xref: /openbmc/linux/arch/mips/mm/tlbex.c (revision 6189f1b0)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Synthesize TLB refill handlers at runtime.
7  *
8  * Copyright (C) 2004, 2005, 2006, 2008	 Thiemo Seufer
9  * Copyright (C) 2005, 2007, 2008, 2009	 Maciej W. Rozycki
10  * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
11  * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12  * Copyright (C) 2011  MIPS Technologies, Inc.
13  *
14  * ... and the days got worse and worse and now you see
15  * I've gone completly out of my mind.
16  *
17  * They're coming to take me a away haha
18  * they're coming to take me a away hoho hihi haha
19  * to the funny farm where code is beautiful all the time ...
20  *
21  * (Condolences to Napoleon XIV)
22  */
23 
24 #include <linux/bug.h>
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/smp.h>
28 #include <linux/string.h>
29 #include <linux/cache.h>
30 
31 #include <asm/cacheflush.h>
32 #include <asm/cpu-type.h>
33 #include <asm/pgtable.h>
34 #include <asm/war.h>
35 #include <asm/uasm.h>
36 #include <asm/setup.h>
37 
38 static int mips_xpa_disabled;
39 
40 static int __init xpa_disable(char *s)
41 {
42 	mips_xpa_disabled = 1;
43 
44 	return 1;
45 }
46 
47 __setup("noxpa", xpa_disable);
48 
49 /*
50  * TLB load/store/modify handlers.
51  *
52  * Only the fastpath gets synthesized at runtime, the slowpath for
53  * do_page_fault remains normal asm.
54  */
55 extern void tlb_do_page_fault_0(void);
56 extern void tlb_do_page_fault_1(void);
57 
58 struct work_registers {
59 	int r1;
60 	int r2;
61 	int r3;
62 };
63 
64 struct tlb_reg_save {
65 	unsigned long a;
66 	unsigned long b;
67 } ____cacheline_aligned_in_smp;
68 
69 static struct tlb_reg_save handler_reg_save[NR_CPUS];
70 
71 static inline int r45k_bvahwbug(void)
72 {
73 	/* XXX: We should probe for the presence of this bug, but we don't. */
74 	return 0;
75 }
76 
77 static inline int r4k_250MHZhwbug(void)
78 {
79 	/* XXX: We should probe for the presence of this bug, but we don't. */
80 	return 0;
81 }
82 
83 static inline int __maybe_unused bcm1250_m3_war(void)
84 {
85 	return BCM1250_M3_WAR;
86 }
87 
88 static inline int __maybe_unused r10000_llsc_war(void)
89 {
90 	return R10000_LLSC_WAR;
91 }
92 
93 static int use_bbit_insns(void)
94 {
95 	switch (current_cpu_type()) {
96 	case CPU_CAVIUM_OCTEON:
97 	case CPU_CAVIUM_OCTEON_PLUS:
98 	case CPU_CAVIUM_OCTEON2:
99 	case CPU_CAVIUM_OCTEON3:
100 		return 1;
101 	default:
102 		return 0;
103 	}
104 }
105 
106 static int use_lwx_insns(void)
107 {
108 	switch (current_cpu_type()) {
109 	case CPU_CAVIUM_OCTEON2:
110 	case CPU_CAVIUM_OCTEON3:
111 		return 1;
112 	default:
113 		return 0;
114 	}
115 }
116 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
117     CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
118 static bool scratchpad_available(void)
119 {
120 	return true;
121 }
122 static int scratchpad_offset(int i)
123 {
124 	/*
125 	 * CVMSEG starts at address -32768 and extends for
126 	 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
127 	 */
128 	i += 1; /* Kernel use starts at the top and works down. */
129 	return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
130 }
131 #else
132 static bool scratchpad_available(void)
133 {
134 	return false;
135 }
136 static int scratchpad_offset(int i)
137 {
138 	BUG();
139 	/* Really unreachable, but evidently some GCC want this. */
140 	return 0;
141 }
142 #endif
143 /*
144  * Found by experiment: At least some revisions of the 4kc throw under
145  * some circumstances a machine check exception, triggered by invalid
146  * values in the index register.  Delaying the tlbp instruction until
147  * after the next branch,  plus adding an additional nop in front of
148  * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
149  * why; it's not an issue caused by the core RTL.
150  *
151  */
152 static int m4kc_tlbp_war(void)
153 {
154 	return (current_cpu_data.processor_id & 0xffff00) ==
155 	       (PRID_COMP_MIPS | PRID_IMP_4KC);
156 }
157 
158 /* Handle labels (which must be positive integers). */
159 enum label_id {
160 	label_second_part = 1,
161 	label_leave,
162 	label_vmalloc,
163 	label_vmalloc_done,
164 	label_tlbw_hazard_0,
165 	label_split = label_tlbw_hazard_0 + 8,
166 	label_tlbl_goaround1,
167 	label_tlbl_goaround2,
168 	label_nopage_tlbl,
169 	label_nopage_tlbs,
170 	label_nopage_tlbm,
171 	label_smp_pgtable_change,
172 	label_r3000_write_probe_fail,
173 	label_large_segbits_fault,
174 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
175 	label_tlb_huge_update,
176 #endif
177 };
178 
179 UASM_L_LA(_second_part)
180 UASM_L_LA(_leave)
181 UASM_L_LA(_vmalloc)
182 UASM_L_LA(_vmalloc_done)
183 /* _tlbw_hazard_x is handled differently.  */
184 UASM_L_LA(_split)
185 UASM_L_LA(_tlbl_goaround1)
186 UASM_L_LA(_tlbl_goaround2)
187 UASM_L_LA(_nopage_tlbl)
188 UASM_L_LA(_nopage_tlbs)
189 UASM_L_LA(_nopage_tlbm)
190 UASM_L_LA(_smp_pgtable_change)
191 UASM_L_LA(_r3000_write_probe_fail)
192 UASM_L_LA(_large_segbits_fault)
193 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
194 UASM_L_LA(_tlb_huge_update)
195 #endif
196 
197 static int hazard_instance;
198 
199 static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
200 {
201 	switch (instance) {
202 	case 0 ... 7:
203 		uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
204 		return;
205 	default:
206 		BUG();
207 	}
208 }
209 
210 static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
211 {
212 	switch (instance) {
213 	case 0 ... 7:
214 		uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
215 		break;
216 	default:
217 		BUG();
218 	}
219 }
220 
221 /*
222  * pgtable bits are assigned dynamically depending on processor feature
223  * and statically based on kernel configuration.  This spits out the actual
224  * values the kernel is using.	Required to make sense from disassembled
225  * TLB exception handlers.
226  */
227 static void output_pgtable_bits_defines(void)
228 {
229 #define pr_define(fmt, ...)					\
230 	pr_debug("#define " fmt, ##__VA_ARGS__)
231 
232 	pr_debug("#include <asm/asm.h>\n");
233 	pr_debug("#include <asm/regdef.h>\n");
234 	pr_debug("\n");
235 
236 	pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
237 	pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT);
238 	pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
239 	pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
240 	pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
241 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
242 	pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
243 	pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT);
244 #endif
245 #ifdef CONFIG_CPU_MIPSR2
246 	if (cpu_has_rixi) {
247 #ifdef _PAGE_NO_EXEC_SHIFT
248 		pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
249 		pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
250 #endif
251 	}
252 #endif
253 	pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
254 	pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
255 	pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
256 	pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
257 	pr_debug("\n");
258 }
259 
260 static inline void dump_handler(const char *symbol, const u32 *handler, int count)
261 {
262 	int i;
263 
264 	pr_debug("LEAF(%s)\n", symbol);
265 
266 	pr_debug("\t.set push\n");
267 	pr_debug("\t.set noreorder\n");
268 
269 	for (i = 0; i < count; i++)
270 		pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
271 
272 	pr_debug("\t.set\tpop\n");
273 
274 	pr_debug("\tEND(%s)\n", symbol);
275 }
276 
277 /* The only general purpose registers allowed in TLB handlers. */
278 #define K0		26
279 #define K1		27
280 
281 /* Some CP0 registers */
282 #define C0_INDEX	0, 0
283 #define C0_ENTRYLO0	2, 0
284 #define C0_TCBIND	2, 2
285 #define C0_ENTRYLO1	3, 0
286 #define C0_CONTEXT	4, 0
287 #define C0_PAGEMASK	5, 0
288 #define C0_BADVADDR	8, 0
289 #define C0_ENTRYHI	10, 0
290 #define C0_EPC		14, 0
291 #define C0_XCONTEXT	20, 0
292 
293 #ifdef CONFIG_64BIT
294 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
295 #else
296 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
297 #endif
298 
299 /* The worst case length of the handler is around 18 instructions for
300  * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
301  * Maximum space available is 32 instructions for R3000 and 64
302  * instructions for R4000.
303  *
304  * We deliberately chose a buffer size of 128, so we won't scribble
305  * over anything important on overflow before we panic.
306  */
307 static u32 tlb_handler[128];
308 
309 /* simply assume worst case size for labels and relocs */
310 static struct uasm_label labels[128];
311 static struct uasm_reloc relocs[128];
312 
313 static int check_for_high_segbits;
314 
315 static unsigned int kscratch_used_mask;
316 
317 static inline int __maybe_unused c0_kscratch(void)
318 {
319 	switch (current_cpu_type()) {
320 	case CPU_XLP:
321 	case CPU_XLR:
322 		return 22;
323 	default:
324 		return 31;
325 	}
326 }
327 
328 static int allocate_kscratch(void)
329 {
330 	int r;
331 	unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
332 
333 	r = ffs(a);
334 
335 	if (r == 0)
336 		return -1;
337 
338 	r--; /* make it zero based */
339 
340 	kscratch_used_mask |= (1 << r);
341 
342 	return r;
343 }
344 
345 static int scratch_reg;
346 static int pgd_reg;
347 enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
348 
349 static struct work_registers build_get_work_registers(u32 **p)
350 {
351 	struct work_registers r;
352 
353 	if (scratch_reg >= 0) {
354 		/* Save in CPU local C0_KScratch? */
355 		UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
356 		r.r1 = K0;
357 		r.r2 = K1;
358 		r.r3 = 1;
359 		return r;
360 	}
361 
362 	if (num_possible_cpus() > 1) {
363 		/* Get smp_processor_id */
364 		UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG);
365 		UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT);
366 
367 		/* handler_reg_save index in K0 */
368 		UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
369 
370 		UASM_i_LA(p, K1, (long)&handler_reg_save);
371 		UASM_i_ADDU(p, K0, K0, K1);
372 	} else {
373 		UASM_i_LA(p, K0, (long)&handler_reg_save);
374 	}
375 	/* K0 now points to save area, save $1 and $2  */
376 	UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
377 	UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
378 
379 	r.r1 = K1;
380 	r.r2 = 1;
381 	r.r3 = 2;
382 	return r;
383 }
384 
385 static void build_restore_work_registers(u32 **p)
386 {
387 	if (scratch_reg >= 0) {
388 		UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
389 		return;
390 	}
391 	/* K0 already points to save area, restore $1 and $2  */
392 	UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
393 	UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
394 }
395 
396 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
397 
398 /*
399  * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
400  * we cannot do r3000 under these circumstances.
