xref: /openbmc/linux/arch/mips/mm/tlbex.c (revision 5bd8e16d)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Synthesize TLB refill handlers at runtime.
7  *
8  * Copyright (C) 2004, 2005, 2006, 2008	 Thiemo Seufer
9  * Copyright (C) 2005, 2007, 2008, 2009	 Maciej W. Rozycki
10  * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
11  * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12  * Copyright (C) 2011  MIPS Technologies, Inc.
13  *
14  * ... and the days got worse and worse and now you see
15  * I've gone completly out of my mind.
16  *
17  * They're coming to take me a away haha
18  * they're coming to take me a away hoho hihi haha
19  * to the funny farm where code is beautiful all the time ...
20  *
21  * (Condolences to Napoleon XIV)
22  */
23 
24 #include <linux/bug.h>
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/smp.h>
28 #include <linux/string.h>
29 #include <linux/init.h>
30 #include <linux/cache.h>
31 
32 #include <asm/cacheflush.h>
33 #include <asm/cpu-type.h>
34 #include <asm/pgtable.h>
35 #include <asm/war.h>
36 #include <asm/uasm.h>
37 #include <asm/setup.h>
38 
39 /*
40  * TLB load/store/modify handlers.
41  *
42  * Only the fastpath gets synthesized at runtime, the slowpath for
43  * do_page_fault remains normal asm.
44  */
45 extern void tlb_do_page_fault_0(void);
46 extern void tlb_do_page_fault_1(void);
47 
48 struct work_registers {
49 	int r1;
50 	int r2;
51 	int r3;
52 };
53 
54 struct tlb_reg_save {
55 	unsigned long a;
56 	unsigned long b;
57 } ____cacheline_aligned_in_smp;
58 
59 static struct tlb_reg_save handler_reg_save[NR_CPUS];
60 
61 static inline int r45k_bvahwbug(void)
62 {
63 	/* XXX: We should probe for the presence of this bug, but we don't. */
64 	return 0;
65 }
66 
67 static inline int r4k_250MHZhwbug(void)
68 {
69 	/* XXX: We should probe for the presence of this bug, but we don't. */
70 	return 0;
71 }
72 
73 static inline int __maybe_unused bcm1250_m3_war(void)
74 {
75 	return BCM1250_M3_WAR;
76 }
77 
78 static inline int __maybe_unused r10000_llsc_war(void)
79 {
80 	return R10000_LLSC_WAR;
81 }
82 
83 static int use_bbit_insns(void)
84 {
85 	switch (current_cpu_type()) {
86 	case CPU_CAVIUM_OCTEON:
87 	case CPU_CAVIUM_OCTEON_PLUS:
88 	case CPU_CAVIUM_OCTEON2:
89 	case CPU_CAVIUM_OCTEON3:
90 		return 1;
91 	default:
92 		return 0;
93 	}
94 }
95 
96 static int use_lwx_insns(void)
97 {
98 	switch (current_cpu_type()) {
99 	case CPU_CAVIUM_OCTEON2:
100 	case CPU_CAVIUM_OCTEON3:
101 		return 1;
102 	default:
103 		return 0;
104 	}
105 }
106 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
107     CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
108 static bool scratchpad_available(void)
109 {
110 	return true;
111 }
112 static int scratchpad_offset(int i)
113 {
114 	/*
115 	 * CVMSEG starts at address -32768 and extends for
116 	 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
117 	 */
118 	i += 1; /* Kernel use starts at the top and works down. */
119 	return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
120 }
121 #else
122 static bool scratchpad_available(void)
123 {
124 	return false;
125 }
126 static int scratchpad_offset(int i)
127 {
128 	BUG();
129 	/* Really unreachable, but evidently some GCC want this. */
130 	return 0;
131 }
132 #endif
133 /*
134  * Found by experiment: At least some revisions of the 4kc throw under
135  * some circumstances a machine check exception, triggered by invalid
136  * values in the index register.  Delaying the tlbp instruction until
137  * after the next branch,  plus adding an additional nop in front of
138  * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
139  * why; it's not an issue caused by the core RTL.
140  *
141  */
142 static int m4kc_tlbp_war(void)
143 {
144 	return (current_cpu_data.processor_id & 0xffff00) ==
145 	       (PRID_COMP_MIPS | PRID_IMP_4KC);
146 }
147 
148 /* Handle labels (which must be positive integers). */
149 enum label_id {
150 	label_second_part = 1,
151 	label_leave,
152 	label_vmalloc,
153 	label_vmalloc_done,
154 	label_tlbw_hazard_0,
155 	label_split = label_tlbw_hazard_0 + 8,
156 	label_tlbl_goaround1,
157 	label_tlbl_goaround2,
158 	label_nopage_tlbl,
159 	label_nopage_tlbs,
160 	label_nopage_tlbm,
161 	label_smp_pgtable_change,
162 	label_r3000_write_probe_fail,
163 	label_large_segbits_fault,
164 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
165 	label_tlb_huge_update,
166 #endif
167 };
168 
169 UASM_L_LA(_second_part)
170 UASM_L_LA(_leave)
171 UASM_L_LA(_vmalloc)
172 UASM_L_LA(_vmalloc_done)
173 /* _tlbw_hazard_x is handled differently.  */
174 UASM_L_LA(_split)
175 UASM_L_LA(_tlbl_goaround1)
176 UASM_L_LA(_tlbl_goaround2)
177 UASM_L_LA(_nopage_tlbl)
178 UASM_L_LA(_nopage_tlbs)
179 UASM_L_LA(_nopage_tlbm)
180 UASM_L_LA(_smp_pgtable_change)
181 UASM_L_LA(_r3000_write_probe_fail)
182 UASM_L_LA(_large_segbits_fault)
183 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
184 UASM_L_LA(_tlb_huge_update)
185 #endif
186 
187 static int hazard_instance;
188 
189 static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
190 {
191 	switch (instance) {
192 	case 0 ... 7:
193 		uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
194 		return;
195 	default:
196 		BUG();
197 	}
198 }
199 
200 static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
201 {
202 	switch (instance) {
203 	case 0 ... 7:
204 		uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
205 		break;
206 	default:
207 		BUG();
208 	}
209 }
210 
211 /*
212  * pgtable bits are assigned dynamically depending on processor feature
213  * and statically based on kernel configuration.  This spits out the actual
214  * values the kernel is using.	Required to make sense from disassembled
215  * TLB exception handlers.
216  */
217 static void output_pgtable_bits_defines(void)
218 {
219 #define pr_define(fmt, ...)					\
220 	pr_debug("#define " fmt, ##__VA_ARGS__)
221 
222 	pr_debug("#include <asm/asm.h>\n");
223 	pr_debug("#include <asm/regdef.h>\n");
224 	pr_debug("\n");
225 
226 	pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
227 	pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT);
228 	pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
229 	pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
230 	pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
231 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
232 	pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
233 	pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT);
234 #endif
235 	if (cpu_has_rixi) {
236 #ifdef _PAGE_NO_EXEC_SHIFT
237 		pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
238 #endif
239 #ifdef _PAGE_NO_READ_SHIFT
240 		pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
241 #endif
242 	}
243 	pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
244 	pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
245 	pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
246 	pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
247 	pr_debug("\n");
248 }
249 
250 static inline void dump_handler(const char *symbol, const u32 *handler, int count)
251 {
252 	int i;
253 
254 	pr_debug("LEAF(%s)\n", symbol);
255 
256 	pr_debug("\t.set push\n");
257 	pr_debug("\t.set noreorder\n");
258 
259 	for (i = 0; i < count; i++)
260 		pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
261 
262 	pr_debug("\t.set\tpop\n");
263 
264 	pr_debug("\tEND(%s)\n", symbol);
265 }
266 
267 /* The only general purpose registers allowed in TLB handlers. */
268 #define K0		26
269 #define K1		27
270 
271 /* Some CP0 registers */
272 #define C0_INDEX	0, 0
273 #define C0_ENTRYLO0	2, 0
274 #define C0_TCBIND	2, 2
275 #define C0_ENTRYLO1	3, 0
276 #define C0_CONTEXT	4, 0
277 #define C0_PAGEMASK	5, 0
278 #define C0_BADVADDR	8, 0
279 #define C0_ENTRYHI	10, 0
280 #define C0_EPC		14, 0
281 #define C0_XCONTEXT	20, 0
282 
283 #ifdef CONFIG_64BIT
284 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
285 #else
286 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
287 #endif
288 
289 /* The worst case length of the handler is around 18 instructions for
290  * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
291  * Maximum space available is 32 instructions for R3000 and 64
292  * instructions for R4000.
293  *
294  * We deliberately chose a buffer size of 128, so we won't scribble
295  * over anything important on overflow before we panic.
