1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Synthesize TLB refill handlers at runtime. 7 * 8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer 9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki 10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org) 11 * Copyright (C) 2008, 2009 Cavium Networks, Inc. 12 * Copyright (C) 2011 MIPS Technologies, Inc. 13 * 14 * ... and the days got worse and worse and now you see 15 * I've gone completely out of my mind. 16 * 17 * They're coming to take me a away haha 18 * they're coming to take me a away hoho hihi haha 19 * to the funny farm where code is beautiful all the time ... 20 * 21 * (Condolences to Napoleon XIV) 22 */ 23 24 #include <linux/bug.h> 25 #include <linux/kernel.h> 26 #include <linux/types.h> 27 #include <linux/smp.h> 28 #include <linux/string.h> 29 #include <linux/cache.h> 30 31 #include <asm/cacheflush.h> 32 #include <asm/cpu-type.h> 33 #include <asm/pgtable.h> 34 #include <asm/war.h> 35 #include <asm/uasm.h> 36 #include <asm/setup.h> 37 38 static int mips_xpa_disabled; 39 40 static int __init xpa_disable(char *s) 41 { 42 mips_xpa_disabled = 1; 43 44 return 1; 45 } 46 47 __setup("noxpa", xpa_disable); 48 49 /* 50 * TLB load/store/modify handlers. 51 * 52 * Only the fastpath gets synthesized at runtime, the slowpath for 53 * do_page_fault remains normal asm. 54 */ 55 extern void tlb_do_page_fault_0(void); 56 extern void tlb_do_page_fault_1(void); 57 58 struct work_registers { 59 int r1; 60 int r2; 61 int r3; 62 }; 63 64 struct tlb_reg_save { 65 unsigned long a; 66 unsigned long b; 67 } ____cacheline_aligned_in_smp; 68 69 static struct tlb_reg_save handler_reg_save[NR_CPUS]; 70 71 static inline int r45k_bvahwbug(void) 72 { 73 /* XXX: We should probe for the presence of this bug, but we don't. */ 74 return 0; 75 } 76 77 static inline int r4k_250MHZhwbug(void) 78 { 79 /* XXX: We should probe for the presence of this bug, but we don't. */ 80 return 0; 81 } 82 83 static inline int __maybe_unused bcm1250_m3_war(void) 84 { 85 return BCM1250_M3_WAR; 86 } 87 88 static inline int __maybe_unused r10000_llsc_war(void) 89 { 90 return R10000_LLSC_WAR; 91 } 92 93 static int use_bbit_insns(void) 94 { 95 switch (current_cpu_type()) { 96 case CPU_CAVIUM_OCTEON: 97 case CPU_CAVIUM_OCTEON_PLUS: 98 case CPU_CAVIUM_OCTEON2: 99 case CPU_CAVIUM_OCTEON3: 100 return 1; 101 default: 102 return 0; 103 } 104 } 105 106 static int use_lwx_insns(void) 107 { 108 switch (current_cpu_type()) { 109 case CPU_CAVIUM_OCTEON2: 110 case CPU_CAVIUM_OCTEON3: 111 return 1; 112 default: 113 return 0; 114 } 115 } 116 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \ 117 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0 118 static bool scratchpad_available(void) 119 { 120 return true; 121 } 122 static int scratchpad_offset(int i) 123 { 124 /* 125 * CVMSEG starts at address -32768 and extends for 126 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines. 127 */ 128 i += 1; /* Kernel use starts at the top and works down. */ 129 return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768; 130 } 131 #else 132 static bool scratchpad_available(void) 133 { 134 return false; 135 } 136 static int scratchpad_offset(int i) 137 { 138 BUG(); 139 /* Really unreachable, but evidently some GCC want this. */ 140 return 0; 141 } 142 #endif 143 /* 144 * Found by experiment: At least some revisions of the 4kc throw under 145 * some circumstances a machine check exception, triggered by invalid 146 * values in the index register. Delaying the tlbp instruction until 147 * after the next branch, plus adding an additional nop in front of 148 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows 149 * why; it's not an issue caused by the core RTL. 150 * 151 */ 152 static int m4kc_tlbp_war(void) 153 { 154 return (current_cpu_data.processor_id & 0xffff00) == 155 (PRID_COMP_MIPS | PRID_IMP_4KC); 156 } 157 158 /* Handle labels (which must be positive integers). */ 159 enum label_id { 160 label_second_part = 1, 161 label_leave, 162 label_vmalloc, 163 label_vmalloc_done, 164 label_tlbw_hazard_0, 165 label_split = label_tlbw_hazard_0 + 8, 166 label_tlbl_goaround1, 167 label_tlbl_goaround2, 168 label_nopage_tlbl, 169 label_nopage_tlbs, 170 label_nopage_tlbm, 171 label_smp_pgtable_change, 172 label_r3000_write_probe_fail, 173 label_large_segbits_fault, 174 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 175 label_tlb_huge_update, 176 #endif 177 }; 178 179 UASM_L_LA(_second_part) 180 UASM_L_LA(_leave) 181 UASM_L_LA(_vmalloc) 182 UASM_L_LA(_vmalloc_done) 183 /* _tlbw_hazard_x is handled differently. */ 184 UASM_L_LA(_split) 185 UASM_L_LA(_tlbl_goaround1) 186 UASM_L_LA(_tlbl_goaround2) 187 UASM_L_LA(_nopage_tlbl) 188 UASM_L_LA(_nopage_tlbs) 189 UASM_L_LA(_nopage_tlbm) 190 UASM_L_LA(_smp_pgtable_change) 191 UASM_L_LA(_r3000_write_probe_fail) 192 UASM_L_LA(_large_segbits_fault) 193 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 194 UASM_L_LA(_tlb_huge_update) 195 #endif 196 197 static int hazard_instance; 198 199 static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance) 200 { 201 switch (instance) { 202 case 0 ... 7: 203 uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance); 204 return; 205 default: 206 BUG(); 207 } 208 } 209 210 static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance) 211 { 212 switch (instance) { 213 case 0 ... 7: 214 uasm_build_label(l, *p, label_tlbw_hazard_0 + instance); 215 break; 216 default: 217 BUG(); 218 } 219 } 220 221 /* 222 * pgtable bits are assigned dynamically depending on processor feature 223 * and statically based on kernel configuration. This spits out the actual 224 * values the kernel is using. Required to make sense from disassembled 225 * TLB exception handlers. 226 */ 227 static void output_pgtable_bits_defines(void) 228 { 229 #define pr_define(fmt, ...) \ 230 pr_debug("#define " fmt, ##__VA_ARGS__) 231 232 pr_debug("#include <asm/asm.h>\n"); 233 pr_debug("#include <asm/regdef.h>\n"); 234 pr_debug("\n"); 235 236 pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT); 237 pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT); 238 pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT); 239 pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT); 240 pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT); 241 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 242 pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT); 243 #endif 244 #ifdef _PAGE_NO_EXEC_SHIFT 245 if (cpu_has_rixi) 246 pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT); 247 #endif 248 pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT); 249 pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT); 250 pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT); 251 pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT); 252 pr_debug("\n"); 253 } 254 255 static inline void dump_handler(const char *symbol, const u32 *handler, int count) 256 { 257 int i; 258 259 pr_debug("LEAF(%s)\n", symbol); 260 261 pr_debug("\t.set push\n"); 262 pr_debug("\t.set noreorder\n"); 263 264 for (i = 0; i < count; i++) 265 pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]); 266 267 pr_debug("\t.set\tpop\n"); 268 269 pr_debug("\tEND(%s)\n", symbol); 270 } 271 272 /* The only general purpose registers allowed in TLB handlers. */ 273 #define K0 26 274 #define K1 27 275 276 /* Some CP0 registers */ 277 #define C0_INDEX 0, 0 278 #define C0_ENTRYLO0 2, 0 279 #define C0_TCBIND 2, 2 280 #define C0_ENTRYLO1 3, 0 281 #define C0_CONTEXT 4, 0 282 #define C0_PAGEMASK 5, 0 283 #define C0_PWBASE 5, 5 284 #define C0_PWFIELD 5, 6 285 #define C0_PWSIZE 5, 7 286 #define C0_PWCTL 6, 6 287 #define C0_BADVADDR 8, 0 288 #define C0_PGD 9, 7 289 #define C0_ENTRYHI 10, 0 290 #define C0_EPC 14, 0 291 #define C0_XCONTEXT 20, 0 292 293 #ifdef CONFIG_64BIT 294 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT) 295 #else 296 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT) 297 #endif 298 299 /* The worst case length of the handler is around 18 instructions for 300 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs. 301 * Maximum space available is 32 instructions for R3000 and 64 302 * instructions for R4000. 