401  *
402  * Declare pgd_current here instead of including mmu_context.h to avoid type
403  * conflicts for tlbmiss_handler_setup_pgd
404  */
405 extern unsigned long pgd_current[];
406 
407 /*
408  * The R3000 TLB handler is simple.
409  */
410 static void build_r3000_tlb_refill_handler(void)
411 {
412 	long pgdc = (long)pgd_current;
413 	u32 *p;
414 
415 	memset(tlb_handler, 0, sizeof(tlb_handler));
416 	p = tlb_handler;
417 
418 	uasm_i_mfc0(&p, K0, C0_BADVADDR);
419 	uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
420 	uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
421 	uasm_i_srl(&p, K0, K0, 22); /* load delay */
422 	uasm_i_sll(&p, K0, K0, 2);
423 	uasm_i_addu(&p, K1, K1, K0);
424 	uasm_i_mfc0(&p, K0, C0_CONTEXT);
425 	uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
426 	uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
427 	uasm_i_addu(&p, K1, K1, K0);
428 	uasm_i_lw(&p, K0, 0, K1);
429 	uasm_i_nop(&p); /* load delay */
430 	uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
431 	uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
432 	uasm_i_tlbwr(&p); /* cp0 delay */
433 	uasm_i_jr(&p, K1);
434 	uasm_i_rfe(&p); /* branch delay */
435 
436 	if (p > tlb_handler + 32)
437 		panic("TLB refill handler space exceeded");
438 
439 	pr_debug("Wrote TLB refill handler (%u instructions).\n",
440 		 (unsigned int)(p - tlb_handler));
441 
442 	memcpy((void *)ebase, tlb_handler, 0x80);
443 	local_flush_icache_range(ebase, ebase + 0x80);
444 
445 	dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
446 }
447 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
448 
449 /*
450  * The R4000 TLB handler is much more complicated. We have two
451  * consecutive handler areas with 32 instructions space each.
452  * Since they aren't used at the same time, we can overflow in the
453  * other one.To keep things simple, we first assume linear space,
454  * then we relocate it to the final handler layout as needed.
455  */
456 static u32 final_handler[64];
457 
458 /*
459  * Hazards
460  *
461  * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
462  * 2. A timing hazard exists for the TLBP instruction.
463  *
464  *	stalling_instruction
465  *	TLBP
466  *
467  * The JTLB is being read for the TLBP throughout the stall generated by the
468  * previous instruction. This is not really correct as the stalling instruction
469  * can modify the address used to access the JTLB.  The failure symptom is that
470  * the TLBP instruction will use an address created for the stalling instruction
471  * and not the address held in C0_ENHI and thus report the wrong results.
472  *
473  * The software work-around is to not allow the instruction preceding the TLBP
474  * to stall - make it an NOP or some other instruction guaranteed not to stall.
475  *
476  * Errata 2 will not be fixed.	This errata is also on the R5000.
477  *
478  * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
479  */
480 static void __maybe_unused build_tlb_probe_entry(u32 **p)
481 {
482 	switch (current_cpu_type()) {
483 	/* Found by experiment: R4600 v2.0/R4700 needs this, too.  */
484 	case CPU_R4600:
485 	case CPU_R4700:
486 	case CPU_R5000:
487 	case CPU_NEVADA:
488 		uasm_i_nop(p);
489 		uasm_i_tlbp(p);
490 		break;
491 
492 	default:
493 		uasm_i_tlbp(p);
494 		break;
495 	}
496 }
497 
498 /*
499  * Write random or indexed TLB entry, and care about the hazards from
500  * the preceding mtc0 and for the following eret.
501  */
502 enum tlb_write_entry { tlb_random, tlb_indexed };
503 
504 static void build_tlb_write_entry(u32 **p, struct uasm_label **l,
505 				  struct uasm_reloc **r,
506 				  enum tlb_write_entry wmode)
507 {
508 	void(*tlbw)(u32 **) = NULL;
509 
510 	switch (wmode) {
511 	case tlb_random: tlbw = uasm_i_tlbwr; break;
512 	case tlb_indexed: tlbw = uasm_i_tlbwi; break;
513 	}
514 
515 	if (cpu_has_mips_r2_r6) {
516 		if (cpu_has_mips_r2_exec_hazard)
517 			uasm_i_ehb(p);
518 		tlbw(p);
519 		return;
520 	}
521 
522 	switch (current_cpu_type()) {
523 	case CPU_R4000PC:
524 	case CPU_R4000SC:
525 	case CPU_R4000MC:
526 	case CPU_R4400PC:
527 	case CPU_R4400SC:
528 	case CPU_R4400MC:
529 		/*
530 		 * This branch uses up a mtc0 hazard nop slot and saves
531 		 * two nops after the tlbw instruction.
532 		 */
533 		uasm_bgezl_hazard(p, r, hazard_instance);
534 		tlbw(p);
535 		uasm_bgezl_label(l, p, hazard_instance);
536 		hazard_instance++;
537 		uasm_i_nop(p);
538 		break;
539 
540 	case CPU_R4600:
541 	case CPU_R4700:
542 		uasm_i_nop(p);
543 		tlbw(p);
544 		uasm_i_nop(p);
545 		break;
546 
547 	case CPU_R5000:
548 	case CPU_NEVADA:
549 		uasm_i_nop(p); /* QED specifies 2 nops hazard */
550 		uasm_i_nop(p); /* QED specifies 2 nops hazard */
551 		tlbw(p);
552 		break;
553 
554 	case CPU_R4300:
555 	case CPU_5KC:
556 	case CPU_TX49XX:
557 	case CPU_PR4450:
558 	case CPU_XLR:
559 		uasm_i_nop(p);
560 		tlbw(p);
561 		break;
562 
563 	case CPU_R10000:
564 	case CPU_R12000:
565 	case CPU_R14000:
566 	case CPU_R16000:
567 	case CPU_4KC:
568 	case CPU_4KEC:
569 	case CPU_M14KC:
570 	case CPU_M14KEC:
571 	case CPU_SB1:
572 	case CPU_SB1A:
573 	case CPU_4KSC:
574 	case CPU_20KC:
575 	case CPU_25KF:
576 	case CPU_BMIPS32:
577 	case CPU_BMIPS3300:
578 	case CPU_BMIPS4350:
579 	case CPU_BMIPS4380:
580 	case CPU_BMIPS5000:
581 	case CPU_LOONGSON2:
582 	case CPU_LOONGSON3:
583 	case CPU_R5500:
584 		if (m4kc_tlbp_war())
585 			uasm_i_nop(p);
586 	case CPU_ALCHEMY:
587 		tlbw(p);
588 		break;
589 
590 	case CPU_RM7000:
591 		uasm_i_nop(p);
592 		uasm_i_nop(p);
593 		uasm_i_nop(p);
594 		uasm_i_nop(p);
595 		tlbw(p);
596 		break;
597 
598 	case CPU_VR4111:
599 	case CPU_VR4121:
600 	case CPU_VR4122:
601 	case CPU_VR4181:
602 	case CPU_VR4181A:
603 		uasm_i_nop(p);
604 		uasm_i_nop(p);
605 		tlbw(p);
606 		uasm_i_nop(p);
607 		uasm_i_nop(p);
608 		break;
609 
610 	case CPU_VR4131:
611 	case CPU_VR4133:
612 	case CPU_R5432:
613 		uasm_i_nop(p);
614 		uasm_i_nop(p);
615 		tlbw(p);
616 		break;
617 
618 	case CPU_JZRISC:
619 		tlbw(p);
620 		uasm_i_nop(p);
621 		break;
622 
623 	default:
624 		panic("No TLB refill handler yet (CPU type: %d)",
625 		      current_cpu_type());
626 		break;
627 	}
628 }
629 
630 static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
631 							unsigned int reg)
632 {
633 	if (cpu_has_rixi) {
634 		UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
635 	} else {
636 #ifdef CONFIG_PHYS_ADDR_T_64BIT
637 		uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
638 #else
639 		UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
640 #endif
641 	}
642 }
643 
644 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
645 
646 static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
647 				   unsigned int tmp, enum label_id lid,
648 				   int restore_scratch)
649 {
650 	if (restore_scratch) {
651 		/* Reset default page size */
652 		if (PM_DEFAULT_MASK >> 16) {
653 			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
654 			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
655 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
656 			uasm_il_b(p, r, lid);
657 		} else if (PM_DEFAULT_MASK) {
658 			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
659 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
660 			uasm_il_b(p, r, lid);
661 		} else {
662 			uasm_i_mtc0(p, 0, C0_PAGEMASK);
663 			uasm_il_b(p, r, lid);
664 		}
665 		if (scratch_reg >= 0)
666 			UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
667 		else
668 			UASM_i_LW(p, 1, scratchpad_offset(0), 0);
669 	} else {
670 		/* Reset default page size */
671 		if (PM_DEFAULT_MASK >> 16) {
672 			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
673 			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
674 			uasm_il_b(p, r, lid);
675 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
676 		} else if (PM_DEFAULT_MASK) {
677 			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
678 			uasm_il_b(p, r, lid);
679 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
680 		} else {
681 			uasm_il_b(p, r, lid);
682 			uasm_i_mtc0(p, 0, C0_PAGEMASK);
683 		}
684 	}
685 }
686 
687 static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
688 				       struct uasm_reloc **r,
689 				       unsigned int tmp,
690 				       enum tlb_write_entry wmode,
691 				       int restore_scratch)
692 {
693 	/* Set huge page tlb entry size */
694 	uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
695 	uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
696 	uasm_i_mtc0(p, tmp, C0_PAGEMASK);
697 
698 	build_tlb_write_entry(p, l, r, wmode);
699 
700 	build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
701 }
702 
703 /*
704  * Check if Huge PTE is present, if so then jump to LABEL.