296  */
297 static u32 tlb_handler[128];
298 
299 /* simply assume worst case size for labels and relocs */
300 static struct uasm_label labels[128];
301 static struct uasm_reloc relocs[128];
302 
303 static int check_for_high_segbits;
304 
305 static unsigned int kscratch_used_mask;
306 
307 static inline int __maybe_unused c0_kscratch(void)
308 {
309 	switch (current_cpu_type()) {
310 	case CPU_XLP:
311 	case CPU_XLR:
312 		return 22;
313 	default:
314 		return 31;
315 	}
316 }
317 
318 static int allocate_kscratch(void)
319 {
320 	int r;
321 	unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
322 
323 	r = ffs(a);
324 
325 	if (r == 0)
326 		return -1;
327 
328 	r--; /* make it zero based */
329 
330 	kscratch_used_mask |= (1 << r);
331 
332 	return r;
333 }
334 
335 static int scratch_reg;
336 static int pgd_reg;
337 enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
338 
339 static struct work_registers build_get_work_registers(u32 **p)
340 {
341 	struct work_registers r;
342 
343 	int smp_processor_id_reg;
344 	int smp_processor_id_sel;
345 	int smp_processor_id_shift;
346 
347 	if (scratch_reg >= 0) {
348 		/* Save in CPU local C0_KScratch? */
349 		UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
350 		r.r1 = K0;
351 		r.r2 = K1;
352 		r.r3 = 1;
353 		return r;
354 	}
355 
356 	if (num_possible_cpus() > 1) {
357 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
358 		smp_processor_id_shift = 51;
359 		smp_processor_id_reg = 20; /* XContext */
360 		smp_processor_id_sel = 0;
361 #else
362 # ifdef CONFIG_32BIT
363 		smp_processor_id_shift = 25;
364 		smp_processor_id_reg = 4; /* Context */
365 		smp_processor_id_sel = 0;
366 # endif
367 # ifdef CONFIG_64BIT
368 		smp_processor_id_shift = 26;
369 		smp_processor_id_reg = 4; /* Context */
370 		smp_processor_id_sel = 0;
371 # endif
372 #endif
373 		/* Get smp_processor_id */
374 		UASM_i_MFC0(p, K0, smp_processor_id_reg, smp_processor_id_sel);
375 		UASM_i_SRL_SAFE(p, K0, K0, smp_processor_id_shift);
376 
377 		/* handler_reg_save index in K0 */
378 		UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
379 
380 		UASM_i_LA(p, K1, (long)&handler_reg_save);
381 		UASM_i_ADDU(p, K0, K0, K1);
382 	} else {
383 		UASM_i_LA(p, K0, (long)&handler_reg_save);
384 	}
385 	/* K0 now points to save area, save $1 and $2  */
386 	UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
387 	UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
388 
389 	r.r1 = K1;
390 	r.r2 = 1;
391 	r.r3 = 2;
392 	return r;
393 }
394 
395 static void build_restore_work_registers(u32 **p)
396 {
397 	if (scratch_reg >= 0) {
398 		UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
399 		return;
400 	}
401 	/* K0 already points to save area, restore $1 and $2  */
402 	UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
403 	UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
404 }
405 
406 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
407 
408 /*
409  * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
410  * we cannot do r3000 under these circumstances.
411  *
412  * Declare pgd_current here instead of including mmu_context.h to avoid type
413  * conflicts for tlbmiss_handler_setup_pgd
414  */
415 extern unsigned long pgd_current[];
416 
417 /*
418  * The R3000 TLB handler is simple.
419  */
420 static void build_r3000_tlb_refill_handler(void)
421 {
422 	long pgdc = (long)pgd_current;
423 	u32 *p;
424 
425 	memset(tlb_handler, 0, sizeof(tlb_handler));
426 	p = tlb_handler;
427 
428 	uasm_i_mfc0(&p, K0, C0_BADVADDR);
429 	uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
430 	uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
431 	uasm_i_srl(&p, K0, K0, 22); /* load delay */
432 	uasm_i_sll(&p, K0, K0, 2);
433 	uasm_i_addu(&p, K1, K1, K0);
434 	uasm_i_mfc0(&p, K0, C0_CONTEXT);
435 	uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
436 	uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
437 	uasm_i_addu(&p, K1, K1, K0);
438 	uasm_i_lw(&p, K0, 0, K1);
439 	uasm_i_nop(&p); /* load delay */
440 	uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
441 	uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
442 	uasm_i_tlbwr(&p); /* cp0 delay */
443 	uasm_i_jr(&p, K1);
444 	uasm_i_rfe(&p); /* branch delay */
445 
446 	if (p > tlb_handler + 32)
447 		panic("TLB refill handler space exceeded");
448 
449 	pr_debug("Wrote TLB refill handler (%u instructions).\n",
450 		 (unsigned int)(p - tlb_handler));
451 
452 	memcpy((void *)ebase, tlb_handler, 0x80);
453 
454 	dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
455 }
456 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
457 
458 /*
459  * The R4000 TLB handler is much more complicated. We have two
460  * consecutive handler areas with 32 instructions space each.
461  * Since they aren't used at the same time, we can overflow in the
462  * other one.To keep things simple, we first assume linear space,
463  * then we relocate it to the final handler layout as needed.
464  */
465 static u32 final_handler[64];
466 
467 /*
468  * Hazards
469  *
470  * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
471  * 2. A timing hazard exists for the TLBP instruction.
472  *
473  *	stalling_instruction
474  *	TLBP
475  *
476  * The JTLB is being read for the TLBP throughout the stall generated by the
477  * previous instruction. This is not really correct as the stalling instruction
478  * can modify the address used to access the JTLB.  The failure symptom is that
479  * the TLBP instruction will use an address created for the stalling instruction
480  * and not the address held in C0_ENHI and thus report the wrong results.
481  *
482  * The software work-around is to not allow the instruction preceding the TLBP
483  * to stall - make it an NOP or some other instruction guaranteed not to stall.
484  *
485  * Errata 2 will not be fixed.	This errata is also on the R5000.
486  *
487  * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
488  */
489 static void __maybe_unused build_tlb_probe_entry(u32 **p)
490 {
491 	switch (current_cpu_type()) {
492 	/* Found by experiment: R4600 v2.0/R4700 needs this, too.  */
493 	case CPU_R4600:
494 	case CPU_R4700:
495 	case CPU_R5000:
496 	case CPU_NEVADA:
497 		uasm_i_nop(p);
498 		uasm_i_tlbp(p);
499 		break;
500 
501 	default:
502 		uasm_i_tlbp(p);
503 		break;
504 	}
505 }
506 
507 /*
508  * Write random or indexed TLB entry, and care about the hazards from
509  * the preceding mtc0 and for the following eret.
510  */
511 enum tlb_write_entry { tlb_random, tlb_indexed };
512 
513 static void build_tlb_write_entry(u32 **p, struct uasm_label **l,
514 				  struct uasm_reloc **r,
515 				  enum tlb_write_entry wmode)
516 {
517 	void(*tlbw)(u32 **) = NULL;
518 
519 	switch (wmode) {
520 	case tlb_random: tlbw = uasm_i_tlbwr; break;
521 	case tlb_indexed: tlbw = uasm_i_tlbwi; break;
522 	}
523 
524 	if (cpu_has_mips_r2) {
525 		/*
526 		 * The architecture spec says an ehb is required here,
527 		 * but a number of cores do not have the hazard and
528 		 * using an ehb causes an expensive pipeline stall.
529 		 */
530 		switch (current_cpu_type()) {
531 		case CPU_M14KC:
532 		case CPU_74K:
533 			break;
534 
535 		default:
536 			uasm_i_ehb(p);
537 			break;
538 		}
539 		tlbw(p);
540 		return;
541 	}
542 
543 	switch (current_cpu_type()) {
544 	case CPU_R4000PC:
545 	case CPU_R4000SC:
546 	case CPU_R4000MC:
547 	case CPU_R4400PC:
548 	case CPU_R4400SC:
549 	case CPU_R4400MC:
550 		/*
551 		 * This branch uses up a mtc0 hazard nop slot and saves
552 		 * two nops after the tlbw instruction.
