xref: /openbmc/linux/arch/mips/mm/tlbex.c (revision 7b6d864b)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Synthesize TLB refill handlers at runtime.
7  *
8  * Copyright (C) 2004, 2005, 2006, 2008	 Thiemo Seufer
9  * Copyright (C) 2005, 2007, 2008, 2009	 Maciej W. Rozycki
10  * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
11  * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12  * Copyright (C) 2011  MIPS Technologies, Inc.
13  *
14  * ... and the days got worse and worse and now you see
15  * I've gone completly out of my mind.
16  *
17  * They're coming to take me a away haha
18  * they're coming to take me a away hoho hihi haha
19  * to the funny farm where code is beautiful all the time ...
20  *
21  * (Condolences to Napoleon XIV)
22  */
23 
24 #include <linux/bug.h>
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/smp.h>
28 #include <linux/string.h>
29 #include <linux/init.h>
30 #include <linux/cache.h>
31 
32 #include <asm/cacheflush.h>
33 #include <asm/pgtable.h>
34 #include <asm/war.h>
35 #include <asm/uasm.h>
36 #include <asm/setup.h>
37 
38 /*
39  * TLB load/store/modify handlers.
40  *
41  * Only the fastpath gets synthesized at runtime, the slowpath for
42  * do_page_fault remains normal asm.
43  */
44 extern void tlb_do_page_fault_0(void);
45 extern void tlb_do_page_fault_1(void);
46 
47 struct work_registers {
48 	int r1;
49 	int r2;
50 	int r3;
51 };
52 
53 struct tlb_reg_save {
54 	unsigned long a;
55 	unsigned long b;
56 } ____cacheline_aligned_in_smp;
57 
58 static struct tlb_reg_save handler_reg_save[NR_CPUS];
59 
60 static inline int r45k_bvahwbug(void)
61 {
62 	/* XXX: We should probe for the presence of this bug, but we don't. */
63 	return 0;
64 }
65 
66 static inline int r4k_250MHZhwbug(void)
67 {
68 	/* XXX: We should probe for the presence of this bug, but we don't. */
69 	return 0;
70 }
71 
72 static inline int __maybe_unused bcm1250_m3_war(void)
73 {
74 	return BCM1250_M3_WAR;
75 }
76 
77 static inline int __maybe_unused r10000_llsc_war(void)
78 {
79 	return R10000_LLSC_WAR;
80 }
81 
82 static int use_bbit_insns(void)
83 {
84 	switch (current_cpu_type()) {
85 	case CPU_CAVIUM_OCTEON:
86 	case CPU_CAVIUM_OCTEON_PLUS:
87 	case CPU_CAVIUM_OCTEON2:
88 		return 1;
89 	default:
90 		return 0;
91 	}
92 }
93 
94 static int use_lwx_insns(void)
95 {
96 	switch (current_cpu_type()) {
97 	case CPU_CAVIUM_OCTEON2:
98 		return 1;
99 	default:
100 		return 0;
101 	}
102 }
103 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
104     CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
105 static bool scratchpad_available(void)
106 {
107 	return true;
108 }
109 static int scratchpad_offset(int i)
110 {
111 	/*
112 	 * CVMSEG starts at address -32768 and extends for
113 	 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
114 	 */
115 	i += 1; /* Kernel use starts at the top and works down. */
116 	return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
117 }
118 #else
119 static bool scratchpad_available(void)
120 {
121 	return false;
122 }
123 static int scratchpad_offset(int i)
124 {
125 	BUG();
126 	/* Really unreachable, but evidently some GCC want this. */
127 	return 0;
128 }
129 #endif
130 /*
131  * Found by experiment: At least some revisions of the 4kc throw under
132  * some circumstances a machine check exception, triggered by invalid
133  * values in the index register.  Delaying the tlbp instruction until
134  * after the next branch,  plus adding an additional nop in front of
135  * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
136  * why; it's not an issue caused by the core RTL.
137  *
138  */
139 static int __cpuinit m4kc_tlbp_war(void)
140 {
141 	return (current_cpu_data.processor_id & 0xffff00) ==
142 	       (PRID_COMP_MIPS | PRID_IMP_4KC);
143 }
144 
145 /* Handle labels (which must be positive integers). */
146 enum label_id {
147 	label_second_part = 1,
148 	label_leave,
149 	label_vmalloc,
150 	label_vmalloc_done,
151 	label_tlbw_hazard_0,
152 	label_split = label_tlbw_hazard_0 + 8,
153 	label_tlbl_goaround1,
154 	label_tlbl_goaround2,
155 	label_nopage_tlbl,
156 	label_nopage_tlbs,
157 	label_nopage_tlbm,
158 	label_smp_pgtable_change,
159 	label_r3000_write_probe_fail,
160 	label_large_segbits_fault,
161 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
162 	label_tlb_huge_update,
163 #endif
164 };
165 
166 UASM_L_LA(_second_part)
167 UASM_L_LA(_leave)
168 UASM_L_LA(_vmalloc)
169 UASM_L_LA(_vmalloc_done)
170 /* _tlbw_hazard_x is handled differently.  */
171 UASM_L_LA(_split)
172 UASM_L_LA(_tlbl_goaround1)
173 UASM_L_LA(_tlbl_goaround2)
174 UASM_L_LA(_nopage_tlbl)
175 UASM_L_LA(_nopage_tlbs)
176 UASM_L_LA(_nopage_tlbm)
177 UASM_L_LA(_smp_pgtable_change)
178 UASM_L_LA(_r3000_write_probe_fail)
179 UASM_L_LA(_large_segbits_fault)
180 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
181 UASM_L_LA(_tlb_huge_update)
182 #endif
183 
184 static int __cpuinitdata hazard_instance;
185 
186 static void __cpuinit uasm_bgezl_hazard(u32 **p,
187 					struct uasm_reloc **r,
188 					int instance)
189 {
190 	switch (instance) {
191 	case 0 ... 7:
192 		uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
193 		return;
194 	default:
195 		BUG();
196 	}
197 }
198 
199 static void __cpuinit uasm_bgezl_label(struct uasm_label **l,
200 				       u32 **p,
201 				       int instance)
202 {
203 	switch (instance) {
204 	case 0 ... 7:
205 		uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
206 		break;
207 	default:
208 		BUG();
209 	}
210 }
211 
212 /*
213  * pgtable bits are assigned dynamically depending on processor feature
214  * and statically based on kernel configuration.  This spits out the actual
215  * values the kernel is using.	Required to make sense from disassembled
216  * TLB exception handlers.
217  */
218 static void output_pgtable_bits_defines(void)
219 {
220 #define pr_define(fmt, ...)					\
221 	pr_debug("#define " fmt, ##__VA_ARGS__)
222 
223 	pr_debug("#include <asm/asm.h>\n");
224 	pr_debug("#include <asm/regdef.h>\n");
225 	pr_debug("\n");
226 
227 	pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
228 	pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT);
229 	pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
230 	pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
231 	pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
232 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
233 	pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
234 	pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT);
235 #endif
236 	if (cpu_has_rixi) {
237 #ifdef _PAGE_NO_EXEC_SHIFT
238 		pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
239 #endif
240 #ifdef _PAGE_NO_READ_SHIFT
241 		pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
242 #endif
243 	}
244 	pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
245 	pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
246 	pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
247 	pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
248 	pr_debug("\n");
249 }
250 
251 static inline void dump_handler(const char *symbol, const u32 *handler, int count)
252 {
253 	int i;
254 
255 	pr_debug("LEAF(%s)\n", symbol);
256 
257 	pr_debug("\t.set push\n");
258 	pr_debug("\t.set noreorder\n");
259 
260 	for (i = 0; i < count; i++)
261 		pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
262 
263 	pr_debug("\t.set\tpop\n");
264 
265 	pr_debug("\tEND(%s)\n", symbol);
266 }
267 
268 /* The only general purpose registers allowed in TLB handlers. */
269 #define K0		26
270 #define K1		27
271 
272 /* Some CP0 registers */
273 #define C0_INDEX	0, 0
274 #define C0_ENTRYLO0	2, 0
275 #define C0_TCBIND	2, 2
276 #define C0_ENTRYLO1	3, 0
277 #define C0_CONTEXT	4, 0
278 #define C0_PAGEMASK	5, 0
279 #define C0_BADVADDR	8, 0
280 #define C0_ENTRYHI	10, 0
281 #define C0_EPC		14, 0
282 #define C0_XCONTEXT	20, 0
283 
284 #ifdef CONFIG_64BIT
285 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
286 #else
287 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
288 #endif
289 
290 /* The worst case length of the handler is around 18 instructions for
291  * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
292  * Maximum space available is 32 instructions for R3000 and 64
293  * instructions for R4000.
294  *
295  * We deliberately chose a buffer size of 128, so we won't scribble
296  * over anything important on overflow before we panic.