705  */
706 static void
707 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
708 		  unsigned int pmd, int lid)
709 {
710 	UASM_i_LW(p, tmp, 0, pmd);
711 	if (use_bbit_insns()) {
712 		uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
713 	} else {
714 		uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
715 		uasm_il_bnez(p, r, tmp, lid);
716 	}
717 }
718 
719 static void build_huge_update_entries(u32 **p, unsigned int pte,
720 				      unsigned int tmp)
721 {
722 	int small_sequence;
723 
724 	/*
725 	 * A huge PTE describes an area the size of the
726 	 * configured huge page size. This is twice the
727 	 * of the large TLB entry size we intend to use.
728 	 * A TLB entry half the size of the configured
729 	 * huge page size is configured into entrylo0
730 	 * and entrylo1 to cover the contiguous huge PTE
731 	 * address space.
732 	 */
733 	small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
734 
735 	/* We can clobber tmp.	It isn't used after this.*/
736 	if (!small_sequence)
737 		uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
738 
739 	build_convert_pte_to_entrylo(p, pte);
740 	UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
741 	/* convert to entrylo1 */
742 	if (small_sequence)
743 		UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
744 	else
745 		UASM_i_ADDU(p, pte, pte, tmp);
746 
747 	UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
748 }
749 
750 static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
751 				    struct uasm_label **l,
752 				    unsigned int pte,
753 				    unsigned int ptr)
754 {
755 #ifdef CONFIG_SMP
756 	UASM_i_SC(p, pte, 0, ptr);
757 	uasm_il_beqz(p, r, pte, label_tlb_huge_update);
758 	UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
759 #else
760 	UASM_i_SW(p, pte, 0, ptr);
761 #endif
762 	build_huge_update_entries(p, pte, ptr);
763 	build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
764 }
765 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
766 
767 #ifdef CONFIG_64BIT
768 /*
769  * TMP and PTR are scratch.
770  * TMP will be clobbered, PTR will hold the pmd entry.
771  */
772 static void
773 build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
774 		 unsigned int tmp, unsigned int ptr)
775 {
776 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
777 	long pgdc = (long)pgd_current;
778 #endif
779 	/*
780 	 * The vmalloc handling is not in the hotpath.
781 	 */
782 	uasm_i_dmfc0(p, tmp, C0_BADVADDR);
783 
784 	if (check_for_high_segbits) {
785 		/*
786 		 * The kernel currently implicitely assumes that the
787 		 * MIPS SEGBITS parameter for the processor is
788 		 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
789 		 * allocate virtual addresses outside the maximum
790 		 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
791 		 * that doesn't prevent user code from accessing the
792 		 * higher xuseg addresses.  Here, we make sure that
793 		 * everything but the lower xuseg addresses goes down
794 		 * the module_alloc/vmalloc path.
795 		 */
796 		uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
797 		uasm_il_bnez(p, r, ptr, label_vmalloc);
798 	} else {
799 		uasm_il_bltz(p, r, tmp, label_vmalloc);
800 	}
801 	/* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
802 
803 	if (pgd_reg != -1) {
804 		/* pgd is in pgd_reg */
805 		UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
806 	} else {
807 #if defined(CONFIG_MIPS_PGD_C0_CONTEXT)
808 		/*
809 		 * &pgd << 11 stored in CONTEXT [23..63].
810 		 */
811 		UASM_i_MFC0(p, ptr, C0_CONTEXT);
812 
813 		/* Clear lower 23 bits of context. */
814 		uasm_i_dins(p, ptr, 0, 0, 23);
815 
816 		/* 1 0	1 0 1  << 6  xkphys cached */
817 		uasm_i_ori(p, ptr, ptr, 0x540);
818 		uasm_i_drotr(p, ptr, ptr, 11);
819 #elif defined(CONFIG_SMP)
820 		UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG);
821 		uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
822 		UASM_i_LA_mostly(p, tmp, pgdc);
823 		uasm_i_daddu(p, ptr, ptr, tmp);
824 		uasm_i_dmfc0(p, tmp, C0_BADVADDR);
825 		uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
826 #else
827 		UASM_i_LA_mostly(p, ptr, pgdc);
828 		uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
829 #endif
830 	}
831 
832 	uasm_l_vmalloc_done(l, *p);
833 
834 	/* get pgd offset in bytes */
835 	uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
836 
837 	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
838 	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
839 #ifndef __PAGETABLE_PMD_FOLDED
840 	uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
841 	uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
842 	uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
843 	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
844 	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
845 #endif
846 }
847 
848 /*
849  * BVADDR is the faulting address, PTR is scratch.
850  * PTR will hold the pgd for vmalloc.
851  */
852 static void
853 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
854 			unsigned int bvaddr, unsigned int ptr,
855 			enum vmalloc64_mode mode)
856 {
857 	long swpd = (long)swapper_pg_dir;
858 	int single_insn_swpd;
859 	int did_vmalloc_branch = 0;
860 
861 	single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
862 
863 	uasm_l_vmalloc(l, *p);
864 
865 	if (mode != not_refill && check_for_high_segbits) {
866 		if (single_insn_swpd) {
867 			uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
868 			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
869 			did_vmalloc_branch = 1;
870 			/* fall through */
871 		} else {
872 			uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
873 		}
874 	}
875 	if (!did_vmalloc_branch) {
876 		if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
877 			uasm_il_b(p, r, label_vmalloc_done);
878 			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
879 		} else {
880 			UASM_i_LA_mostly(p, ptr, swpd);
881 			uasm_il_b(p, r, label_vmalloc_done);
882 			if (uasm_in_compat_space_p(swpd))
883 				uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
884 			else
885 				uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
886 		}
887 	}
888 	if (mode != not_refill && check_for_high_segbits) {
889 		uasm_l_large_segbits_fault(l, *p);
890 		/*
891 		 * We get here if we are an xsseg address, or if we are
892 		 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
893 		 *
894 		 * Ignoring xsseg (assume disabled so would generate
895 		 * (address errors?), the only remaining possibility
896 		 * is the upper xuseg addresses.  On processors with
897 		 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
898 		 * addresses would have taken an address error. We try
899 		 * to mimic that here by taking a load/istream page
900 		 * fault.
901 		 */
902 		UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
903 		uasm_i_jr(p, ptr);
904 
905 		if (mode == refill_scratch) {
906 			if (scratch_reg >= 0)
907 				UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
908 			else
909 				UASM_i_LW(p, 1, scratchpad_offset(0), 0);
910 		} else {
911 			uasm_i_nop(p);
912 		}
913 	}
914 }
915 
916 #else /* !CONFIG_64BIT */
917 
918 /*
919  * TMP and PTR are scratch.
920  * TMP will be clobbered, PTR will hold the pgd entry.
921  */
922 static void __maybe_unused
923 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
924 {
925 	if (pgd_reg != -1) {
926 		/* pgd is in pgd_reg */
927 		uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg);
928 		uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
929 	} else {
930 		long pgdc = (long)pgd_current;
931 
932 		/* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
933 #ifdef CONFIG_SMP
934 		uasm_i_mfc0(p, ptr, SMP_CPUID_REG);
935 		UASM_i_LA_mostly(p, tmp, pgdc);
936 		uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
937 		uasm_i_addu(p, ptr, tmp, ptr);
938 #else
939 		UASM_i_LA_mostly(p, ptr, pgdc);
940 #endif
941 		uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
942 		uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
943 	}
944 	uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
945 	uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
946 	uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
947 }
948 
949 #endif /* !CONFIG_64BIT */
950 
951 static void build_adjust_context(u32 **p, unsigned int ctx)
952 {
953 	unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
954 	unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
955 
956 	switch (current_cpu_type()) {
957 	case CPU_VR41XX:
958 	case CPU_VR4111:
959 	case CPU_VR4121:
960 	case CPU_VR4122:
961 	case CPU_VR4131:
962 	case CPU_VR4181:
963 	case CPU_VR4181A:
964 	case CPU_VR4133:
965 		shift += 2;
966 		break;
967 
968 	default:
969 		break;
970 	}
971 
972 	if (shift)
973 		UASM_i_SRL(p, ctx, ctx, shift);
974 	uasm_i_andi(p, ctx, ctx, mask);
975 }
976 
977 static void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
978 {
979 	/*
980 	 * Bug workaround for the Nevada. It seems as if under certain
981 	 * circumstances the move from cp0_context might produce a
982 	 * bogus result when the mfc0 instruction and its consumer are
983 	 * in a different cacheline or a load instruction, probably any
984 	 * memory reference, is between them.
985 	 */
986 	switch (current_cpu_type()) {
987 	case CPU_NEVADA:
988 		UASM_i_LW(p, ptr, 0, ptr);
989 		GET_CONTEXT(p, tmp); /* get context reg */
990 		break;
991 
992 	default:
993 		GET_CONTEXT(p, tmp); /* get context reg */
994 		UASM_i_LW(p, ptr, 0, ptr);
995 		break;
996 	}
997 
998 	build_adjust_context(p, tmp);
999 	UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1000 }
1001 
1002 static void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
1003 {
1004 	/*
1005 	 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1006 	 * Kernel is a special case. Only a few CPUs use it.