553 		 */
554 		uasm_bgezl_hazard(p, r, hazard_instance);
555 		tlbw(p);
556 		uasm_bgezl_label(l, p, hazard_instance);
557 		hazard_instance++;
558 		uasm_i_nop(p);
559 		break;
560 
561 	case CPU_R4600:
562 	case CPU_R4700:
563 		uasm_i_nop(p);
564 		tlbw(p);
565 		uasm_i_nop(p);
566 		break;
567 
568 	case CPU_R5000:
569 	case CPU_NEVADA:
570 		uasm_i_nop(p); /* QED specifies 2 nops hazard */
571 		uasm_i_nop(p); /* QED specifies 2 nops hazard */
572 		tlbw(p);
573 		break;
574 
575 	case CPU_R4300:
576 	case CPU_5KC:
577 	case CPU_TX49XX:
578 	case CPU_PR4450:
579 	case CPU_XLR:
580 		uasm_i_nop(p);
581 		tlbw(p);
582 		break;
583 
584 	case CPU_R10000:
585 	case CPU_R12000:
586 	case CPU_R14000:
587 	case CPU_4KC:
588 	case CPU_4KEC:
589 	case CPU_M14KC:
590 	case CPU_M14KEC:
591 	case CPU_SB1:
592 	case CPU_SB1A:
593 	case CPU_4KSC:
594 	case CPU_20KC:
595 	case CPU_25KF:
596 	case CPU_BMIPS32:
597 	case CPU_BMIPS3300:
598 	case CPU_BMIPS4350:
599 	case CPU_BMIPS4380:
600 	case CPU_BMIPS5000:
601 	case CPU_LOONGSON2:
602 	case CPU_R5500:
603 		if (m4kc_tlbp_war())
604 			uasm_i_nop(p);
605 	case CPU_ALCHEMY:
606 		tlbw(p);
607 		break;
608 
609 	case CPU_RM7000:
610 		uasm_i_nop(p);
611 		uasm_i_nop(p);
612 		uasm_i_nop(p);
613 		uasm_i_nop(p);
614 		tlbw(p);
615 		break;
616 
617 	case CPU_VR4111:
618 	case CPU_VR4121:
619 	case CPU_VR4122:
620 	case CPU_VR4181:
621 	case CPU_VR4181A:
622 		uasm_i_nop(p);
623 		uasm_i_nop(p);
624 		tlbw(p);
625 		uasm_i_nop(p);
626 		uasm_i_nop(p);
627 		break;
628 
629 	case CPU_VR4131:
630 	case CPU_VR4133:
631 	case CPU_R5432:
632 		uasm_i_nop(p);
633 		uasm_i_nop(p);
634 		tlbw(p);
635 		break;
636 
637 	case CPU_JZRISC:
638 		tlbw(p);
639 		uasm_i_nop(p);
640 		break;
641 
642 	default:
643 		panic("No TLB refill handler yet (CPU type: %d)",
644 		      current_cpu_data.cputype);
645 		break;
646 	}
647 }
648 
649 static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
650 							unsigned int reg)
651 {
652 	if (cpu_has_rixi) {
653 		UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
654 	} else {
655 #ifdef CONFIG_64BIT_PHYS_ADDR
656 		uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
657 #else
658 		UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
659 #endif
660 	}
661 }
662 
663 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
664 
665 static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
666 				   unsigned int tmp, enum label_id lid,
667 				   int restore_scratch)
668 {
669 	if (restore_scratch) {
670 		/* Reset default page size */
671 		if (PM_DEFAULT_MASK >> 16) {
672 			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
673 			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
674 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
675 			uasm_il_b(p, r, lid);
676 		} else if (PM_DEFAULT_MASK) {
677 			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
678 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
679 			uasm_il_b(p, r, lid);
680 		} else {
681 			uasm_i_mtc0(p, 0, C0_PAGEMASK);
682 			uasm_il_b(p, r, lid);
683 		}
684 		if (scratch_reg >= 0)
685 			UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
686 		else
687 			UASM_i_LW(p, 1, scratchpad_offset(0), 0);
688 	} else {
689 		/* Reset default page size */
690 		if (PM_DEFAULT_MASK >> 16) {
691 			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
692 			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
693 			uasm_il_b(p, r, lid);
694 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
695 		} else if (PM_DEFAULT_MASK) {
696 			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
697 			uasm_il_b(p, r, lid);
698 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
699 		} else {
700 			uasm_il_b(p, r, lid);
701 			uasm_i_mtc0(p, 0, C0_PAGEMASK);
702 		}
703 	}
704 }
705 
706 static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
707 				       struct uasm_reloc **r,
708 				       unsigned int tmp,
709 				       enum tlb_write_entry wmode,
710 				       int restore_scratch)
711 {
712 	/* Set huge page tlb entry size */
713 	uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
714 	uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
715 	uasm_i_mtc0(p, tmp, C0_PAGEMASK);
716 
717 	build_tlb_write_entry(p, l, r, wmode);
718 
719 	build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
720 }
721 
722 /*
723  * Check if Huge PTE is present, if so then jump to LABEL.
724  */
725 static void
726 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
727 		  unsigned int pmd, int lid)
728 {
729 	UASM_i_LW(p, tmp, 0, pmd);
730 	if (use_bbit_insns()) {
731 		uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
732 	} else {
733 		uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
734 		uasm_il_bnez(p, r, tmp, lid);
735 	}
736 }
737 
738 static void build_huge_update_entries(u32 **p, unsigned int pte,
739 				      unsigned int tmp)
740 {
741 	int small_sequence;
742 
743 	/*
744 	 * A huge PTE describes an area the size of the
745 	 * configured huge page size. This is twice the
746 	 * of the large TLB entry size we intend to use.
747 	 * A TLB entry half the size of the configured
748 	 * huge page size is configured into entrylo0
749 	 * and entrylo1 to cover the contiguous huge PTE
750 	 * address space.
751 	 */
752 	small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
753 
754 	/* We can clobber tmp.	It isn't used after this.*/
755 	if (!small_sequence)
756 		uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
757 
758 	build_convert_pte_to_entrylo(p, pte);
759 	UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
760 	/* convert to entrylo1 */
761 	if (small_sequence)
762 		UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
763 	else
764 		UASM_i_ADDU(p, pte, pte, tmp);
765 
766 	UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
767 }
768 
769 static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
770 				    struct uasm_label **l,
771 				    unsigned int pte,
772 				    unsigned int ptr)
773 {
774 #ifdef CONFIG_SMP
775 	UASM_i_SC(p, pte, 0, ptr);
776 	uasm_il_beqz(p, r, pte, label_tlb_huge_update);
777 	UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
778 #else
779 	UASM_i_SW(p, pte, 0, ptr);
780 #endif
781 	build_huge_update_entries(p, pte, ptr);
782 	build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
783 }
784 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
785 
786 #ifdef CONFIG_64BIT
787 /*
788  * TMP and PTR are scratch.
789  * TMP will be clobbered, PTR will hold the pmd entry.
790  */
791 static void
792 build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
793 		 unsigned int tmp, unsigned int ptr)
794 {
795 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
796 	long pgdc = (long)pgd_current;
797 #endif
798 	/*
799 	 * The vmalloc handling is not in the hotpath.
800 	 */
801 	uasm_i_dmfc0(p, tmp, C0_BADVADDR);
802 
803 	if (check_for_high_segbits) {
804 		/*
805 		 * The kernel currently implicitely assumes that the
806 		 * MIPS SEGBITS parameter for the processor is
807 		 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
808 		 * allocate virtual addresses outside the maximum
809 		 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
810 		 * that doesn't prevent user code from accessing the
811 		 * higher xuseg addresses.  Here, we make sure that
812 		 * everything but the lower xuseg addresses goes down
813 		 * the module_alloc/vmalloc path.
814 		 */
815 		uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
816 		uasm_il_bnez(p, r, ptr, label_vmalloc);
817 	} else {
818 		uasm_il_bltz(p, r, tmp, label_vmalloc);
819 	}
820 	/* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
821 
822 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
823 	if (pgd_reg != -1) {
824 		/* pgd is in pgd_reg */
825 		UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
826 	} else {
827 		/*
828 		 * &pgd << 11 stored in CONTEXT [23..63].
829 		 */
830 		UASM_i_MFC0(p, ptr, C0_CONTEXT);
831 
832 		/* Clear lower 23 bits of context. */
833 		uasm_i_dins(p, ptr, 0, 0, 23);
834 
835 		/* 1 0	1 0 1  << 6  xkphys cached */
836 		uasm_i_ori(p, ptr, ptr, 0x540);
837 		uasm_i_drotr(p, ptr, ptr, 11);
838 	}
839 #elif defined(CONFIG_SMP)
840 # ifdef	 CONFIG_MIPS_MT_SMTC
841 	/*
842 	 * SMTC uses TCBind value as "CPU" index
843 	 */
844 	uasm_i_mfc0(p, ptr, C0_TCBIND);
845 	uasm_i_dsrl_safe(p, ptr, ptr, 19);
846 # else
847 	/*
848 	 * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
849 	 * stored in CONTEXT.
850 	 */
851 	uasm_i_dmfc0(p, ptr, C0_CONTEXT);
852 	uasm_i_dsrl_safe(p, ptr, ptr, 23);
853 # endif
854 	UASM_i_LA_mostly(p, tmp, pgdc);
855 	uasm_i_daddu(p, ptr, ptr, tmp);
856 	uasm_i_dmfc0(p, tmp, C0_BADVADDR);
857 	uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
858 #else
859 	UASM_i_LA_mostly(p, ptr, pgdc);
860 	uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
861 #endif
862 
863 	uasm_l_vmalloc_done(l, *p);
864 
865 	/* get pgd offset in bytes */
866 	uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
867 
868 	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
869 	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
870 #ifndef __PAGETABLE_PMD_FOLDED
871 	uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
872 	uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
873 	uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
874 	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
875 	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
876 #endif
877 }
878 
879 /*
880  * BVADDR is the faulting address, PTR is scratch.
881  * PTR will hold the pgd for vmalloc.