297  */
298 static u32 tlb_handler[128] __cpuinitdata;
299 
300 /* simply assume worst case size for labels and relocs */
301 static struct uasm_label labels[128] __cpuinitdata;
302 static struct uasm_reloc relocs[128] __cpuinitdata;
303 
304 static int check_for_high_segbits __cpuinitdata;
305 
306 static unsigned int kscratch_used_mask __cpuinitdata;
307 
308 static int __cpuinit allocate_kscratch(void)
309 {
310 	int r;
311 	unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
312 
313 	r = ffs(a);
314 
315 	if (r == 0)
316 		return -1;
317 
318 	r--; /* make it zero based */
319 
320 	kscratch_used_mask |= (1 << r);
321 
322 	return r;
323 }
324 
325 static int scratch_reg __cpuinitdata;
326 static int pgd_reg __cpuinitdata;
327 enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
328 
329 static struct work_registers __cpuinit build_get_work_registers(u32 **p)
330 {
331 	struct work_registers r;
332 
333 	int smp_processor_id_reg;
334 	int smp_processor_id_sel;
335 	int smp_processor_id_shift;
336 
337 	if (scratch_reg > 0) {
338 		/* Save in CPU local C0_KScratch? */
339 		UASM_i_MTC0(p, 1, 31, scratch_reg);
340 		r.r1 = K0;
341 		r.r2 = K1;
342 		r.r3 = 1;
343 		return r;
344 	}
345 
346 	if (num_possible_cpus() > 1) {
347 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
348 		smp_processor_id_shift = 51;
349 		smp_processor_id_reg = 20; /* XContext */
350 		smp_processor_id_sel = 0;
351 #else
352 # ifdef CONFIG_32BIT
353 		smp_processor_id_shift = 25;
354 		smp_processor_id_reg = 4; /* Context */
355 		smp_processor_id_sel = 0;
356 # endif
357 # ifdef CONFIG_64BIT
358 		smp_processor_id_shift = 26;
359 		smp_processor_id_reg = 4; /* Context */
360 		smp_processor_id_sel = 0;
361 # endif
362 #endif
363 		/* Get smp_processor_id */
364 		UASM_i_MFC0(p, K0, smp_processor_id_reg, smp_processor_id_sel);
365 		UASM_i_SRL_SAFE(p, K0, K0, smp_processor_id_shift);
366 
367 		/* handler_reg_save index in K0 */
368 		UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
369 
370 		UASM_i_LA(p, K1, (long)&handler_reg_save);
371 		UASM_i_ADDU(p, K0, K0, K1);
372 	} else {
373 		UASM_i_LA(p, K0, (long)&handler_reg_save);
374 	}
375 	/* K0 now points to save area, save $1 and $2  */
376 	UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
377 	UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
378 
379 	r.r1 = K1;
380 	r.r2 = 1;
381 	r.r3 = 2;
382 	return r;
383 }
384 
385 static void __cpuinit build_restore_work_registers(u32 **p)
386 {
387 	if (scratch_reg > 0) {
388 		UASM_i_MFC0(p, 1, 31, scratch_reg);
389 		return;
390 	}
391 	/* K0 already points to save area, restore $1 and $2  */
392 	UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
393 	UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
394 }
395 
396 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
397 
398 /*
399  * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
400  * we cannot do r3000 under these circumstances.
401  *
402  * Declare pgd_current here instead of including mmu_context.h to avoid type
403  * conflicts for tlbmiss_handler_setup_pgd
404  */
405 extern unsigned long pgd_current[];
406 
407 /*
408  * The R3000 TLB handler is simple.
409  */
410 static void __cpuinit build_r3000_tlb_refill_handler(void)
411 {
412 	long pgdc = (long)pgd_current;
413 	u32 *p;
414 
415 	memset(tlb_handler, 0, sizeof(tlb_handler));
416 	p = tlb_handler;
417 
418 	uasm_i_mfc0(&p, K0, C0_BADVADDR);
419 	uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
420 	uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
421 	uasm_i_srl(&p, K0, K0, 22); /* load delay */
422 	uasm_i_sll(&p, K0, K0, 2);
423 	uasm_i_addu(&p, K1, K1, K0);
424 	uasm_i_mfc0(&p, K0, C0_CONTEXT);
425 	uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
426 	uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
427 	uasm_i_addu(&p, K1, K1, K0);
428 	uasm_i_lw(&p, K0, 0, K1);
429 	uasm_i_nop(&p); /* load delay */
430 	uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
431 	uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
432 	uasm_i_tlbwr(&p); /* cp0 delay */
433 	uasm_i_jr(&p, K1);
434 	uasm_i_rfe(&p); /* branch delay */
435 
436 	if (p > tlb_handler + 32)
437 		panic("TLB refill handler space exceeded");
438 
439 	pr_debug("Wrote TLB refill handler (%u instructions).\n",
440 		 (unsigned int)(p - tlb_handler));
441 
442 	memcpy((void *)ebase, tlb_handler, 0x80);
443 
444 	dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
445 }
446 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
447 
448 /*
449  * The R4000 TLB handler is much more complicated. We have two
450  * consecutive handler areas with 32 instructions space each.
451  * Since they aren't used at the same time, we can overflow in the
452  * other one.To keep things simple, we first assume linear space,
453  * then we relocate it to the final handler layout as needed.
454  */
455 static u32 final_handler[64] __cpuinitdata;
456 
457 /*
458  * Hazards
459  *
460  * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
461  * 2. A timing hazard exists for the TLBP instruction.
462  *
463  *	stalling_instruction
464  *	TLBP
465  *
466  * The JTLB is being read for the TLBP throughout the stall generated by the
467  * previous instruction. This is not really correct as the stalling instruction
468  * can modify the address used to access the JTLB.  The failure symptom is that
469  * the TLBP instruction will use an address created for the stalling instruction
470  * and not the address held in C0_ENHI and thus report the wrong results.
471  *
472  * The software work-around is to not allow the instruction preceding the TLBP
473  * to stall - make it an NOP or some other instruction guaranteed not to stall.
474  *
475  * Errata 2 will not be fixed.	This errata is also on the R5000.
476  *
477  * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
478  */
479 static void __cpuinit __maybe_unused build_tlb_probe_entry(u32 **p)
480 {
481 	switch (current_cpu_type()) {
482 	/* Found by experiment: R4600 v2.0/R4700 needs this, too.  */
483 	case CPU_R4600:
484 	case CPU_R4700:
485 	case CPU_R5000:
486 	case CPU_NEVADA:
487 		uasm_i_nop(p);
488 		uasm_i_tlbp(p);
489 		break;
490 
491 	default:
492 		uasm_i_tlbp(p);
493 		break;
494 	}
495 }
496 
497 /*
498  * Write random or indexed TLB entry, and care about the hazards from
499  * the preceding mtc0 and for the following eret.
500  */
501 enum tlb_write_entry { tlb_random, tlb_indexed };
502 
503 static void __cpuinit build_tlb_write_entry(u32 **p, struct uasm_label **l,
504 					 struct uasm_reloc **r,
505 					 enum tlb_write_entry wmode)
506 {
507 	void(*tlbw)(u32 **) = NULL;
508 
509 	switch (wmode) {
510 	case tlb_random: tlbw = uasm_i_tlbwr; break;
511 	case tlb_indexed: tlbw = uasm_i_tlbwi; break;
512 	}
513 
514 	if (cpu_has_mips_r2) {
515 		/*
516 		 * The architecture spec says an ehb is required here,
517 		 * but a number of cores do not have the hazard and
518 		 * using an ehb causes an expensive pipeline stall.
519 		 */
520 		switch (current_cpu_type()) {
521 		case CPU_M14KC:
522 		case CPU_74K:
523 			break;
524 
525 		default:
526 			uasm_i_ehb(p);
527 			break;
528 		}
529 		tlbw(p);
530 		return;
531 	}
532 
533 	switch (current_cpu_type()) {
534 	case CPU_R4000PC:
535 	case CPU_R4000SC:
536 	case CPU_R4000MC:
537 	case CPU_R4400PC:
538 	case CPU_R4400SC:
539 	case CPU_R4400MC:
540 		/*
541 		 * This branch uses up a mtc0 hazard nop slot and saves
542 		 * two nops after the tlbw instruction.