1007 	 */
1008 #ifdef CONFIG_PHYS_ADDR_T_64BIT
1009 	if (cpu_has_64bits) {
1010 		uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
1011 		uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1012 		if (cpu_has_rixi) {
1013 			UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1014 			UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1015 			UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1016 		} else {
1017 			uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1018 			UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1019 			uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1020 		}
1021 		UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1022 	} else {
1023 		int pte_off_even = sizeof(pte_t) / 2;
1024 		int pte_off_odd = pte_off_even + sizeof(pte_t);
1025 #ifdef CONFIG_XPA
1026 		const int scratch = 1; /* Our extra working register */
1027 
1028 		uasm_i_addu(p, scratch, 0, ptep);
1029 #endif
1030 		uasm_i_lw(p, tmp, pte_off_even, ptep); /* even pte */
1031 		uasm_i_lw(p, ptep, pte_off_odd, ptep); /* odd pte */
1032 		UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1033 		UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1034 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0);
1035 		UASM_i_MTC0(p, ptep, C0_ENTRYLO1);
1036 #ifdef CONFIG_XPA
1037 		uasm_i_lw(p, tmp, 0, scratch);
1038 		uasm_i_lw(p, ptep, sizeof(pte_t), scratch);
1039 		uasm_i_lui(p, scratch, 0xff);
1040 		uasm_i_ori(p, scratch, scratch, 0xffff);
1041 		uasm_i_and(p, tmp, scratch, tmp);
1042 		uasm_i_and(p, ptep, scratch, ptep);
1043 		uasm_i_mthc0(p, tmp, C0_ENTRYLO0);
1044 		uasm_i_mthc0(p, ptep, C0_ENTRYLO1);
1045 #endif
1046 	}
1047 #else
1048 	UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
1049 	UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1050 	if (r45k_bvahwbug())
1051 		build_tlb_probe_entry(p);
1052 	if (cpu_has_rixi) {
1053 		UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1054 		if (r4k_250MHZhwbug())
1055 			UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1056 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1057 		UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1058 	} else {
1059 		UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1060 		if (r4k_250MHZhwbug())
1061 			UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1062 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1063 		UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1064 		if (r45k_bvahwbug())
1065 			uasm_i_mfc0(p, tmp, C0_INDEX);
1066 	}
1067 	if (r4k_250MHZhwbug())
1068 		UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1069 	UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1070 #endif
1071 }
1072 
1073 struct mips_huge_tlb_info {
1074 	int huge_pte;
1075 	int restore_scratch;
1076 	bool need_reload_pte;
1077 };
1078 
1079 static struct mips_huge_tlb_info
1080 build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1081 			       struct uasm_reloc **r, unsigned int tmp,
1082 			       unsigned int ptr, int c0_scratch_reg)
1083 {
1084 	struct mips_huge_tlb_info rv;
1085 	unsigned int even, odd;
1086 	int vmalloc_branch_delay_filled = 0;
1087 	const int scratch = 1; /* Our extra working register */
1088 
1089 	rv.huge_pte = scratch;
1090 	rv.restore_scratch = 0;
1091 	rv.need_reload_pte = false;
1092 
1093 	if (check_for_high_segbits) {
1094 		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1095 
1096 		if (pgd_reg != -1)
1097 			UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1098 		else
1099 			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1100 
1101 		if (c0_scratch_reg >= 0)
1102 			UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1103 		else
1104 			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1105 
1106 		uasm_i_dsrl_safe(p, scratch, tmp,
1107 				 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1108 		uasm_il_bnez(p, r, scratch, label_vmalloc);
1109 
1110 		if (pgd_reg == -1) {
1111 			vmalloc_branch_delay_filled = 1;
1112 			/* Clear lower 23 bits of context. */
1113 			uasm_i_dins(p, ptr, 0, 0, 23);
1114 		}
1115 	} else {
1116 		if (pgd_reg != -1)
1117 			UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1118 		else
1119 			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1120 
1121 		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1122 
1123 		if (c0_scratch_reg >= 0)
1124 			UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1125 		else
1126 			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1127 
1128 		if (pgd_reg == -1)
1129 			/* Clear lower 23 bits of context. */
1130 			uasm_i_dins(p, ptr, 0, 0, 23);
1131 
1132 		uasm_il_bltz(p, r, tmp, label_vmalloc);
1133 	}
1134 
1135 	if (pgd_reg == -1) {
1136 		vmalloc_branch_delay_filled = 1;
1137 		/* 1 0	1 0 1  << 6  xkphys cached */
1138 		uasm_i_ori(p, ptr, ptr, 0x540);
1139 		uasm_i_drotr(p, ptr, ptr, 11);
1140 	}
1141 
1142 #ifdef __PAGETABLE_PMD_FOLDED
1143 #define LOC_PTEP scratch
1144 #else
1145 #define LOC_PTEP ptr
1146 #endif
1147 
1148 	if (!vmalloc_branch_delay_filled)
1149 		/* get pgd offset in bytes */
1150 		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1151 
1152 	uasm_l_vmalloc_done(l, *p);
1153 
1154 	/*
1155 	 *			   tmp		ptr
1156 	 * fall-through case =	 badvaddr  *pgd_current
1157 	 * vmalloc case	     =	 badvaddr  swapper_pg_dir
1158 	 */
1159 
1160 	if (vmalloc_branch_delay_filled)
1161 		/* get pgd offset in bytes */
1162 		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1163 
1164 #ifdef __PAGETABLE_PMD_FOLDED
1165 	GET_CONTEXT(p, tmp); /* get context reg */
1166 #endif
1167 	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1168 
1169 	if (use_lwx_insns()) {
1170 		UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1171 	} else {
1172 		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1173 		uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1174 	}
1175 
1176 #ifndef __PAGETABLE_PMD_FOLDED
1177 	/* get pmd offset in bytes */
1178 	uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1179 	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1180 	GET_CONTEXT(p, tmp); /* get context reg */
1181 
1182 	if (use_lwx_insns()) {
1183 		UASM_i_LWX(p, scratch, scratch, ptr);
1184 	} else {
1185 		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1186 		UASM_i_LW(p, scratch, 0, ptr);
1187 	}
1188 #endif
1189 	/* Adjust the context during the load latency. */
1190 	build_adjust_context(p, tmp);
1191 
1192 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1193 	uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1194 	/*
1195 	 * The in the LWX case we don't want to do the load in the
1196 	 * delay slot.	It cannot issue in the same cycle and may be
1197 	 * speculative and unneeded.
1198 	 */
1199 	if (use_lwx_insns())
1200 		uasm_i_nop(p);
1201 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1202 
1203 
1204 	/* build_update_entries */
1205 	if (use_lwx_insns()) {
1206 		even = ptr;
1207 		odd = tmp;
1208 		UASM_i_LWX(p, even, scratch, tmp);
1209 		UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1210 		UASM_i_LWX(p, odd, scratch, tmp);
1211 	} else {
1212 		UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1213 		even = tmp;
1214 		odd = ptr;
1215 		UASM_i_LW(p, even, 0, ptr); /* get even pte */
1216 		UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1217 	}
1218 	if (cpu_has_rixi) {
1219 		uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1220 		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1221 		uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1222 	} else {
1223 		uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1224 		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1225 		uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1226 	}
1227 	UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1228 
1229 	if (c0_scratch_reg >= 0) {
1230 		UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1231 		build_tlb_write_entry(p, l, r, tlb_random);
1232 		uasm_l_leave(l, *p);
1233 		rv.restore_scratch = 1;
1234 	} else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13)  {
1235 		build_tlb_write_entry(p, l, r, tlb_random);
1236 		uasm_l_leave(l, *p);
1237 		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1238 	} else {
1239 		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1240 		build_tlb_write_entry(p, l, r, tlb_random);
1241 		uasm_l_leave(l, *p);
1242 		rv.restore_scratch = 1;
1243 	}
1244 
1245 	uasm_i_eret(p); /* return from trap */
1246 
1247 	return rv;
1248 }
1249 
1250 /*
1251  * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1252  * because EXL == 0.  If we wrap, we can also use the 32 instruction
1253  * slots before the XTLB refill exception handler which belong to the
1254  * unused TLB refill exception.
1255  */
1256 #define MIPS64_REFILL_INSNS 32
1257 
1258 static void build_r4000_tlb_refill_handler(void)
1259 {
1260 	u32 *p = tlb_handler;
1261 	struct uasm_label *l = labels;
1262 	struct uasm_reloc *r = relocs;
1263 	u32 *f;
1264 	unsigned int final_len;
1265 	struct mips_huge_tlb_info htlb_info __maybe_unused;
1266 	enum vmalloc64_mode vmalloc_mode __maybe_unused;
1267 
1268 	memset(tlb_handler, 0, sizeof(tlb_handler));
1269 	memset(labels, 0, sizeof(labels));
1270 	memset(relocs, 0, sizeof(relocs));
1271 	memset(final_handler, 0, sizeof(final_handler));
1272 
1273 	if (IS_ENABLED(CONFIG_64BIT) && (scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
1274 		htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1275 							  scratch_reg);
1276 		vmalloc_mode = refill_scratch;
1277 	} else {
1278 		htlb_info.huge_pte = K0;
1279 		htlb_info.restore_scratch = 0;
1280 		htlb_info.need_reload_pte = true;
1281 		vmalloc_mode = refill_noscratch;
1282 		/*
1283 		 * create the plain linear handler
1284 		 */
1285 		if (bcm1250_m3_war()) {
1286 			unsigned int segbits = 44;
1287 
1288 			uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1289 			uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1290 			uasm_i_xor(&p, K0, K0, K1);
1291 			uasm_i_dsrl_safe(&p, K1, K0, 62);
1292 			uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1293 			uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1294 			uasm_i_or(&p, K0, K0, K1);
1295 			uasm_il_bnez(&p, &r, K0, label_leave);
1296 			/* No need for uasm_i_nop */
1297 		}
1298 
1299 #ifdef CONFIG_64BIT
1300 		build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1301 #else
1302 		build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1303 #endif
1304 
1305 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1306 		build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1307 #endif
1308 
1309 		build_get_ptep(&p, K0, K1);
1310 		build_update_entries(&p, K0, K1);
1311 		build_tlb_write_entry(&p, &l, &r, tlb_random);
1312 		uasm_l_leave(&l, p);
1313 		uasm_i_eret(&p); /* return from trap */
1314 	}
1315 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1316 	uasm_l_tlb_huge_update(&l, p);
1317 	if (htlb_info.need_reload_pte)
1318 		UASM_i_LW(&p, htlb_info.huge_pte, 0, K1);
1319 	build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1320 	build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1321 				   htlb_info.restore_scratch);
1322 #endif
1323 
1324 #ifdef CONFIG_64BIT
1325 	build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1326 #endif
1327 
1328 	/*
1329 	 * Overflow check: For the 64bit handler, we need at least one
1330 	 * free instruction slot for the wrap-around branch. In worst
1331 	 * case, if the intended insertion point is a delay slot, we
1332 	 * need three, with the second nop'ed and the third being
1333 	 * unused.