882  */
883 static void
884 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
885 			unsigned int bvaddr, unsigned int ptr,
886 			enum vmalloc64_mode mode)
887 {
888 	long swpd = (long)swapper_pg_dir;
889 	int single_insn_swpd;
890 	int did_vmalloc_branch = 0;
891 
892 	single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
893 
894 	uasm_l_vmalloc(l, *p);
895 
896 	if (mode != not_refill && check_for_high_segbits) {
897 		if (single_insn_swpd) {
898 			uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
899 			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
900 			did_vmalloc_branch = 1;
901 			/* fall through */
902 		} else {
903 			uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
904 		}
905 	}
906 	if (!did_vmalloc_branch) {
907 		if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
908 			uasm_il_b(p, r, label_vmalloc_done);
909 			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
910 		} else {
911 			UASM_i_LA_mostly(p, ptr, swpd);
912 			uasm_il_b(p, r, label_vmalloc_done);
913 			if (uasm_in_compat_space_p(swpd))
914 				uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
915 			else
916 				uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
917 		}
918 	}
919 	if (mode != not_refill && check_for_high_segbits) {
920 		uasm_l_large_segbits_fault(l, *p);
921 		/*
922 		 * We get here if we are an xsseg address, or if we are
923 		 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
924 		 *
925 		 * Ignoring xsseg (assume disabled so would generate
926 		 * (address errors?), the only remaining possibility
927 		 * is the upper xuseg addresses.  On processors with
928 		 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
929 		 * addresses would have taken an address error. We try
930 		 * to mimic that here by taking a load/istream page
931 		 * fault.
932 		 */
933 		UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
934 		uasm_i_jr(p, ptr);
935 
936 		if (mode == refill_scratch) {
937 			if (scratch_reg >= 0)
938 				UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
939 			else
940 				UASM_i_LW(p, 1, scratchpad_offset(0), 0);
941 		} else {
942 			uasm_i_nop(p);
943 		}
944 	}
945 }
946 
947 #else /* !CONFIG_64BIT */
948 
949 /*
950  * TMP and PTR are scratch.
951  * TMP will be clobbered, PTR will hold the pgd entry.
952  */
953 static void __maybe_unused
954 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
955 {
956 	long pgdc = (long)pgd_current;
957 
958 	/* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
959 #ifdef CONFIG_SMP
960 #ifdef	CONFIG_MIPS_MT_SMTC
961 	/*
962 	 * SMTC uses TCBind value as "CPU" index
963 	 */
964 	uasm_i_mfc0(p, ptr, C0_TCBIND);
965 	UASM_i_LA_mostly(p, tmp, pgdc);
966 	uasm_i_srl(p, ptr, ptr, 19);
967 #else
968 	/*
969 	 * smp_processor_id() << 2 is stored in CONTEXT.
970 	 */
971 	uasm_i_mfc0(p, ptr, C0_CONTEXT);
972 	UASM_i_LA_mostly(p, tmp, pgdc);
973 	uasm_i_srl(p, ptr, ptr, 23);
974 #endif
975 	uasm_i_addu(p, ptr, tmp, ptr);
976 #else
977 	UASM_i_LA_mostly(p, ptr, pgdc);
978 #endif
979 	uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
980 	uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
981 	uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
982 	uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
983 	uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
984 }
985 
986 #endif /* !CONFIG_64BIT */
987 
988 static void build_adjust_context(u32 **p, unsigned int ctx)
989 {
990 	unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
991 	unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
992 
993 	switch (current_cpu_type()) {
994 	case CPU_VR41XX:
995 	case CPU_VR4111:
996 	case CPU_VR4121:
997 	case CPU_VR4122:
998 	case CPU_VR4131:
999 	case CPU_VR4181:
1000 	case CPU_VR4181A:
1001 	case CPU_VR4133:
1002 		shift += 2;
1003 		break;
1004 
1005 	default:
1006 		break;
1007 	}
1008 
1009 	if (shift)
1010 		UASM_i_SRL(p, ctx, ctx, shift);
1011 	uasm_i_andi(p, ctx, ctx, mask);
1012 }
1013 
1014 static void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
1015 {
1016 	/*
1017 	 * Bug workaround for the Nevada. It seems as if under certain
1018 	 * circumstances the move from cp0_context might produce a
1019 	 * bogus result when the mfc0 instruction and its consumer are
1020 	 * in a different cacheline or a load instruction, probably any
1021 	 * memory reference, is between them.
1022 	 */
1023 	switch (current_cpu_type()) {
1024 	case CPU_NEVADA:
1025 		UASM_i_LW(p, ptr, 0, ptr);
1026 		GET_CONTEXT(p, tmp); /* get context reg */
1027 		break;
1028 
1029 	default:
1030 		GET_CONTEXT(p, tmp); /* get context reg */
1031 		UASM_i_LW(p, ptr, 0, ptr);
1032 		break;
1033 	}
1034 
1035 	build_adjust_context(p, tmp);
1036 	UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1037 }
1038 
1039 static void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
1040 {
1041 	/*
1042 	 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1043 	 * Kernel is a special case. Only a few CPUs use it.
1044 	 */
1045 #ifdef CONFIG_64BIT_PHYS_ADDR
1046 	if (cpu_has_64bits) {
1047 		uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
1048 		uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1049 		if (cpu_has_rixi) {
1050 			UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1051 			UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1052 			UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1053 		} else {
1054 			uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1055 			UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1056 			uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1057 		}
1058 		UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1059 	} else {
1060 		int pte_off_even = sizeof(pte_t) / 2;
1061 		int pte_off_odd = pte_off_even + sizeof(pte_t);
1062 
1063 		/* The pte entries are pre-shifted */
1064 		uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1065 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1066 		uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1067 		UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1068 	}
1069 #else
1070 	UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
1071 	UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1072 	if (r45k_bvahwbug())
1073 		build_tlb_probe_entry(p);
1074 	if (cpu_has_rixi) {
1075 		UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1076 		if (r4k_250MHZhwbug())
1077 			UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1078 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1079 		UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1080 	} else {
1081 		UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1082 		if (r4k_250MHZhwbug())
1083 			UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1084 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1085 		UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1086 		if (r45k_bvahwbug())
1087 			uasm_i_mfc0(p, tmp, C0_INDEX);
1088 	}
1089 	if (r4k_250MHZhwbug())
1090 		UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1091 	UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1092 #endif
1093 }
1094 
1095 struct mips_huge_tlb_info {
1096 	int huge_pte;
1097 	int restore_scratch;
1098 };
1099 
1100 static struct mips_huge_tlb_info
1101 build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1102 			       struct uasm_reloc **r, unsigned int tmp,
1103 			       unsigned int ptr, int c0_scratch_reg)
1104 {
1105 	struct mips_huge_tlb_info rv;
1106 	unsigned int even, odd;
1107 	int vmalloc_branch_delay_filled = 0;
1108 	const int scratch = 1; /* Our extra working register */
1109 
1110 	rv.huge_pte = scratch;
1111 	rv.restore_scratch = 0;
1112 
1113 	if (check_for_high_segbits) {
1114 		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1115 
1116 		if (pgd_reg != -1)
1117 			UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1118 		else
1119 			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1120 
1121 		if (c0_scratch_reg >= 0)
1122 			UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1123 		else
1124 			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1125 
1126 		uasm_i_dsrl_safe(p, scratch, tmp,
1127 				 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1128 		uasm_il_bnez(p, r, scratch, label_vmalloc);
1129 
1130 		if (pgd_reg == -1) {
1131 			vmalloc_branch_delay_filled = 1;
1132 			/* Clear lower 23 bits of context. */
1133 			uasm_i_dins(p, ptr, 0, 0, 23);
1134 		}
1135 	} else {
1136 		if (pgd_reg != -1)
1137 			UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1138 		else
1139 			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1140 
1141 		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1142 
1143 		if (c0_scratch_reg >= 0)
1144 			UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1145 		else
1146 			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1147 
1148 		if (pgd_reg == -1)
1149 			/* Clear lower 23 bits of context. */
1150 			uasm_i_dins(p, ptr, 0, 0, 23);
1151 
1152 		uasm_il_bltz(p, r, tmp, label_vmalloc);
1153 	}
1154 
1155 	if (pgd_reg == -1) {
1156 		vmalloc_branch_delay_filled = 1;
1157 		/* 1 0	1 0 1  << 6  xkphys cached */
1158 		uasm_i_ori(p, ptr, ptr, 0x540);
1159 		uasm_i_drotr(p, ptr, ptr, 11);
1160 	}
1161 
1162 #ifdef __PAGETABLE_PMD_FOLDED
1163 #define LOC_PTEP scratch
1164 #else
1165 #define LOC_PTEP ptr
1166 #endif
1167 
1168 	if (!vmalloc_branch_delay_filled)
1169 		/* get pgd offset in bytes */
1170 		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1171 
1172 	uasm_l_vmalloc_done(l, *p);
1173 
1174 	/*
1175 	 *			   tmp		ptr
1176 	 * fall-through case =	 badvaddr  *pgd_current
1177 	 * vmalloc case	     =	 badvaddr  swapper_pg_dir
1178 	 */
1179 
1180 	if (vmalloc_branch_delay_filled)
1181 		/* get pgd offset in bytes */
1182 		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1183 
1184 #ifdef __PAGETABLE_PMD_FOLDED
1185 	GET_CONTEXT(p, tmp); /* get context reg */
1186 #endif
1187 	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1188 
1189 	if (use_lwx_insns()) {
1190 		UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1191 	} else {
1192 		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1193 		uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1194 	}
1195 
1196 #ifndef __PAGETABLE_PMD_FOLDED
1197 	/* get pmd offset in bytes */
1198 	uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1199 	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1200 	GET_CONTEXT(p, tmp); /* get context reg */
1201 
1202 	if (use_lwx_insns()) {
1203 		UASM_i_LWX(p, scratch, scratch, ptr);
1204 	} else {
1205 		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1206 		UASM_i_LW(p, scratch, 0, ptr);
1207 	}
1208 #endif
1209 	/* Adjust the context during the load latency. */
1210 	build_adjust_context(p, tmp);
1211 
1212 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1213 	uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1214 	/*
1215 	 * The in the LWX case we don't want to do the load in the
1216 	 * delay slot.	It cannot issue in the same cycle and may be
1217 	 * speculative and unneeded.
