Condolences to Napoleon XIV)
22  */
23 
24 #include <linux/bug.h>
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/smp.h>
28 #include <linux/string.h>
29 #include <linux/init.h>
30 #include <linux/cache.h>
31 
32 #include <asm/cacheflush.h>
33 #include <asm/pgtable.h>
34 #include <asm/war.h>
35 #include <asm/uasm.h>
36 #include <asm/setup.h>
37 
38 /*
39  * TLB load/store/modify handlers.
40  *
41  * Only the fastpath gets synthesized at runtime, the slowpath for
42  * do_page_fault remains normal asm.
43  */
44 extern void tlb_do_page_fault_0(void);
45 extern void tlb_do_page_fault_1(void);
46 
47 struct work_registers {
48 	int r1;
49 	int r2;
50 	int r3;
51 };
52 
53 struct tlb_reg_save {
54 	unsigned long a;
55 	unsigned long b;
56 } ____cacheline_aligned_in_smp;
57 
58 static struct tlb_reg_save handler_reg_save[NR_CPUS];
59 
60 static inline int r45k_bvahwbug(void)
61 {
62 	/* XXX: We should probe for the presence of this bug, but we don't. */
63 	return 0;
64 }
65 
66 static inline int r4k_250MHZhwbug(void)
67 {
68 	/* XXX: We should probe for the presence of this bug, but we don't. */
69 	return 0;
70 }
71 
72 static inline int __maybe_unused bcm1250_m3_war(void)
73 {
74 	return BCM1250_M3_WAR;
75 }
76 
77 static inline int __maybe_unused r10000_llsc_war(void)
78 {
79 	return R10000_LLSC_WAR;
80 }
81 
82 static int use_bbit_insns(void)
83 {
84 	switch (current_cpu_type()) {
85 	case CPU_CAVIUM_OCTEON:
86 	case CPU_CAVIUM_OCTEON_PLUS:
87 	case CPU_CAVIUM_OCTEON2:
88 	case CPU_CAVIUM_OCTEON3:
89 		return 1;
90 	default:
91 		return 0;
92 	}
93 }
94 
95 static int use_lwx_insns(void)
96 {
97 	switch (current_cpu_type()) {
98 	case CPU_CAVIUM_OCTEON2:
99 	case CPU_CAVIUM_OCTEON3:
100 		return 1;
101 	default:
102 		return 0;
103 	}
104 }
105 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
106     CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
107 static bool scratchpad_available(void)
108 {
109 	return true;
110 }
111 static int scratchpad_offset(int i)
112 {
113 	/*
114 	 * CVMSEG starts at address -32768 and extends for
115 	 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
116 	 */
117 	i += 1; /* Kernel use starts at the top and works down. */
118 	return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
119 }
120 #else
121 static bool scratchpad_available(void)
122 {
123 	return false;
124 }
125 static int scratchpad_offset(int i)
126 {
127 	BUG();
128 	/* Really unreachable, but evidently some GCC want this. */
129 	return 0;
130 }
131 #endif
132 /*
133  * Found by experiment: At least some revisions of the 4kc throw under
134  * some circumstances a machine check exception, triggered by invalid
135  * values in the index register.  Delaying the tlbp instruction until
136  * after the next branch,  plus adding an additional nop in front of
137  * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
138  * why; it's not an issue caused by the core RTL.
139  *
140  */
141 static int m4kc_tlbp_war(void)
142 {
143 	return (current_cpu_data.processor_id & 0xffff00) ==
144 	       (PRID_COMP_MIPS | PRID_IMP_4KC);
145 }
146 
147 /* Handle labels (which must be positive integers). */
148 enum label_id {
149 	label_second_part = 1,
150 	label_leave,
151 	label_vmalloc,
152 	label_vmalloc_done,
153 	label_tlbw_hazard_0,
154 	label_split = label_tlbw_hazard_0 + 8,
155 	label_tlbl_goaround1,
156 	label_tlbl_goaround2,
157 	label_nopage_tlbl,
158 	label_nopage_tlbs,
159 	label_nopage_tlbm,
160 	label_smp_pgtable_change,
161 	label_r3000_write_probe_fail,
162 	label_large_segbits_fault,
163 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
164 	label_tlb_huge_update,
165 #endif
166 };
167 
168 UASM_L_LA(_second_part)
169 UASM_L_LA(_leave)
170 UASM_L_LA(_vmalloc)
171 UASM_L_LA(_vmalloc_done)
172 /* _tlbw_hazard_x is handled differently.  */
173 UASM_L_LA(_split)
174 UASM_L_LA(_tlbl_goaround1)
175 UASM_L_LA(_tlbl_goaround2)
176 UASM_L_LA(_nopage_tlbl)
177 UASM_L_LA(_nopage_tlbs)
178 UASM_L_LA(_nopage_tlbm)
179 UASM_L_LA(_smp_pgtable_change)
180 UASM_L_LA(_r3000_write_probe_fail)
181 UASM_L_LA(_large_segbits_fault)
182 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
183 UASM_L_LA(_tlb_huge_update)
184 #endif
185 
186 static int hazard_instance;
187 
188 static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
189 {
190 	switch (instance) {
191 	case 0 ... 7:
192 		uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
193 		return;
194 	default:
195 		BUG();
196 	}
197 }
198 
199 static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
200 {
201 	switch (instance) {
202 	case 0 ... 7:
203 		uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
204 		break;
205 	default:
206 		BUG();
207 	}
208 }
209 
210 /*
211  * pgtable bits are assigned dynamically depending on processor feature
212  * and statically based on kernel configuration.  This spits out the actual
213  * values the kernel is using.	Required to make sense from disassembled
214  * TLB exception handlers.
215  */
216 static void output_pgtable_bits_defines(void)
217 {
218 #define pr_define(fmt, ...)					\
219 	pr_debug("#define " fmt, ##__VA_ARGS__)
220 
221 	pr_debug("#include <asm/asm.h>\n");
222 	pr_debug("#include <asm/regdef.h>\n");
223 	pr_debug("\n");
224 
225 	pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
226 	pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT);
227 	pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
228 	pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
229 	pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
230 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
231 	pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
232 	pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT);
233 #endif
234 	if (cpu_has_rixi) {
235 #ifdef _PAGE_NO_EXEC_SHIFT
236 		pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
237 #endif
238 #ifdef _PAGE_NO_READ_SHIFT
239 		pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
240 #endif
241 	}
242 	pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
243 	pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
244 	pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
245 	pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
246 	pr_debug("\n");
247 }
248 
249 static inline void dump_handler(const char *symbol, const u32 *handler, int count)
250 {
251 	int i;
252 
253 	pr_debug("LEAF(%s)\n", symbol);
254 
255 	pr_debug("\t.set push\n");
256 	pr_debug("\t.set noreorder\n");
257 
258 	for (i = 0; i < count; i++)
259 		pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
260 
261 	pr_debug("\t.set\tpop\n");
262 
263 	pr_debug("\tEND(%s)\n", symbol);
264 }
265 
266 /* The only general purpose registers allowed in TLB handlers. */
267 #define K0		26
268 #define K1		27
269 
270 /* Some CP0 registers */
271 #define C0_INDEX	0, 0
272 #define C0_ENTRYLO0	2, 0
273 #define C0_TCBIND	2, 2
274 #define C0_ENTRYLO1	3, 0
275 #define C0_CONTEXT	4, 0
276 #define C0_PAGEMASK	5, 0
277 #define C0_BADVADDR	8, 0
278 #define C0_ENTRYHI	10, 0
279 #define C0_EPC		14, 0
280 #define C0_XCONTEXT	20, 0
281 
282 #ifdef CONFIG_64BIT
283 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
284 #else
285 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
286 #endif
287 
288 /* The worst case length of the handler is around 18 instructions for
289  * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
290  * Maximum space available is 32 instructions for R3000 and 64
291  * instructions for R4000.
292  *
293  * We deliberately chose a buffer size of 128, so we won't scribble
294  * over anything important on overflow before we panic.