1334 	 */
1335 	switch (boot_cpu_type()) {
1336 	default:
1337 		if (sizeof(long) == 4) {
1338 	case CPU_LOONGSON2:
1339 		/* Loongson2 ebase is different than r4k, we have more space */
1340 			if ((p - tlb_handler) > 64)
1341 				panic("TLB refill handler space exceeded");
1342 			/*
1343 			 * Now fold the handler in the TLB refill handler space.
1344 			 */
1345 			f = final_handler;
1346 			/* Simplest case, just copy the handler. */
1347 			uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1348 			final_len = p - tlb_handler;
1349 			break;
1350 		} else {
1351 			if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1352 			    || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1353 				&& uasm_insn_has_bdelay(relocs,
1354 							tlb_handler + MIPS64_REFILL_INSNS - 3)))
1355 				panic("TLB refill handler space exceeded");
1356 			/*
1357 			 * Now fold the handler in the TLB refill handler space.
1358 			 */
1359 			f = final_handler + MIPS64_REFILL_INSNS;
1360 			if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1361 				/* Just copy the handler. */
1362 				uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1363 				final_len = p - tlb_handler;
1364 			} else {
1365 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1366 				const enum label_id ls = label_tlb_huge_update;
1367 #else
1368 				const enum label_id ls = label_vmalloc;
1369 #endif
1370 				u32 *split;
1371 				int ov = 0;
1372 				int i;
1373 
1374 				for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1375 					;
1376 				BUG_ON(i == ARRAY_SIZE(labels));
1377 				split = labels[i].addr;
1378 
1379 				/*
1380 				 * See if we have overflown one way or the other.
1381 				 */
1382 				if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1383 				    split < p - MIPS64_REFILL_INSNS)
1384 					ov = 1;
1385 
1386 				if (ov) {
1387 					/*
1388 					 * Split two instructions before the end.  One
1389 					 * for the branch and one for the instruction
1390 					 * in the delay slot.
1391 					 */
1392 					split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1393 
1394 					/*
1395 					 * If the branch would fall in a delay slot,
1396 					 * we must back up an additional instruction
1397 					 * so that it is no longer in a delay slot.
1398 					 */
1399 					if (uasm_insn_has_bdelay(relocs, split - 1))
1400 						split--;
1401 				}
1402 				/* Copy first part of the handler. */
1403 				uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1404 				f += split - tlb_handler;
1405 
1406 				if (ov) {
1407 					/* Insert branch. */
1408 					uasm_l_split(&l, final_handler);
1409 					uasm_il_b(&f, &r, label_split);
1410 					if (uasm_insn_has_bdelay(relocs, split))
1411 						uasm_i_nop(&f);
1412 					else {
1413 						uasm_copy_handler(relocs, labels,
1414 								  split, split + 1, f);
1415 						uasm_move_labels(labels, f, f + 1, -1);
1416 						f++;
1417 						split++;
1418 					}
1419 				}
1420 
1421 				/* Copy the rest of the handler. */
1422 				uasm_copy_handler(relocs, labels, split, p, final_handler);
1423 				final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1424 					    (p - split);
1425 			}
1426 		}
1427 		break;
1428 	}
1429 
1430 	uasm_resolve_relocs(relocs, labels);
1431 	pr_debug("Wrote TLB refill handler (%u instructions).\n",
1432 		 final_len);
1433 
1434 	memcpy((void *)ebase, final_handler, 0x100);
1435 	local_flush_icache_range(ebase, ebase + 0x100);
1436 
1437 	dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
1438 }
1439 
1440 extern u32 handle_tlbl[], handle_tlbl_end[];
1441 extern u32 handle_tlbs[], handle_tlbs_end[];
1442 extern u32 handle_tlbm[], handle_tlbm_end[];
1443 extern u32 tlbmiss_handler_setup_pgd_start[], tlbmiss_handler_setup_pgd[];
1444 extern u32 tlbmiss_handler_setup_pgd_end[];
1445 
1446 static void build_setup_pgd(void)
1447 {
1448 	const int a0 = 4;
1449 	const int __maybe_unused a1 = 5;
1450 	const int __maybe_unused a2 = 6;
1451 	u32 *p = tlbmiss_handler_setup_pgd_start;
1452 	const int tlbmiss_handler_setup_pgd_size =
1453 		tlbmiss_handler_setup_pgd_end - tlbmiss_handler_setup_pgd_start;
1454 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1455 	long pgdc = (long)pgd_current;
1456 #endif
1457 
1458 	memset(tlbmiss_handler_setup_pgd, 0, tlbmiss_handler_setup_pgd_size *
1459 					sizeof(tlbmiss_handler_setup_pgd[0]));
1460 	memset(labels, 0, sizeof(labels));
1461 	memset(relocs, 0, sizeof(relocs));
1462 	pgd_reg = allocate_kscratch();
1463 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1464 	if (pgd_reg == -1) {
1465 		struct uasm_label *l = labels;
1466 		struct uasm_reloc *r = relocs;
1467 
1468 		/* PGD << 11 in c0_Context */
1469 		/*
1470 		 * If it is a ckseg0 address, convert to a physical
1471 		 * address.  Shifting right by 29 and adding 4 will
1472 		 * result in zero for these addresses.
1473 		 *
1474 		 */
1475 		UASM_i_SRA(&p, a1, a0, 29);
1476 		UASM_i_ADDIU(&p, a1, a1, 4);
1477 		uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1478 		uasm_i_nop(&p);
1479 		uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1480 		uasm_l_tlbl_goaround1(&l, p);
1481 		UASM_i_SLL(&p, a0, a0, 11);
1482 		uasm_i_jr(&p, 31);
1483 		UASM_i_MTC0(&p, a0, C0_CONTEXT);
1484 	} else {
1485 		/* PGD in c0_KScratch */
1486 		uasm_i_jr(&p, 31);
1487 		UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1488 	}
1489 #else
1490 #ifdef CONFIG_SMP
1491 	/* Save PGD to pgd_current[smp_processor_id()] */
1492 	UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG);
1493 	UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT);
1494 	UASM_i_LA_mostly(&p, a2, pgdc);
1495 	UASM_i_ADDU(&p, a2, a2, a1);
1496 	UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1497 #else
1498 	UASM_i_LA_mostly(&p, a2, pgdc);
1499 	UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1500 #endif /* SMP */
1501 	uasm_i_jr(&p, 31);
1502 
1503 	/* if pgd_reg is allocated, save PGD also to scratch register */
1504 	if (pgd_reg != -1)
1505 		UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1506 	else
1507 		uasm_i_nop(&p);
1508 #endif
1509 	if (p >= tlbmiss_handler_setup_pgd_end)
1510 		panic("tlbmiss_handler_setup_pgd space exceeded");
1511 
1512 	uasm_resolve_relocs(relocs, labels);
1513 	pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1514 		 (unsigned int)(p - tlbmiss_handler_setup_pgd));
1515 
1516 	dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
1517 					tlbmiss_handler_setup_pgd_size);
1518 }
1519 
1520 static void
1521 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1522 {
1523 #ifdef CONFIG_SMP
1524 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1525 	if (cpu_has_64bits)
1526 		uasm_i_lld(p, pte, 0, ptr);
1527 	else
1528 # endif
1529 		UASM_i_LL(p, pte, 0, ptr);
1530 #else
1531 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1532 	if (cpu_has_64bits)
1533 		uasm_i_ld(p, pte, 0, ptr);
1534 	else
1535 # endif
1536 		UASM_i_LW(p, pte, 0, ptr);
1537 #endif
1538 }
1539 
1540 static void
1541 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1542 	unsigned int mode)
1543 {
1544 #ifdef CONFIG_PHYS_ADDR_T_64BIT
1545 	unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1546 
1547 	if (!cpu_has_64bits) {
1548 		const int scratch = 1; /* Our extra working register */
1549 
1550 		uasm_i_lui(p, scratch, (mode >> 16));
1551 		uasm_i_or(p, pte, pte, scratch);
1552 	} else
1553 #endif
1554 	uasm_i_ori(p, pte, pte, mode);
1555 #ifdef CONFIG_SMP
1556 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1557 	if (cpu_has_64bits)
1558 		uasm_i_scd(p, pte, 0, ptr);
1559 	else
1560 # endif
1561 		UASM_i_SC(p, pte, 0, ptr);
1562 
1563 	if (r10000_llsc_war())
1564 		uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1565 	else
1566 		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1567 
1568 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1569 	if (!cpu_has_64bits) {
1570 		/* no uasm_i_nop needed */
1571 		uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1572 		uasm_i_ori(p, pte, pte, hwmode);
1573 		uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1574 		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1575 		/* no uasm_i_nop needed */
1576 		uasm_i_lw(p, pte, 0, ptr);
1577 	} else
1578 		uasm_i_nop(p);
1579 # else
1580 	uasm_i_nop(p);
1581 # endif
1582 #else
1583 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1584 	if (cpu_has_64bits)
1585 		uasm_i_sd(p, pte, 0, ptr);
1586 	else
1587 # endif
1588 		UASM_i_SW(p, pte, 0, ptr);
1589 
1590 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1591 	if (!cpu_has_64bits) {
1592 		uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1593 		uasm_i_ori(p, pte, pte, hwmode);
1594 		uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1595 		uasm_i_lw(p, pte, 0, ptr);
1596 	}
1597 # endif
1598 #endif
1599 }
1600 
1601 /*
1602  * Check if PTE is present, if not then jump to LABEL. PTR points to
1603  * the page table where this PTE is located, PTE will be re-loaded
1604  * with it's original value.