1218 	 */
1219 	if (use_lwx_insns())
1220 		uasm_i_nop(p);
1221 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1222 
1223 
1224 	/* build_update_entries */
1225 	if (use_lwx_insns()) {
1226 		even = ptr;
1227 		odd = tmp;
1228 		UASM_i_LWX(p, even, scratch, tmp);
1229 		UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1230 		UASM_i_LWX(p, odd, scratch, tmp);
1231 	} else {
1232 		UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1233 		even = tmp;
1234 		odd = ptr;
1235 		UASM_i_LW(p, even, 0, ptr); /* get even pte */
1236 		UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1237 	}
1238 	if (cpu_has_rixi) {
1239 		uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1240 		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1241 		uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1242 	} else {
1243 		uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1244 		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1245 		uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1246 	}
1247 	UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1248 
1249 	if (c0_scratch_reg >= 0) {
1250 		UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1251 		build_tlb_write_entry(p, l, r, tlb_random);
1252 		uasm_l_leave(l, *p);
1253 		rv.restore_scratch = 1;
1254 	} else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13)  {
1255 		build_tlb_write_entry(p, l, r, tlb_random);
1256 		uasm_l_leave(l, *p);
1257 		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1258 	} else {
1259 		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1260 		build_tlb_write_entry(p, l, r, tlb_random);
1261 		uasm_l_leave(l, *p);
1262 		rv.restore_scratch = 1;
1263 	}
1264 
1265 	uasm_i_eret(p); /* return from trap */
1266 
1267 	return rv;
1268 }
1269 
1270 /*
1271  * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1272  * because EXL == 0.  If we wrap, we can also use the 32 instruction
1273  * slots before the XTLB refill exception handler which belong to the
1274  * unused TLB refill exception.
1275  */
1276 #define MIPS64_REFILL_INSNS 32
1277 
1278 static void build_r4000_tlb_refill_handler(void)
1279 {
1280 	u32 *p = tlb_handler;
1281 	struct uasm_label *l = labels;
1282 	struct uasm_reloc *r = relocs;
1283 	u32 *f;
1284 	unsigned int final_len;
1285 	struct mips_huge_tlb_info htlb_info __maybe_unused;
1286 	enum vmalloc64_mode vmalloc_mode __maybe_unused;
1287 
1288 	memset(tlb_handler, 0, sizeof(tlb_handler));
1289 	memset(labels, 0, sizeof(labels));
1290 	memset(relocs, 0, sizeof(relocs));
1291 	memset(final_handler, 0, sizeof(final_handler));
1292 
1293 	if ((scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
1294 		htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1295 							  scratch_reg);
1296 		vmalloc_mode = refill_scratch;
1297 	} else {
1298 		htlb_info.huge_pte = K0;
1299 		htlb_info.restore_scratch = 0;
1300 		vmalloc_mode = refill_noscratch;
1301 		/*
1302 		 * create the plain linear handler
1303 		 */
1304 		if (bcm1250_m3_war()) {
1305 			unsigned int segbits = 44;
1306 
1307 			uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1308 			uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1309 			uasm_i_xor(&p, K0, K0, K1);
1310 			uasm_i_dsrl_safe(&p, K1, K0, 62);
1311 			uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1312 			uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1313 			uasm_i_or(&p, K0, K0, K1);
1314 			uasm_il_bnez(&p, &r, K0, label_leave);
1315 			/* No need for uasm_i_nop */
1316 		}
1317 
1318 #ifdef CONFIG_64BIT
1319 		build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1320 #else
1321 		build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1322 #endif
1323 
1324 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1325 		build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1326 #endif
1327 
1328 		build_get_ptep(&p, K0, K1);
1329 		build_update_entries(&p, K0, K1);
1330 		build_tlb_write_entry(&p, &l, &r, tlb_random);
1331 		uasm_l_leave(&l, p);
1332 		uasm_i_eret(&p); /* return from trap */
1333 	}
1334 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1335 	uasm_l_tlb_huge_update(&l, p);
1336 	build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1337 	build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1338 				   htlb_info.restore_scratch);
1339 #endif
1340 
1341 #ifdef CONFIG_64BIT
1342 	build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1343 #endif
1344 
1345 	/*
1346 	 * Overflow check: For the 64bit handler, we need at least one
1347 	 * free instruction slot for the wrap-around branch. In worst
1348 	 * case, if the intended insertion point is a delay slot, we
1349 	 * need three, with the second nop'ed and the third being
1350 	 * unused.
1351 	 */
1352 	/* Loongson2 ebase is different than r4k, we have more space */
1353 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1354 	if ((p - tlb_handler) > 64)
1355 		panic("TLB refill handler space exceeded");
1356 #else
1357 	if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1358 	    || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1359 		&& uasm_insn_has_bdelay(relocs,
1360 					tlb_handler + MIPS64_REFILL_INSNS - 3)))
1361 		panic("TLB refill handler space exceeded");
1362 #endif
1363 
1364 	/*
1365 	 * Now fold the handler in the TLB refill handler space.
1366 	 */
1367 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1368 	f = final_handler;
1369 	/* Simplest case, just copy the handler. */
1370 	uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1371 	final_len = p - tlb_handler;
1372 #else /* CONFIG_64BIT */
1373 	f = final_handler + MIPS64_REFILL_INSNS;
1374 	if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1375 		/* Just copy the handler. */
1376 		uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1377 		final_len = p - tlb_handler;
1378 	} else {
1379 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1380 		const enum label_id ls = label_tlb_huge_update;
1381 #else
1382 		const enum label_id ls = label_vmalloc;
1383 #endif
1384 		u32 *split;
1385 		int ov = 0;
1386 		int i;
1387 
1388 		for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1389 			;
1390 		BUG_ON(i == ARRAY_SIZE(labels));
1391 		split = labels[i].addr;
1392 
1393 		/*
1394 		 * See if we have overflown one way or the other.
1395 		 */
1396 		if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1397 		    split < p - MIPS64_REFILL_INSNS)
1398 			ov = 1;
1399 
1400 		if (ov) {
1401 			/*
1402 			 * Split two instructions before the end.  One
1403 			 * for the branch and one for the instruction
1404 			 * in the delay slot.
1405 			 */
1406 			split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1407 
1408 			/*
1409 			 * If the branch would fall in a delay slot,
1410 			 * we must back up an additional instruction
1411 			 * so that it is no longer in a delay slot.
1412 			 */
1413 			if (uasm_insn_has_bdelay(relocs, split - 1))
1414 				split--;
1415 		}
1416 		/* Copy first part of the handler. */
1417 		uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1418 		f += split - tlb_handler;
1419 
1420 		if (ov) {
1421 			/* Insert branch. */
1422 			uasm_l_split(&l, final_handler);
1423 			uasm_il_b(&f, &r, label_split);
1424 			if (uasm_insn_has_bdelay(relocs, split))
1425 				uasm_i_nop(&f);
1426 			else {
1427 				uasm_copy_handler(relocs, labels,
1428 						  split, split + 1, f);
1429 				uasm_move_labels(labels, f, f + 1, -1);
1430 				f++;
1431 				split++;
1432 			}
1433 		}
1434 
1435 		/* Copy the rest of the handler. */
1436 		uasm_copy_handler(relocs, labels, split, p, final_handler);
1437 		final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1438 			    (p - split);
1439 	}
1440 #endif /* CONFIG_64BIT */
1441 
1442 	uasm_resolve_relocs(relocs, labels);
1443 	pr_debug("Wrote TLB refill handler (%u instructions).\n",
1444 		 final_len);
1445 
1446 	memcpy((void *)ebase, final_handler, 0x100);
1447 
1448 	dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
1449 }
1450 
1451 extern u32 handle_tlbl[], handle_tlbl_end[];
1452 extern u32 handle_tlbs[], handle_tlbs_end[];
1453 extern u32 handle_tlbm[], handle_tlbm_end[];
1454 
1455 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1456 extern u32 tlbmiss_handler_setup_pgd[], tlbmiss_handler_setup_pgd_end[];
1457 
1458 static void build_r4000_setup_pgd(void)
1459 {
1460 	const int a0 = 4;
1461 	const int a1 = 5;
1462 	u32 *p = tlbmiss_handler_setup_pgd;
1463 	const int tlbmiss_handler_setup_pgd_size =
1464 		tlbmiss_handler_setup_pgd_end - tlbmiss_handler_setup_pgd;
1465 	struct uasm_label *l = labels;
1466 	struct uasm_reloc *r = relocs;
1467 
1468 	memset(tlbmiss_handler_setup_pgd, 0, tlbmiss_handler_setup_pgd_size *
1469 					sizeof(tlbmiss_handler_setup_pgd[0]));
1470 	memset(labels, 0, sizeof(labels));
1471 	memset(relocs, 0, sizeof(relocs));
1472 
1473 	pgd_reg = allocate_kscratch();
1474 
1475 	if (pgd_reg == -1) {
1476 		/* PGD << 11 in c0_Context */
1477 		/*
1478 		 * If it is a ckseg0 address, convert to a physical
1479 		 * address.  Shifting right by 29 and adding 4 will
1480 		 * result in zero for these addresses.