543 		 */
544 		uasm_bgezl_hazard(p, r, hazard_instance);
545 		tlbw(p);
546 		uasm_bgezl_label(l, p, hazard_instance);
547 		hazard_instance++;
548 		uasm_i_nop(p);
549 		break;
550 
551 	case CPU_R4600:
552 	case CPU_R4700:
553 		uasm_i_nop(p);
554 		tlbw(p);
555 		uasm_i_nop(p);
556 		break;
557 
558 	case CPU_R5000:
559 	case CPU_NEVADA:
560 		uasm_i_nop(p); /* QED specifies 2 nops hazard */
561 		uasm_i_nop(p); /* QED specifies 2 nops hazard */
562 		tlbw(p);
563 		break;
564 
565 	case CPU_R4300:
566 	case CPU_5KC:
567 	case CPU_TX49XX:
568 	case CPU_PR4450:
569 	case CPU_XLR:
570 		uasm_i_nop(p);
571 		tlbw(p);
572 		break;
573 
574 	case CPU_R10000:
575 	case CPU_R12000:
576 	case CPU_R14000:
577 	case CPU_4KC:
578 	case CPU_4KEC:
579 	case CPU_M14KC:
580 	case CPU_M14KEC:
581 	case CPU_SB1:
582 	case CPU_SB1A:
583 	case CPU_4KSC:
584 	case CPU_20KC:
585 	case CPU_25KF:
586 	case CPU_BMIPS32:
587 	case CPU_BMIPS3300:
588 	case CPU_BMIPS4350:
589 	case CPU_BMIPS4380:
590 	case CPU_BMIPS5000:
591 	case CPU_LOONGSON2:
592 	case CPU_R5500:
593 		if (m4kc_tlbp_war())
594 			uasm_i_nop(p);
595 	case CPU_ALCHEMY:
596 		tlbw(p);
597 		break;
598 
599 	case CPU_RM7000:
600 		uasm_i_nop(p);
601 		uasm_i_nop(p);
602 		uasm_i_nop(p);
603 		uasm_i_nop(p);
604 		tlbw(p);
605 		break;
606 
607 	case CPU_VR4111:
608 	case CPU_VR4121:
609 	case CPU_VR4122:
610 	case CPU_VR4181:
611 	case CPU_VR4181A:
612 		uasm_i_nop(p);
613 		uasm_i_nop(p);
614 		tlbw(p);
615 		uasm_i_nop(p);
616 		uasm_i_nop(p);
617 		break;
618 
619 	case CPU_VR4131:
620 	case CPU_VR4133:
621 	case CPU_R5432:
622 		uasm_i_nop(p);
623 		uasm_i_nop(p);
624 		tlbw(p);
625 		break;
626 
627 	case CPU_JZRISC:
628 		tlbw(p);
629 		uasm_i_nop(p);
630 		break;
631 
632 	default:
633 		panic("No TLB refill handler yet (CPU type: %d)",
634 		      current_cpu_data.cputype);
635 		break;
636 	}
637 }
638 
639 static __cpuinit __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
640 								  unsigned int reg)
641 {
642 	if (cpu_has_rixi) {
643 		UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
644 	} else {
645 #ifdef CONFIG_64BIT_PHYS_ADDR
646 		uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
647 #else
648 		UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
649 #endif
650 	}
651 }
652 
653 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
654 
655 static __cpuinit void build_restore_pagemask(u32 **p,
656 					     struct uasm_reloc **r,
657 					     unsigned int tmp,
658 					     enum label_id lid,
659 					     int restore_scratch)
660 {
661 	if (restore_scratch) {
662 		/* Reset default page size */
663 		if (PM_DEFAULT_MASK >> 16) {
664 			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
665 			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
666 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
667 			uasm_il_b(p, r, lid);
668 		} else if (PM_DEFAULT_MASK) {
669 			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
670 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
671 			uasm_il_b(p, r, lid);
672 		} else {
673 			uasm_i_mtc0(p, 0, C0_PAGEMASK);
674 			uasm_il_b(p, r, lid);
675 		}
676 		if (scratch_reg > 0)
677 			UASM_i_MFC0(p, 1, 31, scratch_reg);
678 		else
679 			UASM_i_LW(p, 1, scratchpad_offset(0), 0);
680 	} else {
681 		/* Reset default page size */
682 		if (PM_DEFAULT_MASK >> 16) {
683 			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
684 			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
685 			uasm_il_b(p, r, lid);
686 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
687 		} else if (PM_DEFAULT_MASK) {
688 			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
689 			uasm_il_b(p, r, lid);
690 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
691 		} else {
692 			uasm_il_b(p, r, lid);
693 			uasm_i_mtc0(p, 0, C0_PAGEMASK);
694 		}
695 	}
696 }
697 
698 static __cpuinit void build_huge_tlb_write_entry(u32 **p,
699 						 struct uasm_label **l,
700 						 struct uasm_reloc **r,
701 						 unsigned int tmp,
702 						 enum tlb_write_entry wmode,
703 						 int restore_scratch)
704 {
705 	/* Set huge page tlb entry size */
706 	uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
707 	uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
708 	uasm_i_mtc0(p, tmp, C0_PAGEMASK);
709 
710 	build_tlb_write_entry(p, l, r, wmode);
711 
712 	build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
713 }
714 
715 /*
716  * Check if Huge PTE is present, if so then jump to LABEL.
717  */
718 static void __cpuinit
719 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
720 		unsigned int pmd, int lid)
721 {
722 	UASM_i_LW(p, tmp, 0, pmd);
723 	if (use_bbit_insns()) {
724 		uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
725 	} else {
726 		uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
727 		uasm_il_bnez(p, r, tmp, lid);
728 	}
729 }
730 
731 static __cpuinit void build_huge_update_entries(u32 **p,
732 						unsigned int pte,
733 						unsigned int tmp)
734 {
735 	int small_sequence;
736 
737 	/*
738 	 * A huge PTE describes an area the size of the
739 	 * configured huge page size. This is twice the
740 	 * of the large TLB entry size we intend to use.
741 	 * A TLB entry half the size of the configured
742 	 * huge page size is configured into entrylo0
743 	 * and entrylo1 to cover the contiguous huge PTE
744 	 * address space.
745 	 */
746 	small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
747 
748 	/* We can clobber tmp.	It isn't used after this.*/
749 	if (!small_sequence)
750 		uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
751 
752 	build_convert_pte_to_entrylo(p, pte);
753 	UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
754 	/* convert to entrylo1 */
755 	if (small_sequence)
756 		UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
757 	else
758 		UASM_i_ADDU(p, pte, pte, tmp);
759 
760 	UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
761 }
762 
763 static __cpuinit void build_huge_handler_tail(u32 **p,
764 					      struct uasm_reloc **r,
765 					      struct uasm_label **l,
766 					      unsigned int pte,
767 					      unsigned int ptr)
768 {
769 #ifdef CONFIG_SMP
770 	UASM_i_SC(p, pte, 0, ptr);
771 	uasm_il_beqz(p, r, pte, label_tlb_huge_update);
772 	UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
773 #else
774 	UASM_i_SW(p, pte, 0, ptr);
775 #endif
776 	build_huge_update_entries(p, pte, ptr);
777 	build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
778 }
779 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
780 
781 #ifdef CONFIG_64BIT
782 /*
783  * TMP and PTR are scratch.
784  * TMP will be clobbered, PTR will hold the pmd entry.
785  */
786 static void __cpuinit
787 build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
788 		 unsigned int tmp, unsigned int ptr)
789 {
790 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
791 	long pgdc = (long)pgd_current;
792 #endif
793 	/*
794 	 * The vmalloc handling is not in the hotpath.
795 	 */
796 	uasm_i_dmfc0(p, tmp, C0_BADVADDR);
797 
798 	if (check_for_high_segbits) {
799 		/*
800 		 * The kernel currently implicitely assumes that the
801 		 * MIPS SEGBITS parameter for the processor is
802 		 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
803 		 * allocate virtual addresses outside the maximum
804 		 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
805 		 * that doesn't prevent user code from accessing the
806 		 * higher xuseg addresses.  Here, we make sure that
807 		 * everything but the lower xuseg addresses goes down
808 		 * the module_alloc/vmalloc path.
809 		 */
810 		uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
811 		uasm_il_bnez(p, r, ptr, label_vmalloc);
812 	} else {
813 		uasm_il_bltz(p, r, tmp, label_vmalloc);
814 	}
815 	/* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
816 
817 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
818 	if (pgd_reg != -1) {
819 		/* pgd is in pgd_reg */
820 		UASM_i_MFC0(p, ptr, 31, pgd_reg);
821 	} else {
822 		/*
823 		 * &pgd << 11 stored in CONTEXT [23..63].
824 		 */
825 		UASM_i_MFC0(p, ptr, C0_CONTEXT);
826 
827 		/* Clear lower 23 bits of context. */
828 		uasm_i_dins(p, ptr, 0, 0, 23);
829 
830 		/* 1 0	1 0 1  << 6  xkphys cached */
831 		uasm_i_ori(p, ptr, ptr, 0x540);
832 		uasm_i_drotr(p, ptr, ptr, 11);
833 	}
834 #elif defined(CONFIG_SMP)
835 # ifdef	 CONFIG_MIPS_MT_SMTC
836 	/*
837 	 * SMTC uses TCBind value as "CPU" index
838 	 */
839 	uasm_i_mfc0(p, ptr, C0_TCBIND);
840 	uasm_i_dsrl_safe(p, ptr, ptr, 19);
841 # else
842 	/*
843 	 * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
844 	 * stored in CONTEXT.
845 	 */
846 	uasm_i_dmfc0(p, ptr, C0_CONTEXT);
847 	uasm_i_dsrl_safe(p, ptr, ptr, 23);
848 # endif
849 	UASM_i_LA_mostly(p, tmp, pgdc);
850 	uasm_i_daddu(p, ptr, ptr, tmp);
851 	uasm_i_dmfc0(p, tmp, C0_BADVADDR);
852 	uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
853 #else
854 	UASM_i_LA_mostly(p, ptr, pgdc);
855 	uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
856 #endif
857 
858 	uasm_l_vmalloc_done(l, *p);
859 
860 	/* get pgd offset in bytes */
861 	uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
862 
863 	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
864 	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
865 #ifndef __PAGETABLE_PMD_FOLDED
866 	uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
867 	uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
868 	uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
869 	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
870 	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
871 #endif
872 }
873 
874 /*
875  * BVADDR is the faulting address, PTR is scratch.
876  * PTR will hold the pgd for vmalloc.