1605  */
1606 static void
1607 build_pte_present(u32 **p, struct uasm_reloc **r,
1608 		  int pte, int ptr, int scratch, enum label_id lid)
1609 {
1610 	int t = scratch >= 0 ? scratch : pte;
1611 	int cur = pte;
1612 
1613 	if (cpu_has_rixi) {
1614 		if (use_bbit_insns()) {
1615 			uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1616 			uasm_i_nop(p);
1617 		} else {
1618 			if (_PAGE_PRESENT_SHIFT) {
1619 				uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1620 				cur = t;
1621 			}
1622 			uasm_i_andi(p, t, cur, 1);
1623 			uasm_il_beqz(p, r, t, lid);
1624 			if (pte == t)
1625 				/* You lose the SMP race :-(*/
1626 				iPTE_LW(p, pte, ptr);
1627 		}
1628 	} else {
1629 		if (_PAGE_PRESENT_SHIFT) {
1630 			uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1631 			cur = t;
1632 		}
1633 		uasm_i_andi(p, t, cur,
1634 			(_PAGE_PRESENT | _PAGE_READ) >> _PAGE_PRESENT_SHIFT);
1635 		uasm_i_xori(p, t, t,
1636 			(_PAGE_PRESENT | _PAGE_READ) >> _PAGE_PRESENT_SHIFT);
1637 		uasm_il_bnez(p, r, t, lid);
1638 		if (pte == t)
1639 			/* You lose the SMP race :-(*/
1640 			iPTE_LW(p, pte, ptr);
1641 	}
1642 }
1643 
1644 /* Make PTE valid, store result in PTR. */
1645 static void
1646 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1647 		 unsigned int ptr)
1648 {
1649 	unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1650 
1651 	iPTE_SW(p, r, pte, ptr, mode);
1652 }
1653 
1654 /*
1655  * Check if PTE can be written to, if not branch to LABEL. Regardless
1656  * restore PTE with value from PTR when done.
1657  */
1658 static void
1659 build_pte_writable(u32 **p, struct uasm_reloc **r,
1660 		   unsigned int pte, unsigned int ptr, int scratch,
1661 		   enum label_id lid)
1662 {
1663 	int t = scratch >= 0 ? scratch : pte;
1664 	int cur = pte;
1665 
1666 	if (_PAGE_PRESENT_SHIFT) {
1667 		uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1668 		cur = t;
1669 	}
1670 	uasm_i_andi(p, t, cur,
1671 		    (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1672 	uasm_i_xori(p, t, t,
1673 		    (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1674 	uasm_il_bnez(p, r, t, lid);
1675 	if (pte == t)
1676 		/* You lose the SMP race :-(*/
1677 		iPTE_LW(p, pte, ptr);
1678 	else
1679 		uasm_i_nop(p);
1680 }
1681 
1682 /* Make PTE writable, update software status bits as well, then store
1683  * at PTR.
1684  */
1685 static void
1686 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1687 		 unsigned int ptr)
1688 {
1689 	unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1690 			     | _PAGE_DIRTY);
1691 
1692 	iPTE_SW(p, r, pte, ptr, mode);
1693 }
1694 
1695 /*
1696  * Check if PTE can be modified, if not branch to LABEL. Regardless
1697  * restore PTE with value from PTR when done.
1698  */
1699 static void
1700 build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1701 		     unsigned int pte, unsigned int ptr, int scratch,
1702 		     enum label_id lid)
1703 {
1704 	if (use_bbit_insns()) {
1705 		uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1706 		uasm_i_nop(p);
1707 	} else {
1708 		int t = scratch >= 0 ? scratch : pte;
1709 		uasm_i_srl(p, t, pte, _PAGE_WRITE_SHIFT);
1710 		uasm_i_andi(p, t, t, 1);
1711 		uasm_il_beqz(p, r, t, lid);
1712 		if (pte == t)
1713 			/* You lose the SMP race :-(*/
1714 			iPTE_LW(p, pte, ptr);
1715 	}
1716 }
1717 
1718 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1719 
1720 
1721 /*
1722  * R3000 style TLB load/store/modify handlers.
1723  */
1724 
1725 /*
1726  * This places the pte into ENTRYLO0 and writes it with tlbwi.
1727  * Then it returns.
1728  */
1729 static void
1730 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1731 {
1732 	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1733 	uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1734 	uasm_i_tlbwi(p);
1735 	uasm_i_jr(p, tmp);
1736 	uasm_i_rfe(p); /* branch delay */
1737 }
1738 
1739 /*
1740  * This places the pte into ENTRYLO0 and writes it with tlbwi
1741  * or tlbwr as appropriate.  This is because the index register
1742  * may have the probe fail bit set as a result of a trap on a
1743  * kseg2 access, i.e. without refill.  Then it returns.
1744  */
1745 static void
1746 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1747 			     struct uasm_reloc **r, unsigned int pte,
1748 			     unsigned int tmp)
1749 {
1750 	uasm_i_mfc0(p, tmp, C0_INDEX);
1751 	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1752 	uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1753 	uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1754 	uasm_i_tlbwi(p); /* cp0 delay */
1755 	uasm_i_jr(p, tmp);
1756 	uasm_i_rfe(p); /* branch delay */
1757 	uasm_l_r3000_write_probe_fail(l, *p);
1758 	uasm_i_tlbwr(p); /* cp0 delay */
1759 	uasm_i_jr(p, tmp);
1760 	uasm_i_rfe(p); /* branch delay */
1761 }
1762 
1763 static void
1764 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1765 				   unsigned int ptr)
1766 {
1767 	long pgdc = (long)pgd_current;
1768 
1769 	uasm_i_mfc0(p, pte, C0_BADVADDR);
1770 	uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1771 	uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1772 	uasm_i_srl(p, pte, pte, 22); /* load delay */
1773 	uasm_i_sll(p, pte, pte, 2);
1774 	uasm_i_addu(p, ptr, ptr, pte);
1775 	uasm_i_mfc0(p, pte, C0_CONTEXT);
1776 	uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1777 	uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1778 	uasm_i_addu(p, ptr, ptr, pte);
1779 	uasm_i_lw(p, pte, 0, ptr);
1780 	uasm_i_tlbp(p); /* load delay */
1781 }
1782 
1783 static void build_r3000_tlb_load_handler(void)
1784 {
1785 	u32 *p = handle_tlbl;
1786 	const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1787 	struct uasm_label *l = labels;
1788 	struct uasm_reloc *r = relocs;
1789 
1790 	memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1791 	memset(labels, 0, sizeof(labels));
1792 	memset(relocs, 0, sizeof(relocs));
1793 
1794 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1795 	build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1796 	uasm_i_nop(&p); /* load delay */
1797 	build_make_valid(&p, &r, K0, K1);
1798 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1799 
1800 	uasm_l_nopage_tlbl(&l, p);
1801 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1802 	uasm_i_nop(&p);
1803 
1804 	if (p >= handle_tlbl_end)
1805 		panic("TLB load handler fastpath space exceeded");
1806 
1807 	uasm_resolve_relocs(relocs, labels);
1808 	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1809 		 (unsigned int)(p - handle_tlbl));
1810 
1811 	dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_size);
1812 }
1813 
1814 static void build_r3000_tlb_store_handler(void)
1815 {
1816 	u32 *p = handle_tlbs;
1817 	const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
1818 	struct uasm_label *l = labels;
1819 	struct uasm_reloc *r = relocs;
1820 
1821 	memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
1822 	memset(labels, 0, sizeof(labels));
1823 	memset(relocs, 0, sizeof(relocs));
1824 
1825 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1826 	build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1827 	uasm_i_nop(&p); /* load delay */
1828 	build_make_write(&p, &r, K0, K1);
1829 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1830 
1831 	uasm_l_nopage_tlbs(&l, p);
1832 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1833 	uasm_i_nop(&p);
1834 
1835 	if (p >= handle_tlbs_end)
1836 		panic("TLB store handler fastpath space exceeded");
1837 
1838 	uasm_resolve_relocs(relocs, labels);
1839 	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1840 		 (unsigned int)(p - handle_tlbs));
1841 
1842 	dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_size);
1843 }
1844 
1845 static void build_r3000_tlb_modify_handler(void)
1846 {
1847 	u32 *p = handle_tlbm;
1848 	const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
1849 	struct uasm_label *l = labels;
1850 	struct uasm_reloc *r = relocs;
1851 
1852 	memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
1853 	memset(labels, 0, sizeof(labels));
1854 	memset(relocs, 0, sizeof(relocs));
1855 
1856 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1857 	build_pte_modifiable(&p, &r, K0, K1,  -1, label_nopage_tlbm);
1858 	uasm_i_nop(&p); /* load delay */
1859 	build_make_write(&p, &r, K0, K1);
1860 	build_r3000_pte_reload_tlbwi(&p, K0, K1);
1861 
1862 	uasm_l_nopage_tlbm(&l, p);
1863 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1864 	uasm_i_nop(&p);
1865 
1866 	if (p >= handle_tlbm_end)
1867 		panic("TLB modify handler fastpath space exceeded");
1868 
1869 	uasm_resolve_relocs(relocs, labels);
1870 	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1871 		 (unsigned int)(p - handle_tlbm));
1872 
1873 	dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_size);
1874 }
1875 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1876 
1877 /*
1878  * R4000 style TLB load/store/modify handlers.
1879  */
1880 static struct work_registers
1881 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1882 				   struct uasm_reloc **r)
1883 {
1884 	struct work_registers wr = build_get_work_registers(p);
1885 
1886 #ifdef CONFIG_64BIT
1887 	build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
1888 #else
1889 	build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
1890 #endif
1891 
1892 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1893 	/*
1894 	 * For huge tlb entries, pmd doesn't contain an address but
1895 	 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1896 	 * see if we need to jump to huge tlb processing.