1481 		 *
1482 		 */
1483 		UASM_i_SRA(&p, a1, a0, 29);
1484 		UASM_i_ADDIU(&p, a1, a1, 4);
1485 		uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1486 		uasm_i_nop(&p);
1487 		uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1488 		uasm_l_tlbl_goaround1(&l, p);
1489 		UASM_i_SLL(&p, a0, a0, 11);
1490 		uasm_i_jr(&p, 31);
1491 		UASM_i_MTC0(&p, a0, C0_CONTEXT);
1492 	} else {
1493 		/* PGD in c0_KScratch */
1494 		uasm_i_jr(&p, 31);
1495 		UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1496 	}
1497 	if (p >= tlbmiss_handler_setup_pgd_end)
1498 		panic("tlbmiss_handler_setup_pgd space exceeded");
1499 
1500 	uasm_resolve_relocs(relocs, labels);
1501 	pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1502 		 (unsigned int)(p - tlbmiss_handler_setup_pgd));
1503 
1504 	dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
1505 					tlbmiss_handler_setup_pgd_size);
1506 }
1507 #endif
1508 
1509 static void
1510 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1511 {
1512 #ifdef CONFIG_SMP
1513 # ifdef CONFIG_64BIT_PHYS_ADDR
1514 	if (cpu_has_64bits)
1515 		uasm_i_lld(p, pte, 0, ptr);
1516 	else
1517 # endif
1518 		UASM_i_LL(p, pte, 0, ptr);
1519 #else
1520 # ifdef CONFIG_64BIT_PHYS_ADDR
1521 	if (cpu_has_64bits)
1522 		uasm_i_ld(p, pte, 0, ptr);
1523 	else
1524 # endif
1525 		UASM_i_LW(p, pte, 0, ptr);
1526 #endif
1527 }
1528 
1529 static void
1530 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1531 	unsigned int mode)
1532 {
1533 #ifdef CONFIG_64BIT_PHYS_ADDR
1534 	unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1535 #endif
1536 
1537 	uasm_i_ori(p, pte, pte, mode);
1538 #ifdef CONFIG_SMP
1539 # ifdef CONFIG_64BIT_PHYS_ADDR
1540 	if (cpu_has_64bits)
1541 		uasm_i_scd(p, pte, 0, ptr);
1542 	else
1543 # endif
1544 		UASM_i_SC(p, pte, 0, ptr);
1545 
1546 	if (r10000_llsc_war())
1547 		uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1548 	else
1549 		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1550 
1551 # ifdef CONFIG_64BIT_PHYS_ADDR
1552 	if (!cpu_has_64bits) {
1553 		/* no uasm_i_nop needed */
1554 		uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1555 		uasm_i_ori(p, pte, pte, hwmode);
1556 		uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1557 		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1558 		/* no uasm_i_nop needed */
1559 		uasm_i_lw(p, pte, 0, ptr);
1560 	} else
1561 		uasm_i_nop(p);
1562 # else
1563 	uasm_i_nop(p);
1564 # endif
1565 #else
1566 # ifdef CONFIG_64BIT_PHYS_ADDR
1567 	if (cpu_has_64bits)
1568 		uasm_i_sd(p, pte, 0, ptr);
1569 	else
1570 # endif
1571 		UASM_i_SW(p, pte, 0, ptr);
1572 
1573 # ifdef CONFIG_64BIT_PHYS_ADDR
1574 	if (!cpu_has_64bits) {
1575 		uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1576 		uasm_i_ori(p, pte, pte, hwmode);
1577 		uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1578 		uasm_i_lw(p, pte, 0, ptr);
1579 	}
1580 # endif
1581 #endif
1582 }
1583 
1584 /*
1585  * Check if PTE is present, if not then jump to LABEL. PTR points to
1586  * the page table where this PTE is located, PTE will be re-loaded
1587  * with it's original value.
1588  */
1589 static void
1590 build_pte_present(u32 **p, struct uasm_reloc **r,
1591 		  int pte, int ptr, int scratch, enum label_id lid)
1592 {
1593 	int t = scratch >= 0 ? scratch : pte;
1594 
1595 	if (cpu_has_rixi) {
1596 		if (use_bbit_insns()) {
1597 			uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1598 			uasm_i_nop(p);
1599 		} else {
1600 			uasm_i_andi(p, t, pte, _PAGE_PRESENT);
1601 			uasm_il_beqz(p, r, t, lid);
1602 			if (pte == t)
1603 				/* You lose the SMP race :-(*/
1604 				iPTE_LW(p, pte, ptr);
1605 		}
1606 	} else {
1607 		uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ);
1608 		uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ);
1609 		uasm_il_bnez(p, r, t, lid);
1610 		if (pte == t)
1611 			/* You lose the SMP race :-(*/
1612 			iPTE_LW(p, pte, ptr);
1613 	}
1614 }
1615 
1616 /* Make PTE valid, store result in PTR. */
1617 static void
1618 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1619 		 unsigned int ptr)
1620 {
1621 	unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1622 
1623 	iPTE_SW(p, r, pte, ptr, mode);
1624 }
1625 
1626 /*
1627  * Check if PTE can be written to, if not branch to LABEL. Regardless
1628  * restore PTE with value from PTR when done.
1629  */
1630 static void
1631 build_pte_writable(u32 **p, struct uasm_reloc **r,
1632 		   unsigned int pte, unsigned int ptr, int scratch,
1633 		   enum label_id lid)
1634 {
1635 	int t = scratch >= 0 ? scratch : pte;
1636 
1637 	uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE);
1638 	uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE);
1639 	uasm_il_bnez(p, r, t, lid);
1640 	if (pte == t)
1641 		/* You lose the SMP race :-(*/
1642 		iPTE_LW(p, pte, ptr);
1643 	else
1644 		uasm_i_nop(p);
1645 }
1646 
1647 /* Make PTE writable, update software status bits as well, then store
1648  * at PTR.
1649  */
1650 static void
1651 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1652 		 unsigned int ptr)
1653 {
1654 	unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1655 			     | _PAGE_DIRTY);
1656 
1657 	iPTE_SW(p, r, pte, ptr, mode);
1658 }
1659 
1660 /*
1661  * Check if PTE can be modified, if not branch to LABEL. Regardless
1662  * restore PTE with value from PTR when done.
1663  */
1664 static void
1665 build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1666 		     unsigned int pte, unsigned int ptr, int scratch,
1667 		     enum label_id lid)
1668 {
1669 	if (use_bbit_insns()) {
1670 		uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1671 		uasm_i_nop(p);
1672 	} else {
1673 		int t = scratch >= 0 ? scratch : pte;
1674 		uasm_i_andi(p, t, pte, _PAGE_WRITE);
1675 		uasm_il_beqz(p, r, t, lid);
1676 		if (pte == t)
1677 			/* You lose the SMP race :-(*/
1678 			iPTE_LW(p, pte, ptr);
1679 	}
1680 }
1681 
1682 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1683 
1684 
1685 /*
1686  * R3000 style TLB load/store/modify handlers.
1687  */
1688 
1689 /*
1690  * This places the pte into ENTRYLO0 and writes it with tlbwi.
1691  * Then it returns.
1692  */
1693 static void
1694 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1695 {
1696 	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1697 	uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1698 	uasm_i_tlbwi(p);
1699 	uasm_i_jr(p, tmp);
1700 	uasm_i_rfe(p); /* branch delay */
1701 }
1702 
1703 /*
1704  * This places the pte into ENTRYLO0 and writes it with tlbwi
1705  * or tlbwr as appropriate.  This is because the index register
1706  * may have the probe fail bit set as a result of a trap on a
1707  * kseg2 access, i.e. without refill.  Then it returns.