295  */
296 static u32 tlb_handler[128];
297 
298 /* simply assume worst case size for labels and relocs */
299 static struct uasm_label labels[128];
300 static struct uasm_reloc relocs[128];
301 
302 static int check_for_high_segbits;
303 
304 static unsigned int kscratch_used_mask;
305 
306 static inline int __maybe_unused c0_kscratch(void)
307 {
308 	switch (current_cpu_type()) {
309 	case CPU_XLP:
310 	case CPU_XLR:
311 		return 22;
312 	default:
313 		return 31;
314 	}
315 }
316 
317 static int allocate_kscratch(void)
318 {
319 	int r;
320 	unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
321 
322 	r = ffs(a);
323 
324 	if (r == 0)
325 		return -1;
326 
327 	r--; /* make it zero based */
328 
329 	kscratch_used_mask |= (1 << r);
330 
331 	return r;
332 }
333 
334 static int scratch_reg;
335 static int pgd_reg;
336 enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
337 
338 static struct work_registers build_get_work_registers(u32 **p)
339 {
340 	struct work_registers r;
341 
342 	int smp_processor_id_reg;
343 	int smp_processor_id_sel;
344 	int smp_processor_id_shift;
345 
346 	if (scratch_reg >= 0) {
347 		/* Save in CPU local C0_KScratch? */
348 		UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
349 		r.r1 = K0;
350 		r.r2 = K1;
351 		r.r3 = 1;
352 		return r;
353 	}
354 
355 	if (num_possible_cpus() > 1) {
356 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
357 		smp_processor_id_shift = 51;
358 		smp_processor_id_reg = 20; /* XContext */
359 		smp_processor_id_sel = 0;
360 #else
361 # ifdef CONFIG_32BIT
362 		smp_processor_id_shift = 25;
363 		smp_processor_id_reg = 4; /* Context */
364 		smp_processor_id_sel = 0;
365 # endif
366 # ifdef CONFIG_64BIT
367 		smp_processor_id_shift = 26;
368 		smp_processor_id_reg = 4; /* Context */
369 		smp_processor_id_sel = 0;
370 # endif
371 #endif
372 		/* Get smp_processor_id */
373 		UASM_i_MFC0(p, K0, smp_processor_id_reg, smp_processor_id_sel);
374 		UASM_i_SRL_SAFE(p, K0, K0, smp_processor_id_shift);
375 
376 		/* handler_reg_save index in K0 */
377 		UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
378 
379 		UASM_i_LA(p, K1, (long)&handler_reg_save);
380 		UASM_i_ADDU(p, K0, K0, K1);
381 	} else {
382 		UASM_i_LA(p, K0, (long)&handler_reg_save);
383 	}
384 	/* K0 now points to save area, save $1 and $2  */
385 	UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
386 	UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
387 
388 	r.r1 = K1;
389 	r.r2 = 1;
390 	r.r3 = 2;
391 	return r;
392 }
393 
394 static void build_restore_work_registers(u32 **p)
395 {
396 	if (scratch_reg >= 0) {
397 		UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
398 		return;
399 	}
400 	/* K0 already points to save area, restore $1 and $2  */
401 	UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
402 	UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
403 }
404 
405 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
406 
407 /*
408  * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
409  * we cannot do r3000 under these circumstances.
410  *
411  * Declare pgd_current here instead of including mmu_context.h to avoid type
412  * conflicts for tlbmiss_handler_setup_pgd
413  */
414 extern unsigned long pgd_current[];
415 
416 /*
417  * The R3000 TLB handler is simple.
418  */
419 static void build_r3000_tlb_refill_handler(void)
420 {
421 	long pgdc = (long)pgd_current;
422 	u32 *p;
423 
424 	memset(tlb_handler, 0, sizeof(tlb_handler));
425 	p = tlb_handler;
426 
427 	uasm_i_mfc0(&p, K0, C0_BADVADDR);
428 	uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
429 	uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
430 	uasm_i_srl(&p, K0, K0, 22); /* load delay */
431 	uasm_i_sll(&p, K0, K0, 2);
432 	uasm_i_addu(&p, K1, K1, K0);
433 	uasm_i_mfc0(&p, K0, C0_CONTEXT);
434 	uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
435 	uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
436 	uasm_i_addu(&p, K1, K1, K0);
437 	uasm_i_lw(&p, K0, 0, K1);
438 	uasm_i_nop(&p); /* load delay */
439 	uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
440 	uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
441 	uasm_i_tlbwr(&p); /* cp0 delay */
442 	uasm_i_jr(&p, K1);
443 	uasm_i_rfe(&p); /* branch delay */
444 
445 	if (p > tlb_handler + 32)
446 		panic("TLB refill handler space exceeded");
447 
448 	pr_debug("Wrote TLB refill handler (%u instructions).\n",
449 		 (unsigned int)(p - tlb_handler));
450 
451 	memcpy((void *)ebase, tlb_handler, 0x80);
452 
453 	dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
454 }
455 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
456 
457 /*
458  * The R4000 TLB handler is much more complicated. We have two
459  * consecutive handler areas with 32 instructions space each.
460  * Since they aren't used at the same time, we can overflow in the
461  * other one.To keep things simple, we first assume linear space,
462  * then we relocate it to the final handler layout as needed.
463  */
464 static u32 final_handler[64];
465 
466 /*
467  * Hazards
468  *
469  * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
470  * 2. A timing hazard exists for the TLBP instruction.
471  *
472  *	stalling_instruction
473  *	TLBP
474  *
475  * The JTLB is being read for the TLBP throughout the stall generated by the
476  * previous instruction. This is not really correct as the stalling instruction
477  * can modify the address used to access the JTLB.  The failure symptom is that
478  * the TLBP instruction will use an address created for the stalling instruction
479  * and not the address held in C0_ENHI and thus report the wrong results.
480  *
481  * The software work-around is to not allow the instruction preceding the TLBP
482  * to stall - make it an NOP or some other instruction guaranteed not to stall.
483  *
484  * Errata 2 will not be fixed.	This errata is also on the R5000.
485  *
486  * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
487  */
488 static void __maybe_unused build_tlb_probe_entry(u32 **p)
489 {
490 	switch (current_cpu_type()) {
491 	/* Found by experiment: R4600 v2.0/R4700 needs this, too.  */
492 	case CPU_R4600:
493 	case CPU_R4700:
494 	case CPU_R5000:
495 	case CPU_NEVADA:
496 		uasm_i_nop(p);
497 		uasm_i_tlbp(p);
498 		break;
499 
500 	default:
501 		uasm_i_tlbp(p);
502 		break;
503 	}
504 }
505 
506 /*
507  * Write random or indexed TLB entry, and care about the hazards from
508  * the preceding mtc0 and for the following eret.
509  */
510 enum tlb_write_entry { tlb_random, tlb_indexed };
511 
512 static void build_tlb_write_entry(u32 **p, struct uasm_label **l,
513 				  struct uasm_reloc **r,
514 				  enum tlb_write_entry wmode)
515 {
516 	void(*tlbw)(u32 **) = NULL;
517 
518 	switch (wmode) {
519 	case tlb_random: tlbw = uasm_i_tlbwr; break;
520 	case tlb_indexed: tlbw = uasm_i_tlbwi; break;
521 	}
522 
523 	if (cpu_has_mips_r2) {
524 		/*
525 		 * The architecture spec says an ehb is required here,
526 		 * but a number of cores do not have the hazard and
527 		 * using an ehb causes an expensive pipeline stall.
528 		 */
529 		switch (current_cpu_type()) {
530 		case CPU_M14KC:
531 		case CPU_74K:
532 			break;
533 
534 		default:
535 			uasm_i_ehb(p);
536 			break;
537 		}
538 		tlbw(p);
539 		return;
540 	}
541 
542 	switch (current_cpu_type()) {
543 	case CPU_R4000PC:
544 	case CPU_R4000SC:
545 	case CPU_R4000MC:
546 	case CPU_R4400PC:
547 	case CPU_R4400SC:
548 	case CPU_R4400MC:
549 		/*
550 		 * This branch uses up a mtc0 hazard nop slot and saves
551 		 * two nops after the tlbw instruction.