1897 	 */
1898 	build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
1899 #endif
1900 
1901 	UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
1902 	UASM_i_LW(p, wr.r2, 0, wr.r2);
1903 	UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1904 	uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1905 	UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
1906 
1907 #ifdef CONFIG_SMP
1908 	uasm_l_smp_pgtable_change(l, *p);
1909 #endif
1910 	iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
1911 	if (!m4kc_tlbp_war()) {
1912 		build_tlb_probe_entry(p);
1913 		if (cpu_has_htw) {
1914 			/* race condition happens, leaving */
1915 			uasm_i_ehb(p);
1916 			uasm_i_mfc0(p, wr.r3, C0_INDEX);
1917 			uasm_il_bltz(p, r, wr.r3, label_leave);
1918 			uasm_i_nop(p);
1919 		}
1920 	}
1921 	return wr;
1922 }
1923 
1924 static void
1925 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1926 				   struct uasm_reloc **r, unsigned int tmp,
1927 				   unsigned int ptr)
1928 {
1929 	uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1930 	uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1931 	build_update_entries(p, tmp, ptr);
1932 	build_tlb_write_entry(p, l, r, tlb_indexed);
1933 	uasm_l_leave(l, *p);
1934 	build_restore_work_registers(p);
1935 	uasm_i_eret(p); /* return from trap */
1936 
1937 #ifdef CONFIG_64BIT
1938 	build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
1939 #endif
1940 }
1941 
1942 static void build_r4000_tlb_load_handler(void)
1943 {
1944 	u32 *p = handle_tlbl;
1945 	const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1946 	struct uasm_label *l = labels;
1947 	struct uasm_reloc *r = relocs;
1948 	struct work_registers wr;
1949 
1950 	memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1951 	memset(labels, 0, sizeof(labels));
1952 	memset(relocs, 0, sizeof(relocs));
1953 
1954 	if (bcm1250_m3_war()) {
1955 		unsigned int segbits = 44;
1956 
1957 		uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1958 		uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1959 		uasm_i_xor(&p, K0, K0, K1);
1960 		uasm_i_dsrl_safe(&p, K1, K0, 62);
1961 		uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1962 		uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1963 		uasm_i_or(&p, K0, K0, K1);
1964 		uasm_il_bnez(&p, &r, K0, label_leave);
1965 		/* No need for uasm_i_nop */
1966 	}
1967 
1968 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
1969 	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1970 	if (m4kc_tlbp_war())
1971 		build_tlb_probe_entry(&p);
1972 
1973 	if (cpu_has_rixi && !cpu_has_rixiex) {
1974 		/*
1975 		 * If the page is not _PAGE_VALID, RI or XI could not
1976 		 * have triggered it.  Skip the expensive test..
1977 		 */
1978 		if (use_bbit_insns()) {
1979 			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1980 				      label_tlbl_goaround1);
1981 		} else {
1982 			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1983 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
1984 		}
1985 		uasm_i_nop(&p);
1986 
1987 		uasm_i_tlbr(&p);
1988 
1989 		switch (current_cpu_type()) {
1990 		default:
1991 			if (cpu_has_mips_r2_exec_hazard) {
1992 				uasm_i_ehb(&p);
1993 
1994 		case CPU_CAVIUM_OCTEON:
1995 		case CPU_CAVIUM_OCTEON_PLUS:
1996 		case CPU_CAVIUM_OCTEON2:
1997 				break;
1998 			}
1999 		}
2000 
2001 		/* Examine  entrylo 0 or 1 based on ptr. */
2002 		if (use_bbit_insns()) {
2003 			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2004 		} else {
2005 			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2006 			uasm_i_beqz(&p, wr.r3, 8);
2007 		}
2008 		/* load it in the delay slot*/
2009 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2010 		/* load it if ptr is odd */
2011 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2012 		/*
2013 		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2014 		 * XI must have triggered it.
2015 		 */
2016 		if (use_bbit_insns()) {
2017 			uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
2018 			uasm_i_nop(&p);
2019 			uasm_l_tlbl_goaround1(&l, p);
2020 		} else {
2021 			uasm_i_andi(&p, wr.r3, wr.r3, 2);
2022 			uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
2023 			uasm_i_nop(&p);
2024 		}
2025 		uasm_l_tlbl_goaround1(&l, p);
2026 	}
2027 	build_make_valid(&p, &r, wr.r1, wr.r2);
2028 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2029 
2030 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2031 	/*
2032 	 * This is the entry point when build_r4000_tlbchange_handler_head
2033 	 * spots a huge page.
2034 	 */
2035 	uasm_l_tlb_huge_update(&l, p);
2036 	iPTE_LW(&p, wr.r1, wr.r2);
2037 	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2038 	build_tlb_probe_entry(&p);
2039 
2040 	if (cpu_has_rixi && !cpu_has_rixiex) {
2041 		/*
2042 		 * If the page is not _PAGE_VALID, RI or XI could not
2043 		 * have triggered it.  Skip the expensive test..
2044 		 */
2045 		if (use_bbit_insns()) {
2046 			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2047 				      label_tlbl_goaround2);
2048 		} else {
2049 			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2050 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2051 		}
2052 		uasm_i_nop(&p);
2053 
2054 		uasm_i_tlbr(&p);
2055 
2056 		switch (current_cpu_type()) {
2057 		default:
2058 			if (cpu_has_mips_r2_exec_hazard) {
2059 				uasm_i_ehb(&p);
2060 
2061 		case CPU_CAVIUM_OCTEON:
2062 		case CPU_CAVIUM_OCTEON_PLUS:
2063 		case CPU_CAVIUM_OCTEON2:
2064 				break;
2065 			}
2066 		}
2067 
2068 		/* Examine  entrylo 0 or 1 based on ptr. */
2069 		if (use_bbit_insns()) {
2070 			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2071 		} else {
2072 			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2073 			uasm_i_beqz(&p, wr.r3, 8);
2074 		}
2075 		/* load it in the delay slot*/
2076 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2077 		/* load it if ptr is odd */
2078 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2079 		/*
2080 		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2081 		 * XI must have triggered it.
2082 		 */
2083 		if (use_bbit_insns()) {
2084 			uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2085 		} else {
2086 			uasm_i_andi(&p, wr.r3, wr.r3, 2);
2087 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2088 		}
2089 		if (PM_DEFAULT_MASK == 0)
2090 			uasm_i_nop(&p);
2091 		/*
2092 		 * We clobbered C0_PAGEMASK, restore it.  On the other branch
2093 		 * it is restored in build_huge_tlb_write_entry.
2094 		 */
2095 		build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2096 
2097 		uasm_l_tlbl_goaround2(&l, p);
2098 	}
2099 	uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2100 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2101 #endif
2102 
2103 	uasm_l_nopage_tlbl(&l, p);
2104 	build_restore_work_registers(&p);
2105 #ifdef CONFIG_CPU_MICROMIPS
2106 	if ((unsigned long)tlb_do_page_fault_0 & 1) {
2107 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2108 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2109 		uasm_i_jr(&p, K0);
2110 	} else
2111 #endif
2112 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2113 	uasm_i_nop(&p);
2114 
2115 	if (p >= handle_tlbl_end)
2116 		panic("TLB load handler fastpath space exceeded");
2117 
2118 	uasm_resolve_relocs(relocs, labels);
2119 	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2120 		 (unsigned int)(p - handle_tlbl));
2121 
2122 	dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_size);
2123 }
2124 
2125 static void build_r4000_tlb_store_handler(void)
2126 {
2127 	u32 *p = handle_tlbs;
2128 	const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
2129 	struct uasm_label *l = labels;
2130 	struct uasm_reloc *r = relocs;
2131 	struct work_registers wr;
2132 
2133 	memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
2134 	memset(labels, 0, sizeof(labels));
2135 	memset(relocs, 0, sizeof(relocs));
2136 
2137 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2138 	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2139 	if (m4kc_tlbp_war())
2140 		build_tlb_probe_entry(&p);
2141 	build_make_write(&p, &r, wr.r1, wr.r2);
2142 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2143 
2144 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2145 	/*
2146 	 * This is the entry point when
2147 	 * build_r4000_tlbchange_handler_head spots a huge page.
2148 	 */
2149 	uasm_l_tlb_huge_update(&l, p);
2150 	iPTE_LW(&p, wr.r1, wr.r2);
2151 	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2152 	build_tlb_probe_entry(&p);
2153 	uasm_i_ori(&p, wr.r1, wr.r1,
2154 		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2155 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2156 #endif
2157 
2158 	uasm_l_nopage_tlbs(&l, p);
2159 	build_restore_work_registers(&p);
2160 #ifdef CONFIG_CPU_MICROMIPS
2161 	if ((unsigned long)tlb_do_page_fault_1 & 1) {
2162 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2163 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2164 		uasm_i_jr(&p, K0);
2165 	} else
2166 #endif
2167 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2168 	uasm_i_nop(&p);
2169 
2170 	if (p >= handle_tlbs_end)
2171 		panic("TLB store handler fastpath space exceeded");
2172 
2173 	uasm_resolve_relocs(relocs, labels);
2174 	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2175 		 (unsigned int)(p - handle_tlbs));
2176 
2177 	dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_size);
2178 }
2179 
2180 static void build_r4000_tlb_modify_handler(void)
2181 {
2182 	u32 *p = handle_tlbm;
2183 	const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
2184 	struct uasm_label *l = labels;
2185 	struct uasm_reloc *r = relocs;
2186 	struct work_registers wr;
2187 
2188 	memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
2189 	memset(labels, 0, sizeof(labels));
2190 	memset(relocs, 0, sizeof(relocs));
2191 
2192 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2193 	build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2194 	if (m4kc_tlbp_war())
2195 		build_tlb_probe_entry(&p);
2196 	/* Present and writable bits set, set accessed and dirty bits. */
2197 	build_make_write(&p, &r, wr.r1, wr.r2);
2198 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2199 
2200 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2201 	/*
2202 	 * This is the entry point when
2203 	 * build_r4000_tlbchange_handler_head spots a huge page.
