xref: /openbmc/linux/arch/mips/mm/tlbex.c (revision 609e478b)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Synthesize TLB refill handlers at runtime.
7  *
8  * Copyright (C) 2004, 2005, 2006, 2008	 Thiemo Seufer
9  * Copyright (C) 2005, 2007, 2008, 2009	 Maciej W. Rozycki
10  * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
11  * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12  * Copyright (C) 2011  MIPS Technologies, Inc.
13  *
14  * ... and the days got worse and worse and now you see
15  * I've gone completly out of my mind.
16  *
17  * They're coming to take me a away haha
18  * they're coming to take me a away hoho hihi haha
19  * to the funny farm where code is beautiful all the time ...
20  *
21  * (Condolences to Napoleon XIV)
22  */
23 
24 #include <linux/bug.h>
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/smp.h>
28 #include <linux/string.h>
29 #include <linux/cache.h>
30 
31 #include <asm/cacheflush.h>
32 #include <asm/cpu-type.h>
33 #include <asm/pgtable.h>
34 #include <asm/war.h>
35 #include <asm/uasm.h>
36 #include <asm/setup.h>
37 
38 /*
39  * TLB load/store/modify handlers.
40  *
41  * Only the fastpath gets synthesized at runtime, the slowpath for
42  * do_page_fault remains normal asm.
43  */
44 extern void tlb_do_page_fault_0(void);
45 extern void tlb_do_page_fault_1(void);
46 
47 struct work_registers {
48 	int r1;
49 	int r2;
50 	int r3;
51 };
52 
53 struct tlb_reg_save {
54 	unsigned long a;
55 	unsigned long b;
56 } ____cacheline_aligned_in_smp;
57 
58 static struct tlb_reg_save handler_reg_save[NR_CPUS];
59 
60 static inline int r45k_bvahwbug(void)
61 {
62 	/* XXX: We should probe for the presence of this bug, but we don't. */
63 	return 0;
64 }
65 
66 static inline int r4k_250MHZhwbug(void)
67 {
68 	/* XXX: We should probe for the presence of this bug, but we don't. */
69 	return 0;
70 }
71 
72 static inline int __maybe_unused bcm1250_m3_war(void)
73 {
74 	return BCM1250_M3_WAR;
75 }
76 
77 static inline int __maybe_unused r10000_llsc_war(void)
78 {
79 	return R10000_LLSC_WAR;
80 }
81 
82 static int use_bbit_insns(void)
83 {
84 	switch (current_cpu_type()) {
85 	case CPU_CAVIUM_OCTEON:
86 	case CPU_CAVIUM_OCTEON_PLUS:
87 	case CPU_CAVIUM_OCTEON2:
88 	case CPU_CAVIUM_OCTEON3:
89 		return 1;
90 	default:
91 		return 0;
92 	}
93 }
94 
95 static int use_lwx_insns(void)
96 {
97 	switch (current_cpu_type()) {
98 	case CPU_CAVIUM_OCTEON2:
99 	case CPU_CAVIUM_OCTEON3:
100 		return 1;
101 	default:
102 		return 0;
103 	}
104 }
105 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
106     CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
107 static bool scratchpad_available(void)
108 {
109 	return true;
110 }
111 static int scratchpad_offset(int i)
112 {
113 	/*
114 	 * CVMSEG starts at address -32768 and extends for
115 	 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
116 	 */
117 	i += 1; /* Kernel use starts at the top and works down. */
118 	return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
119 }
120 #else
121 static bool scratchpad_available(void)
122 {
123 	return false;
124 }
125 static int scratchpad_offset(int i)
126 {
127 	BUG();
128 	/* Really unreachable, but evidently some GCC want this. */
129 	return 0;
130 }
131 #endif
132 /*
133  * Found by experiment: At least some revisions of the 4kc throw under
134  * some circumstances a machine check exception, triggered by invalid
135  * values in the index register.  Delaying the tlbp instruction until
136  * after the next branch,  plus adding an additional nop in front of
137  * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
138  * why; it's not an issue caused by the core RTL.
139  *
140  */
141 static int m4kc_tlbp_war(void)
142 {
143 	return (current_cpu_data.processor_id & 0xffff00) ==
144 	       (PRID_COMP_MIPS | PRID_IMP_4KC);
145 }
146 
147 /* Handle labels (which must be positive integers). */
148 enum label_id {
149 	label_second_part = 1,
150 	label_leave,
151 	label_vmalloc,
152 	label_vmalloc_done,
153 	label_tlbw_hazard_0,
154 	label_split = label_tlbw_hazard_0 + 8,
155 	label_tlbl_goaround1,
156 	label_tlbl_goaround2,
157 	label_nopage_tlbl,
158 	label_nopage_tlbs,
159 	label_nopage_tlbm,
160 	label_smp_pgtable_change,
161 	label_r3000_write_probe_fail,
162 	label_large_segbits_fault,
163 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
164 	label_tlb_huge_update,
165 #endif
166 };
167 
168 UASM_L_LA(_second_part)
169 UASM_L_LA(_leave)
170 UASM_L_LA(_vmalloc)
171 UASM_L_LA(_vmalloc_done)
172 /* _tlbw_hazard_x is handled differently.  */
173 UASM_L_LA(_split)
174 UASM_L_LA(_tlbl_goaround1)
175 UASM_L_LA(_tlbl_goaround2)
176 UASM_L_LA(_nopage_tlbl)
177 UASM_L_LA(_nopage_tlbs)
178 UASM_L_LA(_nopage_tlbm)
179 UASM_L_LA(_smp_pgtable_change)
180 UASM_L_LA(_r3000_write_probe_fail)
181 UASM_L_LA(_large_segbits_fault)
182 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
183 UASM_L_LA(_tlb_huge_update)
184 #endif
185 
186 static int hazard_instance;
187 
188 static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
189 {
190 	switch (instance) {
191 	case 0 ... 7:
192 		uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
193 		return;
194 	default:
195 		BUG();
196 	}
197 }
198 
199 static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
200 {
201 	switch (instance) {
202 	case 0 ... 7:
203 		uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
204 		break;
205 	default:
206 		BUG();
207 	}
208 }
209 
210 /*
211  * pgtable bits are assigned dynamically depending on processor feature
212  * and statically based on kernel configuration.  This spits out the actual
213  * values the kernel is using.	Required to make sense from disassembled
214  * TLB exception handlers.
215  */
216 static void output_pgtable_bits_defines(void)
217 {
218 #define pr_define(fmt, ...)					\
219 	pr_debug("#define " fmt, ##__VA_ARGS__)
220 
221 	pr_debug("#include <asm/asm.h>\n");
222 	pr_debug("#include <asm/regdef.h>\n");
223 	pr_debug("\n");
224 
225 	pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
226 	pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT);
227 	pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
228 	pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
229 	pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
230 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
231 	pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
232 	pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT);
233 #endif
234 	if (cpu_has_rixi) {
235 #ifdef _PAGE_NO_EXEC_SHIFT
236 		pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
237 #endif
238 #ifdef _PAGE_NO_READ_SHIFT
239 		pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
240 #endif
241 	}
242 	pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
243 	pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
244 	pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
245 	pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
246 	pr_debug("\n");
247 }
248 
249 static inline void dump_handler(const char *symbol, const u32 *handler, int count)
250 {
251 	int i;
252 
253 	pr_debug("LEAF(%s)\n", symbol);
254 
255 	pr_debug("\t.set push\n");
256 	pr_debug("\t.set noreorder\n");
257 
258 	for (i = 0; i < count; i++)
259 		pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
260 
261 	pr_debug("\t.set\tpop\n");
262 
263 	pr_debug("\tEND(%s)\n", symbol);
264 }
265 
266 /* The only general purpose registers allowed in TLB handlers. */
267 #define K0		26
268 #define K1		27
269 
270 /* Some CP0 registers */
271 #define C0_INDEX	0, 0
272 #define C0_ENTRYLO0	2, 0
273 #define C0_TCBIND	2, 2
274 #define C0_ENTRYLO1	3, 0
275 #define C0_CONTEXT	4, 0
276 #define C0_PAGEMASK	5, 0
277 #define C0_BADVADDR	8, 0
278 #define C0_ENTRYHI	10, 0
279 #define C0_EPC		14, 0
280 #define C0_XCONTEXT	20, 0
281 
282 #ifdef CONFIG_64BIT
283 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
284 #else
285 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
286 #endif
287 
288 /* The worst case length of the handler is around 18 instructions for
289  * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
290  * Maximum space available is 32 instructions for R3000 and 64
291  * instructions for R4000.
292  *
293  * We deliberately chose a buffer size of 128, so we won't scribble
294  * over anything important on overflow before we panic.