303 * 304 * We deliberately chose a buffer size of 128, so we won't scribble 305 * over anything important on overflow before we panic. 306 */ 307 static u32 tlb_handler[128]; 308 309 /* simply assume worst case size for labels and relocs */ 310 static struct uasm_label labels[128]; 311 static struct uasm_reloc relocs[128]; 312 313 static int check_for_high_segbits; 314 static bool fill_includes_sw_bits; 315 316 static unsigned int kscratch_used_mask; 317 318 static inline int __maybe_unused c0_kscratch(void) 319 { 320 switch (current_cpu_type()) { 321 case CPU_XLP: 322 case CPU_XLR: 323 return 22; 324 default: 325 return 31; 326 } 327 } 328 329 static int allocate_kscratch(void) 330 { 331 int r; 332 unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask; 333 334 r = ffs(a); 335 336 if (r == 0) 337 return -1; 338 339 r--; /* make it zero based */ 340 341 kscratch_used_mask |= (1 << r); 342 343 return r; 344 } 345 346 static int scratch_reg; 347 static int pgd_reg; 348 enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch}; 349 350 static struct work_registers build_get_work_registers(u32 **p) 351 { 352 struct work_registers r; 353 354 if (scratch_reg >= 0) { 355 /* Save in CPU local C0_KScratch? */ 356 UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg); 357 r.r1 = K0; 358 r.r2 = K1; 359 r.r3 = 1; 360 return r; 361 } 362 363 if (num_possible_cpus() > 1) { 364 /* Get smp_processor_id */ 365 UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG); 366 UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT); 367 368 /* handler_reg_save index in K0 */ 369 UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save))); 370 371 UASM_i_LA(p, K1, (long)&handler_reg_save); 372 UASM_i_ADDU(p, K0, K0, K1); 373 } else { 374 UASM_i_LA(p, K0, (long)&handler_reg_save); 375 } 376 /* K0 now points to save area, save $1 and $2 */ 377 UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0); 378 UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0); 379 380 r.r1 = K1; 381 r.r2 = 1; 382 r.r3 = 2; 383 return r; 384 } 385 386 static void build_restore_work_registers(u32 **p) 387 { 388 if (scratch_reg >= 0) { 389 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg); 390 return; 391 } 392 /* K0 already points to save area, restore $1 and $2 */ 393 UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0); 394 UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0); 395 } 396 397 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT 398 399 /* 400 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current, 401 * we cannot do r3000 under these circumstances. 402 * 403 * Declare pgd_current here instead of including mmu_context.h to avoid type 404 * conflicts for tlbmiss_handler_setup_pgd 405 */ 406 extern unsigned long pgd_current[]; 407 408 /* 409 * The R3000 TLB handler is simple. 410 */ 411 static void build_r3000_tlb_refill_handler(void) 412 { 413 long pgdc = (long)pgd_current; 414 u32 *p; 415 416 memset(tlb_handler, 0, sizeof(tlb_handler)); 417 p = tlb_handler; 418 419 uasm_i_mfc0(&p, K0, C0_BADVADDR); 420 uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */ 421 uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1); 422 uasm_i_srl(&p, K0, K0, 22); /* load delay */ 423 uasm_i_sll(&p, K0, K0, 2); 424 uasm_i_addu(&p, K1, K1, K0); 425 uasm_i_mfc0(&p, K0, C0_CONTEXT); 426 uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */ 427 uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */ 428 uasm_i_addu(&p, K1, K1, K0); 429 uasm_i_lw(&p, K0, 0, K1); 430 uasm_i_nop(&p); /* load delay */ 431 uasm_i_mtc0(&p, K0, C0_ENTRYLO0); 432 uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */ 433 uasm_i_tlbwr(&p); /* cp0 delay */ 434 uasm_i_jr(&p, K1); 435 uasm_i_rfe(&p); /* branch delay */ 436 437 if (p > tlb_handler + 32) 438 panic("TLB refill handler space exceeded"); 439 440 pr_debug("Wrote TLB refill handler (%u instructions).\n", 441 (unsigned int)(p - tlb_handler)); 442 443 memcpy((void *)ebase, tlb_handler, 0x80); 444 local_flush_icache_range(ebase, ebase + 0x80); 445 446 dump_handler("r3000_tlb_refill", (u32 *)ebase, 32); 447 } 448 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */ 449 450 /* 451 * The R4000 TLB handler is much more complicated. We have two 452 * consecutive handler areas with 32 instructions space each. 453 * Since they aren't used at the same time, we can overflow in the 454 * other one.To keep things simple, we first assume linear space, 455 * then we relocate it to the final handler layout as needed. 456 */ 457 static u32 final_handler[64]; 458 459 /* 460 * Hazards 461 * 462 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0: 463 * 2. A timing hazard exists for the TLBP instruction. 464 * 465 * stalling_instruction 466 * TLBP 467 * 468 * The JTLB is being read for the TLBP throughout the stall generated by the 469 * previous instruction. This is not really correct as the stalling instruction 470 * can modify the address used to access the JTLB. The failure symptom is that 471 * the TLBP instruction will use an address created for the stalling instruction 472 * and not the address held in C0_ENHI and thus report the wrong results. 473 * 474 * The software work-around is to not allow the instruction preceding the TLBP 475 * to stall - make it an NOP or some other instruction guaranteed not to stall. 476 * 477 * Errata 2 will not be fixed. This errata is also on the R5000. 478 * 479 * As if we MIPS hackers wouldn't know how to nop pipelines happy ... 480 */ 481 static void __maybe_unused build_tlb_probe_entry(u32 **p) 482 { 483 switch (current_cpu_type()) { 484 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */ 485 case CPU_R4600: 486 case CPU_R4700: 487 case CPU_R5000: 488 case CPU_NEVADA: 489 uasm_i_nop(p); 490 uasm_i_tlbp(p); 491 break; 492 493 default: 494 uasm_i_tlbp(p); 495 break; 496 } 497 } 498 499 /* 500 * Write random or indexed TLB entry, and care about the hazards from 501 * the preceding mtc0 and for the following eret. 502 */ 503 enum tlb_write_entry { tlb_random, tlb_indexed }; 504 505 static void build_tlb_write_entry(u32 **p, struct uasm_label **l, 506 struct uasm_reloc **r, 507 enum tlb_write_entry wmode) 508 { 509 void(*tlbw)(u32 **) = NULL; 510 511 switch (wmode) { 512 case tlb_random: tlbw = uasm_i_tlbwr; break; 513 case tlb_indexed: tlbw = uasm_i_tlbwi; break; 514 } 515 516 if (cpu_has_mips_r2_r6) { 517 if (cpu_has_mips_r2_exec_hazard) 518 uasm_i_ehb(p); 519 tlbw(p); 520 return; 521 } 522 523 switch (current_cpu_type()) { 524 case CPU_R4000PC: 525 case CPU_R4000SC: 526 case CPU_R4000MC: 527 case CPU_R4400PC: 528 case CPU_R4400SC: 529 case CPU_R4400MC: 530 /* 531 * This branch uses up a mtc0 hazard nop slot and saves 532 * two nops after the tlbw instruction. 533 */ 534 uasm_bgezl_hazard(p, r, hazard_instance); 535 tlbw(p); 536 uasm_bgezl_label(l, p, hazard_instance); 537 hazard_instance++; 538 uasm_i_nop(p); 539 break; 540 541 case CPU_R4600: 542 case CPU_R4700: 543 uasm_i_nop(p); 544 tlbw(p); 545 uasm_i_nop(p); 546 break; 547 548 case CPU_R5000: 549 case CPU_NEVADA: 550 uasm_i_nop(p); /* QED specifies 2 nops hazard */ 551 uasm_i_nop(p); /* QED specifies 2 nops hazard */ 552 tlbw(p); 553 break; 554 555 case CPU_R4300: 556 case CPU_5KC: 557 case CPU_TX49XX: 558 case CPU_PR4450: 559 case CPU_XLR: 560 uasm_i_nop(p); 561 tlbw(p); 562 break; 563 564 case CPU_R10000: 565 case CPU_R12000: 566 case CPU_R14000: 567 case CPU_R16000: 568 case CPU_4KC: 569 case CPU_4KEC: 570 case CPU_M14KC: 571 case CPU_M14KEC: 572 case CPU_SB1: 573 case CPU_SB1A: 574 case CPU_4KSC: 575 case CPU_20KC: 576 case CPU_25KF: 577 case CPU_BMIPS32: 578 case CPU_BMIPS3300: 579 case CPU_BMIPS4350: 580 case CPU_BMIPS4380: 581 case CPU_BMIPS5000: 582 case CPU_LOONGSON2: 583 case CPU_LOONGSON3: 584 case CPU_R5500: 585 if (m4kc_tlbp_war()) 586 uasm_i_nop(p); 587 case CPU_ALCHEMY: 588 tlbw(p); 589 break; 590 591 case CPU_RM7000: 592 uasm_i_nop(p); 593 uasm_i_nop(p); 594 uasm_i_nop(p); 595 uasm_i_nop(p); 596 tlbw(p); 597 break; 598 599 case CPU_VR4111: 600 case CPU_VR4121: 601 case CPU_VR4122: 602 case CPU_VR4181: 603 case CPU_VR4181A: 604 uasm_i_nop(p); 605 uasm_i_nop(p); 606 tlbw(p); 607 uasm_i_nop(p); 608 uasm_i_nop(p); 609 break; 610 611 case CPU_VR4131: 612 case CPU_VR4133: 613 case CPU_R5432: 614 uasm_i_nop(p); 