1708  */
1709 static void
1710 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1711 			     struct uasm_reloc **r, unsigned int pte,
1712 			     unsigned int tmp)
1713 {
1714 	uasm_i_mfc0(p, tmp, C0_INDEX);
1715 	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1716 	uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1717 	uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1718 	uasm_i_tlbwi(p); /* cp0 delay */
1719 	uasm_i_jr(p, tmp);
1720 	uasm_i_rfe(p); /* branch delay */
1721 	uasm_l_r3000_write_probe_fail(l, *p);
1722 	uasm_i_tlbwr(p); /* cp0 delay */
1723 	uasm_i_jr(p, tmp);
1724 	uasm_i_rfe(p); /* branch delay */
1725 }
1726 
1727 static void
1728 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1729 				   unsigned int ptr)
1730 {
1731 	long pgdc = (long)pgd_current;
1732 
1733 	uasm_i_mfc0(p, pte, C0_BADVADDR);
1734 	uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1735 	uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1736 	uasm_i_srl(p, pte, pte, 22); /* load delay */
1737 	uasm_i_sll(p, pte, pte, 2);
1738 	uasm_i_addu(p, ptr, ptr, pte);
1739 	uasm_i_mfc0(p, pte, C0_CONTEXT);
1740 	uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1741 	uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1742 	uasm_i_addu(p, ptr, ptr, pte);
1743 	uasm_i_lw(p, pte, 0, ptr);
1744 	uasm_i_tlbp(p); /* load delay */
1745 }
1746 
1747 static void build_r3000_tlb_load_handler(void)
1748 {
1749 	u32 *p = handle_tlbl;
1750 	const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1751 	struct uasm_label *l = labels;
1752 	struct uasm_reloc *r = relocs;
1753 
1754 	memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1755 	memset(labels, 0, sizeof(labels));
1756 	memset(relocs, 0, sizeof(relocs));
1757 
1758 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1759 	build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1760 	uasm_i_nop(&p); /* load delay */
1761 	build_make_valid(&p, &r, K0, K1);
1762 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1763 
1764 	uasm_l_nopage_tlbl(&l, p);
1765 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1766 	uasm_i_nop(&p);
1767 
1768 	if (p >= handle_tlbl_end)
1769 		panic("TLB load handler fastpath space exceeded");
1770 
1771 	uasm_resolve_relocs(relocs, labels);
1772 	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1773 		 (unsigned int)(p - handle_tlbl));
1774 
1775 	dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_size);
1776 }
1777 
1778 static void build_r3000_tlb_store_handler(void)
1779 {
1780 	u32 *p = handle_tlbs;
1781 	const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
1782 	struct uasm_label *l = labels;
1783 	struct uasm_reloc *r = relocs;
1784 
1785 	memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
1786 	memset(labels, 0, sizeof(labels));
1787 	memset(relocs, 0, sizeof(relocs));
1788 
1789 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1790 	build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1791 	uasm_i_nop(&p); /* load delay */
1792 	build_make_write(&p, &r, K0, K1);
1793 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1794 
1795 	uasm_l_nopage_tlbs(&l, p);
1796 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1797 	uasm_i_nop(&p);
1798 
1799 	if (p >= handle_tlbs_end)
1800 		panic("TLB store handler fastpath space exceeded");
1801 
1802 	uasm_resolve_relocs(relocs, labels);
1803 	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1804 		 (unsigned int)(p - handle_tlbs));
1805 
1806 	dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_size);
1807 }
1808 
1809 static void build_r3000_tlb_modify_handler(void)
1810 {
1811 	u32 *p = handle_tlbm;
1812 	const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
1813 	struct uasm_label *l = labels;
1814 	struct uasm_reloc *r = relocs;
1815 
1816 	memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
1817 	memset(labels, 0, sizeof(labels));
1818 	memset(relocs, 0, sizeof(relocs));
1819 
1820 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1821 	build_pte_modifiable(&p, &r, K0, K1,  -1, label_nopage_tlbm);
1822 	uasm_i_nop(&p); /* load delay */
1823 	build_make_write(&p, &r, K0, K1);
1824 	build_r3000_pte_reload_tlbwi(&p, K0, K1);
1825 
1826 	uasm_l_nopage_tlbm(&l, p);
1827 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1828 	uasm_i_nop(&p);
1829 
1830 	if (p >= handle_tlbm_end)
1831 		panic("TLB modify handler fastpath space exceeded");
1832 
1833 	uasm_resolve_relocs(relocs, labels);
1834 	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1835 		 (unsigned int)(p - handle_tlbm));
1836 
1837 	dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_size);
1838 }
1839 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1840 
1841 /*
1842  * R4000 style TLB load/store/modify handlers.
1843  */
1844 static struct work_registers
1845 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1846 				   struct uasm_reloc **r)
1847 {
1848 	struct work_registers wr = build_get_work_registers(p);
1849 
1850 #ifdef CONFIG_64BIT
1851 	build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
1852 #else
1853 	build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
1854 #endif
1855 
1856 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1857 	/*
1858 	 * For huge tlb entries, pmd doesn't contain an address but
1859 	 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1860 	 * see if we need to jump to huge tlb processing.
1861 	 */
1862 	build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
1863 #endif
1864 
1865 	UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
1866 	UASM_i_LW(p, wr.r2, 0, wr.r2);
1867 	UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1868 	uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1869 	UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
1870 
1871 #ifdef CONFIG_SMP
1872 	uasm_l_smp_pgtable_change(l, *p);
1873 #endif
1874 	iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
1875 	if (!m4kc_tlbp_war())
1876 		build_tlb_probe_entry(p);
1877 	return wr;
1878 }
1879 
1880 static void
1881 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1882 				   struct uasm_reloc **r, unsigned int tmp,
1883 				   unsigned int ptr)
1884 {
1885 	uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1886 	uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1887 	build_update_entries(p, tmp, ptr);
1888 	build_tlb_write_entry(p, l, r, tlb_indexed);
1889 	uasm_l_leave(l, *p);
1890 	build_restore_work_registers(p);
1891 	uasm_i_eret(p); /* return from trap */
1892 
1893 #ifdef CONFIG_64BIT
1894 	build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
1895 #endif
1896 }
1897 
1898 static void build_r4000_tlb_load_handler(void)
1899 {
1900 	u32 *p = handle_tlbl;
1901 	const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1902 	struct uasm_label *l = labels;
1903 	struct uasm_reloc *r = relocs;
1904 	struct work_registers wr;
1905 
1906 	memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1907 	memset(labels, 0, sizeof(labels));
1908 	memset(relocs, 0, sizeof(relocs));
1909 
1910 	if (bcm1250_m3_war()) {
1911 		unsigned int segbits = 44;
1912 
1913 		uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1914 		uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1915 		uasm_i_xor(&p, K0, K0, K1);
1916 		uasm_i_dsrl_safe(&p, K1, K0, 62);
1917 		uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1918 		uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1919 		uasm_i_or(&p, K0, K0, K1);
1920 		uasm_il_bnez(&p, &r, K0, label_leave);
1921 		/* No need for uasm_i_nop */
1922 	}
1923 
1924 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
1925 	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1926 	if (m4kc_tlbp_war())
1927 		build_tlb_probe_entry(&p);
1928 
1929 	if (cpu_has_rixi) {
1930 		/*
1931 		 * If the page is not _PAGE_VALID, RI or XI could not
1932 		 * have triggered it.  Skip the expensive test..
1933 		 */
1934 		if (use_bbit_insns()) {
1935 			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1936 				      label_tlbl_goaround1);
1937 		} else {
1938 			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1939 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
1940 		}
1941 		uasm_i_nop(&p);
1942 
1943 		uasm_i_tlbr(&p);
1944 
1945 		switch (current_cpu_type()) {
1946 		default:
1947 			if (cpu_has_mips_r2) {
1948 				uasm_i_ehb(&p);
1949 
1950 		case CPU_CAVIUM_OCTEON:
1951 		case CPU_CAVIUM_OCTEON_PLUS:
1952 		case CPU_CAVIUM_OCTEON2:
1953 				break;
1954 			}
1955 		}
1956 
1957 		/* Examine  entrylo 0 or 1 based on ptr. */
1958 		if (use_bbit_insns()) {
1959 			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1960 		} else {
1961 			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1962 			uasm_i_beqz(&p, wr.r3, 8);
1963 		}
1964 		/* load it in the delay slot*/
1965 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1966 		/* load it if ptr is odd */
1967 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1968 		/*
1969 		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1970 		 * XI must have triggered it.
1971 		 */
1972 		if (use_bbit_insns()) {
1973 			uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
1974 			uasm_i_nop(&p);
1975 			uasm_l_tlbl_goaround1(&l, p);
1976 		} else {
1977 			uasm_i_andi(&p, wr.r3, wr.r3, 2);
1978 			uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
1979 			uasm_i_nop(&p);
1980 		}
1981 		uasm_l_tlbl_goaround1(&l, p);
1982 	}
1983 	build_make_valid(&p, &r, wr.r1, wr.r2);
1984 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
1985 
1986 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1987 	/*
1988 	 * This is the entry point when build_r4000_tlbchange_handler_head
1989 	 * spots a huge page.
1990 	 */
1991 	uasm_l_tlb_huge_update(&l, p);
1992 	iPTE_LW(&p, wr.r1, wr.r2);
1993 	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1994 	build_tlb_probe_entry(&p);
1995 
1996 	if (cpu_has_rixi) {
1997 		/*
1998 		 * If the page is not _PAGE_VALID, RI or XI could not
1999 		 * have triggered it.  Skip the expensive test..