295  */
296 static u32 tlb_handler[128];
297 
298 /* simply assume worst case size for labels and relocs */
299 static struct uasm_label labels[128];
300 static struct uasm_reloc relocs[128];
301 
302 static int check_for_high_segbits;
303 
304 static unsigned int kscratch_used_mask;
305 
306 static inline int __maybe_unused c0_kscratch(void)
307 {
308 	switch (current_cpu_type()) {
309 	case CPU_XLP:
310 	case CPU_XLR:
311 		return 22;
312 	default:
313 		return 31;
314 	}
315 }
316 
317 static int allocate_kscratch(void)
318 {
319 	int r;
320 	unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
321 
322 	r = ffs(a);
323 
324 	if (r == 0)
325 		return -1;
326 
327 	r--; /* make it zero based */
328 
329 	kscratch_used_mask |= (1 << r);
330 
331 	return r;
332 }
333 
334 static int scratch_reg;
335 static int pgd_reg;
336 enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
337 
338 static struct work_registers build_get_work_registers(u32 **p)
339 {
340 	struct work_registers r;
341 
342 	if (scratch_reg >= 0) {
343 		/* Save in CPU local C0_KScratch? */
344 		UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
345 		r.r1 = K0;
346 		r.r2 = K1;
347 		r.r3 = 1;
348 		return r;
349 	}
350 
351 	if (num_possible_cpus() > 1) {
352 		/* Get smp_processor_id */
353 		UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG);
354 		UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT);
355 
356 		/* handler_reg_save index in K0 */
357 		UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
358 
359 		UASM_i_LA(p, K1, (long)&handler_reg_save);
360 		UASM_i_ADDU(p, K0, K0, K1);
361 	} else {
362 		UASM_i_LA(p, K0, (long)&handler_reg_save);
363 	}
364 	/* K0 now points to save area, save $1 and $2  */
365 	UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
366 	UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
367 
368 	r.r1 = K1;
369 	r.r2 = 1;
370 	r.r3 = 2;
371 	return r;
372 }
373 
374 static void build_restore_work_registers(u32 **p)
375 {
376 	if (scratch_reg >= 0) {
377 		UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
378 		return;
379 	}
380 	/* K0 already points to save area, restore $1 and $2  */
381 	UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
382 	UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
383 }
384 
385 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
386 
387 /*
388  * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
389  * we cannot do r3000 under these circumstances.
390  *
391  * Declare pgd_current here instead of including mmu_context.h to avoid type
392  * conflicts for tlbmiss_handler_setup_pgd
393  */
394 extern unsigned long pgd_current[];
395 
396 /*
397  * The R3000 TLB handler is simple.
398  */
399 static void build_r3000_tlb_refill_handler(void)
400 {
401 	long pgdc = (long)pgd_current;
402 	u32 *p;
403 
404 	memset(tlb_handler, 0, sizeof(tlb_handler));
405 	p = tlb_handler;
406 
407 	uasm_i_mfc0(&p, K0, C0_BADVADDR);
408 	uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
409 	uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
410 	uasm_i_srl(&p, K0, K0, 22); /* load delay */
411 	uasm_i_sll(&p, K0, K0, 2);
412 	uasm_i_addu(&p, K1, K1, K0);
413 	uasm_i_mfc0(&p, K0, C0_CONTEXT);
414 	uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
415 	uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
416 	uasm_i_addu(&p, K1, K1, K0);
417 	uasm_i_lw(&p, K0, 0, K1);
418 	uasm_i_nop(&p); /* load delay */
419 	uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
420 	uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
421 	uasm_i_tlbwr(&p); /* cp0 delay */
422 	uasm_i_jr(&p, K1);
423 	uasm_i_rfe(&p); /* branch delay */
424 
425 	if (p > tlb_handler + 32)
426 		panic("TLB refill handler space exceeded");
427 
428 	pr_debug("Wrote TLB refill handler (%u instructions).\n",
429 		 (unsigned int)(p - tlb_handler));
430 
431 	memcpy((void *)ebase, tlb_handler, 0x80);
432 	local_flush_icache_range(ebase, ebase + 0x80);
433 
434 	dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
435 }
436 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
437 
438 /*
439  * The R4000 TLB handler is much more complicated. We have two
440  * consecutive handler areas with 32 instructions space each.
441  * Since they aren't used at the same time, we can overflow in the
442  * other one.To keep things simple, we first assume linear space,
443  * then we relocate it to the final handler layout as needed.
444  */
445 static u32 final_handler[64];
446 
447 /*
448  * Hazards
449  *
450  * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
451  * 2. A timing hazard exists for the TLBP instruction.
452  *
453  *	stalling_instruction
454  *	TLBP
455  *
456  * The JTLB is being read for the TLBP throughout the stall generated by the
457  * previous instruction. This is not really correct as the stalling instruction
458  * can modify the address used to access the JTLB.  The failure symptom is that
459  * the TLBP instruction will use an address created for the stalling instruction
460  * and not the address held in C0_ENHI and thus report the wrong results.
461  *
462  * The software work-around is to not allow the instruction preceding the TLBP
463  * to stall - make it an NOP or some other instruction guaranteed not to stall.
464  *
465  * Errata 2 will not be fixed.	This errata is also on the R5000.
466  *
467  * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
468  */
469 static void __maybe_unused build_tlb_probe_entry(u32 **p)
470 {
471 	switch (current_cpu_type()) {
472 	/* Found by experiment: R4600 v2.0/R4700 needs this, too.  */
473 	case CPU_R4600:
474 	case CPU_R4700:
475 	case CPU_R5000:
476 	case CPU_NEVADA:
477 		uasm_i_nop(p);
478 		uasm_i_tlbp(p);
479 		break;
480 
481 	default:
482 		uasm_i_tlbp(p);
483 		break;
484 	}
485 }
486 
487 /*
488  * Write random or indexed TLB entry, and care about the hazards from
489  * the preceding mtc0 and for the following eret.
490  */
491 enum tlb_write_entry { tlb_random, tlb_indexed };
492 
493 static void build_tlb_write_entry(u32 **p, struct uasm_label **l,
494 				  struct uasm_reloc **r,
495 				  enum tlb_write_entry wmode)
496 {
497 	void(*tlbw)(u32 **) = NULL;
498 
499 	switch (wmode) {
500 	case tlb_random: tlbw = uasm_i_tlbwr; break;
501 	case tlb_indexed: tlbw = uasm_i_tlbwi; break;
502 	}
503 
504 	if (cpu_has_mips_r2) {
505 		/*
506 		 * The architecture spec says an ehb is required here,
507 		 * but a number of cores do not have the hazard and
508 		 * using an ehb causes an expensive pipeline stall.
509 		 */
510 		switch (current_cpu_type()) {
511 		case CPU_M14KC:
512 		case CPU_74K:
513 		case CPU_1074K:
514 		case CPU_PROAPTIV:
515 		case CPU_P5600:
516 		case CPU_M5150:
517 			break;
518 
519 		default:
520 			uasm_i_ehb(p);
521 			break;
522 		}
523 		tlbw(p);
524 		return;
525 	}
526 
527 	switch (current_cpu_type()) {
528 	case CPU_R4000PC:
529 	case CPU_R4000SC:
530 	case CPU_R4000MC:
531 	case CPU_R4400PC:
532 	case CPU_R4400SC:
533 	case CPU_R4400MC:
534 		/*
535 		 * This branch uses up a mtc0 hazard nop slot and saves
536 		 * two nops after the tlbw instruction.
537 		 */
538 		uasm_bgezl_hazard(p, r, hazard_instance);
539 		tlbw(p);
540 		uasm_bgezl_label(l, p, hazard_instance);
541 		hazard_instance++;
542 		uasm_i_nop(p);
543 		break;
544 
545 	case CPU_R4600:
546 	case CPU_R4700:
547 		uasm_i_nop(p);
548 		tlbw(p);
549 		uasm_i_nop(p);
550 		break;
551 
552 	case CPU_R5000:
553 	case CPU_NEVADA:
554 		uasm_i_nop(p); /* QED specifies 2 nops hazard */
555 		uasm_i_nop(p); /* QED specifies 2 nops hazard */
556 		tlbw(p);
557 		break;
558 
559 	case CPU_R4300:
560 	case CPU_5KC:
561 	case CPU_TX49XX:
562 	case CPU_PR4450:
563 	case CPU_XLR:
564 		uasm_i_nop(p);
565 		tlbw(p);
566 		break;
567 
568 	case CPU_R10000:
569 	case CPU_R12000:
570 	case CPU_R14000:
571 	case CPU_4KC:
572 	case CPU_4KEC:
573 	case CPU_M14KC:
574 	case CPU_M14KEC:
575 	case CPU_SB1:
576 	case CPU_SB1A:
577 	case CPU_4KSC:
578 	case CPU_20KC:
579 	case CPU_25KF:
580 	case CPU_BMIPS32:
581 	case CPU_BMIPS3300:
582 	case CPU_BMIPS4350:
583 	case CPU_BMIPS4380:
584 	case CPU_BMIPS5000:
585 	case CPU_LOONGSON2:
586 	case CPU_LOONGSON3:
587 	case CPU_R5500:
588 		if (m4kc_tlbp_war())
589 			uasm_i_nop(p);
590 	case CPU_ALCHEMY:
591 		tlbw(p);
592 		break;
593 
594 	case CPU_RM7000:
595 		uasm_i_nop(p);
596 		uasm_i_nop(p);
597 		uasm_i_nop(p);
598 		uasm_i_nop(p);
599 		tlbw(p);
600 		break;
601 
602 	case CPU_VR4111:
603 	case CPU_VR4121:
604 	case CPU_VR4122:
605 	case CPU_VR4181:
606 	case CPU_VR4181A:
607 		uasm_i_nop(p);
608 		uasm_i_nop(p);
609 		tlbw(p);
610 		uasm_i_nop(p);
611 		uasm_i_nop(p);
612 		break;
613 
614 	case CPU_VR4131:
615 	case CPU_VR4133:
616 	case CPU_R5432:
617 		uasm_i_nop(p);
618 		uasm_i_nop(p);
619 		tlbw(p);
620 		break;
621 
622 	case CPU_JZRISC:
623 		tlbw(p);
624 		uasm_i_nop(p);
625 		break;
626 
627 	default:
628 		panic("No TLB refill handler yet (CPU type: %d)",
629 		      current_cpu_type());
630 		break;
631 	}
632 }
633 
634 static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
635 							unsigned int reg)
636 {
637 	if (cpu_has_rixi) {
638 		UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
639 	} else {
640 #ifdef CONFIG_64BIT_PHYS_ADDR
641 		uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
642 #else
643 		UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
644 #endif
645 	}
646 }
647 
648 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
649 
650 static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
651 				   unsigned int tmp, enum label_id lid,
652 				   int restore_scratch)
653 {
654 	if (restore_scratch) {
655 		/* Reset default page size */
656 		if (PM_DEFAULT_MASK >> 16) {
657 			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
658 			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
659 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
660 			uasm_il_b(p, r, lid);
661 		} else if (PM_DEFAULT_MASK) {
662 			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
663 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
664 			uasm_il_b(p, r, lid);
665 		} else {
666 			uasm_i_mtc0(p, 0, C0_PAGEMASK);
667 			uasm_il_b(p, r, lid);
668 		}
669 		if (scratch_reg >= 0)
670 			UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
671 		else
672 			UASM_i_LW(p, 1, scratchpad_offset(0), 0);
673 	} else {
674 		/* Reset default page size */
675 		if (PM_DEFAULT_MASK >> 16) {
676 			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
677 			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
678 			uasm_il_b(p, r, lid);
679 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
680 		} else if (PM_DEFAULT_MASK) {
681 			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
682 			uasm_il_b(p, r, lid);
683 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
684 		} else {
685 			uasm_il_b(p, r, lid);
686 			uasm_i_mtc0(p, 0, C0_PAGEMASK);
687 		}
688 	}
689 }
690 
691 static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
692 				       struct uasm_reloc **r,
693 				       unsigned int tmp,
694 				       enum tlb_write_entry wmode,
695 				       int restore_scratch)
696 {
697 	/* Set huge page tlb entry size */
698 	uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
699 	uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
700 	uasm_i_mtc0(p, tmp, C0_PAGEMASK);
701 
702 	build_tlb_write_entry(p, l, r, wmode);
703 
704 	build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
705 }
706 
707 /*
708  * Check if Huge PTE is present, if so then jump to LABEL.