877  */
878 static void __cpuinit
879 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
880 			unsigned int bvaddr, unsigned int ptr,
881 			enum vmalloc64_mode mode)
882 {
883 	long swpd = (long)swapper_pg_dir;
884 	int single_insn_swpd;
885 	int did_vmalloc_branch = 0;
886 
887 	single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
888 
889 	uasm_l_vmalloc(l, *p);
890 
891 	if (mode != not_refill && check_for_high_segbits) {
892 		if (single_insn_swpd) {
893 			uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
894 			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
895 			did_vmalloc_branch = 1;
896 			/* fall through */
897 		} else {
898 			uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
899 		}
900 	}
901 	if (!did_vmalloc_branch) {
902 		if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
903 			uasm_il_b(p, r, label_vmalloc_done);
904 			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
905 		} else {
906 			UASM_i_LA_mostly(p, ptr, swpd);
907 			uasm_il_b(p, r, label_vmalloc_done);
908 			if (uasm_in_compat_space_p(swpd))
909 				uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
910 			else
911 				uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
912 		}
913 	}
914 	if (mode != not_refill && check_for_high_segbits) {
915 		uasm_l_large_segbits_fault(l, *p);
916 		/*
917 		 * We get here if we are an xsseg address, or if we are
918 		 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
919 		 *
920 		 * Ignoring xsseg (assume disabled so would generate
921 		 * (address errors?), the only remaining possibility
922 		 * is the upper xuseg addresses.  On processors with
923 		 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
924 		 * addresses would have taken an address error. We try
925 		 * to mimic that here by taking a load/istream page
926 		 * fault.
927 		 */
928 		UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
929 		uasm_i_jr(p, ptr);
930 
931 		if (mode == refill_scratch) {
932 			if (scratch_reg > 0)
933 				UASM_i_MFC0(p, 1, 31, scratch_reg);
934 			else
935 				UASM_i_LW(p, 1, scratchpad_offset(0), 0);
936 		} else {
937 			uasm_i_nop(p);
938 		}
939 	}
940 }
941 
942 #else /* !CONFIG_64BIT */
943 
944 /*
945  * TMP and PTR are scratch.
946  * TMP will be clobbered, PTR will hold the pgd entry.
947  */
948 static void __cpuinit __maybe_unused
949 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
950 {
951 	long pgdc = (long)pgd_current;
952 
953 	/* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
954 #ifdef CONFIG_SMP
955 #ifdef	CONFIG_MIPS_MT_SMTC
956 	/*
957 	 * SMTC uses TCBind value as "CPU" index
958 	 */
959 	uasm_i_mfc0(p, ptr, C0_TCBIND);
960 	UASM_i_LA_mostly(p, tmp, pgdc);
961 	uasm_i_srl(p, ptr, ptr, 19);
962 #else
963 	/*
964 	 * smp_processor_id() << 3 is stored in CONTEXT.
965 	 */
966 	uasm_i_mfc0(p, ptr, C0_CONTEXT);
967 	UASM_i_LA_mostly(p, tmp, pgdc);
968 	uasm_i_srl(p, ptr, ptr, 23);
969 #endif
970 	uasm_i_addu(p, ptr, tmp, ptr);
971 #else
972 	UASM_i_LA_mostly(p, ptr, pgdc);
973 #endif
974 	uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
975 	uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
976 	uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
977 	uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
978 	uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
979 }
980 
981 #endif /* !CONFIG_64BIT */
982 
983 static void __cpuinit build_adjust_context(u32 **p, unsigned int ctx)
984 {
985 	unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
986 	unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
987 
988 	switch (current_cpu_type()) {
989 	case CPU_VR41XX:
990 	case CPU_VR4111:
991 	case CPU_VR4121:
992 	case CPU_VR4122:
993 	case CPU_VR4131:
994 	case CPU_VR4181:
995 	case CPU_VR4181A:
996 	case CPU_VR4133:
997 		shift += 2;
998 		break;
999 
1000 	default:
1001 		break;
1002 	}
1003 
1004 	if (shift)
1005 		UASM_i_SRL(p, ctx, ctx, shift);
1006 	uasm_i_andi(p, ctx, ctx, mask);
1007 }
1008 
1009 static void __cpuinit build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
1010 {
1011 	/*
1012 	 * Bug workaround for the Nevada. It seems as if under certain
1013 	 * circumstances the move from cp0_context might produce a
1014 	 * bogus result when the mfc0 instruction and its consumer are
1015 	 * in a different cacheline or a load instruction, probably any
1016 	 * memory reference, is between them.
1017 	 */
1018 	switch (current_cpu_type()) {
1019 	case CPU_NEVADA:
1020 		UASM_i_LW(p, ptr, 0, ptr);
1021 		GET_CONTEXT(p, tmp); /* get context reg */
1022 		break;
1023 
1024 	default:
1025 		GET_CONTEXT(p, tmp); /* get context reg */
1026 		UASM_i_LW(p, ptr, 0, ptr);
1027 		break;
1028 	}
1029 
1030 	build_adjust_context(p, tmp);
1031 	UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1032 }
1033 
1034 static void __cpuinit build_update_entries(u32 **p, unsigned int tmp,
1035 					unsigned int ptep)
1036 {
1037 	/*
1038 	 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1039 	 * Kernel is a special case. Only a few CPUs use it.
1040 	 */
1041 #ifdef CONFIG_64BIT_PHYS_ADDR
1042 	if (cpu_has_64bits) {
1043 		uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
1044 		uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1045 		if (cpu_has_rixi) {
1046 			UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1047 			UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1048 			UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1049 		} else {
1050 			uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1051 			UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1052 			uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1053 		}
1054 		UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1055 	} else {
1056 		int pte_off_even = sizeof(pte_t) / 2;
1057 		int pte_off_odd = pte_off_even + sizeof(pte_t);
1058 
1059 		/* The pte entries are pre-shifted */
1060 		uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1061 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1062 		uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1063 		UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1064 	}
1065 #else
1066 	UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
1067 	UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1068 	if (r45k_bvahwbug())
1069 		build_tlb_probe_entry(p);
1070 	if (cpu_has_rixi) {
1071 		UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1072 		if (r4k_250MHZhwbug())
1073 			UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1074 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1075 		UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1076 	} else {
1077 		UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1078 		if (r4k_250MHZhwbug())
1079 			UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1080 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1081 		UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1082 		if (r45k_bvahwbug())
1083 			uasm_i_mfc0(p, tmp, C0_INDEX);
1084 	}
1085 	if (r4k_250MHZhwbug())
1086 		UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1087 	UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1088 #endif
1089 }
1090 
1091 struct mips_huge_tlb_info {
1092 	int huge_pte;
1093 	int restore_scratch;
1094 };
1095 
1096 static struct mips_huge_tlb_info __cpuinit
1097 build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1098 			       struct uasm_reloc **r, unsigned int tmp,
1099 			       unsigned int ptr, int c0_scratch)
1100 {
1101 	struct mips_huge_tlb_info rv;
1102 	unsigned int even, odd;
1103 	int vmalloc_branch_delay_filled = 0;
1104 	const int scratch = 1; /* Our extra working register */
1105 
1106 	rv.huge_pte = scratch;
1107 	rv.restore_scratch = 0;
1108 
1109 	if (check_for_high_segbits) {
1110 		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1111 
1112 		if (pgd_reg != -1)
1113 			UASM_i_MFC0(p, ptr, 31, pgd_reg);
1114 		else
1115 			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1116 
1117 		if (c0_scratch >= 0)
1118 			UASM_i_MTC0(p, scratch, 31, c0_scratch);
1119 		else
1120 			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1121 
1122 		uasm_i_dsrl_safe(p, scratch, tmp,
1123 				 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1124 		uasm_il_bnez(p, r, scratch, label_vmalloc);
1125 
1126 		if (pgd_reg == -1) {
1127 			vmalloc_branch_delay_filled = 1;
1128 			/* Clear lower 23 bits of context. */
1129 			uasm_i_dins(p, ptr, 0, 0, 23);
1130 		}
1131 	} else {
1132 		if (pgd_reg != -1)
1133 			UASM_i_MFC0(p, ptr, 31, pgd_reg);
1134 		else
1135 			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1136 
1137 		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1138 
1139 		if (c0_scratch >= 0)
1140 			UASM_i_MTC0(p, scratch, 31, c0_scratch);
1141 		else
1142 			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1143 
1144 		if (pgd_reg == -1)
1145 			/* Clear lower 23 bits of context. */
1146 			uasm_i_dins(p, ptr, 0, 0, 23);
1147 
1148 		uasm_il_bltz(p, r, tmp, label_vmalloc);
1149 	}
1150 
1151 	if (pgd_reg == -1) {
1152 		vmalloc_branch_delay_filled = 1;
1153 		/* 1 0	1 0 1  << 6  xkphys cached */
1154 		uasm_i_ori(p, ptr, ptr, 0x540);
1155 		uasm_i_drotr(p, ptr, ptr, 11);
1156 	}
1157 
1158 #ifdef __PAGETABLE_PMD_FOLDED
1159 #define LOC_PTEP scratch
1160 #else
1161 #define LOC_PTEP ptr
1162 #endif
1163 
1164 	if (!vmalloc_branch_delay_filled)
1165 		/* get pgd offset in bytes */
1166 		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1167 
1168 	uasm_l_vmalloc_done(l, *p);
1169 
1170 	/*
1171 	 *			   tmp		ptr
1172 	 * fall-through case =	 badvaddr  *pgd_current
1173 	 * vmalloc case	     =	 badvaddr  swapper_pg_dir
1174 	 */
1175 
1176 	if (vmalloc_branch_delay_filled)
1177 		/* get pgd offset in bytes */
1178 		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1179 
1180 #ifdef __PAGETABLE_PMD_FOLDED
1181 	GET_CONTEXT(p, tmp); /* get context reg */
1182 #endif
1183 	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1184 
1185 	if (use_lwx_insns()) {
1186 		UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1187 	} else {
1188 		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1189 		uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1190 	}
1191 
1192 #ifndef __PAGETABLE_PMD_FOLDED
1193 	/* get pmd offset in bytes */
1194 	uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1195 	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1196 	GET_CONTEXT(p, tmp); /* get context reg */
1197 
1198 	if (use_lwx_insns()) {
1199 		UASM_i_LWX(p, scratch, scratch, ptr);
1200 	} else {
1201 		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1202 		UASM_i_LW(p, scratch, 0, ptr);
1203 	}
1204 #endif
1205 	/* Adjust the context during the load latency. */
1206 	build_adjust_context(p, tmp);
1207 
1208 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1209 	uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1210 	/*
1211 	 * The in the LWX case we don't want to do the load in the
1212 	 * delay slot.	It cannot issue in the same cycle and may be
1213 	 * speculative and unneeded.