615 uasm_i_nop(p); 616 tlbw(p); 617 break; 618 619 case CPU_JZRISC: 620 tlbw(p); 621 uasm_i_nop(p); 622 break; 623 624 default: 625 panic("No TLB refill handler yet (CPU type: %d)", 626 current_cpu_type()); 627 break; 628 } 629 } 630 631 static __maybe_unused void build_convert_pte_to_entrylo(u32 **p, 632 unsigned int reg) 633 { 634 if (_PAGE_GLOBAL_SHIFT == 0) { 635 /* pte_t is already in EntryLo format */ 636 return; 637 } 638 639 if (cpu_has_rixi && _PAGE_NO_EXEC) { 640 if (fill_includes_sw_bits) { 641 UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL)); 642 } else { 643 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_NO_EXEC)); 644 UASM_i_ROTR(p, reg, reg, 645 ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC)); 646 } 647 } else { 648 #ifdef CONFIG_PHYS_ADDR_T_64BIT 649 uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL)); 650 #else 651 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL)); 652 #endif 653 } 654 } 655 656 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 657 658 static void build_restore_pagemask(u32 **p, struct uasm_reloc **r, 659 unsigned int tmp, enum label_id lid, 660 int restore_scratch) 661 { 662 if (restore_scratch) { 663 /* Reset default page size */ 664 if (PM_DEFAULT_MASK >> 16) { 665 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16); 666 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff); 667 uasm_i_mtc0(p, tmp, C0_PAGEMASK); 668 uasm_il_b(p, r, lid); 669 } else if (PM_DEFAULT_MASK) { 670 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK); 671 uasm_i_mtc0(p, tmp, C0_PAGEMASK); 672 uasm_il_b(p, r, lid); 673 } else { 674 uasm_i_mtc0(p, 0, C0_PAGEMASK); 675 uasm_il_b(p, r, lid); 676 } 677 if (scratch_reg >= 0) 678 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg); 679 else 680 UASM_i_LW(p, 1, scratchpad_offset(0), 0); 681 } else { 682 /* Reset default page size */ 683 if (PM_DEFAULT_MASK >> 16) { 684 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16); 685 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff); 686 uasm_il_b(p, r, lid); 687 uasm_i_mtc0(p, tmp, C0_PAGEMASK); 688 } else if (PM_DEFAULT_MASK) { 689 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK); 690 uasm_il_b(p, r, lid); 691 uasm_i_mtc0(p, tmp, C0_PAGEMASK); 692 } else { 693 uasm_il_b(p, r, lid); 694 uasm_i_mtc0(p, 0, C0_PAGEMASK); 695 } 696 } 697 } 698 699 static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l, 700 struct uasm_reloc **r, 701 unsigned int tmp, 702 enum tlb_write_entry wmode, 703 int restore_scratch) 704 { 705 /* Set huge page tlb entry size */ 706 uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16); 707 uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff); 708 uasm_i_mtc0(p, tmp, C0_PAGEMASK); 709 710 build_tlb_write_entry(p, l, r, wmode); 711 712 build_restore_pagemask(p, r, tmp, label_leave, restore_scratch); 713 } 714 715 /* 716 * Check if Huge PTE is present, if so then jump to LABEL. 717 */ 718 static void 719 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp, 720 unsigned int pmd, int lid) 721 { 722 UASM_i_LW(p, tmp, 0, pmd); 723 if (use_bbit_insns()) { 724 uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid); 725 } else { 726 uasm_i_andi(p, tmp, tmp, _PAGE_HUGE); 727 uasm_il_bnez(p, r, tmp, lid); 728 } 729 } 730 731 static void build_huge_update_entries(u32 **p, unsigned int pte, 732 unsigned int tmp) 733 { 734 int small_sequence; 735 736 /* 737 * A huge PTE describes an area the size of the 738 * configured huge page size. This is twice the 739 * of the large TLB entry size we intend to use. 740 * A TLB entry half the size of the configured 741 * huge page size is configured into entrylo0 742 * and entrylo1 to cover the contiguous huge PTE 743 * address space. 744 */ 745 small_sequence = (HPAGE_SIZE >> 7) < 0x10000; 746 747 /* We can clobber tmp. It isn't used after this.*/ 748 if (!small_sequence) 749 uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16)); 750 751 build_convert_pte_to_entrylo(p, pte); 752 UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */ 753 /* convert to entrylo1 */ 754 if (small_sequence) 755 UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7); 756 else 757 UASM_i_ADDU(p, pte, pte, tmp); 758 759 UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */ 760 } 761 762 static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r, 763 struct uasm_label **l, 764 unsigned int pte, 765 unsigned int ptr) 766 { 767 #ifdef CONFIG_SMP 768 UASM_i_SC(p, pte, 0, ptr); 769 uasm_il_beqz(p, r, pte, label_tlb_huge_update); 770 UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */ 771 #else 772 UASM_i_SW(p, pte, 0, ptr); 773 #endif 774 build_huge_update_entries(p, pte, ptr); 775 build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0); 776 } 777 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */ 778 779 #ifdef CONFIG_64BIT 780 /* 781 * TMP and PTR are scratch. 782 * TMP will be clobbered, PTR will hold the pmd entry. 783 */ 784 static void 785 build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r, 786 unsigned int tmp, unsigned int ptr) 787 { 788 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT 789 long pgdc = (long)pgd_current; 790 #endif 791 /* 792 * The vmalloc handling is not in the hotpath. 793 */ 794 uasm_i_dmfc0(p, tmp, C0_BADVADDR); 795 796 if (check_for_high_segbits) { 797 /* 798 * The kernel currently implicitely assumes that the 799 * MIPS SEGBITS parameter for the processor is 800 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never 801 * allocate virtual addresses outside the maximum 802 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But 803 * that doesn't prevent user code from accessing the 804 * higher xuseg addresses. Here, we make sure that 805 * everything but the lower xuseg addresses goes down 806 * the module_alloc/vmalloc path. 807 */ 808 uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3); 809 uasm_il_bnez(p, r, ptr, label_vmalloc); 810 } else { 811 uasm_il_bltz(p, r, tmp, label_vmalloc); 812 } 813 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */ 814 815 if (pgd_reg != -1) { 816 /* pgd is in pgd_reg */ 817 if (cpu_has_ldpte) 818 UASM_i_MFC0(p, ptr, C0_PWBASE); 819 else 820 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg); 821 } else { 822 #if defined(CONFIG_MIPS_PGD_C0_CONTEXT) 823 /* 824 * &pgd << 11 stored in CONTEXT [23..63]. 825 */ 826 UASM_i_MFC0(p, ptr, C0_CONTEXT); 827 828 /* Clear lower 23 bits of context. */ 829 uasm_i_dins(p, ptr, 0, 0, 23); 830 831 /* 1 0 1 0 1 << 6 xkphys cached */ 832 uasm_i_ori(p, ptr, ptr, 0x540); 833 uasm_i_drotr(p, ptr, ptr, 11); 834 #elif defined(CONFIG_SMP) 835 UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG); 836 uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT); 837 UASM_i_LA_mostly(p, tmp, pgdc); 838 uasm_i_daddu(p, ptr, ptr, tmp); 839 uasm_i_dmfc0(p, tmp, C0_BADVADDR); 840 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr); 841 #else 842 UASM_i_LA_mostly(p, ptr, pgdc); 843 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr); 844 #endif 845 } 846 847 uasm_l_vmalloc_done(l, *p); 848 849 /* get pgd offset in bytes */ 850 uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3); 851 852 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3); 853 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */ 854 #ifndef __PAGETABLE_PMD_FOLDED 855 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */ 856 uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */ 857 uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */ 858 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3); 859 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */ 860 #endif 861 } 862 863 /* 864 * BVADDR is the faulting address, PTR is scratch. 865 * PTR will hold the pgd for vmalloc. 