709  */
710 static void
711 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
712 		  unsigned int pmd, int lid)
713 {
714 	UASM_i_LW(p, tmp, 0, pmd);
715 	if (use_bbit_insns()) {
716 		uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
717 	} else {
718 		uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
719 		uasm_il_bnez(p, r, tmp, lid);
720 	}
721 }
722 
723 static void build_huge_update_entries(u32 **p, unsigned int pte,
724 				      unsigned int tmp)
725 {
726 	int small_sequence;
727 
728 	/*
729 	 * A huge PTE describes an area the size of the
730 	 * configured huge page size. This is twice the
731 	 * of the large TLB entry size we intend to use.
732 	 * A TLB entry half the size of the configured
733 	 * huge page size is configured into entrylo0
734 	 * and entrylo1 to cover the contiguous huge PTE
735 	 * address space.
736 	 */
737 	small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
738 
739 	/* We can clobber tmp.	It isn't used after this.*/
740 	if (!small_sequence)
741 		uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
742 
743 	build_convert_pte_to_entrylo(p, pte);
744 	UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
745 	/* convert to entrylo1 */
746 	if (small_sequence)
747 		UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
748 	else
749 		UASM_i_ADDU(p, pte, pte, tmp);
750 
751 	UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
752 }
753 
754 static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
755 				    struct uasm_label **l,
756 				    unsigned int pte,
757 				    unsigned int ptr)
758 {
759 #ifdef CONFIG_SMP
760 	UASM_i_SC(p, pte, 0, ptr);
761 	uasm_il_beqz(p, r, pte, label_tlb_huge_update);
762 	UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
763 #else
764 	UASM_i_SW(p, pte, 0, ptr);
765 #endif
766 	build_huge_update_entries(p, pte, ptr);
767 	build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
768 }
769 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
770 
771 #ifdef CONFIG_64BIT
772 /*
773  * TMP and PTR are scratch.
774  * TMP will be clobbered, PTR will hold the pmd entry.
775  */
776 static void
777 build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
778 		 unsigned int tmp, unsigned int ptr)
779 {
780 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
781 	long pgdc = (long)pgd_current;
782 #endif
783 	/*
784 	 * The vmalloc handling is not in the hotpath.
785 	 */
786 	uasm_i_dmfc0(p, tmp, C0_BADVADDR);
787 
788 	if (check_for_high_segbits) {
789 		/*
790 		 * The kernel currently implicitely assumes that the
791 		 * MIPS SEGBITS parameter for the processor is
792 		 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
793 		 * allocate virtual addresses outside the maximum
794 		 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
795 		 * that doesn't prevent user code from accessing the
796 		 * higher xuseg addresses.  Here, we make sure that
797 		 * everything but the lower xuseg addresses goes down
798 		 * the module_alloc/vmalloc path.
799 		 */
800 		uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
801 		uasm_il_bnez(p, r, ptr, label_vmalloc);
802 	} else {
803 		uasm_il_bltz(p, r, tmp, label_vmalloc);
804 	}
805 	/* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
806 
807 	if (pgd_reg != -1) {
808 		/* pgd is in pgd_reg */
809 		UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
810 	} else {
811 #if defined(CONFIG_MIPS_PGD_C0_CONTEXT)
812 		/*
813 		 * &pgd << 11 stored in CONTEXT [23..63].
814 		 */
815 		UASM_i_MFC0(p, ptr, C0_CONTEXT);
816 
817 		/* Clear lower 23 bits of context. */
818 		uasm_i_dins(p, ptr, 0, 0, 23);
819 
820 		/* 1 0	1 0 1  << 6  xkphys cached */
821 		uasm_i_ori(p, ptr, ptr, 0x540);
822 		uasm_i_drotr(p, ptr, ptr, 11);
823 #elif defined(CONFIG_SMP)
824 		UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG);
825 		uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
826 		UASM_i_LA_mostly(p, tmp, pgdc);
827 		uasm_i_daddu(p, ptr, ptr, tmp);
828 		uasm_i_dmfc0(p, tmp, C0_BADVADDR);
829 		uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
830 #else
831 		UASM_i_LA_mostly(p, ptr, pgdc);
832 		uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
833 #endif
834 	}
835 
836 	uasm_l_vmalloc_done(l, *p);
837 
838 	/* get pgd offset in bytes */
839 	uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
840 
841 	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
842 	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
843 #ifndef __PAGETABLE_PMD_FOLDED
844 	uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
845 	uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
846 	uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
847 	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
848 	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
849 #endif
850 }
851 
852 /*
853  * BVADDR is the faulting address, PTR is scratch.
854  * PTR will hold the pgd for vmalloc.
855  */
856 static void
857 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
858 			unsigned int bvaddr, unsigned int ptr,
859 			enum vmalloc64_mode mode)
860 {
861 	long swpd = (long)swapper_pg_dir;
862 	int single_insn_swpd;
863 	int did_vmalloc_branch = 0;
864 
865 	single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
866 
867 	uasm_l_vmalloc(l, *p);
868 
869 	if (mode != not_refill && check_for_high_segbits) {
870 		if (single_insn_swpd) {
871 			uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
872 			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
873 			did_vmalloc_branch = 1;
874 			/* fall through */
875 		} else {
876 			uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
877 		}
878 	}
879 	if (!did_vmalloc_branch) {
880 		if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
881 			uasm_il_b(p, r, label_vmalloc_done);
882 			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
883 		} else {
884 			UASM_i_LA_mostly(p, ptr, swpd);
885 			uasm_il_b(p, r, label_vmalloc_done);
886 			if (uasm_in_compat_space_p(swpd))
887 				uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
888 			else
889 				uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
890 		}
891 	}
892 	if (mode != not_refill && check_for_high_segbits) {
893 		uasm_l_large_segbits_fault(l, *p);
894 		/*
895 		 * We get here if we are an xsseg address, or if we are
896 		 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
897 		 *
898 		 * Ignoring xsseg (assume disabled so would generate
899 		 * (address errors?), the only remaining possibility
900 		 * is the upper xuseg addresses.  On processors with
901 		 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
902 		 * addresses would have taken an address error. We try
903 		 * to mimic that here by taking a load/istream page
904 		 * fault.
905 		 */
906 		UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
907 		uasm_i_jr(p, ptr);
908 
909 		if (mode == refill_scratch) {
910 			if (scratch_reg >= 0)
911 				UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
912 			else
913 				UASM_i_LW(p, 1, scratchpad_offset(0), 0);
914 		} else {
915 			uasm_i_nop(p);
916 		}
917 	}
918 }
919 
920 #else /* !CONFIG_64BIT */
921 
922 /*
923  * TMP and PTR are scratch.
924  * TMP will be clobbered, PTR will hold the pgd entry.
925  */
926 static void __maybe_unused
927 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
928 {
929 	if (pgd_reg != -1) {
930 		/* pgd is in pgd_reg */
931 		uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg);
932 		uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
933 	} else {
934 		long pgdc = (long)pgd_current;
935 
936 		/* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
937 #ifdef CONFIG_SMP
938 		uasm_i_mfc0(p, ptr, SMP_CPUID_REG);
939 		UASM_i_LA_mostly(p, tmp, pgdc);
940 		uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
941 		uasm_i_addu(p, ptr, tmp, ptr);
942 #else
943 		UASM_i_LA_mostly(p, ptr, pgdc);
944 #endif
945 		uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
946 		uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
947 	}
948 	uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
949 	uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
950 	uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
951 }
952 
953 #endif /* !CONFIG_64BIT */
954 
955 static void build_adjust_context(u32 **p, unsigned int ctx)
956 {
957 	unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
958 	unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
959 
960 	switch (current_cpu_type()) {
961 	case CPU_VR41XX:
962 	case CPU_VR4111:
963 	case CPU_VR4121:
964 	case CPU_VR4122:
965 	case CPU_VR4131:
966 	case CPU_VR4181:
967 	case CPU_VR4181A:
968 	case CPU_VR4133:
969 		shift += 2;
970 		break;
971 
972 	default:
973 		break;
974 	}
975 
976 	if (shift)
977 		UASM_i_SRL(p, ctx, ctx, shift);
978 	uasm_i_andi(p, ctx, ctx, mask);
979 }
980 
981 static void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
982 {
983 	/*
984 	 * Bug workaround for the Nevada. It seems as if under certain
985 	 * circumstances the move from cp0_context might produce a
986 	 * bogus result when the mfc0 instruction and its consumer are
987 	 * in a different cacheline or a load instruction, probably any
988 	 * memory reference, is between them.