552 		 */
553 		uasm_bgezl_hazard(p, r, hazard_instance);
554 		tlbw(p);
555 		uasm_bgezl_label(l, p, hazard_instance);
556 		hazard_instance++;
557 		uasm_i_nop(p);
558 		break;
559 
560 	case CPU_R4600:
561 	case CPU_R4700:
562 		uasm_i_nop(p);
563 		tlbw(p);
564 		uasm_i_nop(p);
565 		break;
566 
567 	case CPU_R5000:
568 	case CPU_NEVADA:
569 		uasm_i_nop(p); /* QED specifies 2 nops hazard */
570 		uasm_i_nop(p); /* QED specifies 2 nops hazard */
571 		tlbw(p);
572 		break;
573 
574 	case CPU_R4300:
575 	case CPU_5KC:
576 	case CPU_TX49XX:
577 	case CPU_PR4450:
578 	case CPU_XLR:
579 		uasm_i_nop(p);
580 		tlbw(p);
581 		break;
582 
583 	case CPU_R10000:
584 	case CPU_R12000:
585 	case CPU_R14000:
586 	case CPU_4KC:
587 	case CPU_4KEC:
588 	case CPU_M14KC:
589 	case CPU_M14KEC:
590 	case CPU_SB1:
591 	case CPU_SB1A:
592 	case CPU_4KSC:
593 	case CPU_20KC:
594 	case CPU_25KF:
595 	case CPU_BMIPS32:
596 	case CPU_BMIPS3300:
597 	case CPU_BMIPS4350:
598 	case CPU_BMIPS4380:
599 	case CPU_BMIPS5000:
600 	case CPU_LOONGSON2:
601 	case CPU_R5500:
602 		if (m4kc_tlbp_war())
603 			uasm_i_nop(p);
604 	case CPU_ALCHEMY:
605 		tlbw(p);
606 		break;
607 
608 	case CPU_RM7000:
609 		uasm_i_nop(p);
610 		uasm_i_nop(p);
611 		uasm_i_nop(p);
612 		uasm_i_nop(p);
613 		tlbw(p);
614 		break;
615 
616 	case CPU_VR4111:
617 	case CPU_VR4121:
618 	case CPU_VR4122:
619 	case CPU_VR4181:
620 	case CPU_VR4181A:
621 		uasm_i_nop(p);
622 		uasm_i_nop(p);
623 		tlbw(p);
624 		uasm_i_nop(p);
625 		uasm_i_nop(p);
626 		break;
627 
628 	case CPU_VR4131:
629 	case CPU_VR4133:
630 	case CPU_R5432:
631 		uasm_i_nop(p);
632 		uasm_i_nop(p);
633 		tlbw(p);
634 		break;
635 
636 	case CPU_JZRISC:
637 		tlbw(p);
638 		uasm_i_nop(p);
639 		break;
640 
641 	default:
642 		panic("No TLB refill handler yet (CPU type: %d)",
643 		      current_cpu_data.cputype);
644 		break;
645 	}
646 }
647 
648 static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
649 							unsigned int reg)
650 {
651 	if (cpu_has_rixi) {
652 		UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
653 	} else {
654 #ifdef CONFIG_64BIT_PHYS_ADDR
655 		uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
656 #else
657 		UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
658 #endif
659 	}
660 }
661 
662 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
663 
664 static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
665 				   unsigned int tmp, enum label_id lid,
666 				   int restore_scratch)
667 {
668 	if (restore_scratch) {
669 		/* Reset default page size */
670 		if (PM_DEFAULT_MASK >> 16) {
671 			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
672 			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
673 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
674 			uasm_il_b(p, r, lid);
675 		} else if (PM_DEFAULT_MASK) {
676 			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
677 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
678 			uasm_il_b(p, r, lid);
679 		} else {
680 			uasm_i_mtc0(p, 0, C0_PAGEMASK);
681 			uasm_il_b(p, r, lid);
682 		}
683 		if (scratch_reg >= 0)
684 			UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
685 		else
686 			UASM_i_LW(p, 1, scratchpad_offset(0), 0);
687 	} else {
688 		/* Reset default page size */
689 		if (PM_DEFAULT_MASK >> 16) {
690 			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
691 			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
692 			uasm_il_b(p, r, lid);
693 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
694 		} else if (PM_DEFAULT_MASK) {
695 			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
696 			uasm_il_b(p, r, lid);
697 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
698 		} else {
699 			uasm_il_b(p, r, lid);
700 			uasm_i_mtc0(p, 0, C0_PAGEMASK);
701 		}
702 	}
703 }
704 
705 static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
706 				       struct uasm_reloc **r,
707 				       unsigned int tmp,
708 				       enum tlb_write_entry wmode,
709 				       int restore_scratch)
710 {
711 	/* Set huge page tlb entry size */
712 	uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
713 	uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
714 	uasm_i_mtc0(p, tmp, C0_PAGEMASK);
715 
716 	build_tlb_write_entry(p, l, r, wmode);
717 
718 	build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
719 }
720 
721 /*
722  * Check if Huge PTE is present, if so then jump to LABEL.
723  */
724 static void
725 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
726 		  unsigned int pmd, int lid)
727 {
728 	UASM_i_LW(p, tmp, 0, pmd);
729 	if (use_bbit_insns()) {
730 		uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
731 	} else {
732 		uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
733 		uasm_il_bnez(p, r, tmp, lid);
734 	}
735 }
736 
737 static void build_huge_update_entries(u32 **p, unsigned int pte,
738 				      unsigned int tmp)
739 {
740 	int small_sequence;
741 
742 	/*
743 	 * A huge PTE describes an area the size of the
744 	 * configured huge page size. This is twice the
745 	 * of the large TLB entry size we intend to use.
746 	 * A TLB entry half the size of the configured
747 	 * huge page size is configured into entrylo0
748 	 * and entrylo1 to cover the contiguous huge PTE
749 	 * address space.
750 	 */
751 	small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
752 
753 	/* We can clobber tmp.	It isn't used after this.*/
754 	if (!small_sequence)
755 		uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
756 
757 	build_convert_pte_to_entrylo(p, pte);
758 	UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
759 	/* convert to entrylo1 */
760 	if (small_sequence)
761 		UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
762 	else
763 		UASM_i_ADDU(p, pte, pte, tmp);
764 
765 	UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
766 }
767 
768 static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
769 				    struct uasm_label **l,
770 				    unsigned int pte,
771 				    unsigned int ptr)
772 {
773 #ifdef CONFIG_SMP
774 	UASM_i_SC(p, pte, 0, ptr);
775 	uasm_il_beqz(p, r, pte, label_tlb_huge_update);
776 	UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
777 #else
778 	UASM_i_SW(p, pte, 0, ptr);
779 #endif
780 	build_huge_update_entries(p, pte, ptr);
781 	build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
782 }
783 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
784 
785 #ifdef CONFIG_64BIT
786 /*
787  * TMP and PTR are scratch.
788  * TMP will be clobbered, PTR will hold the pmd entry.
789  */
790 static void
791 build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
792 		 unsigned int tmp, unsigned int ptr)
793 {
794 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
795 	long pgdc = (long)pgd_current;
796 #endif
797 	/*
798 	 * The vmalloc handling is not in the hotpath.
799 	 */
800 	uasm_i_dmfc0(p, tmp, C0_BADVADDR);
801 
802 	if (check_for_high_segbits) {
803 		/*
804 		 * The kernel currently implicitely assumes that the
805 		 * MIPS SEGBITS parameter for the processor is
806 		 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
807 		 * allocate virtual addresses outside the maximum
808 		 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
809 		 * that doesn't prevent user code from accessing the
810 		 * higher xuseg addresses.  Here, we make sure that
811 		 * everything but the lower xuseg addresses goes down
812 		 * the module_alloc/vmalloc path.
813 		 */
814 		uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
815 		uasm_il_bnez(p, r, ptr, label_vmalloc);
816 	} else {
817 		uasm_il_bltz(p, r, tmp, label_vmalloc);
818 	}
819 	/* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
820 
821 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
822 	if (pgd_reg != -1) {
823 		/* pgd is in pgd_reg */
824 		UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
825 	} else {
826 		/*
827 		 * &pgd << 11 stored in CONTEXT [23..63].
828 		 */
829 		UASM_i_MFC0(p, ptr, C0_CONTEXT);
830 
831 		/* Clear lower 23 bits of context. */
832 		uasm_i_dins(p, ptr, 0, 0, 23);
833 
834 		/* 1 0	1 0 1  << 6  xkphys cached */
835 		uasm_i_ori(p, ptr, ptr, 0x540);
836 		uasm_i_drotr(p, ptr, ptr, 11);
837 	}
838 #elif defined(CONFIG_SMP)
839 # ifdef	 CONFIG_MIPS_MT_SMTC
840 	/*
841 	 * SMTC uses TCBind value as "CPU" index
842 	 */
843 	uasm_i_mfc0(p, ptr, C0_TCBIND);
844 	uasm_i_dsrl_safe(p, ptr, ptr, 19);
845 # else
846 	/*
847 	 * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
848 	 * stored in CONTEXT.
849 	 */
850 	uasm_i_dmfc0(p, ptr, C0_CONTEXT);
851 	uasm_i_dsrl_safe(p, ptr, ptr, 23);
852 # endif
853 	UASM_i_LA_mostly(p, tmp, pgdc);
854 	uasm_i_daddu(p, ptr, ptr, tmp);
855 	uasm_i_dmfc0(p, tmp, C0_BADVADDR);
856 	uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
857 #else
858 	UASM_i_LA_mostly(p, ptr, pgdc);
859 	uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
860 #endif
861 
862 	uasm_l_vmalloc_done(l, *p);
863 
864 	/* get pgd offset in bytes */
865 	uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
866 
867 	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
868 	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
869 #ifndef __PAGETABLE_PMD_FOLDED
870 	uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
871 	uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
872 	uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
873 	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
874 	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
875 #endif
876 }
877 
878 /*
879  * BVADDR is the faulting address, PTR is scratch.
880  * PTR will hold the pgd for vmalloc.
881  */
882 static void
883 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
884 			unsigned int bvaddr, unsigned int ptr,
885 			enum vmalloc64_mode mode)
886 {
887 	long swpd = (long)swapper_pg_dir;
888 	int single_insn_swpd;
889 	int did_vmalloc_branch = 0;
890 
891 	single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
892 
893 	uasm_l_vmalloc(l, *p);
894 
895 	if (mode != not_refill && check_for_high_segbits) {
896 		if (single_insn_swpd) {
897 			uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
898 			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
899 			did_vmalloc_branch = 1;
900 			/* fall through */
901 		} else {
902 			uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
903 		}
904 	}
905 	if (!did_vmalloc_branch) {
906 		if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
907 			uasm_il_b(p, r, label_vmalloc_done);
908 			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
909 		} else {
910 			UASM_i_LA_mostly(p, ptr, swpd);
911 			uasm_il_b(p, r, label_vmalloc_done);
912 			if (uasm_in_compat_space_p(swpd))
913 				uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
914 			else
915 				uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
916 		}
917 	}
918 	if (mode != not_refill && check_for_high_segbits) {
919 		uasm_l_large_segbits_fault(l, *p);
920 		/*
921 		 * We get here if we are an xsseg address, or if we are
922 		 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
923 		 *
924 		 * Ignoring xsseg (assume disabled so would generate
925 		 * (address errors?), the only remaining possibility
926 		 * is the upper xuseg addresses.  On processors with
927 		 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
928 		 * addresses would have taken an address error. We try
929 		 * to mimic that here by taking a load/istream page
930 		 * fault.