866 */ 867 static void 868 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r, 869 unsigned int bvaddr, unsigned int ptr, 870 enum vmalloc64_mode mode) 871 { 872 long swpd = (long)swapper_pg_dir; 873 int single_insn_swpd; 874 int did_vmalloc_branch = 0; 875 876 single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd); 877 878 uasm_l_vmalloc(l, *p); 879 880 if (mode != not_refill && check_for_high_segbits) { 881 if (single_insn_swpd) { 882 uasm_il_bltz(p, r, bvaddr, label_vmalloc_done); 883 uasm_i_lui(p, ptr, uasm_rel_hi(swpd)); 884 did_vmalloc_branch = 1; 885 /* fall through */ 886 } else { 887 uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault); 888 } 889 } 890 if (!did_vmalloc_branch) { 891 if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) { 892 uasm_il_b(p, r, label_vmalloc_done); 893 uasm_i_lui(p, ptr, uasm_rel_hi(swpd)); 894 } else { 895 UASM_i_LA_mostly(p, ptr, swpd); 896 uasm_il_b(p, r, label_vmalloc_done); 897 if (uasm_in_compat_space_p(swpd)) 898 uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd)); 899 else 900 uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd)); 901 } 902 } 903 if (mode != not_refill && check_for_high_segbits) { 904 uasm_l_large_segbits_fault(l, *p); 905 /* 906 * We get here if we are an xsseg address, or if we are 907 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary. 908 * 909 * Ignoring xsseg (assume disabled so would generate 910 * (address errors?), the only remaining possibility 911 * is the upper xuseg addresses. On processors with 912 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these 913 * addresses would have taken an address error. We try 914 * to mimic that here by taking a load/istream page 915 * fault. 916 */ 917 UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0); 918 uasm_i_jr(p, ptr); 919 920 if (mode == refill_scratch) { 921 if (scratch_reg >= 0) 922 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg); 923 else 924 UASM_i_LW(p, 1, scratchpad_offset(0), 0); 925 } else { 926 uasm_i_nop(p); 927 } 928 } 929 } 930 931 #else /* !CONFIG_64BIT */ 932 933 /* 934 * TMP and PTR are scratch. 935 * TMP will be clobbered, PTR will hold the pgd entry. 936 */ 937 static void __maybe_unused 938 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr) 939 { 940 if (pgd_reg != -1) { 941 /* pgd is in pgd_reg */ 942 uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg); 943 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */ 944 } else { 945 long pgdc = (long)pgd_current; 946 947 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */ 948 #ifdef CONFIG_SMP 949 uasm_i_mfc0(p, ptr, SMP_CPUID_REG); 950 UASM_i_LA_mostly(p, tmp, pgdc); 951 uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT); 952 uasm_i_addu(p, ptr, tmp, ptr); 953 #else 954 UASM_i_LA_mostly(p, ptr, pgdc); 955 #endif 956 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */ 957 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr); 958 } 959 uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */ 960 uasm_i_sll(p, tmp, tmp, PGD_T_LOG2); 961 uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */ 962 } 963 964 #endif /* !CONFIG_64BIT */ 965 966 static void build_adjust_context(u32 **p, unsigned int ctx) 967 { 968 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12; 969 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1); 970 971 switch (current_cpu_type()) { 972 case CPU_VR41XX: 973 case CPU_VR4111: 974 case CPU_VR4121: 975 case CPU_VR4122: 976 case CPU_VR4131: 977 case CPU_VR4181: 978 case CPU_VR4181A: 979 case CPU_VR4133: 980 shift += 2; 981 break; 982 983 default: 984 break; 985 } 986 987 if (shift) 988 UASM_i_SRL(p, ctx, ctx, shift); 989 uasm_i_andi(p, ctx, ctx, mask); 990 } 991 992 static void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr) 993 { 994 /* 995 * Bug workaround for the Nevada. It seems as if under certain 996 * circumstances the move from cp0_context might produce a 997 * bogus result when the mfc0 instruction and its consumer are 998 * in a different cacheline or a load instruction, probably any 999 * memory reference, is between them. 1000 */ 1001 switch (current_cpu_type()) { 1002 case CPU_NEVADA: 1003 UASM_i_LW(p, ptr, 0, ptr); 1004 GET_CONTEXT(p, tmp); /* get context reg */ 1005 break; 1006 1007 default: 1008 GET_CONTEXT(p, tmp); /* get context reg */ 1009 UASM_i_LW(p, ptr, 0, ptr); 1010 break; 1011 } 1012 1013 build_adjust_context(p, tmp); 1014 UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */ 1015 } 1016 1017 static void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep) 1018 { 1019 int pte_off_even = 0; 1020 int pte_off_odd = sizeof(pte_t); 1021 1022 #if defined(CONFIG_CPU_MIPS32) && defined(CONFIG_PHYS_ADDR_T_64BIT) 1023 /* The low 32 bits of EntryLo is stored in pte_high */ 1024 pte_off_even += offsetof(pte_t, pte_high); 1025 pte_off_odd += offsetof(pte_t, pte_high); 1026 #endif 1027 1028 if (config_enabled(CONFIG_XPA)) { 1029 uasm_i_lw(p, tmp, pte_off_even, ptep); /* even pte */ 1030 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); 1031 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); 1032 1033 if (cpu_has_xpa && !mips_xpa_disabled) { 1034 uasm_i_lw(p, tmp, 0, ptep); 1035 uasm_i_ext(p, tmp, tmp, 0, 24); 1036 uasm_i_mthc0(p, tmp, C0_ENTRYLO0); 1037 } 1038 1039 uasm_i_lw(p, tmp, pte_off_odd, ptep); /* odd pte */ 1040 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); 1041 UASM_i_MTC0(p, tmp, C0_ENTRYLO1); 1042 1043 if (cpu_has_xpa && !mips_xpa_disabled) { 1044 uasm_i_lw(p, tmp, sizeof(pte_t), ptep); 1045 uasm_i_ext(p, tmp, tmp, 0, 24); 1046 uasm_i_mthc0(p, tmp, C0_ENTRYLO1); 1047 } 1048 return; 1049 } 1050 1051 UASM_i_LW(p, tmp, pte_off_even, ptep); /* get even pte */ 1052 UASM_i_LW(p, ptep, pte_off_odd, ptep); /* get odd pte */ 1053 if (r45k_bvahwbug()) 1054 build_tlb_probe_entry(p); 1055 build_convert_pte_to_entrylo(p, tmp); 1056 if (r4k_250MHZhwbug()) 1057 UASM_i_MTC0(p, 0, C0_ENTRYLO0); 1058 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */ 1059 build_convert_pte_to_entrylo(p, ptep); 1060 if (r45k_bvahwbug()) 1061 uasm_i_mfc0(p, tmp, C0_INDEX); 1062 if (r4k_250MHZhwbug()) 1063 UASM_i_MTC0(p, 0, C0_ENTRYLO1); 1064 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */ 1065 } 1066 1067 struct mips_huge_tlb_info { 1068 int huge_pte; 1069 int restore_scratch; 1070 bool need_reload_pte; 1071 }; 1072 1073 static struct mips_huge_tlb_info 1074 build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l, 1075 struct uasm_reloc **r, unsigned int tmp, 1076 unsigned int ptr, int c0_scratch_reg) 1077 { 1078 struct mips_huge_tlb_info rv; 1079 unsigned int even, odd; 1080 int vmalloc_branch_delay_filled = 0; 1081 const int scratch = 1; /* Our extra working register */ 1082 1083 rv.huge_pte = scratch; 1084 rv.restore_scratch = 0; 1085 rv.need_reload_pte = false; 1086 1087 if (check_for_high_segbits) { 1088 UASM_i_MFC0(p, tmp, C0_BADVADDR); 1089 1090 if (pgd_reg != -1) 1091 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg); 1092 else 1093 UASM_i_MFC0(p, ptr, C0_CONTEXT); 1094 1095 if (c0_scratch_reg >= 0) 1096 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg); 1097 else 1098 UASM_i_SW(p, scratch, scratchpad_offset(0), 0); 1099 1100 uasm_i_dsrl_safe(p, scratch, tmp, 1101 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3); 1102 uasm_il_bnez(p, r, scratch, label_vmalloc); 1103 1104 if (pgd_reg == -1) { 1105 vmalloc_branch_delay_filled = 1; 1106 /* Clear lower 23 bits of context. */ 1107 uasm_i_dins(p, ptr, 0, 0, 23); 1108 } 1109 } else { 1110 if (pgd_reg != -1) 1111 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg); 1112 else 1113 UASM_i_MFC0(p, ptr, C0_CONTEXT); 1114 1115 UASM_i_MFC0(p, tmp, C0_BADVADDR); 1116 1117 if (c0_scratch_reg >= 0) 1118 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg); 1119 else 1120 UASM_i_SW(p, scratch, scratchpad_offset(0), 0); 1121 1122 if (pgd_reg == -1) 1123 /* Clear lower 23 bits of context. */ 1124 uasm_i_dins(p, ptr, 0, 0, 23); 1125 1126 uasm_il_bltz(p, r, tmp, label_vmalloc); 1127 } 1128 1129 if (pgd_reg == -1) { 1130 vmalloc_branch_delay_filled = 1; 1131 /* 1 0 1 0 1 << 6 xkphys cached */ 1132 uasm_i_ori(p, ptr, ptr, 0x540); 1133 uasm_i_drotr(p, ptr, ptr, 11); 1134 } 1135 1136 #ifdef __PAGETABLE_PMD_FOLDED 1137 #define LOC_PTEP scratch 1138 #else 1139 #define LOC_PTEP ptr 1140 #endif 1141 1142 if (!vmalloc_branch_delay_filled) 1143 /* get pgd offset in bytes */ 1144 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3); 1145 1146 uasm_l_vmalloc_done(l, *p); 1147 1148 /* 1149 * tmp ptr 1150 * fall-through case = badvaddr *pgd_current 1151 * vmalloc case = badvaddr swapper_pg_dir 1152 */ 1153 1154 if (vmalloc_branch_delay_filled) 1155 /* get pgd offset in bytes */ 1156 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3); 1157 1158 #ifdef __PAGETABLE_PMD_FOLDED 1159 GET_CONTEXT(p, tmp); /* get context reg */ 1160 #endif 1161 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3); 1162 1163 if (use_lwx_insns()) { 1164 UASM_i_LWX(p, LOC_PTEP, scratch, ptr); 1165 } else { 1166 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */ 1167 uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */ 1168 } 1169 1170 #ifndef __PAGETABLE_PMD_FOLDED 1171 /* get pmd offset in bytes */ 1172 uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3); 1173 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3); 1174 GET_CONTEXT(p, tmp); /* get context reg */ 1175 1176 if (use_lwx_insns()) { 1177 UASM_i_LWX(p, scratch, scratch, ptr); 1178 } else { 1179 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */ 1180 UASM_i_LW(p, scratch, 0, ptr); 1181 } 1182 #endif 1183 /* Adjust the context during the load latency. */ 1184 build_adjust_context(p, tmp); 1185 1186 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 1187 uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update); 1188 /* 1189 * The in the LWX case we don't want to do the load in the 1190 * delay slot. It cannot issue in the same cycle and may be 1191 * speculative and unneeded. 1192 */ 1193 if (use_lwx_insns()) 1194 uasm_i_nop(p); 1195 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */ 1196 1197 1198 /* build_update_entries */ 1199 if (use_lwx_insns()) { 1200 even = ptr; 1201 odd = tmp; 1202 UASM_i_LWX(p, even, scratch, tmp); 1203 UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t)); 1204 UASM_i_LWX(p, odd, scratch, tmp); 1205 } else { 1206 UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */ 1207 even = tmp; 1208 odd = ptr; 1209 UASM_i_LW(p, even, 0, ptr); /* get even pte */ 1210 UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */ 1211 } 1212 if (cpu_has_rixi) { 1213 uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL)); 1214 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */ 1215 uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL)); 1216 } else { 1217 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL)); 1218 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */ 1219 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL)); 1220 } 1221 UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */ 1222 1223 if (c0_scratch_reg >= 0) { 1224 UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg); 1225 build_tlb_write_entry(p, l, r, tlb_random); 1226 uasm_l_leave(l, *p); 1227 rv.restore_scratch = 1; 1228 } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) { 1229 build_tlb_write_entry(p, l, r, tlb_random); 1230 uasm_l_leave(l, *p); 1231 UASM_i_LW(p, scratch, scratchpad_offset(0), 0); 1232 } else { 1233 UASM_i_LW(p, scratch, scratchpad_offset(0), 0); 1234 build_tlb_write_entry(p, l, r, tlb_random); 1235 uasm_l_leave(l, *p); 1236 rv.restore_scratch = 1; 1237 } 1238 1239 uasm_i_eret(p); /* return from trap */ 1240 1241 return rv; 1242 } 1243 1244 /* 1245 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception 1246 * because EXL == 0. If we wrap, we can also use the 32 instruction 1247 * slots before the XTLB refill exception handler which belong to the 1248 * unused TLB refill exception. 1249 */ 1250 #define MIPS64_REFILL_INSNS 32 1251 1252 static void build_r4000_tlb_refill_handler(void) 1253 { 1254 u32 *p = tlb_handler; 1255 struct uasm_label *l = labels; 1256 struct uasm_reloc *r = relocs; 1257 u32 *f; 1258 unsigned int final_len; 1259 struct mips_huge_tlb_info htlb_info __maybe_unused; 1260 enum vmalloc64_mode vmalloc_mode __maybe_unused; 1261 1262 memset(tlb_handler, 0, sizeof(tlb_handler)); 1263 memset(labels, 0, sizeof(labels)); 1264 memset(relocs, 0, sizeof(relocs)); 1265 memset(final_handler, 0, sizeof(final_handler)); 1266 1267 if (IS_ENABLED(CONFIG_64BIT) && (scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) { 1268 htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1, 1269 scratch_reg); 1270 vmalloc_mode = refill_scratch; 1271 } else { 1272 htlb_info.huge_pte = K0; 1273 htlb_info.restore_scratch = 0; 1274 htlb_info.need_reload_pte = true; 1275 vmalloc_mode = refill_noscratch; 1276 /* 1277 * create the plain linear handler 1278 */ 1279 if (bcm1250_m3_war()) { 1280 unsigned int segbits = 44; 1281 1282 uasm_i_dmfc0(&p, K0, C0_BADVADDR); 1283 uasm_i_dmfc0(&p, K1, C0_ENTRYHI); 1284 uasm_i_xor(&p, K0, K0, K1); 1285 uasm_i_dsrl_safe(&p, K1, K0, 62); 1286 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1); 1287 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits); 1288 uasm_i_or(&p, K0, K0, K1); 1289 uasm_il_bnez(&p, &r, K0, label_leave); 1290 /* No need for uasm_i_nop */ 1291 } 1292 1293 #ifdef CONFIG_64BIT 1294 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */ 1295 #else 1296 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */ 1297 #endif 1298 1299 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 1300 build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update); 1301 #endif 1302 1303 build_get_ptep(&p, K0, K1); 1304 build_update_entries(&p, K0, K1); 1305 build_tlb_write_entry(&p, &l, &r, tlb_random); 1306 uasm_l_leave(&l, p); 1307 uasm_i_eret(&p); /* return from trap */ 1308 } 1309 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 1310 uasm_l_tlb_huge_update(&l, p); 1311 if (htlb_info.need_reload_pte) 1312 UASM_i_LW(&p, htlb_info.huge_pte, 0, K1); 1313 build_huge_update_entries(&p, htlb_info.huge_pte, K1); 1314 build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random, 1315 htlb_info.restore_scratch); 1316 #endif 1317 1318 #ifdef CONFIG_64BIT 1319 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode); 1320 #endif 1321 1322 /* 1323 * Overflow check: For the 64bit handler, we need at least one 1324 * free instruction slot for the wrap-around branch. In worst 1325 * case, if the intended insertion point is a delay slot, we 1326 * need three, with the second nop'ed and the third being 1327 * unused. 1328 */ 1329 switch (boot_cpu_type()) { 1330 default: 1331 if (sizeof(long) == 4) { 1332 case CPU_LOONGSON2: 1333 /* Loongson2 ebase is different than r4k, we have more space */ 1334 if ((p - tlb_handler) > 64) 1335 panic("TLB refill handler space exceeded"); 1336 /* 1337 * Now fold the handler in the TLB refill handler space. 1338 */ 1339 f = final_handler; 1340 /* Simplest case, just copy the handler. */ 1341 uasm_copy_handler(relocs, labels, tlb_handler, p, f); 1342 final_len = p - tlb_handler; 1343 break; 1344 } else { 1345 if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1) 1346 || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3) 1347 && uasm_insn_has_bdelay(relocs, 1348 tlb_handler + MIPS64_REFILL_INSNS - 3))) 1349 panic("TLB refill handler space exceeded"); 1350 /* 1351 * Now fold the handler in the TLB refill handler space. 1352 */ 1353 f = final_handler + MIPS64_REFILL_INSNS; 1354 if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) { 1355 /* Just copy the handler. */ 1356 uasm_copy_handler(relocs, labels, tlb_handler, p, f); 1357 final_len = p - tlb_handler; 1358 } else { 1359 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 1360 const enum label_id ls = label_tlb_huge_update; 1361 #else 1362 const enum label_id ls = label_vmalloc; 1363 #endif 1364 u32 *split; 1365 int ov = 0; 1366 int i; 1367 1368 for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++) 1369 ; 1370 BUG_ON(i == ARRAY_SIZE(labels)); 1371 split = labels[i].addr; 1372 1373 /* 1374 * See if we have overflown one way or the other. 