989 	 */
990 	switch (current_cpu_type()) {
991 	case CPU_NEVADA:
992 		UASM_i_LW(p, ptr, 0, ptr);
993 		GET_CONTEXT(p, tmp); /* get context reg */
994 		break;
995 
996 	default:
997 		GET_CONTEXT(p, tmp); /* get context reg */
998 		UASM_i_LW(p, ptr, 0, ptr);
999 		break;
1000 	}
1001 
1002 	build_adjust_context(p, tmp);
1003 	UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1004 }
1005 
1006 static void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
1007 {
1008 	/*
1009 	 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1010 	 * Kernel is a special case. Only a few CPUs use it.
1011 	 */
1012 #ifdef CONFIG_64BIT_PHYS_ADDR
1013 	if (cpu_has_64bits) {
1014 		uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
1015 		uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1016 		if (cpu_has_rixi) {
1017 			UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1018 			UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1019 			UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1020 		} else {
1021 			uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1022 			UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1023 			uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1024 		}
1025 		UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1026 	} else {
1027 		int pte_off_even = sizeof(pte_t) / 2;
1028 		int pte_off_odd = pte_off_even + sizeof(pte_t);
1029 
1030 		/* The pte entries are pre-shifted */
1031 		uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1032 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1033 		uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1034 		UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1035 	}
1036 #else
1037 	UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
1038 	UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1039 	if (r45k_bvahwbug())
1040 		build_tlb_probe_entry(p);
1041 	if (cpu_has_rixi) {
1042 		UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1043 		if (r4k_250MHZhwbug())
1044 			UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1045 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1046 		UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1047 	} else {
1048 		UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1049 		if (r4k_250MHZhwbug())
1050 			UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1051 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1052 		UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1053 		if (r45k_bvahwbug())
1054 			uasm_i_mfc0(p, tmp, C0_INDEX);
1055 	}
1056 	if (r4k_250MHZhwbug())
1057 		UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1058 	UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1059 #endif
1060 }
1061 
1062 struct mips_huge_tlb_info {
1063 	int huge_pte;
1064 	int restore_scratch;
1065 };
1066 
1067 static struct mips_huge_tlb_info
1068 build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1069 			       struct uasm_reloc **r, unsigned int tmp,
1070 			       unsigned int ptr, int c0_scratch_reg)
1071 {
1072 	struct mips_huge_tlb_info rv;
1073 	unsigned int even, odd;
1074 	int vmalloc_branch_delay_filled = 0;
1075 	const int scratch = 1; /* Our extra working register */
1076 
1077 	rv.huge_pte = scratch;
1078 	rv.restore_scratch = 0;
1079 
1080 	if (check_for_high_segbits) {
1081 		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1082 
1083 		if (pgd_reg != -1)
1084 			UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1085 		else
1086 			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1087 
1088 		if (c0_scratch_reg >= 0)
1089 			UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1090 		else
1091 			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1092 
1093 		uasm_i_dsrl_safe(p, scratch, tmp,
1094 				 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1095 		uasm_il_bnez(p, r, scratch, label_vmalloc);
1096 
1097 		if (pgd_reg == -1) {
1098 			vmalloc_branch_delay_filled = 1;
1099 			/* Clear lower 23 bits of context. */
1100 			uasm_i_dins(p, ptr, 0, 0, 23);
1101 		}
1102 	} else {
1103 		if (pgd_reg != -1)
1104 			UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1105 		else
1106 			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1107 
1108 		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1109 
1110 		if (c0_scratch_reg >= 0)
1111 			UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1112 		else
1113 			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1114 
1115 		if (pgd_reg == -1)
1116 			/* Clear lower 23 bits of context. */
1117 			uasm_i_dins(p, ptr, 0, 0, 23);
1118 
1119 		uasm_il_bltz(p, r, tmp, label_vmalloc);
1120 	}
1121 
1122 	if (pgd_reg == -1) {
1123 		vmalloc_branch_delay_filled = 1;
1124 		/* 1 0	1 0 1  << 6  xkphys cached */
1125 		uasm_i_ori(p, ptr, ptr, 0x540);
1126 		uasm_i_drotr(p, ptr, ptr, 11);
1127 	}
1128 
1129 #ifdef __PAGETABLE_PMD_FOLDED
1130 #define LOC_PTEP scratch
1131 #else
1132 #define LOC_PTEP ptr
1133 #endif
1134 
1135 	if (!vmalloc_branch_delay_filled)
1136 		/* get pgd offset in bytes */
1137 		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1138 
1139 	uasm_l_vmalloc_done(l, *p);
1140 
1141 	/*
1142 	 *			   tmp		ptr
1143 	 * fall-through case =	 badvaddr  *pgd_current
1144 	 * vmalloc case	     =	 badvaddr  swapper_pg_dir
1145 	 */
1146 
1147 	if (vmalloc_branch_delay_filled)
1148 		/* get pgd offset in bytes */
1149 		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1150 
1151 #ifdef __PAGETABLE_PMD_FOLDED
1152 	GET_CONTEXT(p, tmp); /* get context reg */
1153 #endif
1154 	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1155 
1156 	if (use_lwx_insns()) {
1157 		UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1158 	} else {
1159 		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1160 		uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1161 	}
1162 
1163 #ifndef __PAGETABLE_PMD_FOLDED
1164 	/* get pmd offset in bytes */
1165 	uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1166 	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1167 	GET_CONTEXT(p, tmp); /* get context reg */
1168 
1169 	if (use_lwx_insns()) {
1170 		UASM_i_LWX(p, scratch, scratch, ptr);
1171 	} else {
1172 		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1173 		UASM_i_LW(p, scratch, 0, ptr);
1174 	}
1175 #endif
1176 	/* Adjust the context during the load latency. */
1177 	build_adjust_context(p, tmp);
1178 
1179 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1180 	uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1181 	/*
1182 	 * The in the LWX case we don't want to do the load in the
1183 	 * delay slot.	It cannot issue in the same cycle and may be
1184 	 * speculative and unneeded.
1185 	 */
1186 	if (use_lwx_insns())
1187 		uasm_i_nop(p);
1188 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1189 
1190 
1191 	/* build_update_entries */
1192 	if (use_lwx_insns()) {
1193 		even = ptr;
1194 		odd = tmp;
1195 		UASM_i_LWX(p, even, scratch, tmp);
1196 		UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1197 		UASM_i_LWX(p, odd, scratch, tmp);
1198 	} else {
1199 		UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1200 		even = tmp;
1201 		odd = ptr;
1202 		UASM_i_LW(p, even, 0, ptr); /* get even pte */
1203 		UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1204 	}
1205 	if (cpu_has_rixi) {
1206 		uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1207 		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1208 		uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1209 	} else {
1210 		uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1211 		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1212 		uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1213 	}
1214 	UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1215 
1216 	if (c0_scratch_reg >= 0) {
1217 		UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1218 		build_tlb_write_entry(p, l, r, tlb_random);
1219 		uasm_l_leave(l, *p);
1220 		rv.restore_scratch = 1;
1221 	} else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13)  {
1222 		build_tlb_write_entry(p, l, r, tlb_random);
1223 		uasm_l_leave(l, *p);
1224 		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1225 	} else {
1226 		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1227 		build_tlb_write_entry(p, l, r, tlb_random);
1228 		uasm_l_leave(l, *p);
1229 		rv.restore_scratch = 1;
1230 	}
1231 
1232 	uasm_i_eret(p); /* return from trap */
1233 
1234 	return rv;
1235 }
1236 
1237 /*
1238  * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1239  * because EXL == 0.  If we wrap, we can also use the 32 instruction
1240  * slots before the XTLB refill exception handler which belong to the
1241  * unused TLB refill exception.
1242  */
1243 #define MIPS64_REFILL_INSNS 32
1244 
1245 static void build_r4000_tlb_refill_handler(void)
1246 {
1247 	u32 *p = tlb_handler;
1248 	struct uasm_label *l = labels;
1249 	struct uasm_reloc *r = relocs;
1250 	u32 *f;
1251 	unsigned int final_len;
1252 	struct mips_huge_tlb_info htlb_info __maybe_unused;
1253 	enum vmalloc64_mode vmalloc_mode __maybe_unused;
1254 
1255 	memset(tlb_handler, 0, sizeof(tlb_handler));
1256 	memset(labels, 0, sizeof(labels));
1257 	memset(relocs, 0, sizeof(relocs));
1258 	memset(final_handler, 0, sizeof(final_handler));
1259 
1260 	if (IS_ENABLED(CONFIG_64BIT) && (scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
1261 		htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1262 							  scratch_reg);
1263 		vmalloc_mode = refill_scratch;
1264 	} else {
1265 		htlb_info.huge_pte = K0;
1266 		htlb_info.restore_scratch = 0;
1267 		vmalloc_mode = refill_noscratch;
1268 		/*
1269 		 * create the plain linear handler
1270 		 */
1271 		if (bcm1250_m3_war()) {
1272 			unsigned int segbits = 44;
1273 
1274 			uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1275 			uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1276 			uasm_i_xor(&p, K0, K0, K1);
1277 			uasm_i_dsrl_safe(&p, K1, K0, 62);
1278 			uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1279 			uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1280 			uasm_i_or(&p, K0, K0, K1);
1281 			uasm_il_bnez(&p, &r, K0, label_leave);
1282 			/* No need for uasm_i_nop */
1283 		}
1284 
1285 #ifdef CONFIG_64BIT
1286 		build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1287 #else
1288 		build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1289 #endif
1290 
1291 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1292 		build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1293 #endif
1294 
1295 		build_get_ptep(&p, K0, K1);
1296 		build_update_entries(&p, K0, K1);
1297 		build_tlb_write_entry(&p, &l, &r, tlb_random);
1298 		uasm_l_leave(&l, p);
1299 		uasm_i_eret(&p); /* return from trap */
1300 	}
1301 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1302 	uasm_l_tlb_huge_update(&l, p);
1303 	UASM_i_LW(&p, K0, 0, K1);
1304 	build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1305 	build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1306 				   htlb_info.restore_scratch);
1307 #endif
1308 
1309 #ifdef CONFIG_64BIT
1310 	build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1311 #endif
1312 
1313 	/*
1314 	 * Overflow check: For the 64bit handler, we need at least one
1315 	 * free instruction slot for the wrap-around branch. In worst
1316 	 * case, if the intended insertion point is a delay slot, we
1317 	 * need three, with the second nop'ed and the third being
1318 	 * unused.