931 		 */
932 		UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
933 		uasm_i_jr(p, ptr);
934 
935 		if (mode == refill_scratch) {
936 			if (scratch_reg >= 0)
937 				UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
938 			else
939 				UASM_i_LW(p, 1, scratchpad_offset(0), 0);
940 		} else {
941 			uasm_i_nop(p);
942 		}
943 	}
944 }
945 
946 #else /* !CONFIG_64BIT */
947 
948 /*
949  * TMP and PTR are scratch.
950  * TMP will be clobbered, PTR will hold the pgd entry.
951  */
952 static void __maybe_unused
953 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
954 {
955 	long pgdc = (long)pgd_current;
956 
957 	/* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
958 #ifdef CONFIG_SMP
959 #ifdef	CONFIG_MIPS_MT_SMTC
960 	/*
961 	 * SMTC uses TCBind value as "CPU" index
962 	 */
963 	uasm_i_mfc0(p, ptr, C0_TCBIND);
964 	UASM_i_LA_mostly(p, tmp, pgdc);
965 	uasm_i_srl(p, ptr, ptr, 19);
966 #else
967 	/*
968 	 * smp_processor_id() << 2 is stored in CONTEXT.
969 	 */
970 	uasm_i_mfc0(p, ptr, C0_CONTEXT);
971 	UASM_i_LA_mostly(p, tmp, pgdc);
972 	uasm_i_srl(p, ptr, ptr, 23);
973 #endif
974 	uasm_i_addu(p, ptr, tmp, ptr);
975 #else
976 	UASM_i_LA_mostly(p, ptr, pgdc);
977 #endif
978 	uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
979 	uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
980 	uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
981 	uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
982 	uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
983 }
984 
985 #endif /* !CONFIG_64BIT */
986 
987 static void build_adjust_context(u32 **p, unsigned int ctx)
988 {
989 	unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
990 	unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
991 
992 	switch (current_cpu_type()) {
993 	case CPU_VR41XX:
994 	case CPU_VR4111:
995 	case CPU_VR4121:
996 	case CPU_VR4122:
997 	case CPU_VR4131:
998 	case CPU_VR4181:
999 	case CPU_VR4181A:
1000 	case CPU_VR4133:
1001 		shift += 2;
1002 		break;
1003 
1004 	default:
1005 		break;
1006 	}
1007 
1008 	if (shift)
1009 		UASM_i_SRL(p, ctx, ctx, shift);
1010 	uasm_i_andi(p, ctx, ctx, mask);
1011 }
1012 
1013 static void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
1014 {
1015 	/*
1016 	 * Bug workaround for the Nevada. It seems as if under certain
1017 	 * circumstances the move from cp0_context might produce a
1018 	 * bogus result when the mfc0 instruction and its consumer are
1019 	 * in a different cacheline or a load instruction, probably any
1020 	 * memory reference, is between them.
1021 	 */
1022 	switch (current_cpu_type()) {
1023 	case CPU_NEVADA:
1024 		UASM_i_LW(p, ptr, 0, ptr);
1025 		GET_CONTEXT(p, tmp); /* get context reg */
1026 		break;
1027 
1028 	default:
1029 		GET_CONTEXT(p, tmp); /* get context reg */
1030 		UASM_i_LW(p, ptr, 0, ptr);
1031 		break;
1032 	}
1033 
1034 	build_adjust_context(p, tmp);
1035 	UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1036 }
1037 
1038 static void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
1039 {
1040 	/*
1041 	 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1042 	 * Kernel is a special case. Only a few CPUs use it.
1043 	 */
1044 #ifdef CONFIG_64BIT_PHYS_ADDR
1045 	if (cpu_has_64bits) {
1046 		uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
1047 		uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1048 		if (cpu_has_rixi) {
1049 			UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1050 			UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1051 			UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1052 		} else {
1053 			uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1054 			UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1055 			uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1056 		}
1057 		UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1058 	} else {
1059 		int pte_off_even = sizeof(pte_t) / 2;
1060 		int pte_off_odd = pte_off_even + sizeof(pte_t);
1061 
1062 		/* The pte entries are pre-shifted */
1063 		uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1064 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1065 		uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1066 		UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1067 	}
1068 #else
1069 	UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
1070 	UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1071 	if (r45k_bvahwbug())
1072 		build_tlb_probe_entry(p);
1073 	if (cpu_has_rixi) {
1074 		UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1075 		if (r4k_250MHZhwbug())
1076 			UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1077 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1078 		UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1079 	} else {
1080 		UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1081 		if (r4k_250MHZhwbug())
1082 			UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1083 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1084 		UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1085 		if (r45k_bvahwbug())
1086 			uasm_i_mfc0(p, tmp, C0_INDEX);
1087 	}
1088 	if (r4k_250MHZhwbug())
1089 		UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1090 	UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1091 #endif
1092 }
1093 
1094 struct mips_huge_tlb_info {
1095 	int huge_pte;
1096 	int restore_scratch;
1097 };
1098 
1099 static struct mips_huge_tlb_info
1100 build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1101 			       struct uasm_reloc **r, unsigned int tmp,
1102 			       unsigned int ptr, int c0_scratch_reg)
1103 {
1104 	struct mips_huge_tlb_info rv;
1105 	unsigned int even, odd;
1106 	int vmalloc_branch_delay_filled = 0;
1107 	const int scratch = 1; /* Our extra working register */
1108 
1109 	rv.huge_pte = scratch;
1110 	rv.restore_scratch = 0;
1111 
1112 	if (check_for_high_segbits) {
1113 		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1114 
1115 		if (pgd_reg != -1)
1116 			UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1117 		else
1118 			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1119 
1120 		if (c0_scratch_reg >= 0)
1121 			UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1122 		else
1123 			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1124 
1125 		uasm_i_dsrl_safe(p, scratch, tmp,
1126 				 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1127 		uasm_il_bnez(p, r, scratch, label_vmalloc);
1128 
1129 		if (pgd_reg == -1) {
1130 			vmalloc_branch_delay_filled = 1;
1131 			/* Clear lower 23 bits of context. */
1132 			uasm_i_dins(p, ptr, 0, 0, 23);
1133 		}
1134 	} else {
1135 		if (pgd_reg != -1)
1136 			UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1137 		else
1138 			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1139 
1140 		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1141 
1142 		if (c0_scratch_reg >= 0)
1143 			UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1144 		else
1145 			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1146 
1147 		if (pgd_reg == -1)
1148 			/* Clear lower 23 bits of context. */
1149 			uasm_i_dins(p, ptr, 0, 0, 23);
1150 
1151 		uasm_il_bltz(p, r, tmp, label_vmalloc);
1152 	}
1153 
1154 	if (pgd_reg == -1) {
1155 		vmalloc_branch_delay_filled = 1;
1156 		/* 1 0	1 0 1  << 6  xkphys cached */
1157 		uasm_i_ori(p, ptr, ptr, 0x540);
1158 		uasm_i_drotr(p, ptr, ptr, 11);
1159 	}
1160 
1161 #ifdef __PAGETABLE_PMD_FOLDED
1162 #define LOC_PTEP scratch
1163 #else
1164 #define LOC_PTEP ptr
1165 #endif
1166 
1167 	if (!vmalloc_branch_delay_filled)
1168 		/* get pgd offset in bytes */
1169 		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1170 
1171 	uasm_l_vmalloc_done(l, *p);
1172 
1173 	/*
1174 	 *			   tmp		ptr
1175 	 * fall-through case =	 badvaddr  *pgd_current
1176 	 * vmalloc case	     =	 badvaddr  swapper_pg_dir
1177 	 */
1178 
1179 	if (vmalloc_branch_delay_filled)
1180 		/* get pgd offset in bytes */
1181 		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1182 
1183 #ifdef __PAGETABLE_PMD_FOLDED
1184 	GET_CONTEXT(p, tmp); /* get context reg */
1185 #endif
1186 	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1187 
1188 	if (use_lwx_insns()) {
1189 		UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1190 	} else {
1191 		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1192 		uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1193 	}
1194 
1195 #ifndef __PAGETABLE_PMD_FOLDED
1196 	/* get pmd offset in bytes */
1197 	uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1198 	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1199 	GET_CONTEXT(p, tmp); /* get context reg */
1200 
1201 	if (use_lwx_insns()) {
1202 		UASM_i_LWX(p, scratch, scratch, ptr);
1203 	} else {
1204 		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1205 		UASM_i_LW(p, scratch, 0, ptr);
1206 	}
1207 #endif
1208 	/* Adjust the context during the load latency. */
1209 	build_adjust_context(p, tmp);
1210 
1211 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1212 	uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1213 	/*
1214 	 * The in the LWX case we don't want to do the load in the
1215 	 * delay slot.	It cannot issue in the same cycle and may be
1216 	 * speculative and unneeded.