1375 */ 1376 if (split > tlb_handler + MIPS64_REFILL_INSNS || 1377 split < p - MIPS64_REFILL_INSNS) 1378 ov = 1; 1379 1380 if (ov) { 1381 /* 1382 * Split two instructions before the end. One 1383 * for the branch and one for the instruction 1384 * in the delay slot. 1385 */ 1386 split = tlb_handler + MIPS64_REFILL_INSNS - 2; 1387 1388 /* 1389 * If the branch would fall in a delay slot, 1390 * we must back up an additional instruction 1391 * so that it is no longer in a delay slot. 1392 */ 1393 if (uasm_insn_has_bdelay(relocs, split - 1)) 1394 split--; 1395 } 1396 /* Copy first part of the handler. */ 1397 uasm_copy_handler(relocs, labels, tlb_handler, split, f); 1398 f += split - tlb_handler; 1399 1400 if (ov) { 1401 /* Insert branch. */ 1402 uasm_l_split(&l, final_handler); 1403 uasm_il_b(&f, &r, label_split); 1404 if (uasm_insn_has_bdelay(relocs, split)) 1405 uasm_i_nop(&f); 1406 else { 1407 uasm_copy_handler(relocs, labels, 1408 split, split + 1, f); 1409 uasm_move_labels(labels, f, f + 1, -1); 1410 f++; 1411 split++; 1412 } 1413 } 1414 1415 /* Copy the rest of the handler. */ 1416 uasm_copy_handler(relocs, labels, split, p, final_handler); 1417 final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) + 1418 (p - split); 1419 } 1420 } 1421 break; 1422 } 1423 1424 uasm_resolve_relocs(relocs, labels); 1425 pr_debug("Wrote TLB refill handler (%u instructions).\n", 1426 final_len); 1427 1428 memcpy((void *)ebase, final_handler, 0x100); 1429 local_flush_icache_range(ebase, ebase + 0x100); 1430 1431 dump_handler("r4000_tlb_refill", (u32 *)ebase, 64); 1432 } 1433 1434 static void setup_pw(void) 1435 { 1436 unsigned long pgd_i, pgd_w; 1437 #ifndef __PAGETABLE_PMD_FOLDED 1438 unsigned long pmd_i, pmd_w; 1439 #endif 1440 unsigned long pt_i, pt_w; 1441 unsigned long pte_i, pte_w; 1442 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 1443 unsigned long psn; 1444 1445 psn = ilog2(_PAGE_HUGE); /* bit used to indicate huge page */ 1446 #endif 1447 pgd_i = PGDIR_SHIFT; /* 1st level PGD */ 1448 #ifndef __PAGETABLE_PMD_FOLDED 1449 pgd_w = PGDIR_SHIFT - PMD_SHIFT + PGD_ORDER; 1450 1451 pmd_i = PMD_SHIFT; /* 2nd level PMD */ 1452 pmd_w = PMD_SHIFT - PAGE_SHIFT; 1453 #else 1454 pgd_w = PGDIR_SHIFT - PAGE_SHIFT + PGD_ORDER; 1455 #endif 1456 1457 pt_i = PAGE_SHIFT; /* 3rd level PTE */ 1458 pt_w = PAGE_SHIFT - 3; 1459 1460 pte_i = ilog2(_PAGE_GLOBAL); 1461 pte_w = 0; 1462 1463 #ifndef __PAGETABLE_PMD_FOLDED 1464 write_c0_pwfield(pgd_i << 24 | pmd_i << 12 | pt_i << 6 | pte_i); 1465 write_c0_pwsize(1 << 30 | pgd_w << 24 | pmd_w << 12 | pt_w << 6 | pte_w); 1466 #else 1467 write_c0_pwfield(pgd_i << 24 | pt_i << 6 | pte_i); 1468 write_c0_pwsize(1 << 30 | pgd_w << 24 | pt_w << 6 | pte_w); 1469 #endif 1470 1471 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 1472 write_c0_pwctl(1 << 6 | psn); 1473 #endif 1474 write_c0_kpgd(swapper_pg_dir); 1475 kscratch_used_mask |= (1 << 7); /* KScratch6 is used for KPGD */ 1476 } 1477 1478 static void build_loongson3_tlb_refill_handler(void) 1479 { 1480 u32 *p = tlb_handler; 1481 struct uasm_label *l = labels; 1482 struct uasm_reloc *r = relocs; 1483 1484 memset(labels, 0, sizeof(labels)); 1485 memset(relocs, 0, sizeof(relocs)); 1486 memset(tlb_handler, 0, sizeof(tlb_handler)); 1487 1488 if (check_for_high_segbits) { 1489 uasm_i_dmfc0(&p, K0, C0_BADVADDR); 1490 uasm_i_dsrl_safe(&p, K1, K0, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3); 1491 uasm_il_beqz(&p, &r, K1, label_vmalloc); 1492 uasm_i_nop(&p); 1493 1494 uasm_il_bgez(&p, &r, K0, label_large_segbits_fault); 1495 uasm_i_nop(&p); 1496 uasm_l_vmalloc(&l, p); 1497 } 1498 1499 uasm_i_dmfc0(&p, K1, C0_PGD); 1500 1501 uasm_i_lddir(&p, K0, K1, 3); /* global page dir */ 1502 #ifndef __PAGETABLE_PMD_FOLDED 1503 uasm_i_lddir(&p, K1, K0, 1); /* middle page dir */ 1504 #endif 1505 uasm_i_ldpte(&p, K1, 0); /* even */ 1506 uasm_i_ldpte(&p, K1, 1); /* odd */ 1507 uasm_i_tlbwr(&p); 1508 1509 /* restore page mask */ 1510 if (PM_DEFAULT_MASK >> 16) { 1511 uasm_i_lui(&p, K0, PM_DEFAULT_MASK >> 16); 1512 uasm_i_ori(&p, K0, K0, PM_DEFAULT_MASK & 0xffff); 1513 uasm_i_mtc0(&p, K0, C0_PAGEMASK); 1514 } else if (PM_DEFAULT_MASK) { 1515 uasm_i_ori(&p, K0, 0, PM_DEFAULT_MASK); 1516 uasm_i_mtc0(&p, K0, C0_PAGEMASK); 1517 } else { 1518 uasm_i_mtc0(&p, 0, C0_PAGEMASK); 1519 } 1520 1521 uasm_i_eret(&p); 1522 1523 if (check_for_high_segbits) { 1524 uasm_l_large_segbits_fault(&l, p); 1525 UASM_i_LA(&p, K1, (unsigned long)tlb_do_page_fault_0); 1526 uasm_i_jr(&p, K1); 1527 uasm_i_nop(&p); 1528 } 1529 1530 uasm_resolve_relocs(relocs, labels); 1531 memcpy((void *)(ebase + 0x80), tlb_handler, 0x80); 1532 local_flush_icache_range(ebase + 0x80, ebase + 0x100); 1533 dump_handler("loongson3_tlb_refill", (u32 *)(ebase + 0x80), 32); 1534 } 1535 1536 extern u32 handle_tlbl[], handle_tlbl_end[]; 1537 extern u32 handle_tlbs[], handle_tlbs_end[]; 1538 extern u32 handle_tlbm[], handle_tlbm_end[]; 1539 extern u32 tlbmiss_handler_setup_pgd_start[], tlbmiss_handler_setup_pgd[]; 1540 extern u32 tlbmiss_handler_setup_pgd_end[]; 1541 1542 static void build_setup_pgd(void) 1543 { 1544 const int a0 = 4; 1545 const int __maybe_unused a1 = 5; 1546 const int __maybe_unused a2 = 6; 1547 u32 *p = tlbmiss_handler_setup_pgd_start; 1548 const int tlbmiss_handler_setup_pgd_size = 1549 tlbmiss_handler_setup_pgd_end - tlbmiss_handler_setup_pgd_start; 1550 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT 1551 long pgdc = (long)pgd_current; 1552 #endif 1553 1554 memset(tlbmiss_handler_setup_pgd, 0, tlbmiss_handler_setup_pgd_size * 1555 sizeof(tlbmiss_handler_setup_pgd[0])); 1556 memset(labels, 0, sizeof(labels)); 1557 memset(relocs, 0, sizeof(relocs)); 1558 pgd_reg = allocate_kscratch(); 1559 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT 1560 if (pgd_reg == -1) { 1561 struct uasm_label *l = labels; 1562 struct uasm_reloc *r = relocs; 1563 1564 /* PGD << 11 in c0_Context */ 1565 /* 1566 * If it is a ckseg0 address, convert to a physical 1567 * address. Shifting right by 29 and adding 4 will 1568 * result in zero for these addresses. 1569 * 1570 */ 1571 UASM_i_SRA(&p, a1, a0, 29); 1572 UASM_i_ADDIU(&p, a1, a1, 4); 1573 uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1); 1574 uasm_i_nop(&p); 1575 uasm_i_dinsm(&p, a0, 0, 29, 64 - 29); 1576 uasm_l_tlbl_goaround1(&l, p); 1577 UASM_i_SLL(&p, a0, a0, 11); 1578 uasm_i_jr(&p, 31); 1579 UASM_i_MTC0(&p, a0, C0_CONTEXT); 1580 } else { 1581 /* PGD in c0_KScratch */ 1582 uasm_i_jr(&p, 31); 1583 if (cpu_has_ldpte) 1584 UASM_i_MTC0(&p, a0, C0_PWBASE); 1585 else 1586 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg); 1587 } 1588 #else 1589 #ifdef CONFIG_SMP 1590 /* Save PGD to pgd_current[smp_processor_id()] */ 1591 UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG); 1592 UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT); 1593 UASM_i_LA_mostly(&p, a2, pgdc); 1594 UASM_i_ADDU(&p, a2, a2, a1); 1595 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2); 1596 #else 1597 UASM_i_LA_mostly(&p, a2, pgdc); 1598 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2); 1599 #endif /* SMP */ 1600 uasm_i_jr(&p, 31); 1601 1602 /* if pgd_reg is allocated, save PGD also to scratch register */ 1603 if (pgd_reg != -1) 1604 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg); 1605 else 1606 uasm_i_nop(&p); 1607 #endif 1608 if (p >= tlbmiss_handler_setup_pgd_end) 1609 panic("tlbmiss_handler_setup_pgd space exceeded"); 1610 1611 uasm_resolve_relocs(relocs, labels); 1612 pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n", 1613 (unsigned int)(p - tlbmiss_handler_setup_pgd)); 1614 1615 dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd, 1616 tlbmiss_handler_setup_pgd_size); 1617 } 1618 1619 static void 1620 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr) 1621 { 1622 #ifdef CONFIG_SMP 1623 # ifdef CONFIG_PHYS_ADDR_T_64BIT 1624 if (cpu_has_64bits) 1625 uasm_i_lld(p, pte, 0, ptr); 1626 else 1627 # endif 1628 UASM_i_LL(p, pte, 0, ptr); 1629 #else 1630 # ifdef CONFIG_PHYS_ADDR_T_64BIT 1631 if (cpu_has_64bits) 1632 uasm_i_ld(p, pte, 0, ptr); 1633 else 1634 # endif 1635 UASM_i_LW(p, pte, 0, ptr); 1636 #endif 1637 } 1638 1639 static void 1640 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr, 1641 unsigned int mode, unsigned int scratch) 1642 { 1643 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY); 1644 unsigned int swmode = mode & ~hwmode; 1645 1646 if (config_enabled(CONFIG_XPA) && !cpu_has_64bits) { 1647 uasm_i_lui(p, scratch, swmode >> 16); 1648 uasm_i_or(p, pte, pte, scratch); 1649 BUG_ON(swmode & 0xffff); 1650 } else { 1651 uasm_i_ori(p, pte, pte, mode); 1652 } 1653 1654 #ifdef CONFIG_SMP 1655 # ifdef CONFIG_PHYS_ADDR_T_64BIT 1656 if (cpu_has_64bits) 1657 uasm_i_scd(p, pte, 0, ptr); 1658 else 1659 # endif 1660 UASM_i_SC(p, pte, 0, ptr); 1661 1662 if (r10000_llsc_war()) 1663 uasm_il_beqzl(p, r, pte, label_smp_pgtable_change); 1664 else 1665 uasm_il_beqz(p, r, pte, label_smp_pgtable_change); 1666 1667 # ifdef CONFIG_PHYS_ADDR_T_64BIT 1668 if (!cpu_has_64bits) { 1669 /* no uasm_i_nop needed */ 1670 uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr); 1671 uasm_i_ori(p, pte, pte, hwmode); 1672 BUG_ON(hwmode & ~0xffff); 1673 uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr); 1674 uasm_il_beqz(p, r, pte, label_smp_pgtable_change); 1675 /* no uasm_i_nop needed */ 1676 uasm_i_lw(p, pte, 0, ptr); 1677 } else 1678 uasm_i_nop(p); 1679 # else 1680 uasm_i_nop(p); 1681 # endif 1682 #else 1683 # ifdef CONFIG_PHYS_ADDR_T_64BIT 1684 if (cpu_has_64bits) 1685 uasm_i_sd(p, pte, 0, ptr); 1686 else 1687 # endif 1688 UASM_i_SW(p, pte, 0, ptr); 1689 1690 # ifdef CONFIG_PHYS_ADDR_T_64BIT 1691 if (!cpu_has_64bits) { 1692 uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr); 1693 uasm_i_ori(p, pte, pte, hwmode); 1694 BUG_ON(hwmode & ~0xffff); 1695 uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr); 1696 uasm_i_lw(p, pte, 0, ptr); 1697 } 1698 # endif 1699 #endif 1700 } 1701 1702 /* 1703 * Check if PTE is present, if not then jump to LABEL. PTR points to 1704 * the page table where this PTE is located, PTE will be re-loaded 1705 * with it's original value. 