1319 	 */
1320 	switch (boot_cpu_type()) {
1321 	default:
1322 		if (sizeof(long) == 4) {
1323 	case CPU_LOONGSON2:
1324 		/* Loongson2 ebase is different than r4k, we have more space */
1325 			if ((p - tlb_handler) > 64)
1326 				panic("TLB refill handler space exceeded");
1327 			/*
1328 			 * Now fold the handler in the TLB refill handler space.
1329 			 */
1330 			f = final_handler;
1331 			/* Simplest case, just copy the handler. */
1332 			uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1333 			final_len = p - tlb_handler;
1334 			break;
1335 		} else {
1336 			if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1337 			    || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1338 				&& uasm_insn_has_bdelay(relocs,
1339 							tlb_handler + MIPS64_REFILL_INSNS - 3)))
1340 				panic("TLB refill handler space exceeded");
1341 			/*
1342 			 * Now fold the handler in the TLB refill handler space.
1343 			 */
1344 			f = final_handler + MIPS64_REFILL_INSNS;
1345 			if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1346 				/* Just copy the handler. */
1347 				uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1348 				final_len = p - tlb_handler;
1349 			} else {
1350 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1351 				const enum label_id ls = label_tlb_huge_update;
1352 #else
1353 				const enum label_id ls = label_vmalloc;
1354 #endif
1355 				u32 *split;
1356 				int ov = 0;
1357 				int i;
1358 
1359 				for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1360 					;
1361 				BUG_ON(i == ARRAY_SIZE(labels));
1362 				split = labels[i].addr;
1363 
1364 				/*
1365 				 * See if we have overflown one way or the other.
1366 				 */
1367 				if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1368 				    split < p - MIPS64_REFILL_INSNS)
1369 					ov = 1;
1370 
1371 				if (ov) {
1372 					/*
1373 					 * Split two instructions before the end.  One
1374 					 * for the branch and one for the instruction
1375 					 * in the delay slot.
1376 					 */
1377 					split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1378 
1379 					/*
1380 					 * If the branch would fall in a delay slot,
1381 					 * we must back up an additional instruction
1382 					 * so that it is no longer in a delay slot.
1383 					 */
1384 					if (uasm_insn_has_bdelay(relocs, split - 1))
1385 						split--;
1386 				}
1387 				/* Copy first part of the handler. */
1388 				uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1389 				f += split - tlb_handler;
1390 
1391 				if (ov) {
1392 					/* Insert branch. */
1393 					uasm_l_split(&l, final_handler);
1394 					uasm_il_b(&f, &r, label_split);
1395 					if (uasm_insn_has_bdelay(relocs, split))
1396 						uasm_i_nop(&f);
1397 					else {
1398 						uasm_copy_handler(relocs, labels,
1399 								  split, split + 1, f);
1400 						uasm_move_labels(labels, f, f + 1, -1);
1401 						f++;
1402 						split++;
1403 					}
1404 				}
1405 
1406 				/* Copy the rest of the handler. */
1407 				uasm_copy_handler(relocs, labels, split, p, final_handler);
1408 				final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1409 					    (p - split);
1410 			}
1411 		}
1412 		break;
1413 	}
1414 
1415 	uasm_resolve_relocs(relocs, labels);
1416 	pr_debug("Wrote TLB refill handler (%u instructions).\n",
1417 		 final_len);
1418 
1419 	memcpy((void *)ebase, final_handler, 0x100);
1420 	local_flush_icache_range(ebase, ebase + 0x100);
1421 
1422 	dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
1423 }
1424 
1425 extern u32 handle_tlbl[], handle_tlbl_end[];
1426 extern u32 handle_tlbs[], handle_tlbs_end[];
1427 extern u32 handle_tlbm[], handle_tlbm_end[];
1428 extern u32 tlbmiss_handler_setup_pgd_start[], tlbmiss_handler_setup_pgd[];
1429 extern u32 tlbmiss_handler_setup_pgd_end[];
1430 
1431 static void build_setup_pgd(void)
1432 {
1433 	const int a0 = 4;
1434 	const int __maybe_unused a1 = 5;
1435 	const int __maybe_unused a2 = 6;
1436 	u32 *p = tlbmiss_handler_setup_pgd_start;
1437 	const int tlbmiss_handler_setup_pgd_size =
1438 		tlbmiss_handler_setup_pgd_end - tlbmiss_handler_setup_pgd_start;
1439 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1440 	long pgdc = (long)pgd_current;
1441 #endif
1442 
1443 	memset(tlbmiss_handler_setup_pgd, 0, tlbmiss_handler_setup_pgd_size *
1444 					sizeof(tlbmiss_handler_setup_pgd[0]));
1445 	memset(labels, 0, sizeof(labels));
1446 	memset(relocs, 0, sizeof(relocs));
1447 	pgd_reg = allocate_kscratch();
1448 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1449 	if (pgd_reg == -1) {
1450 		struct uasm_label *l = labels;
1451 		struct uasm_reloc *r = relocs;
1452 
1453 		/* PGD << 11 in c0_Context */
1454 		/*
1455 		 * If it is a ckseg0 address, convert to a physical
1456 		 * address.  Shifting right by 29 and adding 4 will
1457 		 * result in zero for these addresses.
1458 		 *
1459 		 */
1460 		UASM_i_SRA(&p, a1, a0, 29);
1461 		UASM_i_ADDIU(&p, a1, a1, 4);
1462 		uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1463 		uasm_i_nop(&p);
1464 		uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1465 		uasm_l_tlbl_goaround1(&l, p);
1466 		UASM_i_SLL(&p, a0, a0, 11);
1467 		uasm_i_jr(&p, 31);
1468 		UASM_i_MTC0(&p, a0, C0_CONTEXT);
1469 	} else {
1470 		/* PGD in c0_KScratch */
1471 		uasm_i_jr(&p, 31);
1472 		UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1473 	}
1474 #else
1475 #ifdef CONFIG_SMP
1476 	/* Save PGD to pgd_current[smp_processor_id()] */
1477 	UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG);
1478 	UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT);
1479 	UASM_i_LA_mostly(&p, a2, pgdc);
1480 	UASM_i_ADDU(&p, a2, a2, a1);
1481 	UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1482 #else
1483 	UASM_i_LA_mostly(&p, a2, pgdc);
1484 	UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1485 #endif /* SMP */
1486 	uasm_i_jr(&p, 31);
1487 
1488 	/* if pgd_reg is allocated, save PGD also to scratch register */
1489 	if (pgd_reg != -1)
1490 		UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1491 	else
1492 		uasm_i_nop(&p);
1493 #endif
1494 	if (p >= tlbmiss_handler_setup_pgd_end)
1495 		panic("tlbmiss_handler_setup_pgd space exceeded");
1496 
1497 	uasm_resolve_relocs(relocs, labels);
1498 	pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1499 		 (unsigned int)(p - tlbmiss_handler_setup_pgd));
1500 
1501 	dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
1502 					tlbmiss_handler_setup_pgd_size);
1503 }
1504 
1505 static void
1506 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1507 {
1508 #ifdef CONFIG_SMP
1509 # ifdef CONFIG_64BIT_PHYS_ADDR
1510 	if (cpu_has_64bits)
1511 		uasm_i_lld(p, pte, 0, ptr);
1512 	else
1513 # endif
1514 		UASM_i_LL(p, pte, 0, ptr);
1515 #else
1516 # ifdef CONFIG_64BIT_PHYS_ADDR
1517 	if (cpu_has_64bits)
1518 		uasm_i_ld(p, pte, 0, ptr);
1519 	else
1520 # endif
1521 		UASM_i_LW(p, pte, 0, ptr);
1522 #endif
1523 }
1524 
1525 static void
1526 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1527 	unsigned int mode)
1528 {
1529 #ifdef CONFIG_64BIT_PHYS_ADDR
1530 	unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1531 #endif
1532 
1533 	uasm_i_ori(p, pte, pte, mode);
1534 #ifdef CONFIG_SMP
1535 # ifdef CONFIG_64BIT_PHYS_ADDR
1536 	if (cpu_has_64bits)
1537 		uasm_i_scd(p, pte, 0, ptr);
1538 	else
1539 # endif
1540 		UASM_i_SC(p, pte, 0, ptr);
1541 
1542 	if (r10000_llsc_war())
1543 		uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1544 	else
1545 		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1546 
1547 # ifdef CONFIG_64BIT_PHYS_ADDR
1548 	if (!cpu_has_64bits) {
1549 		/* no uasm_i_nop needed */
1550 		uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1551 		uasm_i_ori(p, pte, pte, hwmode);
1552 		uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1553 		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1554 		/* no uasm_i_nop needed */
1555 		uasm_i_lw(p, pte, 0, ptr);
1556 	} else
1557 		uasm_i_nop(p);
1558 # else
1559 	uasm_i_nop(p);
1560 # endif
1561 #else
1562 # ifdef CONFIG_64BIT_PHYS_ADDR
1563 	if (cpu_has_64bits)
1564 		uasm_i_sd(p, pte, 0, ptr);
1565 	else
1566 # endif
1567 		UASM_i_SW(p, pte, 0, ptr);
1568 
1569 # ifdef CONFIG_64BIT_PHYS_ADDR
1570 	if (!cpu_has_64bits) {
1571 		uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1572 		uasm_i_ori(p, pte, pte, hwmode);
1573 		uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1574 		uasm_i_lw(p, pte, 0, ptr);
1575 	}
1576 # endif
1577 #endif
1578 }
1579 
1580 /*
1581  * Check if PTE is present, if not then jump to LABEL. PTR points to
1582  * the page table where this PTE is located, PTE will be re-loaded
1583  * with it's original value.