1217 	 */
1218 	if (use_lwx_insns())
1219 		uasm_i_nop(p);
1220 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1221 
1222 
1223 	/* build_update_entries */
1224 	if (use_lwx_insns()) {
1225 		even = ptr;
1226 		odd = tmp;
1227 		UASM_i_LWX(p, even, scratch, tmp);
1228 		UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1229 		UASM_i_LWX(p, odd, scratch, tmp);
1230 	} else {
1231 		UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1232 		even = tmp;
1233 		odd = ptr;
1234 		UASM_i_LW(p, even, 0, ptr); /* get even pte */
1235 		UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1236 	}
1237 	if (cpu_has_rixi) {
1238 		uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1239 		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1240 		uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1241 	} else {
1242 		uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1243 		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1244 		uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1245 	}
1246 	UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1247 
1248 	if (c0_scratch_reg >= 0) {
1249 		UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1250 		build_tlb_write_entry(p, l, r, tlb_random);
1251 		uasm_l_leave(l, *p);
1252 		rv.restore_scratch = 1;
1253 	} else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13)  {
1254 		build_tlb_write_entry(p, l, r, tlb_random);
1255 		uasm_l_leave(l, *p);
1256 		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1257 	} else {
1258 		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1259 		build_tlb_write_entry(p, l, r, tlb_random);
1260 		uasm_l_leave(l, *p);
1261 		rv.restore_scratch = 1;
1262 	}
1263 
1264 	uasm_i_eret(p); /* return from trap */
1265 
1266 	return rv;
1267 }
1268 
1269 /*
1270  * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1271  * because EXL == 0.  If we wrap, we can also use the 32 instruction
1272  * slots before the XTLB refill exception handler which belong to the
1273  * unused TLB refill exception.
1274  */
1275 #define MIPS64_REFILL_INSNS 32
1276 
1277 static void build_r4000_tlb_refill_handler(void)
1278 {
1279 	u32 *p = tlb_handler;
1280 	struct uasm_label *l = labels;
1281 	struct uasm_reloc *r = relocs;
1282 	u32 *f;
1283 	unsigned int final_len;
1284 	struct mips_huge_tlb_info htlb_info __maybe_unused;
1285 	enum vmalloc64_mode vmalloc_mode __maybe_unused;
1286 
1287 	memset(tlb_handler, 0, sizeof(tlb_handler));
1288 	memset(labels, 0, sizeof(labels));
1289 	memset(relocs, 0, sizeof(relocs));
1290 	memset(final_handler, 0, sizeof(final_handler));
1291 
1292 	if ((scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
1293 		htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1294 							  scratch_reg);
1295 		vmalloc_mode = refill_scratch;
1296 	} else {
1297 		htlb_info.huge_pte = K0;
1298 		htlb_info.restore_scratch = 0;
1299 		vmalloc_mode = refill_noscratch;
1300 		/*
1301 		 * create the plain linear handler
1302 		 */
1303 		if (bcm1250_m3_war()) {
1304 			unsigned int segbits = 44;
1305 
1306 			uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1307 			uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1308 			uasm_i_xor(&p, K0, K0, K1);
1309 			uasm_i_dsrl_safe(&p, K1, K0, 62);
1310 			uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1311 			uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1312 			uasm_i_or(&p, K0, K0, K1);
1313 			uasm_il_bnez(&p, &r, K0, label_leave);
1314 			/* No need for uasm_i_nop */
1315 		}
1316 
1317 #ifdef CONFIG_64BIT
1318 		build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1319 #else
1320 		build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1321 #endif
1322 
1323 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1324 		build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1325 #endif
1326 
1327 		build_get_ptep(&p, K0, K1);
1328 		build_update_entries(&p, K0, K1);
1329 		build_tlb_write_entry(&p, &l, &r, tlb_random);
1330 		uasm_l_leave(&l, p);
1331 		uasm_i_eret(&p); /* return from trap */
1332 	}
1333 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1334 	uasm_l_tlb_huge_update(&l, p);
1335 	build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1336 	build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1337 				   htlb_info.restore_scratch);
1338 #endif
1339 
1340 #ifdef CONFIG_64BIT
1341 	build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1342 #endif
1343 
1344 	/*
1345 	 * Overflow check: For the 64bit handler, we need at least one
1346 	 * free instruction slot for the wrap-around branch. In worst
1347 	 * case, if the intended insertion point is a delay slot, we
1348 	 * need three, with the second nop'ed and the third being
1349 	 * unused.
1350 	 */
1351 	/* Loongson2 ebase is different than r4k, we have more space */
1352 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1353 	if ((p - tlb_handler) > 64)
1354 		panic("TLB refill handler space exceeded");
1355 #else
1356 	if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1357 	    || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1358 		&& uasm_insn_has_bdelay(relocs,
1359 					tlb_handler + MIPS64_REFILL_INSNS - 3)))
1360 		panic("TLB refill handler space exceeded");
1361 #endif
1362 
1363 	/*
1364 	 * Now fold the handler in the TLB refill handler space.
1365 	 */
1366 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1367 	f = final_handler;
1368 	/* Simplest case, just copy the handler. */
1369 	uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1370 	final_len = p - tlb_handler;
1371 #else /* CONFIG_64BIT */
1372 	f = final_handler + MIPS64_REFILL_INSNS;
1373 	if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1374 		/* Just copy the handler. */
1375 		uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1376 		final_len = p - tlb_handler;
1377 	} else {
1378 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1379 		const enum label_id ls = label_tlb_huge_update;
1380 #else
1381 		const enum label_id ls = label_vmalloc;
1382 #endif
1383 		u32 *split;
1384 		int ov = 0;
1385 		int i;
1386 
1387 		for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1388 			;
1389 		BUG_ON(i == ARRAY_SIZE(labels));
1390 		split = labels[i].addr;
1391 
1392 		/*
1393 		 * See if we have overflown one way or the other.
1394 		 */
1395 		if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1396 		    split < p - MIPS64_REFILL_INSNS)
1397 			ov = 1;
1398 
1399 		if (ov) {
1400 			/*
1401 			 * Split two instructions before the end.  One
1402 			 * for the branch and one for the instruction
1403 			 * in the delay slot.
1404 			 */
1405 			split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1406 
1407 			/*
1408 			 * If the branch would fall in a delay slot,
1409 			 * we must back up an additional instruction
1410 			 * so that it is no longer in a delay slot.
1411 			 */
1412 			if (uasm_insn_has_bdelay(relocs, split - 1))
1413 				split--;
1414 		}
1415 		/* Copy first part of the handler. */
1416 		uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1417 		f += split - tlb_handler;
1418 
1419 		if (ov) {
1420 			/* Insert branch. */
1421 			uasm_l_split(&l, final_handler);
1422 			uasm_il_b(&f, &r, label_split);
1423 			if (uasm_insn_has_bdelay(relocs, split))
1424 				uasm_i_nop(&f);
1425 			else {
1426 				uasm_copy_handler(relocs, labels,
1427 						  split, split + 1, f);
1428 				uasm_move_labels(labels, f, f + 1, -1);
1429 				f++;
1430 				split++;
1431 			}
1432 		}
1433 
1434 		/* Copy the rest of the handler. */
1435 		uasm_copy_handler(relocs, labels, split, p, final_handler);
1436 		final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1437 			    (p - split);
1438 	}
1439 #endif /* CONFIG_64BIT */
1440 
1441 	uasm_resolve_relocs(relocs, labels);
1442 	pr_debug("Wrote TLB refill handler (%u instructions).\n",
1443 		 final_len);
1444 
1445 	memcpy((void *)ebase, final_handler, 0x100);
1446 
1447 	dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
1448 }
1449 
1450 extern u32 handle_tlbl[], handle_tlbl_end[];
1451 extern u32 handle_tlbs[], handle_tlbs_end[];
1452 extern u32 handle_tlbm[], handle_tlbm_end[];
1453 
1454 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1455 extern u32 tlbmiss_handler_setup_pgd[], tlbmiss_handler_setup_pgd_end[];
1456 
1457 static void build_r4000_setup_pgd(void)
1458 {
1459 	const int a0 = 4;
1460 	const int a1 = 5;
1461 	u32 *p = tlbmiss_handler_setup_pgd;
1462 	const int tlbmiss_handler_setup_pgd_size =
1463 		tlbmiss_handler_setup_pgd_end - tlbmiss_handler_setup_pgd;
1464 	struct uasm_label *l = labels;
1465 	struct uasm_reloc *r = relocs;
1466 
1467 	memset(tlbmiss_handler_setup_pgd, 0, tlbmiss_handler_setup_pgd_size *
1468 					sizeof(tlbmiss_handler_setup_pgd[0]));
1469 	memset(labels, 0, sizeof(labels));
1470 	memset(relocs, 0, sizeof(relocs));
1471 
1472 	pgd_reg = allocate_kscratch();
1473 
1474 	if (pgd_reg == -1) {
1475 		/* PGD << 11 in c0_Context */
1476 		/*
1477 		 * If it is a ckseg0 address, convert to a physical
1478 		 * address.  Shifting right by 29 and adding 4 will
1479 		 * result in zero for these addresses.