2204 	 */
2205 	uasm_l_tlb_huge_update(&l, p);
2206 	iPTE_LW(&p, wr.r1, wr.r2);
2207 	build_pte_modifiable(&p, &r, wr.r1, wr.r2,  wr.r3, label_nopage_tlbm);
2208 	build_tlb_probe_entry(&p);
2209 	uasm_i_ori(&p, wr.r1, wr.r1,
2210 		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2211 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2212 #endif
2213 
2214 	uasm_l_nopage_tlbm(&l, p);
2215 	build_restore_work_registers(&p);
2216 #ifdef CONFIG_CPU_MICROMIPS
2217 	if ((unsigned long)tlb_do_page_fault_1 & 1) {
2218 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2219 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2220 		uasm_i_jr(&p, K0);
2221 	} else
2222 #endif
2223 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2224 	uasm_i_nop(&p);
2225 
2226 	if (p >= handle_tlbm_end)
2227 		panic("TLB modify handler fastpath space exceeded");
2228 
2229 	uasm_resolve_relocs(relocs, labels);
2230 	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2231 		 (unsigned int)(p - handle_tlbm));
2232 
2233 	dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_size);
2234 }
2235 
2236 static void flush_tlb_handlers(void)
2237 {
2238 	local_flush_icache_range((unsigned long)handle_tlbl,
2239 			   (unsigned long)handle_tlbl_end);
2240 	local_flush_icache_range((unsigned long)handle_tlbs,
2241 			   (unsigned long)handle_tlbs_end);
2242 	local_flush_icache_range((unsigned long)handle_tlbm,
2243 			   (unsigned long)handle_tlbm_end);
2244 	local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2245 			   (unsigned long)tlbmiss_handler_setup_pgd_end);
2246 }
2247 
2248 static void print_htw_config(void)
2249 {
2250 	unsigned long config;
2251 	unsigned int pwctl;
2252 	const int field = 2 * sizeof(unsigned long);
2253 
2254 	config = read_c0_pwfield();
2255 	pr_debug("PWField (0x%0*lx): GDI: 0x%02lx  UDI: 0x%02lx  MDI: 0x%02lx  PTI: 0x%02lx  PTEI: 0x%02lx\n",
2256 		field, config,
2257 		(config & MIPS_PWFIELD_GDI_MASK) >> MIPS_PWFIELD_GDI_SHIFT,
2258 		(config & MIPS_PWFIELD_UDI_MASK) >> MIPS_PWFIELD_UDI_SHIFT,
2259 		(config & MIPS_PWFIELD_MDI_MASK) >> MIPS_PWFIELD_MDI_SHIFT,
2260 		(config & MIPS_PWFIELD_PTI_MASK) >> MIPS_PWFIELD_PTI_SHIFT,
2261 		(config & MIPS_PWFIELD_PTEI_MASK) >> MIPS_PWFIELD_PTEI_SHIFT);
2262 
2263 	config = read_c0_pwsize();
2264 	pr_debug("PWSize  (0x%0*lx): GDW: 0x%02lx  UDW: 0x%02lx  MDW: 0x%02lx  PTW: 0x%02lx  PTEW: 0x%02lx\n",
2265 		field, config,
2266 		(config & MIPS_PWSIZE_GDW_MASK) >> MIPS_PWSIZE_GDW_SHIFT,
2267 		(config & MIPS_PWSIZE_UDW_MASK) >> MIPS_PWSIZE_UDW_SHIFT,
2268 		(config & MIPS_PWSIZE_MDW_MASK) >> MIPS_PWSIZE_MDW_SHIFT,
2269 		(config & MIPS_PWSIZE_PTW_MASK) >> MIPS_PWSIZE_PTW_SHIFT,
2270 		(config & MIPS_PWSIZE_PTEW_MASK) >> MIPS_PWSIZE_PTEW_SHIFT);
2271 
2272 	pwctl = read_c0_pwctl();
2273 	pr_debug("PWCtl   (0x%x): PWEn: 0x%x  DPH: 0x%x  HugePg: 0x%x  Psn: 0x%x\n",
2274 		pwctl,
2275 		(pwctl & MIPS_PWCTL_PWEN_MASK) >> MIPS_PWCTL_PWEN_SHIFT,
2276 		(pwctl & MIPS_PWCTL_DPH_MASK) >> MIPS_PWCTL_DPH_SHIFT,
2277 		(pwctl & MIPS_PWCTL_HUGEPG_MASK) >> MIPS_PWCTL_HUGEPG_SHIFT,
2278 		(pwctl & MIPS_PWCTL_PSN_MASK) >> MIPS_PWCTL_PSN_SHIFT);
2279 }
2280 
2281 static void config_htw_params(void)
2282 {
2283 	unsigned long pwfield, pwsize, ptei;
2284 	unsigned int config;
2285 
2286 	/*
2287 	 * We are using 2-level page tables, so we only need to
2288 	 * setup GDW and PTW appropriately. UDW and MDW will remain 0.
2289 	 * The default value of GDI/UDI/MDI/PTI is 0xc. It is illegal to
2290 	 * write values less than 0xc in these fields because the entire
2291 	 * write will be dropped. As a result of which, we must preserve
2292 	 * the original reset values and overwrite only what we really want.
2293 	 */
2294 
2295 	pwfield = read_c0_pwfield();
2296 	/* re-initialize the GDI field */
2297 	pwfield &= ~MIPS_PWFIELD_GDI_MASK;
2298 	pwfield |= PGDIR_SHIFT << MIPS_PWFIELD_GDI_SHIFT;
2299 	/* re-initialize the PTI field including the even/odd bit */
2300 	pwfield &= ~MIPS_PWFIELD_PTI_MASK;
2301 	pwfield |= PAGE_SHIFT << MIPS_PWFIELD_PTI_SHIFT;
2302 	/* Set the PTEI right shift */
2303 	ptei = _PAGE_GLOBAL_SHIFT << MIPS_PWFIELD_PTEI_SHIFT;
2304 	pwfield |= ptei;
2305 	write_c0_pwfield(pwfield);
2306 	/* Check whether the PTEI value is supported */
2307 	back_to_back_c0_hazard();
2308 	pwfield = read_c0_pwfield();
2309 	if (((pwfield & MIPS_PWFIELD_PTEI_MASK) << MIPS_PWFIELD_PTEI_SHIFT)
2310 		!= ptei) {
2311 		pr_warn("Unsupported PTEI field value: 0x%lx. HTW will not be enabled",
2312 			ptei);
2313 		/*
2314 		 * Drop option to avoid HTW being enabled via another path
2315 		 * (eg htw_reset())
2316 		 */
2317 		current_cpu_data.options &= ~MIPS_CPU_HTW;
2318 		return;
2319 	}
2320 
2321 	pwsize = ilog2(PTRS_PER_PGD) << MIPS_PWSIZE_GDW_SHIFT;
2322 	pwsize |= ilog2(PTRS_PER_PTE) << MIPS_PWSIZE_PTW_SHIFT;
2323 
2324 	/* If XPA has been enabled, PTEs are 64-bit in size. */
2325 	if (read_c0_pagegrain() & PG_ELPA)
2326 		pwsize |= 1;
2327 
2328 	write_c0_pwsize(pwsize);
2329 
2330 	/* Make sure everything is set before we enable the HTW */
2331 	back_to_back_c0_hazard();
2332 
2333 	/* Enable HTW and disable the rest of the pwctl fields */
2334 	config = 1 << MIPS_PWCTL_PWEN_SHIFT;
2335 	write_c0_pwctl(config);
2336 	pr_info("Hardware Page Table Walker enabled\n");
2337 
2338 	print_htw_config();
2339 }
2340 
2341 static void config_xpa_params(void)
2342 {
2343 #ifdef CONFIG_XPA
2344 	unsigned int pagegrain;
2345 
2346 	if (mips_xpa_disabled) {
2347 		pr_info("Extended Physical Addressing (XPA) disabled\n");
2348 		return;
2349 	}
2350 
2351 	pagegrain = read_c0_pagegrain();
2352 	write_c0_pagegrain(pagegrain | PG_ELPA);
2353 	back_to_back_c0_hazard();
2354 	pagegrain = read_c0_pagegrain();
2355 
2356 	if (pagegrain & PG_ELPA)
2357 		pr_info("Extended Physical Addressing (XPA) enabled\n");
2358 	else
2359 		panic("Extended Physical Addressing (XPA) disabled");
2360 #endif
2361 }
2362 
2363 void build_tlb_refill_handler(void)
2364 {
2365 	/*
2366 	 * The refill handler is generated per-CPU, multi-node systems
2367 	 * may have local storage for it. The other handlers are only
2368 	 * needed once.
2369 	 */
2370 	static int run_once = 0;
2371 
2372 	output_pgtable_bits_defines();
2373 
2374 #ifdef CONFIG_64BIT
2375 	check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2376 #endif
2377 
2378 	switch (current_cpu_type()) {
2379 	case CPU_R2000:
2380 	case CPU_R3000:
2381 	case CPU_R3000A:
2382 	case CPU_R3081E:
2383 	case CPU_TX3912:
2384 	case CPU_TX3922:
2385 	case CPU_TX3927:
2386 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2387 		if (cpu_has_local_ebase)
2388 			build_r3000_tlb_refill_handler();
2389 		if (!run_once) {
2390 			if (!cpu_has_local_ebase)
2391 				build_r3000_tlb_refill_handler();
2392 			build_setup_pgd();
2393 			build_r3000_tlb_load_handler();
2394 			build_r3000_tlb_store_handler();
2395 			build_r3000_tlb_modify_handler();
2396 			flush_tlb_handlers();
2397 			run_once++;
2398 		}
2399 #else
2400 		panic("No R3000 TLB refill handler");
2401 #endif
2402 		break;
2403 
2404 	case CPU_R6000:
2405 	case CPU_R6000A:
2406 		panic("No R6000 TLB refill handler yet");
2407 		break;
2408 
2409 	case CPU_R8000:
2410 		panic("No R8000 TLB refill handler yet");
2411 		break;
2412 
2413 	default:
2414 		if (!run_once) {
2415 			scratch_reg = allocate_kscratch();
2416 			build_setup_pgd();
2417 			build_r4000_tlb_load_handler();
2418 			build_r4000_tlb_store_handler();
2419 			build_r4000_tlb_modify_handler();
2420 			if (!cpu_has_local_ebase)
2421 				build_r4000_tlb_refill_handler();
2422 			flush_tlb_handlers();
2423 			run_once++;
2424 		}
2425 		if (cpu_has_local_ebase)
2426 			build_r4000_tlb_refill_handler();
2427 		if (cpu_has_xpa)
2428 			config_xpa_params();
2429 		if (cpu_has_htw)
2430 			config_htw_params();
2431 	}
2432 }
2433