1706 */ 1707 static void 1708 build_pte_present(u32 **p, struct uasm_reloc **r, 1709 int pte, int ptr, int scratch, enum label_id lid) 1710 { 1711 int t = scratch >= 0 ? scratch : pte; 1712 int cur = pte; 1713 1714 if (cpu_has_rixi) { 1715 if (use_bbit_insns()) { 1716 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid); 1717 uasm_i_nop(p); 1718 } else { 1719 if (_PAGE_PRESENT_SHIFT) { 1720 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT); 1721 cur = t; 1722 } 1723 uasm_i_andi(p, t, cur, 1); 1724 uasm_il_beqz(p, r, t, lid); 1725 if (pte == t) 1726 /* You lose the SMP race :-(*/ 1727 iPTE_LW(p, pte, ptr); 1728 } 1729 } else { 1730 if (_PAGE_PRESENT_SHIFT) { 1731 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT); 1732 cur = t; 1733 } 1734 uasm_i_andi(p, t, cur, 1735 (_PAGE_PRESENT | _PAGE_NO_READ) >> _PAGE_PRESENT_SHIFT); 1736 uasm_i_xori(p, t, t, _PAGE_PRESENT >> _PAGE_PRESENT_SHIFT); 1737 uasm_il_bnez(p, r, t, lid); 1738 if (pte == t) 1739 /* You lose the SMP race :-(*/ 1740 iPTE_LW(p, pte, ptr); 1741 } 1742 } 1743 1744 /* Make PTE valid, store result in PTR. */ 1745 static void 1746 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte, 1747 unsigned int ptr, unsigned int scratch) 1748 { 1749 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED; 1750 1751 iPTE_SW(p, r, pte, ptr, mode, scratch); 1752 } 1753 1754 /* 1755 * Check if PTE can be written to, if not branch to LABEL. Regardless 1756 * restore PTE with value from PTR when done. 1757 */ 1758 static void 1759 build_pte_writable(u32 **p, struct uasm_reloc **r, 1760 unsigned int pte, unsigned int ptr, int scratch, 1761 enum label_id lid) 1762 { 1763 int t = scratch >= 0 ? scratch : pte; 1764 int cur = pte; 1765 1766 if (_PAGE_PRESENT_SHIFT) { 1767 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT); 1768 cur = t; 1769 } 1770 uasm_i_andi(p, t, cur, 1771 (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT); 1772 uasm_i_xori(p, t, t, 1773 (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT); 1774 uasm_il_bnez(p, r, t, lid); 1775 if (pte == t) 1776 /* You lose the SMP race :-(*/ 1777 iPTE_LW(p, pte, ptr); 1778 else 1779 uasm_i_nop(p); 1780 } 1781 1782 /* Make PTE writable, update software status bits as well, then store 1783 * at PTR. 1784 */ 1785 static void 1786 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte, 1787 unsigned int ptr, unsigned int scratch) 1788 { 1789 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID 1790 | _PAGE_DIRTY); 1791 1792 iPTE_SW(p, r, pte, ptr, mode, scratch); 1793 } 1794 1795 /* 1796 * Check if PTE can be modified, if not branch to LABEL. Regardless 1797 * restore PTE with value from PTR when done. 1798 */ 1799 static void 1800 build_pte_modifiable(u32 **p, struct uasm_reloc **r, 1801 unsigned int pte, unsigned int ptr, int scratch, 1802 enum label_id lid) 1803 { 1804 if (use_bbit_insns()) { 1805 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid); 1806 uasm_i_nop(p); 1807 } else { 1808 int t = scratch >= 0 ? scratch : pte; 1809 uasm_i_srl(p, t, pte, _PAGE_WRITE_SHIFT); 1810 uasm_i_andi(p, t, t, 1); 1811 uasm_il_beqz(p, r, t, lid); 1812 if (pte == t) 1813 /* You lose the SMP race :-(*/ 1814 iPTE_LW(p, pte, ptr); 1815 } 1816 } 1817 1818 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT 1819 1820 1821 /* 1822 * R3000 style TLB load/store/modify handlers. 1823 */ 1824 1825 /* 1826 * This places the pte into ENTRYLO0 and writes it with tlbwi. 1827 * Then it returns. 1828 */ 1829 static void 1830 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp) 1831 { 1832 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */ 1833 uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */ 1834 uasm_i_tlbwi(p); 1835 uasm_i_jr(p, tmp); 1836 uasm_i_rfe(p); /* branch delay */ 1837 } 1838 1839 /* 1840 * This places the pte into ENTRYLO0 and writes it with tlbwi 1841 * or tlbwr as appropriate. This is because the index register 1842 * may have the probe fail bit set as a result of a trap on a 1843 * kseg2 access, i.e. without refill. Then it returns. 1844 */ 1845 static void 1846 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l, 1847 struct uasm_reloc **r, unsigned int pte, 1848 unsigned int tmp) 1849 { 1850 uasm_i_mfc0(p, tmp, C0_INDEX); 1851 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */ 1852 uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */ 1853 uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */ 1854 uasm_i_tlbwi(p); /* cp0 delay */ 1855 uasm_i_jr(p, tmp); 1856 uasm_i_rfe(p); /* branch delay */ 1857 uasm_l_r3000_write_probe_fail(l, *p); 1858 uasm_i_tlbwr(p); /* cp0 delay */ 1859 uasm_i_jr(p, tmp); 1860 uasm_i_rfe(p); /* branch delay */ 1861 } 1862 1863 static void 1864 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte, 1865 unsigned int ptr) 1866 { 1867 long pgdc = (long)pgd_current; 1868 1869 uasm_i_mfc0(p, pte, C0_BADVADDR); 1870 uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */ 1871 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr); 1872 uasm_i_srl(p, pte, pte, 22); /* load delay */ 1873 uasm_i_sll(p, pte, pte, 2); 1874 uasm_i_addu(p, ptr, ptr, pte); 1875 uasm_i_mfc0(p, pte, C0_CONTEXT); 1876 uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */ 1877 uasm_i_andi(p, pte, pte, 0xffc); /* load delay */ 1878 uasm_i_addu(p, ptr, ptr, pte); 1879 uasm_i_lw(p, pte, 0, ptr); 1880 uasm_i_tlbp(p); /* load delay */ 1881 } 1882 1883 static void build_r3000_tlb_load_handler(void) 1884 { 1885 u32 *p = handle_tlbl; 1886 const int handle_tlbl_size = handle_tlbl_end - handle_tlbl; 1887 struct uasm_label *l = labels; 1888 struct uasm_reloc *r = relocs; 1889 1890 memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0])); 1891 memset(labels, 0, sizeof(labels)); 1892 memset(relocs, 0, sizeof(relocs)); 1893 1894 build_r3000_tlbchange_handler_head(&p, K0, K1); 1895 build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl); 1896 uasm_i_nop(&p); /* load delay */ 1897 build_make_valid(&p, &r, K0, K1, -1); 1898 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1); 1899 1900 uasm_l_nopage_tlbl(&l, p); 1901 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff); 1902 uasm_i_nop(&p); 1903 1904 if (p >= handle_tlbl_end) 1905 panic("TLB load handler fastpath space exceeded"); 1906 1907 uasm_resolve_relocs(relocs, labels); 1908 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n", 1909 (unsigned int)(p - handle_tlbl)); 1910 1911 dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_size); 1912 } 1913 1914 static void build_r3000_tlb_store_handler(void) 1915 { 1916 u32 *p = handle_tlbs; 1917 const int handle_tlbs_size = handle_tlbs_end - handle_tlbs; 1918 struct uasm_label *l = labels; 1919 struct uasm_reloc *r = relocs; 1920 1921 memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0])); 1922 memset(labels, 0, sizeof(labels)); 1923 memset(relocs, 0, sizeof(relocs)); 1924 1925 build_r3000_tlbchange_handler_head(&p, K0, K1); 1926 build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs); 1927 uasm_i_nop(&p); /* load delay */ 1928 