1480 		 *
1481 		 */
1482 		UASM_i_SRA(&p, a1, a0, 29);
1483 		UASM_i_ADDIU(&p, a1, a1, 4);
1484 		uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1485 		uasm_i_nop(&p);
1486 		uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1487 		uasm_l_tlbl_goaround1(&l, p);
1488 		UASM_i_SLL(&p, a0, a0, 11);
1489 		uasm_i_jr(&p, 31);
1490 		UASM_i_MTC0(&p, a0, C0_CONTEXT);
1491 	} else {
1492 		/* PGD in c0_KScratch */
1493 		uasm_i_jr(&p, 31);
1494 		UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1495 	}
1496 	if (p >= tlbmiss_handler_setup_pgd_end)
1497 		panic("tlbmiss_handler_setup_pgd space exceeded");
1498 
1499 	uasm_resolve_relocs(relocs, labels);
1500 	pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1501 		 (unsigned int)(p - tlbmiss_handler_setup_pgd));
1502 
1503 	dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
1504 					tlbmiss_handler_setup_pgd_size);
1505 }
1506 #endif
1507 
1508 static void
1509 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1510 {
1511 #ifdef CONFIG_SMP
1512 # ifdef CONFIG_64BIT_PHYS_ADDR
1513 	if (cpu_has_64bits)
1514 		uasm_i_lld(p, pte, 0, ptr);
1515 	else
1516 # endif
1517 		UASM_i_LL(p, pte, 0, ptr);
1518 #else
1519 # ifdef CONFIG_64BIT_PHYS_ADDR
1520 	if (cpu_has_64bits)
1521 		uasm_i_ld(p, pte, 0, ptr);
1522 	else
1523 # endif
1524 		UASM_i_LW(p, pte, 0, ptr);
1525 #endif
1526 }
1527 
1528 static void
1529 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1530 	unsigned int mode)
1531 {
1532 #ifdef CONFIG_64BIT_PHYS_ADDR
1533 	unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1534 #endif
1535 
1536 	uasm_i_ori(p, pte, pte, mode);
1537 #ifdef CONFIG_SMP
1538 # ifdef CONFIG_64BIT_PHYS_ADDR
1539 	if (cpu_has_64bits)
1540 		uasm_i_scd(p, pte, 0, ptr);
1541 	else
1542 # endif
1543 		UASM_i_SC(p, pte, 0, ptr);
1544 
1545 	if (r10000_llsc_war())
1546 		uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1547 	else
1548 		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1549 
1550 # ifdef CONFIG_64BIT_PHYS_ADDR
1551 	if (!cpu_has_64bits) {
1552 		/* no uasm_i_nop needed */
1553 		uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1554 		uasm_i_ori(p, pte, pte, hwmode);
1555 		uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1556 		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1557 		/* no uasm_i_nop needed */
1558 		uasm_i_lw(p, pte, 0, ptr);
1559 	} else
1560 		uasm_i_nop(p);
1561 # else
1562 	uasm_i_nop(p);
1563 # endif
1564 #else
1565 # ifdef CONFIG_64BIT_PHYS_ADDR
1566 	if (cpu_has_64bits)
1567 		uasm_i_sd(p, pte, 0, ptr);
1568 	else
1569 # endif
1570 		UASM_i_SW(p, pte, 0, ptr);
1571 
1572 # ifdef CONFIG_64BIT_PHYS_ADDR
1573 	if (!cpu_has_64bits) {
1574 		uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1575 		uasm_i_ori(p, pte, pte, hwmode);
1576 		uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1577 		uasm_i_lw(p, pte, 0, ptr);
1578 	}
1579 # endif
1580 #endif
1581 }
1582 
1583 /*
1584  * Check if PTE is present, if not then jump to LABEL. PTR points to
1585  * the page table where this PTE is located, PTE will be re-loaded
1586  * with it's original value.
1587  */
1588 static void
1589 build_pte_present(u32 **p, struct uasm_reloc **r,
1590 		  int pte, int ptr, int scratch, enum label_id lid)
1591 {
1592 	int t = scratch >= 0 ? scratch : pte;
1593 
1594 	if (cpu_has_rixi) {
1595 		if (use_bbit_insns()) {
1596 			uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1597 			uasm_i_nop(p);
1598 		} else {
1599 			uasm_i_andi(p, t, pte, _PAGE_PRESENT);
1600 			uasm_il_beqz(p, r, t, lid);
1601 			if (pte == t)
1602 				/* You lose the SMP race :-(*/
1603 				iPTE_LW(p, pte, ptr);
1604 		}
1605 	} else {
1606 		uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ);
1607 		uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ);
1608 		uasm_il_bnez(p, r, t, lid);
1609 		if (pte == t)
1610 			/* You lose the SMP race :-(*/
1611 			iPTE_LW(p, pte, ptr);
1612 	}
1613 }
1614 
1615 /* Make PTE valid, store result in PTR. */
1616 static void
1617 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1618 		 unsigned int ptr)
1619 {
1620 	unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1621 
1622 	iPTE_SW(p, r, pte, ptr, mode);
1623 }
1624 
1625 /*
1626  * Check if PTE can be written to, if not branch to LABEL. Regardless
1627  * restore PTE with value from PTR when done.
1628  */
1629 static void
1630 build_pte_writable(u32 **p, struct uasm_reloc **r,
1631 		   unsigned int pte, unsigned int ptr, int scratch,
1632 		   enum label_id lid)
1633 {
1634 	int t = scratch >= 0 ? scratch : pte;
1635 
1636 	uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE);
1637 	uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE);
1638 	uasm_il_bnez(p, r, t, lid);
1639 	if (pte == t)
1640 		/* You lose the SMP race :-(*/
1641 		iPTE_LW(p, pte, ptr);
1642 	else
1643 		uasm_i_nop(p);
1644 }
1645 
1646 /* Make PTE writable, update software status bits as well, then store
1647  * at PTR.
1648  */
1649 static void
1650 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1651 		 unsigned int ptr)
1652 {
1653 	unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1654 			     | _PAGE_DIRTY);
1655 
1656 	iPTE_SW(p, r, pte, ptr, mode);
1657 }
1658 
1659 /*
1660  * Check if PTE can be modified, if not branch to LABEL. Regardless
1661  * restore PTE with value from PTR when done.
1662  */
1663 static void
1664 build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1665 		     unsigned int pte, unsigned int ptr, int scratch,
1666 		     enum label_id lid)
1667 {
1668 	if (use_bbit_insns()) {
1669 		uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1670 		uasm_i_nop(p);
1671 	} else {
1672 		int t = scratch >= 0 ? scratch : pte;
1673 		uasm_i_andi(p, t, pte, _PAGE_WRITE);
1674 		uasm_il_beqz(p, r, t, lid);
1675 		if (pte == t)
1676 			/* You lose the SMP race :-(*/
1677 			iPTE_LW(p, pte, ptr);
1678 	}
1679 }
1680 
1681 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1682 
1683 
1684 /*
1685  * R3000 style TLB load/store/modify handlers.
1686  */
1687 
1688 /*
1689  * This places the pte into ENTRYLO0 and writes it with tlbwi.
1690  * Then it returns.
1691  */
1692 static void
1693 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1694 {
1695 	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1696 	uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1697 	uasm_i_tlbwi(p);
1698 	uasm_i_jr(p, tmp);
1699 	uasm_i_rfe(p); /* branch delay */
1700 }
1701 
1702 /*
1703  * This places the pte into ENTRYLO0 and writes it with tlbwi
1704  * or tlbwr as appropriate.  This is because the index register
1705  * may have the probe fail bit set as a result of a trap on a
1706  * kseg2 access, i.e. without refill.  Then it returns.