1214 	 */
1215 	if (use_lwx_insns())
1216 		uasm_i_nop(p);
1217 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1218 
1219 
1220 	/* build_update_entries */
1221 	if (use_lwx_insns()) {
1222 		even = ptr;
1223 		odd = tmp;
1224 		UASM_i_LWX(p, even, scratch, tmp);
1225 		UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1226 		UASM_i_LWX(p, odd, scratch, tmp);
1227 	} else {
1228 		UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1229 		even = tmp;
1230 		odd = ptr;
1231 		UASM_i_LW(p, even, 0, ptr); /* get even pte */
1232 		UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1233 	}
1234 	if (cpu_has_rixi) {
1235 		uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1236 		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1237 		uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1238 	} else {
1239 		uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1240 		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1241 		uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1242 	}
1243 	UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1244 
1245 	if (c0_scratch >= 0) {
1246 		UASM_i_MFC0(p, scratch, 31, c0_scratch);
1247 		build_tlb_write_entry(p, l, r, tlb_random);
1248 		uasm_l_leave(l, *p);
1249 		rv.restore_scratch = 1;
1250 	} else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13)  {
1251 		build_tlb_write_entry(p, l, r, tlb_random);
1252 		uasm_l_leave(l, *p);
1253 		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1254 	} else {
1255 		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1256 		build_tlb_write_entry(p, l, r, tlb_random);
1257 		uasm_l_leave(l, *p);
1258 		rv.restore_scratch = 1;
1259 	}
1260 
1261 	uasm_i_eret(p); /* return from trap */
1262 
1263 	return rv;
1264 }
1265 
1266 /*
1267  * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1268  * because EXL == 0.  If we wrap, we can also use the 32 instruction
1269  * slots before the XTLB refill exception handler which belong to the
1270  * unused TLB refill exception.
1271  */
1272 #define MIPS64_REFILL_INSNS 32
1273 
1274 static void __cpuinit build_r4000_tlb_refill_handler(void)
1275 {
1276 	u32 *p = tlb_handler;
1277 	struct uasm_label *l = labels;
1278 	struct uasm_reloc *r = relocs;
1279 	u32 *f;
1280 	unsigned int final_len;
1281 	struct mips_huge_tlb_info htlb_info __maybe_unused;
1282 	enum vmalloc64_mode vmalloc_mode __maybe_unused;
1283 
1284 	memset(tlb_handler, 0, sizeof(tlb_handler));
1285 	memset(labels, 0, sizeof(labels));
1286 	memset(relocs, 0, sizeof(relocs));
1287 	memset(final_handler, 0, sizeof(final_handler));
1288 
1289 	if ((scratch_reg > 0 || scratchpad_available()) && use_bbit_insns()) {
1290 		htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1291 							  scratch_reg);
1292 		vmalloc_mode = refill_scratch;
1293 	} else {
1294 		htlb_info.huge_pte = K0;
1295 		htlb_info.restore_scratch = 0;
1296 		vmalloc_mode = refill_noscratch;
1297 		/*
1298 		 * create the plain linear handler
1299 		 */
1300 		if (bcm1250_m3_war()) {
1301 			unsigned int segbits = 44;
1302 
1303 			uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1304 			uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1305 			uasm_i_xor(&p, K0, K0, K1);
1306 			uasm_i_dsrl_safe(&p, K1, K0, 62);
1307 			uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1308 			uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1309 			uasm_i_or(&p, K0, K0, K1);
1310 			uasm_il_bnez(&p, &r, K0, label_leave);
1311 			/* No need for uasm_i_nop */
1312 		}
1313 
1314 #ifdef CONFIG_64BIT
1315 		build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1316 #else
1317 		build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1318 #endif
1319 
1320 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1321 		build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1322 #endif
1323 
1324 		build_get_ptep(&p, K0, K1);
1325 		build_update_entries(&p, K0, K1);
1326 		build_tlb_write_entry(&p, &l, &r, tlb_random);
1327 		uasm_l_leave(&l, p);
1328 		uasm_i_eret(&p); /* return from trap */
1329 	}
1330 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1331 	uasm_l_tlb_huge_update(&l, p);
1332 	build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1333 	build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1334 				   htlb_info.restore_scratch);
1335 #endif
1336 
1337 #ifdef CONFIG_64BIT
1338 	build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1339 #endif
1340 
1341 	/*
1342 	 * Overflow check: For the 64bit handler, we need at least one
1343 	 * free instruction slot for the wrap-around branch. In worst
1344 	 * case, if the intended insertion point is a delay slot, we
1345 	 * need three, with the second nop'ed and the third being
1346 	 * unused.
1347 	 */
1348 	/* Loongson2 ebase is different than r4k, we have more space */
1349 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1350 	if ((p - tlb_handler) > 64)
1351 		panic("TLB refill handler space exceeded");
1352 #else
1353 	if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1354 	    || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1355 		&& uasm_insn_has_bdelay(relocs,
1356 					tlb_handler + MIPS64_REFILL_INSNS - 3)))
1357 		panic("TLB refill handler space exceeded");
1358 #endif
1359 
1360 	/*
1361 	 * Now fold the handler in the TLB refill handler space.
1362 	 */
1363 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1364 	f = final_handler;
1365 	/* Simplest case, just copy the handler. */
1366 	uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1367 	final_len = p - tlb_handler;
1368 #else /* CONFIG_64BIT */
1369 	f = final_handler + MIPS64_REFILL_INSNS;
1370 	if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1371 		/* Just copy the handler. */
1372 		uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1373 		final_len = p - tlb_handler;
1374 	} else {
1375 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1376 		const enum label_id ls = label_tlb_huge_update;
1377 #else
1378 		const enum label_id ls = label_vmalloc;
1379 #endif
1380 		u32 *split;
1381 		int ov = 0;
1382 		int i;
1383 
1384 		for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1385 			;
1386 		BUG_ON(i == ARRAY_SIZE(labels));
1387 		split = labels[i].addr;
1388 
1389 		/*
1390 		 * See if we have overflown one way or the other.
1391 		 */
1392 		if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1393 		    split < p - MIPS64_REFILL_INSNS)
1394 			ov = 1;
1395 
1396 		if (ov) {
1397 			/*
1398 			 * Split two instructions before the end.  One
1399 			 * for the branch and one for the instruction
1400 			 * in the delay slot.
1401 			 */
1402 			split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1403 
1404 			/*
1405 			 * If the branch would fall in a delay slot,
1406 			 * we must back up an additional instruction
1407 			 * so that it is no longer in a delay slot.
1408 			 */
1409 			if (uasm_insn_has_bdelay(relocs, split - 1))
1410 				split--;
1411 		}
1412 		/* Copy first part of the handler. */
1413 		uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1414 		f += split - tlb_handler;
1415 
1416 		if (ov) {
1417 			/* Insert branch. */
1418 			uasm_l_split(&l, final_handler);
1419 			uasm_il_b(&f, &r, label_split);
1420 			if (uasm_insn_has_bdelay(relocs, split))
1421 				uasm_i_nop(&f);
1422 			else {
1423 				uasm_copy_handler(relocs, labels,
1424 						  split, split + 1, f);
1425 				uasm_move_labels(labels, f, f + 1, -1);
1426 				f++;
1427 				split++;
1428 			}
1429 		}
1430 
1431 		/* Copy the rest of the handler. */
1432 		uasm_copy_handler(relocs, labels, split, p, final_handler);
1433 		final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1434 			    (p - split);
1435 	}
1436 #endif /* CONFIG_64BIT */
1437 
1438 	uasm_resolve_relocs(relocs, labels);
1439 	pr_debug("Wrote TLB refill handler (%u instructions).\n",
1440 		 final_len);
1441 
1442 	memcpy((void *)ebase, final_handler, 0x100);
1443 
1444 	dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
1445 }
1446 
1447 /*
1448  * 128 instructions for the fastpath handler is generous and should
1449  * never be exceeded.