1584  */
1585 static void
1586 build_pte_present(u32 **p, struct uasm_reloc **r,
1587 		  int pte, int ptr, int scratch, enum label_id lid)
1588 {
1589 	int t = scratch >= 0 ? scratch : pte;
1590 
1591 	if (cpu_has_rixi) {
1592 		if (use_bbit_insns()) {
1593 			uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1594 			uasm_i_nop(p);
1595 		} else {
1596 			uasm_i_andi(p, t, pte, _PAGE_PRESENT);
1597 			uasm_il_beqz(p, r, t, lid);
1598 			if (pte == t)
1599 				/* You lose the SMP race :-(*/
1600 				iPTE_LW(p, pte, ptr);
1601 		}
1602 	} else {
1603 		uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ);
1604 		uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ);
1605 		uasm_il_bnez(p, r, t, lid);
1606 		if (pte == t)
1607 			/* You lose the SMP race :-(*/
1608 			iPTE_LW(p, pte, ptr);
1609 	}
1610 }
1611 
1612 /* Make PTE valid, store result in PTR. */
1613 static void
1614 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1615 		 unsigned int ptr)
1616 {
1617 	unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1618 
1619 	iPTE_SW(p, r, pte, ptr, mode);
1620 }
1621 
1622 /*
1623  * Check if PTE can be written to, if not branch to LABEL. Regardless
1624  * restore PTE with value from PTR when done.
1625  */
1626 static void
1627 build_pte_writable(u32 **p, struct uasm_reloc **r,
1628 		   unsigned int pte, unsigned int ptr, int scratch,
1629 		   enum label_id lid)
1630 {
1631 	int t = scratch >= 0 ? scratch : pte;
1632 
1633 	uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE);
1634 	uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE);
1635 	uasm_il_bnez(p, r, t, lid);
1636 	if (pte == t)
1637 		/* You lose the SMP race :-(*/
1638 		iPTE_LW(p, pte, ptr);
1639 	else
1640 		uasm_i_nop(p);
1641 }
1642 
1643 /* Make PTE writable, update software status bits as well, then store
1644  * at PTR.
1645  */
1646 static void
1647 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1648 		 unsigned int ptr)
1649 {
1650 	unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1651 			     | _PAGE_DIRTY);
1652 
1653 	iPTE_SW(p, r, pte, ptr, mode);
1654 }
1655 
1656 /*
1657  * Check if PTE can be modified, if not branch to LABEL. Regardless
1658  * restore PTE with value from PTR when done.
1659  */
1660 static void
1661 build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1662 		     unsigned int pte, unsigned int ptr, int scratch,
1663 		     enum label_id lid)
1664 {
1665 	if (use_bbit_insns()) {
1666 		uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1667 		uasm_i_nop(p);
1668 	} else {
1669 		int t = scratch >= 0 ? scratch : pte;
1670 		uasm_i_andi(p, t, pte, _PAGE_WRITE);
1671 		uasm_il_beqz(p, r, t, lid);
1672 		if (pte == t)
1673 			/* You lose the SMP race :-(*/
1674 			iPTE_LW(p, pte, ptr);
1675 	}
1676 }
1677 
1678 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1679 
1680 
1681 /*
1682  * R3000 style TLB load/store/modify handlers.
1683  */
1684 
1685 /*
1686  * This places the pte into ENTRYLO0 and writes it with tlbwi.
1687  * Then it returns.
1688  */
1689 static void
1690 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1691 {
1692 	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1693 	uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1694 	uasm_i_tlbwi(p);
1695 	uasm_i_jr(p, tmp);
1696 	uasm_i_rfe(p); /* branch delay */
1697 }
1698 
1699 /*
1700  * This places the pte into ENTRYLO0 and writes it with tlbwi
1701  * or tlbwr as appropriate.  This is because the index register
1702  * may have the probe fail bit set as a result of a trap on a
1703  * kseg2 access, i.e. without refill.  Then it returns.
1704  */
1705 static void
1706 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1707 			     struct uasm_reloc **r, unsigned int pte,
1708 			     unsigned int tmp)
1709 {
1710 	uasm_i_mfc0(p, tmp, C0_INDEX);
1711 	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1712 	uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1713 	uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1714 	uasm_i_tlbwi(p); /* cp0 delay */
1715 	uasm_i_jr(p, tmp);
1716 	uasm_i_rfe(p); /* branch delay */
1717 	uasm_l_r3000_write_probe_fail(l, *p);
1718 	uasm_i_tlbwr(p); /* cp0 delay */
1719 	uasm_i_jr(p, tmp);
1720 	uasm_i_rfe(p); /* branch delay */
1721 }
1722 
1723 static void
1724 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1725 				   unsigned int ptr)
1726 {
1727 	long pgdc = (long)pgd_current;
1728 
1729 	uasm_i_mfc0(p, pte, C0_BADVADDR);
1730 	uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1731 	uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1732 	uasm_i_srl(p, pte, pte, 22); /* load delay */
1733 	uasm_i_sll(p, pte, pte, 2);
1734 	uasm_i_addu(p, ptr, ptr, pte);
1735 	uasm_i_mfc0(p, pte, C0_CONTEXT);
1736 	uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1737 	uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1738 	uasm_i_addu(p, ptr, ptr, pte);
1739 	uasm_i_lw(p, pte, 0, ptr);
1740 	uasm_i_tlbp(p); /* load delay */
1741 }
1742 
1743 static void build_r3000_tlb_load_handler(void)
1744 {
1745 	u32 *p = handle_tlbl;
1746 	const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1747 	struct uasm_label *l = labels;
1748 	struct uasm_reloc *r = relocs;
1749 
1750 	memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1751 	memset(labels, 0, sizeof(labels));
1752 	memset(relocs, 0, sizeof(relocs));
1753 
1754 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1755 	build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1756 	uasm_i_nop(&p); /* load delay */
1757 	build_make_valid(&p, &r, K0, K1);
1758 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1759 
1760 	uasm_l_nopage_tlbl(&l, p);
1761 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1762 	uasm_i_nop(&p);
1763 
1764 	if (p >= handle_tlbl_end)
1765 		panic("TLB load handler fastpath space exceeded");
1766 
1767 	uasm_resolve_relocs(relocs, labels);
1768 	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1769 		 (unsigned int)(p - handle_tlbl));
1770 
1771 	dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_size);
1772 }
1773 
1774 static void build_r3000_tlb_store_handler(void)
1775 {
1776 	u32 *p = handle_tlbs;
1777 	const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
1778 	struct uasm_label *l = labels;
1779 	struct uasm_reloc *r = relocs;
1780 
1781 	memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
1782 	memset(labels, 0, sizeof(labels));
1783 	memset(relocs, 0, sizeof(relocs));
1784 
1785 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1786 	build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1787 	uasm_i_nop(&p); /* load delay */
1788 	build_make_write(&p, &r, K0, K1);
1789 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1790 
1791 	uasm_l_nopage_tlbs(&l, p);
1792 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1793 	uasm_i_nop(&p);
1794 
1795 	if (p >= handle_tlbs_end)
1796 		panic("TLB store handler fastpath space exceeded");
1797 
1798 	uasm_resolve_relocs(relocs, labels);
1799 	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1800 		 (unsigned int)(p - handle_tlbs));
1801 
1802 	dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_size);
1803 }
1804 
1805 static void build_r3000_tlb_modify_handler(void)
1806 {
1807 	u32 *p = handle_tlbm;
1808 	const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
1809 	struct uasm_label *l = labels;
1810 	struct uasm_reloc *r = relocs;
1811 
1812 	memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
1813 	memset(labels, 0, sizeof(labels));
1814 	memset(relocs, 0, sizeof(relocs));
1815 
1816 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1817 	build_pte_modifiable(&p, &r, K0, K1,  -1, label_nopage_tlbm);
1818 	uasm_i_nop(&p); /* load delay */
1819 	build_make_write(&p, &r, K0, K1);
1820 	build_r3000_pte_reload_tlbwi(&p, K0, K1);
1821 
1822 	uasm_l_nopage_tlbm(&l, p);
1823 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1824 	uasm_i_nop(&p);
1825 
1826 	if (p >= handle_tlbm_end)
1827 		panic("TLB modify handler fastpath space exceeded");
1828 
1829 	uasm_resolve_relocs(relocs, labels);
1830 	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1831 		 (unsigned int)(p - handle_tlbm));
1832 
1833 	dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_size);
1834 }
1835 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1836 
1837 /*
1838  * R4000 style TLB load/store/modify handlers.
1839  */
1840 static struct work_registers
1841 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1842 				   struct uasm_reloc **r)
1843 {
1844 	struct work_registers wr = build_get_work_registers(p);
1845 
1846 #ifdef CONFIG_64BIT
1847 	build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
1848 #else
1849 	build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
1850 #endif
1851 
1852 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1853 	/*
1854 	 * For huge tlb entries, pmd doesn't contain an address but
1855 	 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1856 	 * see if we need to jump to huge tlb processing.