2000 		 */
2001 		if (use_bbit_insns()) {
2002 			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2003 				      label_tlbl_goaround2);
2004 		} else {
2005 			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2006 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2007 		}
2008 		uasm_i_nop(&p);
2009 
2010 		uasm_i_tlbr(&p);
2011 
2012 		switch (current_cpu_type()) {
2013 		default:
2014 			if (cpu_has_mips_r2) {
2015 				uasm_i_ehb(&p);
2016 
2017 		case CPU_CAVIUM_OCTEON:
2018 		case CPU_CAVIUM_OCTEON_PLUS:
2019 		case CPU_CAVIUM_OCTEON2:
2020 				break;
2021 			}
2022 		}
2023 
2024 		/* Examine  entrylo 0 or 1 based on ptr. */
2025 		if (use_bbit_insns()) {
2026 			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2027 		} else {
2028 			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2029 			uasm_i_beqz(&p, wr.r3, 8);
2030 		}
2031 		/* load it in the delay slot*/
2032 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2033 		/* load it if ptr is odd */
2034 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2035 		/*
2036 		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2037 		 * XI must have triggered it.
2038 		 */
2039 		if (use_bbit_insns()) {
2040 			uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2041 		} else {
2042 			uasm_i_andi(&p, wr.r3, wr.r3, 2);
2043 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2044 		}
2045 		if (PM_DEFAULT_MASK == 0)
2046 			uasm_i_nop(&p);
2047 		/*
2048 		 * We clobbered C0_PAGEMASK, restore it.  On the other branch
2049 		 * it is restored in build_huge_tlb_write_entry.
2050 		 */
2051 		build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2052 
2053 		uasm_l_tlbl_goaround2(&l, p);
2054 	}
2055 	uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2056 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2057 #endif
2058 
2059 	uasm_l_nopage_tlbl(&l, p);
2060 	build_restore_work_registers(&p);
2061 #ifdef CONFIG_CPU_MICROMIPS
2062 	if ((unsigned long)tlb_do_page_fault_0 & 1) {
2063 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2064 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2065 		uasm_i_jr(&p, K0);
2066 	} else
2067 #endif
2068 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2069 	uasm_i_nop(&p);
2070 
2071 	if (p >= handle_tlbl_end)
2072 		panic("TLB load handler fastpath space exceeded");
2073 
2074 	uasm_resolve_relocs(relocs, labels);
2075 	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2076 		 (unsigned int)(p - handle_tlbl));
2077 
2078 	dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_size);
2079 }
2080 
2081 static void build_r4000_tlb_store_handler(void)
2082 {
2083 	u32 *p = handle_tlbs;
2084 	const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
2085 	struct uasm_label *l = labels;
2086 	struct uasm_reloc *r = relocs;
2087 	struct work_registers wr;
2088 
2089 	memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
2090 	memset(labels, 0, sizeof(labels));
2091 	memset(relocs, 0, sizeof(relocs));
2092 
2093 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2094 	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2095 	if (m4kc_tlbp_war())
2096 		build_tlb_probe_entry(&p);
2097 	build_make_write(&p, &r, wr.r1, wr.r2);
2098 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2099 
2100 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2101 	/*
2102 	 * This is the entry point when
2103 	 * build_r4000_tlbchange_handler_head spots a huge page.
2104 	 */
2105 	uasm_l_tlb_huge_update(&l, p);
2106 	iPTE_LW(&p, wr.r1, wr.r2);
2107 	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2108 	build_tlb_probe_entry(&p);
2109 	uasm_i_ori(&p, wr.r1, wr.r1,
2110 		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2111 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2112 #endif
2113 
2114 	uasm_l_nopage_tlbs(&l, p);
2115 	build_restore_work_registers(&p);
2116 #ifdef CONFIG_CPU_MICROMIPS
2117 	if ((unsigned long)tlb_do_page_fault_1 & 1) {
2118 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2119 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2120 		uasm_i_jr(&p, K0);
2121 	} else
2122 #endif
2123 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2124 	uasm_i_nop(&p);
2125 
2126 	if (p >= handle_tlbs_end)
2127 		panic("TLB store handler fastpath space exceeded");
2128 
2129 	uasm_resolve_relocs(relocs, labels);
2130 	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2131 		 (unsigned int)(p - handle_tlbs));
2132 
2133 	dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_size);
2134 }
2135 
2136 static void build_r4000_tlb_modify_handler(void)
2137 {
2138 	u32 *p = handle_tlbm;
2139 	const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
2140 	struct uasm_label *l = labels;
2141 	struct uasm_reloc *r = relocs;
2142 	struct work_registers wr;
2143 
2144 	memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
2145 	memset(labels, 0, sizeof(labels));
2146 	memset(relocs, 0, sizeof(relocs));
2147 
2148 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2149 	build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2150 	if (m4kc_tlbp_war())
2151 		build_tlb_probe_entry(&p);
2152 	/* Present and writable bits set, set accessed and dirty bits. */
2153 	build_make_write(&p, &r, wr.r1, wr.r2);
2154 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2155 
2156 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2157 	/*
2158 	 * This is the entry point when
2159 	 * build_r4000_tlbchange_handler_head spots a huge page.
2160 	 */
2161 	uasm_l_tlb_huge_update(&l, p);
2162 	iPTE_LW(&p, wr.r1, wr.r2);
2163 	build_pte_modifiable(&p, &r, wr.r1, wr.r2,  wr.r3, label_nopage_tlbm);
2164 	build_tlb_probe_entry(&p);
2165 	uasm_i_ori(&p, wr.r1, wr.r1,
2166 		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2167 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2168 #endif
2169 
2170 	uasm_l_nopage_tlbm(&l, p);
2171 	build_restore_work_registers(&p);
2172 #ifdef CONFIG_CPU_MICROMIPS
2173 	if ((unsigned long)tlb_do_page_fault_1 & 1) {
2174 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2175 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2176 		uasm_i_jr(&p, K0);
2177 	} else
2178 #endif
2179 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2180 	uasm_i_nop(&p);
2181 
2182 	if (p >= handle_tlbm_end)
2183 		panic("TLB modify handler fastpath space exceeded");
2184 
2185 	uasm_resolve_relocs(relocs, labels);
2186 	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2187 		 (unsigned int)(p - handle_tlbm));
2188 
2189 	dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_size);
2190 }
2191 
2192 static void flush_tlb_handlers(void)
2193 {
2194 	local_flush_icache_range((unsigned long)handle_tlbl,
2195 			   (unsigned long)handle_tlbl_end);
2196 	local_flush_icache_range((unsigned long)handle_tlbs,
2197 			   (unsigned long)handle_tlbs_end);
2198 	local_flush_icache_range((unsigned long)handle_tlbm,
2199 			   (unsigned long)handle_tlbm_end);
2200 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2201 	local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2202 			   (unsigned long)tlbmiss_handler_setup_pgd_end);
2203 #endif
2204 }
2205 
2206 void build_tlb_refill_handler(void)
2207 {
2208 	/*
2209 	 * The refill handler is generated per-CPU, multi-node systems
2210 	 * may have local storage for it. The other handlers are only
2211 	 * needed once.
2212 	 */
2213 	static int run_once = 0;
2214 
2215 	output_pgtable_bits_defines();
2216 
2217 #ifdef CONFIG_64BIT
2218 	check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2219 #endif
2220 
2221 	switch (current_cpu_type()) {
2222 	case CPU_R2000:
2223 	case CPU_R3000:
2224 	case CPU_R3000A:
2225 	case CPU_R3081E:
2226 	case CPU_TX3912:
2227 	case CPU_TX3922:
2228 	case CPU_TX3927:
2229 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2230 		if (cpu_has_local_ebase)
2231 			build_r3000_tlb_refill_handler();
2232 		if (!run_once) {
2233 			if (!cpu_has_local_ebase)
2234 				build_r3000_tlb_refill_handler();
2235 			build_r3000_tlb_load_handler();
2236 			build_r3000_tlb_store_handler();
2237 			build_r3000_tlb_modify_handler();
2238 			flush_tlb_handlers();
2239 			run_once++;
2240 		}
2241 #else
2242 		panic("No R3000 TLB refill handler");
2243 #endif
2244 		break;
2245 
2246 	case CPU_R6000:
2247 	case CPU_R6000A:
2248 		panic("No R6000 TLB refill handler yet");
2249 		break;
2250 
2251 	case CPU_R8000:
2252 		panic("No R8000 TLB refill handler yet");
2253 		break;
2254 
2255 	default:
2256 		if (!run_once) {
2257 			scratch_reg = allocate_kscratch();
2258 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2259 			build_r4000_setup_pgd();
2260 #endif
2261 			build_r4000_tlb_load_handler();
2262 			build_r4000_tlb_store_handler();
2263 			build_r4000_tlb_modify_handler();
2264 			if (!cpu_has_local_ebase)
2265 				build_r4000_tlb_refill_handler();
2266 			flush_tlb_handlers();
2267 			run_once++;
2268 		}
2269 		if (cpu_has_local_ebase)
2270 			build_r4000_tlb_refill_handler();
2271 	}
2272 }
2273