1450  */
1451 #define FASTPATH_SIZE 128
1452 
1453 u32 handle_tlbl[FASTPATH_SIZE] __cacheline_aligned;
1454 u32 handle_tlbs[FASTPATH_SIZE] __cacheline_aligned;
1455 u32 handle_tlbm[FASTPATH_SIZE] __cacheline_aligned;
1456 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1457 u32 tlbmiss_handler_setup_pgd_array[16] __cacheline_aligned;
1458 
1459 static void __cpuinit build_r4000_setup_pgd(void)
1460 {
1461 	const int a0 = 4;
1462 	const int a1 = 5;
1463 	u32 *p = tlbmiss_handler_setup_pgd_array;
1464 	struct uasm_label *l = labels;
1465 	struct uasm_reloc *r = relocs;
1466 
1467 	memset(tlbmiss_handler_setup_pgd_array, 0, sizeof(tlbmiss_handler_setup_pgd_array));
1468 	memset(labels, 0, sizeof(labels));
1469 	memset(relocs, 0, sizeof(relocs));
1470 
1471 	pgd_reg = allocate_kscratch();
1472 
1473 	if (pgd_reg == -1) {
1474 		/* PGD << 11 in c0_Context */
1475 		/*
1476 		 * If it is a ckseg0 address, convert to a physical
1477 		 * address.  Shifting right by 29 and adding 4 will
1478 		 * result in zero for these addresses.
1479 		 *
1480 		 */
1481 		UASM_i_SRA(&p, a1, a0, 29);
1482 		UASM_i_ADDIU(&p, a1, a1, 4);
1483 		uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1484 		uasm_i_nop(&p);
1485 		uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1486 		uasm_l_tlbl_goaround1(&l, p);
1487 		UASM_i_SLL(&p, a0, a0, 11);
1488 		uasm_i_jr(&p, 31);
1489 		UASM_i_MTC0(&p, a0, C0_CONTEXT);
1490 	} else {
1491 		/* PGD in c0_KScratch */
1492 		uasm_i_jr(&p, 31);
1493 		UASM_i_MTC0(&p, a0, 31, pgd_reg);
1494 	}
1495 	if (p - tlbmiss_handler_setup_pgd_array > ARRAY_SIZE(tlbmiss_handler_setup_pgd_array))
1496 		panic("tlbmiss_handler_setup_pgd_array space exceeded");
1497 	uasm_resolve_relocs(relocs, labels);
1498 	pr_debug("Wrote tlbmiss_handler_setup_pgd_array (%u instructions).\n",
1499 		 (unsigned int)(p - tlbmiss_handler_setup_pgd_array));
1500 
1501 	dump_handler("tlbmiss_handler",
1502 		     tlbmiss_handler_setup_pgd_array,
1503 		     ARRAY_SIZE(tlbmiss_handler_setup_pgd_array));
1504 }
1505 #endif
1506 
1507 static void __cpuinit
1508 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1509 {
1510 #ifdef CONFIG_SMP
1511 # ifdef CONFIG_64BIT_PHYS_ADDR
1512 	if (cpu_has_64bits)
1513 		uasm_i_lld(p, pte, 0, ptr);
1514 	else
1515 # endif
1516 		UASM_i_LL(p, pte, 0, ptr);
1517 #else
1518 # ifdef CONFIG_64BIT_PHYS_ADDR
1519 	if (cpu_has_64bits)
1520 		uasm_i_ld(p, pte, 0, ptr);
1521 	else
1522 # endif
1523 		UASM_i_LW(p, pte, 0, ptr);
1524 #endif
1525 }
1526 
1527 static void __cpuinit
1528 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1529 	unsigned int mode)
1530 {
1531 #ifdef CONFIG_64BIT_PHYS_ADDR
1532 	unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1533 #endif
1534 
1535 	uasm_i_ori(p, pte, pte, mode);
1536 #ifdef CONFIG_SMP
1537 # ifdef CONFIG_64BIT_PHYS_ADDR
1538 	if (cpu_has_64bits)
1539 		uasm_i_scd(p, pte, 0, ptr);
1540 	else
1541 # endif
1542 		UASM_i_SC(p, pte, 0, ptr);
1543 
1544 	if (r10000_llsc_war())
1545 		uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1546 	else
1547 		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1548 
1549 # ifdef CONFIG_64BIT_PHYS_ADDR
1550 	if (!cpu_has_64bits) {
1551 		/* no uasm_i_nop needed */
1552 		uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1553 		uasm_i_ori(p, pte, pte, hwmode);
1554 		uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1555 		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1556 		/* no uasm_i_nop needed */
1557 		uasm_i_lw(p, pte, 0, ptr);
1558 	} else
1559 		uasm_i_nop(p);
1560 # else
1561 	uasm_i_nop(p);
1562 # endif
1563 #else
1564 # ifdef CONFIG_64BIT_PHYS_ADDR
1565 	if (cpu_has_64bits)
1566 		uasm_i_sd(p, pte, 0, ptr);
1567 	else
1568 # endif
1569 		UASM_i_SW(p, pte, 0, ptr);
1570 
1571 # ifdef CONFIG_64BIT_PHYS_ADDR
1572 	if (!cpu_has_64bits) {
1573 		uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1574 		uasm_i_ori(p, pte, pte, hwmode);
1575 		uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1576 		uasm_i_lw(p, pte, 0, ptr);
1577 	}
1578 # endif
1579 #endif
1580 }
1581 
1582 /*
1583  * Check if PTE is present, if not then jump to LABEL. PTR points to
1584  * the page table where this PTE is located, PTE will be re-loaded
1585  * with it's original value.
1586  */
1587 static void __cpuinit
1588 build_pte_present(u32 **p, struct uasm_reloc **r,
1589 		  int pte, int ptr, int scratch, enum label_id lid)
1590 {
1591 	int t = scratch >= 0 ? scratch : pte;
1592 
1593 	if (cpu_has_rixi) {
1594 		if (use_bbit_insns()) {
1595 			uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1596 			uasm_i_nop(p);
1597 		} else {
1598 			uasm_i_andi(p, t, pte, _PAGE_PRESENT);
1599 			uasm_il_beqz(p, r, t, lid);
1600 			if (pte == t)
1601 				/* You lose the SMP race :-(*/
1602 				iPTE_LW(p, pte, ptr);
1603 		}
1604 	} else {
1605 		uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ);
1606 		uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ);
1607 		uasm_il_bnez(p, r, t, lid);
1608 		if (pte == t)
1609 			/* You lose the SMP race :-(*/
1610 			iPTE_LW(p, pte, ptr);
1611 	}
1612 }
1613 
1614 /* Make PTE valid, store result in PTR. */
1615 static void __cpuinit
1616 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1617 		 unsigned int ptr)
1618 {
1619 	unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1620 
1621 	iPTE_SW(p, r, pte, ptr, mode);
1622 }
1623 
1624 /*
1625  * Check if PTE can be written to, if not branch to LABEL. Regardless
1626  * restore PTE with value from PTR when done.
1627  */
1628 static void __cpuinit
1629 build_pte_writable(u32 **p, struct uasm_reloc **r,
1630 		   unsigned int pte, unsigned int ptr, int scratch,
1631 		   enum label_id lid)
1632 {
1633 	int t = scratch >= 0 ? scratch : pte;
1634 
1635 	uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE);
1636 	uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE);
1637 	uasm_il_bnez(p, r, t, lid);
1638 	if (pte == t)
1639 		/* You lose the SMP race :-(*/
1640 		iPTE_LW(p, pte, ptr);
1641 	else
1642 		uasm_i_nop(p);
1643 }
1644 
1645 /* Make PTE writable, update software status bits as well, then store
1646  * at PTR.
1647  */
1648 static void __cpuinit
1649 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1650 		 unsigned int ptr)
1651 {
1652 	unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1653 			     | _PAGE_DIRTY);
1654 
1655 	iPTE_SW(p, r, pte, ptr, mode);
1656 }
1657 
1658 /*
1659  * Check if PTE can be modified, if not branch to LABEL. Regardless
1660  * restore PTE with value from PTR when done.
1661  */
1662 static void __cpuinit
1663 build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1664 		     unsigned int pte, unsigned int ptr, int scratch,
1665 		     enum label_id lid)
1666 {
1667 	if (use_bbit_insns()) {
1668 		uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1669 		uasm_i_nop(p);
1670 	} else {
1671 		int t = scratch >= 0 ? scratch : pte;
1672 		uasm_i_andi(p, t, pte, _PAGE_WRITE);
1673 		uasm_il_beqz(p, r, t, lid);
1674 		if (pte == t)
1675 			/* You lose the SMP race :-(*/
1676 			iPTE_LW(p, pte, ptr);
1677 	}
1678 }
1679 
1680 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1681 
1682 
1683 /*
1684  * R3000 style TLB load/store/modify handlers.
1685  */
1686 
1687 /*
1688  * This places the pte into ENTRYLO0 and writes it with tlbwi.
1689  * Then it returns.
1690  */
1691 static void __cpuinit
1692 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1693 {
1694 	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1695 	uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1696 	uasm_i_tlbwi(p);
1697 	uasm_i_jr(p, tmp);
1698 	uasm_i_rfe(p); /* branch delay */
1699 }
1700 
1701 /*
1702  * This places the pte into ENTRYLO0 and writes it with tlbwi
1703  * or tlbwr as appropriate.  This is because the index register
1704  * may have the probe fail bit set as a result of a trap on a
1705  * kseg2 access, i.e. without refill.  Then it returns.