1857 	 */
1858 	build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
1859 #endif
1860 
1861 	UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
1862 	UASM_i_LW(p, wr.r2, 0, wr.r2);
1863 	UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1864 	uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1865 	UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
1866 
1867 #ifdef CONFIG_SMP
1868 	uasm_l_smp_pgtable_change(l, *p);
1869 #endif
1870 	iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
1871 	if (!m4kc_tlbp_war())
1872 		build_tlb_probe_entry(p);
1873 	return wr;
1874 }
1875 
1876 static void
1877 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1878 				   struct uasm_reloc **r, unsigned int tmp,
1879 				   unsigned int ptr)
1880 {
1881 	uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1882 	uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1883 	build_update_entries(p, tmp, ptr);
1884 	build_tlb_write_entry(p, l, r, tlb_indexed);
1885 	uasm_l_leave(l, *p);
1886 	build_restore_work_registers(p);
1887 	uasm_i_eret(p); /* return from trap */
1888 
1889 #ifdef CONFIG_64BIT
1890 	build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
1891 #endif
1892 }
1893 
1894 static void build_r4000_tlb_load_handler(void)
1895 {
1896 	u32 *p = handle_tlbl;
1897 	const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1898 	struct uasm_label *l = labels;
1899 	struct uasm_reloc *r = relocs;
1900 	struct work_registers wr;
1901 
1902 	memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1903 	memset(labels, 0, sizeof(labels));
1904 	memset(relocs, 0, sizeof(relocs));
1905 
1906 	if (bcm1250_m3_war()) {
1907 		unsigned int segbits = 44;
1908 
1909 		uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1910 		uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1911 		uasm_i_xor(&p, K0, K0, K1);
1912 		uasm_i_dsrl_safe(&p, K1, K0, 62);
1913 		uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1914 		uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1915 		uasm_i_or(&p, K0, K0, K1);
1916 		uasm_il_bnez(&p, &r, K0, label_leave);
1917 		/* No need for uasm_i_nop */
1918 	}
1919 
1920 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
1921 	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1922 	if (m4kc_tlbp_war())
1923 		build_tlb_probe_entry(&p);
1924 
1925 	if (cpu_has_rixi && !cpu_has_rixiex) {
1926 		/*
1927 		 * If the page is not _PAGE_VALID, RI or XI could not
1928 		 * have triggered it.  Skip the expensive test..
1929 		 */
1930 		if (use_bbit_insns()) {
1931 			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1932 				      label_tlbl_goaround1);
1933 		} else {
1934 			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1935 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
1936 		}
1937 		uasm_i_nop(&p);
1938 
1939 		uasm_i_tlbr(&p);
1940 
1941 		switch (current_cpu_type()) {
1942 		default:
1943 			if (cpu_has_mips_r2) {
1944 				uasm_i_ehb(&p);
1945 
1946 		case CPU_CAVIUM_OCTEON:
1947 		case CPU_CAVIUM_OCTEON_PLUS:
1948 		case CPU_CAVIUM_OCTEON2:
1949 				break;
1950 			}
1951 		}
1952 
1953 		/* Examine  entrylo 0 or 1 based on ptr. */
1954 		if (use_bbit_insns()) {
1955 			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1956 		} else {
1957 			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1958 			uasm_i_beqz(&p, wr.r3, 8);
1959 		}
1960 		/* load it in the delay slot*/
1961 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1962 		/* load it if ptr is odd */
1963 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1964 		/*
1965 		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1966 		 * XI must have triggered it.
1967 		 */
1968 		if (use_bbit_insns()) {
1969 			uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
1970 			uasm_i_nop(&p);
1971 			uasm_l_tlbl_goaround1(&l, p);
1972 		} else {
1973 			uasm_i_andi(&p, wr.r3, wr.r3, 2);
1974 			uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
1975 			uasm_i_nop(&p);
1976 		}
1977 		uasm_l_tlbl_goaround1(&l, p);
1978 	}
1979 	build_make_valid(&p, &r, wr.r1, wr.r2);
1980 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
1981 
1982 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1983 	/*
1984 	 * This is the entry point when build_r4000_tlbchange_handler_head
1985 	 * spots a huge page.
1986 	 */
1987 	uasm_l_tlb_huge_update(&l, p);
1988 	iPTE_LW(&p, wr.r1, wr.r2);
1989 	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1990 	build_tlb_probe_entry(&p);
1991 
1992 	if (cpu_has_rixi && !cpu_has_rixiex) {
1993 		/*
1994 		 * If the page is not _PAGE_VALID, RI or XI could not
1995 		 * have triggered it.  Skip the expensive test..
1996 		 */
1997 		if (use_bbit_insns()) {
1998 			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1999 				      label_tlbl_goaround2);
2000 		} else {
2001 			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2002 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2003 		}
2004 		uasm_i_nop(&p);
2005 
2006 		uasm_i_tlbr(&p);
2007 
2008 		switch (current_cpu_type()) {
2009 		default:
2010 			if (cpu_has_mips_r2) {
2011 				uasm_i_ehb(&p);
2012 
2013 		case CPU_CAVIUM_OCTEON:
2014 		case CPU_CAVIUM_OCTEON_PLUS:
2015 		case CPU_CAVIUM_OCTEON2:
2016 				break;
2017 			}
2018 		}
2019 
2020 		/* Examine  entrylo 0 or 1 based on ptr. */
2021 		if (use_bbit_insns()) {
2022 			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2023 		} else {
2024 			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2025 			uasm_i_beqz(&p, wr.r3, 8);
2026 		}
2027 		/* load it in the delay slot*/
2028 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2029 		/* load it if ptr is odd */
2030 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2031 		/*
2032 		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2033 		 * XI must have triggered it.
2034 		 */
2035 		if (use_bbit_insns()) {
2036 			uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2037 		} else {
2038 			uasm_i_andi(&p, wr.r3, wr.r3, 2);
2039 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2040 		}
2041 		if (PM_DEFAULT_MASK == 0)
2042 			uasm_i_nop(&p);
2043 		/*
2044 		 * We clobbered C0_PAGEMASK, restore it.  On the other branch
2045 		 * it is restored in build_huge_tlb_write_entry.
2046 		 */
2047 		build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2048 
2049 		uasm_l_tlbl_goaround2(&l, p);
2050 	}
2051 	uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2052 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2053 #endif
2054 
2055 	uasm_l_nopage_tlbl(&l, p);
2056 	build_restore_work_registers(&p);
2057 #ifdef CONFIG_CPU_MICROMIPS
2058 	if ((unsigned long)tlb_do_page_fault_0 & 1) {
2059 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2060 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2061 		uasm_i_jr(&p, K0);
2062 	} else
2063 #endif
2064 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2065 	uasm_i_nop(&p);
2066 
2067 	if (p >= handle_tlbl_end)
2068 		panic("TLB load handler fastpath space exceeded");
2069 
2070 	uasm_resolve_relocs(relocs, labels);
2071 	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2072 		 (unsigned int)(p - handle_tlbl));
2073 
2074 	dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_size);
2075 }
2076 
2077 static void build_r4000_tlb_store_handler(void)
2078 {
2079 	u32 *p = handle_tlbs;
2080 	const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
2081 	struct uasm_label *l = labels;
2082 	struct uasm_reloc *r = relocs;
2083 	struct work_registers wr;
2084 
2085 	memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
2086 	memset(labels, 0, sizeof(labels));
2087 	memset(relocs, 0, sizeof(relocs));
2088 
2089 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2090 	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2091 	if (m4kc_tlbp_war())
2092 		build_tlb_probe_entry(&p);
2093 	build_make_write(&p, &r, wr.r1, wr.r2);
2094 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2095 
2096 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2097 	/*
2098 	 * This is the entry point when
2099 	 * build_r4000_tlbchange_handler_head spots a huge page.
2100 	 */
2101 	uasm_l_tlb_huge_update(&l, p);
2102 	iPTE_LW(&p, wr.r1, wr.r2);
2103 	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2104 	build_tlb_probe_entry(&p);
2105 	uasm_i_ori(&p, wr.r1, wr.r1,
2106 		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2107 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2108 #endif
2109 
2110 	uasm_l_nopage_tlbs(&l, p);
2111 	build_restore_work_registers(&p);
2112 #ifdef CONFIG_CPU_MICROMIPS
2113 	if ((unsigned long)tlb_do_page_fault_1 & 1) {
2114 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2115 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2116 		uasm_i_jr(&p, K0);
2117 	} else
2118 #endif
2119 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2120 	uasm_i_nop(&p);
2121 
2122 	if (p >= handle_tlbs_end)
2123 		panic("TLB store handler fastpath space exceeded");
2124 
2125 	uasm_resolve_relocs(relocs, labels);
2126 	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2127 		 (unsigned int)(p - handle_tlbs));
2128 
2129 	dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_size);
2130 }
2131 
2132 static void build_r4000_tlb_modify_handler(void)
2133 {
2134 	u32 *p = handle_tlbm;
2135 	const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
2136 	struct uasm_label *l = labels;
2137 	struct uasm_reloc *r = relocs;
2138 	struct work_registers wr;
2139 
2140 	memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
2141 	memset(labels, 0, sizeof(labels));
2142 	memset(relocs, 0, sizeof(relocs));
2143 
2144 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2145 	build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2146 	if (m4kc_tlbp_war())
2147 		build_tlb_probe_entry(&p);
2148 	/* Present and writable bits set, set accessed and dirty bits. */
2149 	build_make_write(&p, &r, wr.r1, wr.r2);
2150 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2151 
2152 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2153 	/*
2154 	 * This is the entry point when
2155 	 * build_r4000_tlbchange_handler_head spots a huge page.