1707  */
1708 static void
1709 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1710 			     struct uasm_reloc **r, unsigned int pte,
1711 			     unsigned int tmp)
1712 {
1713 	uasm_i_mfc0(p, tmp, C0_INDEX);
1714 	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1715 	uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1716 	uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1717 	uasm_i_tlbwi(p); /* cp0 delay */
1718 	uasm_i_jr(p, tmp);
1719 	uasm_i_rfe(p); /* branch delay */
1720 	uasm_l_r3000_write_probe_fail(l, *p);
1721 	uasm_i_tlbwr(p); /* cp0 delay */
1722 	uasm_i_jr(p, tmp);
1723 	uasm_i_rfe(p); /* branch delay */
1724 }
1725 
1726 static void
1727 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1728 				   unsigned int ptr)
1729 {
1730 	long pgdc = (long)pgd_current;
1731 
1732 	uasm_i_mfc0(p, pte, C0_BADVADDR);
1733 	uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1734 	uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1735 	uasm_i_srl(p, pte, pte, 22); /* load delay */
1736 	uasm_i_sll(p, pte, pte, 2);
1737 	uasm_i_addu(p, ptr, ptr, pte);
1738 	uasm_i_mfc0(p, pte, C0_CONTEXT);
1739 	uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1740 	uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1741 	uasm_i_addu(p, ptr, ptr, pte);
1742 	uasm_i_lw(p, pte, 0, ptr);
1743 	uasm_i_tlbp(p); /* load delay */
1744 }
1745 
1746 static void build_r3000_tlb_load_handler(void)
1747 {
1748 	u32 *p = handle_tlbl;
1749 	const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1750 	struct uasm_label *l = labels;
1751 	struct uasm_reloc *r = relocs;
1752 
1753 	memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1754 	memset(labels, 0, sizeof(labels));
1755 	memset(relocs, 0, sizeof(relocs));
1756 
1757 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1758 	build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1759 	uasm_i_nop(&p); /* load delay */
1760 	build_make_valid(&p, &r, K0, K1);
1761 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1762 
1763 	uasm_l_nopage_tlbl(&l, p);
1764 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1765 	uasm_i_nop(&p);
1766 
1767 	if (p >= handle_tlbl_end)
1768 		panic("TLB load handler fastpath space exceeded");
1769 
1770 	uasm_resolve_relocs(relocs, labels);
1771 	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1772 		 (unsigned int)(p - handle_tlbl));
1773 
1774 	dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_size);
1775 }
1776 
1777 static void build_r3000_tlb_store_handler(void)
1778 {
1779 	u32 *p = handle_tlbs;
1780 	const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
1781 	struct uasm_label *l = labels;
1782 	struct uasm_reloc *r = relocs;
1783 
1784 	memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
1785 	memset(labels, 0, sizeof(labels));
1786 	memset(relocs, 0, sizeof(relocs));
1787 
1788 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1789 	build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1790 	uasm_i_nop(&p); /* load delay */
1791 	build_make_write(&p, &r, K0, K1);
1792 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1793 
1794 	uasm_l_nopage_tlbs(&l, p);
1795 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1796 	uasm_i_nop(&p);
1797 
1798 	if (p >= handle_tlbs_end)
1799 		panic("TLB store handler fastpath space exceeded");
1800 
1801 	uasm_resolve_relocs(relocs, labels);
1802 	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1803 		 (unsigned int)(p - handle_tlbs));
1804 
1805 	dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_size);
1806 }
1807 
1808 static void build_r3000_tlb_modify_handler(void)
1809 {
1810 	u32 *p = handle_tlbm;
1811 	const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
1812 	struct uasm_label *l = labels;
1813 	struct uasm_reloc *r = relocs;
1814 
1815 	memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
1816 	memset(labels, 0, sizeof(labels));
1817 	memset(relocs, 0, sizeof(relocs));
1818 
1819 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1820 	build_pte_modifiable(&p, &r, K0, K1,  -1, label_nopage_tlbm);
1821 	uasm_i_nop(&p); /* load delay */
1822 	build_make_write(&p, &r, K0, K1);
1823 	build_r3000_pte_reload_tlbwi(&p, K0, K1);
1824 
1825 	uasm_l_nopage_tlbm(&l, p);
1826 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1827 	uasm_i_nop(&p);
1828 
1829 	if (p >= handle_tlbm_end)
1830 		panic("TLB modify handler fastpath space exceeded");
1831 
1832 	uasm_resolve_relocs(relocs, labels);
1833 	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1834 		 (unsigned int)(p - handle_tlbm));
1835 
1836 	dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_size);
1837 }
1838 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1839 
1840 /*
1841  * R4000 style TLB load/store/modify handlers.
1842  */
1843 static struct work_registers
1844 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1845 				   struct uasm_reloc **r)
1846 {
1847 	struct work_registers wr = build_get_work_registers(p);
1848 
1849 #ifdef CONFIG_64BIT
1850 	build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
1851 #else
1852 	build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
1853 #endif
1854 
1855 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1856 	/*
1857 	 * For huge tlb entries, pmd doesn't contain an address but
1858 	 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1859 	 * see if we need to jump to huge tlb processing.
1860 	 */
1861 	build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
1862 #endif
1863 
1864 	UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
1865 	UASM_i_LW(p, wr.r2, 0, wr.r2);
1866 	UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1867 	uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1868 	UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
1869 
1870 #ifdef CONFIG_SMP
1871 	uasm_l_smp_pgtable_change(l, *p);
1872 #endif
1873 	iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
1874 	if (!m4kc_tlbp_war())
1875 		build_tlb_probe_entry(p);
1876 	return wr;
1877 }
1878 
1879 static void
1880 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1881 				   struct uasm_reloc **r, unsigned int tmp,
1882 				   unsigned int ptr)
1883 {
1884 	uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1885 	uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1886 	build_update_entries(p, tmp, ptr);
1887 	build_tlb_write_entry(p, l, r, tlb_indexed);
1888 	uasm_l_leave(l, *p);
1889 	build_restore_work_registers(p);
1890 	uasm_i_eret(p); /* return from trap */
1891 
1892 #ifdef CONFIG_64BIT
1893 	build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
1894 #endif
1895 }
1896 
1897 static void build_r4000_tlb_load_handler(void)
1898 {
1899 	u32 *p = handle_tlbl;
1900 	const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1901 	struct uasm_label *l = labels;
1902 	struct uasm_reloc *r = relocs;
1903 	struct work_registers wr;
1904 
1905 	memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1906 	memset(labels, 0, sizeof(labels));
1907 	memset(relocs, 0, sizeof(relocs));
1908 
1909 	if (bcm1250_m3_war()) {
1910 		unsigned int segbits = 44;
1911 
1912 		uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1913 		uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1914 		uasm_i_xor(&p, K0, K0, K1);
1915 		uasm_i_dsrl_safe(&p, K1, K0, 62);
1916 		uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1917 		uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1918 		uasm_i_or(&p, K0, K0, K1);
1919 		uasm_il_bnez(&p, &r, K0, label_leave);
1920 		/* No need for uasm_i_nop */
1921 	}
1922 
1923 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
1924 	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1925 	if (m4kc_tlbp_war())
1926 		build_tlb_probe_entry(&p);
1927 
1928 	if (cpu_has_rixi) {
1929 		/*
1930 		 * If the page is not _PAGE_VALID, RI or XI could not
1931 		 * have triggered it.  Skip the expensive test..
1932 		 */
1933 		if (use_bbit_insns()) {
1934 			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1935 				      label_tlbl_goaround1);
1936 		} else {
1937 			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1938 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
1939 		}
1940 		uasm_i_nop(&p);
1941 
1942 		uasm_i_tlbr(&p);
1943 
1944 		switch (current_cpu_type()) {
1945 		default:
1946 			if (cpu_has_mips_r2) {
1947 				uasm_i_ehb(&p);
1948 
1949 		case CPU_CAVIUM_OCTEON:
1950 		case CPU_CAVIUM_OCTEON_PLUS:
1951 		case CPU_CAVIUM_OCTEON2:
1952 				break;
1953 			}
1954 		}
1955 
1956 		/* Examine  entrylo 0 or 1 based on ptr. */
1957 		if (use_bbit_insns()) {
1958 			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1959 		} else {
1960 			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1961 			uasm_i_beqz(&p, wr.r3, 8);
1962 		}
1963 		/* load it in the delay slot*/
1964 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1965 		/* load it if ptr is odd */
1966 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1967 		/*
1968 		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1969 		 * XI must have triggered it.
1970 		 */
1971 		if (use_bbit_insns()) {
1972 			uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
1973 			uasm_i_nop(&p);
1974 			uasm_l_tlbl_goaround1(&l, p);
1975 		} else {
1976 			uasm_i_andi(&p, wr.r3, wr.r3, 2);
1977 			uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
1978 			uasm_i_nop(&p);
1979 		}
1980 		uasm_l_tlbl_goaround1(&l, p);
1981 	}
1982 	build_make_valid(&p, &r, wr.r1, wr.r2);
1983 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
1984 
1985 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1986 	/*
1987 	 * This is the entry point when build_r4000_tlbchange_handler_head
1988 	 * spots a huge page.
1989 	 */
1990 	uasm_l_tlb_huge_update(&l, p);
1991 	iPTE_LW(&p, wr.r1, wr.r2);
1992 	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1993 	build_tlb_probe_entry(&p);
1994 
1995 	if (cpu_has_rixi) {
1996 		/*
1997 		 * If the page is not _PAGE_VALID, RI or XI could not
1998 		 * have triggered it.  Skip the expensive test..