1706  */
1707 static void __cpuinit
1708 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1709 			     struct uasm_reloc **r, unsigned int pte,
1710 			     unsigned int tmp)
1711 {
1712 	uasm_i_mfc0(p, tmp, C0_INDEX);
1713 	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1714 	uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1715 	uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1716 	uasm_i_tlbwi(p); /* cp0 delay */
1717 	uasm_i_jr(p, tmp);
1718 	uasm_i_rfe(p); /* branch delay */
1719 	uasm_l_r3000_write_probe_fail(l, *p);
1720 	uasm_i_tlbwr(p); /* cp0 delay */
1721 	uasm_i_jr(p, tmp);
1722 	uasm_i_rfe(p); /* branch delay */
1723 }
1724 
1725 static void __cpuinit
1726 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1727 				   unsigned int ptr)
1728 {
1729 	long pgdc = (long)pgd_current;
1730 
1731 	uasm_i_mfc0(p, pte, C0_BADVADDR);
1732 	uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1733 	uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1734 	uasm_i_srl(p, pte, pte, 22); /* load delay */
1735 	uasm_i_sll(p, pte, pte, 2);
1736 	uasm_i_addu(p, ptr, ptr, pte);
1737 	uasm_i_mfc0(p, pte, C0_CONTEXT);
1738 	uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1739 	uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1740 	uasm_i_addu(p, ptr, ptr, pte);
1741 	uasm_i_lw(p, pte, 0, ptr);
1742 	uasm_i_tlbp(p); /* load delay */
1743 }
1744 
1745 static void __cpuinit build_r3000_tlb_load_handler(void)
1746 {
1747 	u32 *p = handle_tlbl;
1748 	struct uasm_label *l = labels;
1749 	struct uasm_reloc *r = relocs;
1750 
1751 	memset(handle_tlbl, 0, sizeof(handle_tlbl));
1752 	memset(labels, 0, sizeof(labels));
1753 	memset(relocs, 0, sizeof(relocs));
1754 
1755 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1756 	build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1757 	uasm_i_nop(&p); /* load delay */
1758 	build_make_valid(&p, &r, K0, K1);
1759 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1760 
1761 	uasm_l_nopage_tlbl(&l, p);
1762 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1763 	uasm_i_nop(&p);
1764 
1765 	if ((p - handle_tlbl) > FASTPATH_SIZE)
1766 		panic("TLB load handler fastpath space exceeded");
1767 
1768 	uasm_resolve_relocs(relocs, labels);
1769 	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1770 		 (unsigned int)(p - handle_tlbl));
1771 
1772 	dump_handler("r3000_tlb_load", handle_tlbl, ARRAY_SIZE(handle_tlbl));
1773 }
1774 
1775 static void __cpuinit build_r3000_tlb_store_handler(void)
1776 {
1777 	u32 *p = handle_tlbs;
1778 	struct uasm_label *l = labels;
1779 	struct uasm_reloc *r = relocs;
1780 
1781 	memset(handle_tlbs, 0, sizeof(handle_tlbs));
1782 	memset(labels, 0, sizeof(labels));
1783 	memset(relocs, 0, sizeof(relocs));
1784 
1785 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1786 	build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1787 	uasm_i_nop(&p); /* load delay */
1788 	build_make_write(&p, &r, K0, K1);
1789 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1790 
1791 	uasm_l_nopage_tlbs(&l, p);
1792 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1793 	uasm_i_nop(&p);
1794 
1795 	if ((p - handle_tlbs) > FASTPATH_SIZE)
1796 		panic("TLB store handler fastpath space exceeded");
1797 
1798 	uasm_resolve_relocs(relocs, labels);
1799 	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1800 		 (unsigned int)(p - handle_tlbs));
1801 
1802 	dump_handler("r3000_tlb_store", handle_tlbs, ARRAY_SIZE(handle_tlbs));
1803 }
1804 
1805 static void __cpuinit build_r3000_tlb_modify_handler(void)
1806 {
1807 	u32 *p = handle_tlbm;
1808 	struct uasm_label *l = labels;
1809 	struct uasm_reloc *r = relocs;
1810 
1811 	memset(handle_tlbm, 0, sizeof(handle_tlbm));
1812 	memset(labels, 0, sizeof(labels));
1813 	memset(relocs, 0, sizeof(relocs));
1814 
1815 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1816 	build_pte_modifiable(&p, &r, K0, K1,  -1, label_nopage_tlbm);
1817 	uasm_i_nop(&p); /* load delay */
1818 	build_make_write(&p, &r, K0, K1);
1819 	build_r3000_pte_reload_tlbwi(&p, K0, K1);
1820 
1821 	uasm_l_nopage_tlbm(&l, p);
1822 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1823 	uasm_i_nop(&p);
1824 
1825 	if ((p - handle_tlbm) > FASTPATH_SIZE)
1826 		panic("TLB modify handler fastpath space exceeded");
1827 
1828 	uasm_resolve_relocs(relocs, labels);
1829 	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1830 		 (unsigned int)(p - handle_tlbm));
1831 
1832 	dump_handler("r3000_tlb_modify", handle_tlbm, ARRAY_SIZE(handle_tlbm));
1833 }
1834 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1835 
1836 /*
1837  * R4000 style TLB load/store/modify handlers.
1838  */
1839 static struct work_registers __cpuinit
1840 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1841 				   struct uasm_reloc **r)
1842 {
1843 	struct work_registers wr = build_get_work_registers(p);
1844 
1845 #ifdef CONFIG_64BIT
1846 	build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
1847 #else
1848 	build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
1849 #endif
1850 
1851 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1852 	/*
1853 	 * For huge tlb entries, pmd doesn't contain an address but
1854 	 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1855 	 * see if we need to jump to huge tlb processing.
1856 	 */
1857 	build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
1858 #endif
1859 
1860 	UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
1861 	UASM_i_LW(p, wr.r2, 0, wr.r2);
1862 	UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1863 	uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1864 	UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
1865 
1866 #ifdef CONFIG_SMP
1867 	uasm_l_smp_pgtable_change(l, *p);
1868 #endif
1869 	iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
1870 	if (!m4kc_tlbp_war())
1871 		build_tlb_probe_entry(p);
1872 	return wr;
1873 }
1874 
1875 static void __cpuinit
1876 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1877 				   struct uasm_reloc **r, unsigned int tmp,
1878 				   unsigned int ptr)
1879 {
1880 	uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1881 	uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1882 	build_update_entries(p, tmp, ptr);
1883 	build_tlb_write_entry(p, l, r, tlb_indexed);
1884 	uasm_l_leave(l, *p);
1885 	build_restore_work_registers(p);
1886 	uasm_i_eret(p); /* return from trap */
1887 
1888 #ifdef CONFIG_64BIT
1889 	build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
1890 #endif
1891 }
1892 
1893 static void __cpuinit build_r4000_tlb_load_handler(void)
1894 {
1895 	u32 *p = handle_tlbl;
1896 	struct uasm_label *l = labels;
1897 	struct uasm_reloc *r = relocs;
1898 	struct work_registers wr;
1899 
1900 	memset(handle_tlbl, 0, sizeof(handle_tlbl));
1901 	memset(labels, 0, sizeof(labels));
1902 	memset(relocs, 0, sizeof(relocs));
1903 
1904 	if (bcm1250_m3_war()) {
1905 		unsigned int segbits = 44;
1906 
1907 		uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1908 		uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1909 		uasm_i_xor(&p, K0, K0, K1);
1910 		uasm_i_dsrl_safe(&p, K1, K0, 62);
1911 		uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1912 		uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1913 		uasm_i_or(&p, K0, K0, K1);
1914 		uasm_il_bnez(&p, &r, K0, label_leave);
1915 		/* No need for uasm_i_nop */
1916 	}
1917 
1918 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
1919 	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1920 	if (m4kc_tlbp_war())
1921 		build_tlb_probe_entry(&p);
1922 
1923 	if (cpu_has_rixi) {
1924 		/*
1925 		 * If the page is not _PAGE_VALID, RI or XI could not
1926 		 * have triggered it.  Skip the expensive test..
1927 		 */
1928 		if (use_bbit_insns()) {
1929 			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1930 				      label_tlbl_goaround1);
1931 		} else {
1932 			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1933 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
1934 		}
1935 		uasm_i_nop(&p);
1936 
1937 		uasm_i_tlbr(&p);
1938 		/* Examine  entrylo 0 or 1 based on ptr. */
1939 		if (use_bbit_insns()) {
1940 			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1941 		} else {
1942 			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1943 			uasm_i_beqz(&p, wr.r3, 8);
1944 		}
1945 		/* load it in the delay slot*/
1946 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1947 		/* load it if ptr is odd */
1948 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1949 		/*
1950 		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1951 		 * XI must have triggered it.
1952 		 */
1953 		if (use_bbit_insns()) {
1954 			uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
1955 			uasm_i_nop(&p);
1956 			uasm_l_tlbl_goaround1(&l, p);
1957 		} else {
1958 			uasm_i_andi(&p, wr.r3, wr.r3, 2);
1959 			uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
1960 			uasm_i_nop(&p);
1961 		}
1962 		uasm_l_tlbl_goaround1(&l, p);
1963 	}
1964 	build_make_valid(&p, &r, wr.r1, wr.r2);
1965 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
1966 
1967 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1968 	/*
1969 	 * This is the entry point when build_r4000_tlbchange_handler_head
1970 	 * spots a huge page.
1971 	 */
1972 	uasm_l_tlb_huge_update(&l, p);
1973 	iPTE_LW(&p, wr.r1, wr.r2);
1974 	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1975 	build_tlb_probe_entry(&p);
1976 
1977 	if (cpu_has_rixi) {
1978 		/*
1979 		 * If the page is not _PAGE_VALID, RI or XI could not
1980 		 * have triggered it.  Skip the expensive test..