2156 	 */
2157 	uasm_l_tlb_huge_update(&l, p);
2158 	iPTE_LW(&p, wr.r1, wr.r2);
2159 	build_pte_modifiable(&p, &r, wr.r1, wr.r2,  wr.r3, label_nopage_tlbm);
2160 	build_tlb_probe_entry(&p);
2161 	uasm_i_ori(&p, wr.r1, wr.r1,
2162 		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2163 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2164 #endif
2165 
2166 	uasm_l_nopage_tlbm(&l, p);
2167 	build_restore_work_registers(&p);
2168 #ifdef CONFIG_CPU_MICROMIPS
2169 	if ((unsigned long)tlb_do_page_fault_1 & 1) {
2170 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2171 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2172 		uasm_i_jr(&p, K0);
2173 	} else
2174 #endif
2175 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2176 	uasm_i_nop(&p);
2177 
2178 	if (p >= handle_tlbm_end)
2179 		panic("TLB modify handler fastpath space exceeded");
2180 
2181 	uasm_resolve_relocs(relocs, labels);
2182 	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2183 		 (unsigned int)(p - handle_tlbm));
2184 
2185 	dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_size);
2186 }
2187 
2188 static void flush_tlb_handlers(void)
2189 {
2190 	local_flush_icache_range((unsigned long)handle_tlbl,
2191 			   (unsigned long)handle_tlbl_end);
2192 	local_flush_icache_range((unsigned long)handle_tlbs,
2193 			   (unsigned long)handle_tlbs_end);
2194 	local_flush_icache_range((unsigned long)handle_tlbm,
2195 			   (unsigned long)handle_tlbm_end);
2196 	local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2197 			   (unsigned long)tlbmiss_handler_setup_pgd_end);
2198 }
2199 
2200 static void print_htw_config(void)
2201 {
2202 	unsigned long config;
2203 	unsigned int pwctl;
2204 	const int field = 2 * sizeof(unsigned long);
2205 
2206 	config = read_c0_pwfield();
2207 	pr_debug("PWField (0x%0*lx): GDI: 0x%02lx  UDI: 0x%02lx  MDI: 0x%02lx  PTI: 0x%02lx  PTEI: 0x%02lx\n",
2208 		field, config,
2209 		(config & MIPS_PWFIELD_GDI_MASK) >> MIPS_PWFIELD_GDI_SHIFT,
2210 		(config & MIPS_PWFIELD_UDI_MASK) >> MIPS_PWFIELD_UDI_SHIFT,
2211 		(config & MIPS_PWFIELD_MDI_MASK) >> MIPS_PWFIELD_MDI_SHIFT,
2212 		(config & MIPS_PWFIELD_PTI_MASK) >> MIPS_PWFIELD_PTI_SHIFT,
2213 		(config & MIPS_PWFIELD_PTEI_MASK) >> MIPS_PWFIELD_PTEI_SHIFT);
2214 
2215 	config = read_c0_pwsize();
2216 	pr_debug("PWSize  (0x%0*lx): GDW: 0x%02lx  UDW: 0x%02lx  MDW: 0x%02lx  PTW: 0x%02lx  PTEW: 0x%02lx\n",
2217 		field, config,
2218 		(config & MIPS_PWSIZE_GDW_MASK) >> MIPS_PWSIZE_GDW_SHIFT,
2219 		(config & MIPS_PWSIZE_UDW_MASK) >> MIPS_PWSIZE_UDW_SHIFT,
2220 		(config & MIPS_PWSIZE_MDW_MASK) >> MIPS_PWSIZE_MDW_SHIFT,
2221 		(config & MIPS_PWSIZE_PTW_MASK) >> MIPS_PWSIZE_PTW_SHIFT,
2222 		(config & MIPS_PWSIZE_PTEW_MASK) >> MIPS_PWSIZE_PTEW_SHIFT);
2223 
2224 	pwctl = read_c0_pwctl();
2225 	pr_debug("PWCtl   (0x%x): PWEn: 0x%x  DPH: 0x%x  HugePg: 0x%x  Psn: 0x%x\n",
2226 		pwctl,
2227 		(pwctl & MIPS_PWCTL_PWEN_MASK) >> MIPS_PWCTL_PWEN_SHIFT,
2228 		(pwctl & MIPS_PWCTL_DPH_MASK) >> MIPS_PWCTL_DPH_SHIFT,
2229 		(pwctl & MIPS_PWCTL_HUGEPG_MASK) >> MIPS_PWCTL_HUGEPG_SHIFT,
2230 		(pwctl & MIPS_PWCTL_PSN_MASK) >> MIPS_PWCTL_PSN_SHIFT);
2231 }
2232 
2233 static void config_htw_params(void)
2234 {
2235 	unsigned long pwfield, pwsize, ptei;
2236 	unsigned int config;
2237 
2238 	/*
2239 	 * We are using 2-level page tables, so we only need to
2240 	 * setup GDW and PTW appropriately. UDW and MDW will remain 0.
2241 	 * The default value of GDI/UDI/MDI/PTI is 0xc. It is illegal to
2242 	 * write values less than 0xc in these fields because the entire
2243 	 * write will be dropped. As a result of which, we must preserve
2244 	 * the original reset values and overwrite only what we really want.
2245 	 */
2246 
2247 	pwfield = read_c0_pwfield();
2248 	/* re-initialize the GDI field */
2249 	pwfield &= ~MIPS_PWFIELD_GDI_MASK;
2250 	pwfield |= PGDIR_SHIFT << MIPS_PWFIELD_GDI_SHIFT;
2251 	/* re-initialize the PTI field including the even/odd bit */
2252 	pwfield &= ~MIPS_PWFIELD_PTI_MASK;
2253 	pwfield |= PAGE_SHIFT << MIPS_PWFIELD_PTI_SHIFT;
2254 	/* Set the PTEI right shift */
2255 	ptei = _PAGE_GLOBAL_SHIFT << MIPS_PWFIELD_PTEI_SHIFT;
2256 	pwfield |= ptei;
2257 	write_c0_pwfield(pwfield);
2258 	/* Check whether the PTEI value is supported */
2259 	back_to_back_c0_hazard();
2260 	pwfield = read_c0_pwfield();
2261 	if (((pwfield & MIPS_PWFIELD_PTEI_MASK) << MIPS_PWFIELD_PTEI_SHIFT)
2262 		!= ptei) {
2263 		pr_warn("Unsupported PTEI field value: 0x%lx. HTW will not be enabled",
2264 			ptei);
2265 		/*
2266 		 * Drop option to avoid HTW being enabled via another path
2267 		 * (eg htw_reset())
2268 		 */
2269 		current_cpu_data.options &= ~MIPS_CPU_HTW;
2270 		return;
2271 	}
2272 
2273 	pwsize = ilog2(PTRS_PER_PGD) << MIPS_PWSIZE_GDW_SHIFT;
2274 	pwsize |= ilog2(PTRS_PER_PTE) << MIPS_PWSIZE_PTW_SHIFT;
2275 	write_c0_pwsize(pwsize);
2276 
2277 	/* Make sure everything is set before we enable the HTW */
2278 	back_to_back_c0_hazard();
2279 
2280 	/* Enable HTW and disable the rest of the pwctl fields */
2281 	config = 1 << MIPS_PWCTL_PWEN_SHIFT;
2282 	write_c0_pwctl(config);
2283 	pr_info("Hardware Page Table Walker enabled\n");
2284 
2285 	print_htw_config();
2286 }
2287 
2288 void build_tlb_refill_handler(void)
2289 {
2290 	/*
2291 	 * The refill handler is generated per-CPU, multi-node systems
2292 	 * may have local storage for it. The other handlers are only
2293 	 * needed once.
2294 	 */
2295 	static int run_once = 0;
2296 
2297 	output_pgtable_bits_defines();
2298 
2299 #ifdef CONFIG_64BIT
2300 	check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2301 #endif
2302 
2303 	switch (current_cpu_type()) {
2304 	case CPU_R2000:
2305 	case CPU_R3000:
2306 	case CPU_R3000A:
2307 	case CPU_R3081E:
2308 	case CPU_TX3912:
2309 	case CPU_TX3922:
2310 	case CPU_TX3927:
2311 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2312 		if (cpu_has_local_ebase)
2313 			build_r3000_tlb_refill_handler();
2314 		if (!run_once) {
2315 			if (!cpu_has_local_ebase)
2316 				build_r3000_tlb_refill_handler();
2317 			build_setup_pgd();
2318 			build_r3000_tlb_load_handler();
2319 			build_r3000_tlb_store_handler();
2320 			build_r3000_tlb_modify_handler();
2321 			flush_tlb_handlers();
2322 			run_once++;
2323 		}
2324 #else
2325 		panic("No R3000 TLB refill handler");
2326 #endif
2327 		break;
2328 
2329 	case CPU_R6000:
2330 	case CPU_R6000A:
2331 		panic("No R6000 TLB refill handler yet");
2332 		break;
2333 
2334 	case CPU_R8000:
2335 		panic("No R8000 TLB refill handler yet");
2336 		break;
2337 
2338 	default:
2339 		if (!run_once) {
2340 			scratch_reg = allocate_kscratch();
2341 			build_setup_pgd();
2342 			build_r4000_tlb_load_handler();
2343 			build_r4000_tlb_store_handler();
2344 			build_r4000_tlb_modify_handler();
2345 			if (!cpu_has_local_ebase)
2346 				build_r4000_tlb_refill_handler();
2347 			flush_tlb_handlers();
2348 			run_once++;
2349 		}
2350 		if (cpu_has_local_ebase)
2351 			build_r4000_tlb_refill_handler();
2352 		if (cpu_has_htw)
2353 			config_htw_params();
2354 
2355 	}
2356 }
2357