1999 		 */
2000 		if (use_bbit_insns()) {
2001 			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2002 				      label_tlbl_goaround2);
2003 		} else {
2004 			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2005 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2006 		}
2007 		uasm_i_nop(&p);
2008 
2009 		uasm_i_tlbr(&p);
2010 
2011 		switch (current_cpu_type()) {
2012 		default:
2013 			if (cpu_has_mips_r2) {
2014 				uasm_i_ehb(&p);
2015 
2016 		case CPU_CAVIUM_OCTEON:
2017 		case CPU_CAVIUM_OCTEON_PLUS:
2018 		case CPU_CAVIUM_OCTEON2:
2019 				break;
2020 			}
2021 		}
2022 
2023 		/* Examine  entrylo 0 or 1 based on ptr. */
2024 		if (use_bbit_insns()) {
2025 			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2026 		} else {
2027 			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2028 			uasm_i_beqz(&p, wr.r3, 8);
2029 		}
2030 		/* load it in the delay slot*/
2031 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2032 		/* load it if ptr is odd */
2033 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2034 		/*
2035 		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2036 		 * XI must have triggered it.
2037 		 */
2038 		if (use_bbit_insns()) {
2039 			uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2040 		} else {
2041 			uasm_i_andi(&p, wr.r3, wr.r3, 2);
2042 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2043 		}
2044 		if (PM_DEFAULT_MASK == 0)
2045 			uasm_i_nop(&p);
2046 		/*
2047 		 * We clobbered C0_PAGEMASK, restore it.  On the other branch
2048 		 * it is restored in build_huge_tlb_write_entry.
2049 		 */
2050 		build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2051 
2052 		uasm_l_tlbl_goaround2(&l, p);
2053 	}
2054 	uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2055 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2056 #endif
2057 
2058 	uasm_l_nopage_tlbl(&l, p);
2059 	build_restore_work_registers(&p);
2060 #ifdef CONFIG_CPU_MICROMIPS
2061 	if ((unsigned long)tlb_do_page_fault_0 & 1) {
2062 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2063 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2064 		uasm_i_jr(&p, K0);
2065 	} else
2066 #endif
2067 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2068 	uasm_i_nop(&p);
2069 
2070 	if (p >= handle_tlbl_end)
2071 		panic("TLB load handler fastpath space exceeded");
2072 
2073 	uasm_resolve_relocs(relocs, labels);
2074 	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2075 		 (unsigned int)(p - handle_tlbl));
2076 
2077 	dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_size);
2078 }
2079 
2080 static void build_r4000_tlb_store_handler(void)
2081 {
2082 	u32 *p = handle_tlbs;
2083 	const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
2084 	struct uasm_label *l = labels;
2085 	struct uasm_reloc *r = relocs;
2086 	struct work_registers wr;
2087 
2088 	memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
2089 	memset(labels, 0, sizeof(labels));
2090 	memset(relocs, 0, sizeof(relocs));
2091 
2092 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2093 	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2094 	if (m4kc_tlbp_war())
2095 		build_tlb_probe_entry(&p);
2096 	build_make_write(&p, &r, wr.r1, wr.r2);
2097 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2098 
2099 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2100 	/*
2101 	 * This is the entry point when
2102 	 * build_r4000_tlbchange_handler_head spots a huge page.
2103 	 */
2104 	uasm_l_tlb_huge_update(&l, p);
2105 	iPTE_LW(&p, wr.r1, wr.r2);
2106 	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2107 	build_tlb_probe_entry(&p);
2108 	uasm_i_ori(&p, wr.r1, wr.r1,
2109 		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2110 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2111 #endif
2112 
2113 	uasm_l_nopage_tlbs(&l, p);
2114 	build_restore_work_registers(&p);
2115 #ifdef CONFIG_CPU_MICROMIPS
2116 	if ((unsigned long)tlb_do_page_fault_1 & 1) {
2117 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2118 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2119 		uasm_i_jr(&p, K0);
2120 	} else
2121 #endif
2122 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2123 	uasm_i_nop(&p);
2124 
2125 	if (p >= handle_tlbs_end)
2126 		panic("TLB store handler fastpath space exceeded");
2127 
2128 	uasm_resolve_relocs(relocs, labels);
2129 	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2130 		 (unsigned int)(p - handle_tlbs));
2131 
2132 	dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_size);
2133 }
2134 
2135 static void build_r4000_tlb_modify_handler(void)
2136 {
2137 	u32 *p = handle_tlbm;
2138 	const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
2139 	struct uasm_label *l = labels;
2140 	struct uasm_reloc *r = relocs;
2141 	struct work_registers wr;
2142 
2143 	memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
2144 	memset(labels, 0, sizeof(labels));
2145 	memset(relocs, 0, sizeof(relocs));
2146 
2147 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2148 	build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2149 	if (m4kc_tlbp_war())
2150 		build_tlb_probe_entry(&p);
2151 	/* Present and writable bits set, set accessed and dirty bits. */
2152 	build_make_write(&p, &r, wr.r1, wr.r2);
2153 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2154 
2155 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2156 	/*
2157 	 * This is the entry point when
2158 	 * build_r4000_tlbchange_handler_head spots a huge page.
2159 	 */
2160 	uasm_l_tlb_huge_update(&l, p);
2161 	iPTE_LW(&p, wr.r1, wr.r2);
2162 	build_pte_modifiable(&p, &r, wr.r1, wr.r2,  wr.r3, label_nopage_tlbm);
2163 	build_tlb_probe_entry(&p);
2164 	uasm_i_ori(&p, wr.r1, wr.r1,
2165 		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2166 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2167 #endif
2168 
2169 	uasm_l_nopage_tlbm(&l, p);
2170 	build_restore_work_registers(&p);
2171 #ifdef CONFIG_CPU_MICROMIPS
2172 	if ((unsigned long)tlb_do_page_fault_1 & 1) {
2173 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2174 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2175 		uasm_i_jr(&p, K0);
2176 	} else
2177 #endif
2178 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2179 	uasm_i_nop(&p);
2180 
2181 	if (p >= handle_tlbm_end)
2182 		panic("TLB modify handler fastpath space exceeded");
2183 
2184 	uasm_resolve_relocs(relocs, labels);
2185 	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2186 		 (unsigned int)(p - handle_tlbm));
2187 
2188 	dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_size);
2189 }
2190 
2191 static void flush_tlb_handlers(void)
2192 {
2193 	local_flush_icache_range((unsigned long)handle_tlbl,
2194 			   (unsigned long)handle_tlbl_end);
2195 	local_flush_icache_range((unsigned long)handle_tlbs,
2196 			   (unsigned long)handle_tlbs_end);
2197 	local_flush_icache_range((unsigned long)handle_tlbm,
2198 			   (unsigned long)handle_tlbm_end);
2199 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2200 	local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2201 			   (unsigned long)tlbmiss_handler_setup_pgd_end);
2202 #endif
2203 }
2204 
2205 void build_tlb_refill_handler(void)
2206 {
2207 	/*
2208 	 * The refill handler is generated per-CPU, multi-node systems
2209 	 * may have local storage for it. The other handlers are only
2210 	 * needed once.
2211 	 */
2212 	static int run_once = 0;
2213 
2214 	output_pgtable_bits_defines();
2215 
2216 #ifdef CONFIG_64BIT
2217 	check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2218 #endif
2219 
2220 	switch (current_cpu_type()) {
2221 	case CPU_R2000:
2222 	case CPU_R3000:
2223 	case CPU_R3000A:
2224 	case CPU_R3081E:
2225 	case CPU_TX3912:
2226 	case CPU_TX3922:
2227 	case CPU_TX3927:
2228 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2229 		if (cpu_has_local_ebase)
2230 			build_r3000_tlb_refill_handler();
2231 		if (!run_once) {
2232 			if (!cpu_has_local_ebase)
2233 				build_r3000_tlb_refill_handler();
2234 			build_r3000_tlb_load_handler();
2235 			build_r3000_tlb_store_handler();
2236 			build_r3000_tlb_modify_handler();
2237 			flush_tlb_handlers();
2238 			run_once++;
2239 		}
2240 #else
2241 		panic("No R3000 TLB refill handler");
2242 #endif
2243 		break;
2244 
2245 	case CPU_R6000:
2246 	case CPU_R6000A:
2247 		panic("No R6000 TLB refill handler yet");
2248 		break;
2249 
2250 	case CPU_R8000:
2251 		panic("No R8000 TLB refill handler yet");
2252 		break;
2253 
2254 	default:
2255 		if (!run_once) {
2256 			scratch_reg = allocate_kscratch();
2257 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2258 			build_r4000_setup_pgd();
2259 #endif
2260 			build_r4000_tlb_load_handler();
2261 			build_r4000_tlb_store_handler();
2262 			build_r4000_tlb_modify_handler();
2263 			if (!cpu_has_local_ebase)
2264 				build_r4000_tlb_refill_handler();
2265 			flush_tlb_handlers();
2266 			run_once++;
2267 		}
2268 		if (cpu_has_local_ebase)
2269 			build_r4000_tlb_refill_handler();
2270 	}
2271 }
2272