1981 		 */
1982 		if (use_bbit_insns()) {
1983 			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1984 				      label_tlbl_goaround2);
1985 		} else {
1986 			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1987 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
1988 		}
1989 		uasm_i_nop(&p);
1990 
1991 		uasm_i_tlbr(&p);
1992 		/* Examine  entrylo 0 or 1 based on ptr. */
1993 		if (use_bbit_insns()) {
1994 			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1995 		} else {
1996 			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1997 			uasm_i_beqz(&p, wr.r3, 8);
1998 		}
1999 		/* load it in the delay slot*/
2000 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2001 		/* load it if ptr is odd */
2002 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2003 		/*
2004 		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2005 		 * XI must have triggered it.
2006 		 */
2007 		if (use_bbit_insns()) {
2008 			uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2009 		} else {
2010 			uasm_i_andi(&p, wr.r3, wr.r3, 2);
2011 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2012 		}
2013 		if (PM_DEFAULT_MASK == 0)
2014 			uasm_i_nop(&p);
2015 		/*
2016 		 * We clobbered C0_PAGEMASK, restore it.  On the other branch
2017 		 * it is restored in build_huge_tlb_write_entry.
2018 		 */
2019 		build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2020 
2021 		uasm_l_tlbl_goaround2(&l, p);
2022 	}
2023 	uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2024 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2025 #endif
2026 
2027 	uasm_l_nopage_tlbl(&l, p);
2028 	build_restore_work_registers(&p);
2029 #ifdef CONFIG_CPU_MICROMIPS
2030 	if ((unsigned long)tlb_do_page_fault_0 & 1) {
2031 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2032 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2033 		uasm_i_jr(&p, K0);
2034 	} else
2035 #endif
2036 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2037 	uasm_i_nop(&p);
2038 
2039 	if ((p - handle_tlbl) > FASTPATH_SIZE)
2040 		panic("TLB load handler fastpath space exceeded");
2041 
2042 	uasm_resolve_relocs(relocs, labels);
2043 	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2044 		 (unsigned int)(p - handle_tlbl));
2045 
2046 	dump_handler("r4000_tlb_load", handle_tlbl, ARRAY_SIZE(handle_tlbl));
2047 }
2048 
2049 static void __cpuinit build_r4000_tlb_store_handler(void)
2050 {
2051 	u32 *p = handle_tlbs;
2052 	struct uasm_label *l = labels;
2053 	struct uasm_reloc *r = relocs;
2054 	struct work_registers wr;
2055 
2056 	memset(handle_tlbs, 0, sizeof(handle_tlbs));
2057 	memset(labels, 0, sizeof(labels));
2058 	memset(relocs, 0, sizeof(relocs));
2059 
2060 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2061 	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2062 	if (m4kc_tlbp_war())
2063 		build_tlb_probe_entry(&p);
2064 	build_make_write(&p, &r, wr.r1, wr.r2);
2065 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2066 
2067 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2068 	/*
2069 	 * This is the entry point when
2070 	 * build_r4000_tlbchange_handler_head spots a huge page.
2071 	 */
2072 	uasm_l_tlb_huge_update(&l, p);
2073 	iPTE_LW(&p, wr.r1, wr.r2);
2074 	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2075 	build_tlb_probe_entry(&p);
2076 	uasm_i_ori(&p, wr.r1, wr.r1,
2077 		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2078 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2079 #endif
2080 
2081 	uasm_l_nopage_tlbs(&l, p);
2082 	build_restore_work_registers(&p);
2083 #ifdef CONFIG_CPU_MICROMIPS
2084 	if ((unsigned long)tlb_do_page_fault_1 & 1) {
2085 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2086 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2087 		uasm_i_jr(&p, K0);
2088 	} else
2089 #endif
2090 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2091 	uasm_i_nop(&p);
2092 
2093 	if ((p - handle_tlbs) > FASTPATH_SIZE)
2094 		panic("TLB store handler fastpath space exceeded");
2095 
2096 	uasm_resolve_relocs(relocs, labels);
2097 	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2098 		 (unsigned int)(p - handle_tlbs));
2099 
2100 	dump_handler("r4000_tlb_store", handle_tlbs, ARRAY_SIZE(handle_tlbs));
2101 }
2102 
2103 static void __cpuinit build_r4000_tlb_modify_handler(void)
2104 {
2105 	u32 *p = handle_tlbm;
2106 	struct uasm_label *l = labels;
2107 	struct uasm_reloc *r = relocs;
2108 	struct work_registers wr;
2109 
2110 	memset(handle_tlbm, 0, sizeof(handle_tlbm));
2111 	memset(labels, 0, sizeof(labels));
2112 	memset(relocs, 0, sizeof(relocs));
2113 
2114 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2115 	build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2116 	if (m4kc_tlbp_war())
2117 		build_tlb_probe_entry(&p);
2118 	/* Present and writable bits set, set accessed and dirty bits. */
2119 	build_make_write(&p, &r, wr.r1, wr.r2);
2120 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2121 
2122 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2123 	/*
2124 	 * This is the entry point when
2125 	 * build_r4000_tlbchange_handler_head spots a huge page.
2126 	 */
2127 	uasm_l_tlb_huge_update(&l, p);
2128 	iPTE_LW(&p, wr.r1, wr.r2);
2129 	build_pte_modifiable(&p, &r, wr.r1, wr.r2,  wr.r3, label_nopage_tlbm);
2130 	build_tlb_probe_entry(&p);
2131 	uasm_i_ori(&p, wr.r1, wr.r1,
2132 		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2133 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2134 #endif
2135 
2136 	uasm_l_nopage_tlbm(&l, p);
2137 	build_restore_work_registers(&p);
2138 #ifdef CONFIG_CPU_MICROMIPS
2139 	if ((unsigned long)tlb_do_page_fault_1 & 1) {
2140 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2141 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2142 		uasm_i_jr(&p, K0);
2143 	} else
2144 #endif
2145 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2146 	uasm_i_nop(&p);
2147 
2148 	if ((p - handle_tlbm) > FASTPATH_SIZE)
2149 		panic("TLB modify handler fastpath space exceeded");
2150 
2151 	uasm_resolve_relocs(relocs, labels);
2152 	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2153 		 (unsigned int)(p - handle_tlbm));
2154 
2155 	dump_handler("r4000_tlb_modify", handle_tlbm, ARRAY_SIZE(handle_tlbm));
2156 }
2157 
2158 void __cpuinit build_tlb_refill_handler(void)
2159 {
2160 	/*
2161 	 * The refill handler is generated per-CPU, multi-node systems
2162 	 * may have local storage for it. The other handlers are only
2163 	 * needed once.
2164 	 */
2165 	static int run_once = 0;
2166 
2167 	output_pgtable_bits_defines();
2168 
2169 #ifdef CONFIG_64BIT
2170 	check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2171 #endif
2172 
2173 	switch (current_cpu_type()) {
2174 	case CPU_R2000:
2175 	case CPU_R3000:
2176 	case CPU_R3000A:
2177 	case CPU_R3081E:
2178 	case CPU_TX3912:
2179 	case CPU_TX3922:
2180 	case CPU_TX3927:
2181 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2182 		if (cpu_has_local_ebase)
2183 			build_r3000_tlb_refill_handler();
2184 		if (!run_once) {
2185 			if (!cpu_has_local_ebase)
2186 				build_r3000_tlb_refill_handler();
2187 			build_r3000_tlb_load_handler();
2188 			build_r3000_tlb_store_handler();
2189 			build_r3000_tlb_modify_handler();
2190 			run_once++;
2191 		}
2192 #else
2193 		panic("No R3000 TLB refill handler");
2194 #endif
2195 		break;
2196 
2197 	case CPU_R6000:
2198 	case CPU_R6000A:
2199 		panic("No R6000 TLB refill handler yet");
2200 		break;
2201 
2202 	case CPU_R8000:
2203 		panic("No R8000 TLB refill handler yet");
2204 		break;
2205 
2206 	default:
2207 		if (!run_once) {
2208 			scratch_reg = allocate_kscratch();
2209 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2210 			build_r4000_setup_pgd();
2211 #endif
2212 			build_r4000_tlb_load_handler();
2213 			build_r4000_tlb_store_handler();
2214 			build_r4000_tlb_modify_handler();
2215 			if (!cpu_has_local_ebase)
2216 				build_r4000_tlb_refill_handler();
2217 			run_once++;
2218 		}
2219 		if (cpu_has_local_ebase)
2220 			build_r4000_tlb_refill_handler();
2221 	}
2222 }
2223 
2224 void __cpuinit flush_tlb_handlers(void)
2225 {
2226 	local_flush_icache_range((unsigned long)handle_tlbl,
2227 			   (unsigned long)handle_tlbl + sizeof(handle_tlbl));
2228 	local_flush_icache_range((unsigned long)handle_tlbs,
2229 			   (unsigned long)handle_tlbs + sizeof(handle_tlbs));
2230 	local_flush_icache_range((unsigned long)handle_tlbm,
2231 			   (unsigned long)handle_tlbm + sizeof(handle_tlbm));
2232 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2233 	local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd_array,
2234 			   (unsigned long)tlbmiss_handler_setup_pgd_array + sizeof(handle_tlbm));
2235 #endif
2236 }
2237