build_make_write(&p, &r, K0, K1, -1); 1929 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1); 1930 1931 uasm_l_nopage_tlbs(&l, p); 1932 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); 1933 uasm_i_nop(&p); 1934 1935 if (p >= handle_tlbs_end) 1936 panic("TLB store handler fastpath space exceeded"); 1937 1938 uasm_resolve_relocs(relocs, labels); 1939 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n", 1940 (unsigned int)(p - handle_tlbs)); 1941 1942 dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_size); 1943 } 1944 1945 static void build_r3000_tlb_modify_handler(void) 1946 { 1947 u32 *p = handle_tlbm; 1948 const int handle_tlbm_size = handle_tlbm_end - handle_tlbm; 1949 struct uasm_label *l = labels; 1950 struct uasm_reloc *r = relocs; 1951 1952 memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0])); 1953 memset(labels, 0, sizeof(labels)); 1954 memset(relocs, 0, sizeof(relocs)); 1955 1956 build_r3000_tlbchange_handler_head(&p, K0, K1); 1957 build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm); 1958 uasm_i_nop(&p); /* load delay */ 1959 build_make_write(&p, &r, K0, K1, -1); 1960 build_r3000_pte_reload_tlbwi(&p, K0, K1); 1961 1962 uasm_l_nopage_tlbm(&l, p); 1963 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); 1964 uasm_i_nop(&p); 1965 1966 if (p >= handle_tlbm_end) 1967 panic("TLB modify handler fastpath space exceeded"); 1968 1969 uasm_resolve_relocs(relocs, labels); 1970 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n", 1971 (unsigned int)(p - handle_tlbm)); 1972 1973 dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_size); 1974 } 1975 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */ 1976 1977 /* 1978 * R4000 style TLB load/store/modify handlers. 1979 */ 1980 static struct work_registers 1981 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l, 1982 struct uasm_reloc **r) 1983 { 1984 struct work_registers wr = build_get_work_registers(p); 1985 1986 #ifdef CONFIG_64BIT 1987 build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */ 1988 #else 1989 build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */ 1990 #endif 1991 1992 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 1993 /* 1994 * For huge tlb entries, pmd doesn't contain an address but 1995 * instead contains the tlb pte. Check the PAGE_HUGE bit and 1996 * see if we need to jump to huge tlb processing. 1997 */ 1998 build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update); 1999 #endif 2000 2001 UASM_i_MFC0(p, wr.r1, C0_BADVADDR); 2002 UASM_i_LW(p, wr.r2, 0, wr.r2); 2003 UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2); 2004 uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2); 2005 UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1); 2006 2007 #ifdef CONFIG_SMP 2008 uasm_l_smp_pgtable_change(l, *p); 2009 #endif 2010 iPTE_LW(p, wr.r1, wr.r2); /* get even pte */ 2011 if (!m4kc_tlbp_war()) { 2012 build_tlb_probe_entry(p); 2013 if (cpu_has_htw) { 2014 /* race condition happens, leaving */ 2015 uasm_i_ehb(p); 2016 uasm_i_mfc0(p, wr.r3, C0_INDEX); 2017 uasm_il_bltz(p, r, wr.r3, label_leave); 2018 uasm_i_nop(p); 2019 } 2020 } 2021 return wr; 2022 } 2023 2024 static void 2025 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l, 2026 struct uasm_reloc **r, unsigned int tmp, 2027 unsigned int ptr) 2028 { 2029 uasm_i_ori(p, ptr, ptr, sizeof(pte_t)); 2030 uasm_i_xori(p, ptr, ptr, sizeof(pte_t)); 2031 build_update_entries(p, tmp, ptr); 2032 build_tlb_write_entry(p, l, r, tlb_indexed); 2033 uasm_l_leave(l, *p); 2034 build_restore_work_registers(p); 2035 uasm_i_eret(p); /* return from trap */ 2036 2037 #ifdef CONFIG_64BIT 2038 build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill); 2039 #endif 2040 } 2041 2042 static void build_r4000_tlb_load_handler(void) 2043 { 2044 u32 *p = handle_tlbl; 2045 const int handle_tlbl_size = handle_tlbl_end - handle_tlbl; 2046 struct uasm_label *l = labels; 2047 struct uasm_reloc *r = relocs; 2048 struct work_registers wr; 2049 2050 memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0])); 2051 memset(labels, 0, sizeof(labels)); 2052 memset(relocs, 0, sizeof(relocs)); 2053 2054 if (bcm1250_m3_war()) { 2055 unsigned int segbits = 44; 2056 2057 uasm_i_dmfc0(&p, K0, C0_BADVADDR); 2058 uasm_i_dmfc0(&p, K1, C0_ENTRYHI); 2059 uasm_i_xor(&p, K0, K0, K1); 2060 uasm_i_dsrl_safe(&p, K1, K0, 62); 2061 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1); 2062 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits); 2063 uasm_i_or(&p, K0, K0, K1); 2064 uasm_il_bnez(&p, &r, K0, label_leave); 2065 /* No need for uasm_i_nop */ 2066 } 2067 2068 wr = build_r4000_tlbchange_handler_head(&p, &l, &r); 2069 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl); 2070 if (m4kc_tlbp_war()) 2071 build_tlb_probe_entry(&p); 2072 2073 if (cpu_has_rixi && !cpu_has_rixiex) { 2074 /* 2075 * If the page is not _PAGE_VALID, RI or XI could not 2076 * have triggered it. Skip the expensive test.. 2077 */ 2078 if (use_bbit_insns()) { 2079 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID), 2080 label_tlbl_goaround1); 2081 } else { 2082 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID); 2083 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1); 2084 } 2085 uasm_i_nop(&p); 2086 2087 uasm_i_tlbr(&p); 2088 2089 switch (current_cpu_type()) { 2090 default: 2091 if (cpu_has_mips_r2_exec_hazard) { 2092 uasm_i_ehb(&p); 2093 2094 case CPU_CAVIUM_OCTEON: 2095 case CPU_CAVIUM_OCTEON_PLUS: 2096 case CPU_CAVIUM_OCTEON2: 2097 break; 2098 } 2099 } 2100 2101 /* Examine entrylo 0 or 1 based on ptr. */ 2102 if (use_bbit_insns()) { 2103 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8); 2104 } else { 2105 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t)); 2106 uasm_i_beqz(&p, wr.r3, 8); 2107 } 2108 /* load it in the delay slot*/ 2109 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0); 2110 /* load it if ptr is odd */ 2111 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1); 2112 /* 2113 * If the entryLo (now in wr.r3) is valid (bit 1), RI or 2114 * XI must have triggered it. 2115 */ 2116 if (use_bbit_insns()) { 2117 uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl); 2118 uasm_i_nop(&p); 2119 uasm_l_tlbl_goaround1(&l, p); 2120 } else { 2121 uasm_i_andi(&p, wr.r3, wr.r3, 2); 2122 uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl); 2123 uasm_i_nop(&p); 2124 } 2125 uasm_l_tlbl_goaround1(&l, p); 2126 } 2127 build_make_valid(&p, &r, wr.r1, wr.r2, wr.r3); 2128 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2); 2129 2130 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 2131 /* 2132 * This is the entry point when build_r4000_tlbchange_handler_head 2133 * spots a huge page. 2134 */ 2135 uasm_l_tlb_huge_update(&l, p); 2136 iPTE_LW(&p, wr.r1, wr.r2); 2137 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl); 2138 build_tlb_probe_entry(&p); 2139 2140 if (cpu_has_rixi && !cpu_has_rixiex) { 2141 /* 2142 * If the page is not _PAGE_VALID, RI or XI could not 2143 * have triggered it. Skip the expensive test.. 2144 */ 2145 if (use_bbit_insns()) { 2146 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID), 2147 label_tlbl_goaround2); 2148 } else { 2149 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID); 2150 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2); 2151 } 2152 uasm_i_nop(&p); 2153 2154 uasm_i_tlbr(&p); 2155 2156 switch (current_cpu_type()) { 2157 default: 2158 if (cpu_has_mips_r2_exec_hazard) { 2159 uasm_i_ehb(&p); 2160 2161 case CPU_CAVIUM_OCTEON: 2162 case CPU_CAVIUM_OCTEON_PLUS: 2163 case CPU_CAVIUM_OCTEON2: 2164 break; 2165 } 2166 } 2167 2168 /* Examine entrylo 0 or 1 based on ptr. */ 2169 if (use_bbit_insns()) { 2170 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8); 2171 } else { 2172 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t)); 2173 uasm_i_beqz(&p, wr.r3, 8); 2174 } 2175 /* load it in the delay slot*/ 2176 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0); 2177 /* load it if ptr is odd */ 2178 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1); 2179 /* 2180 * If the entryLo (now in wr.r3) is valid (bit 1), RI or 2181 * XI must have triggered it. 2182 */ 2183 if (use_bbit_insns()) { 2184 uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2); 2185 } else { 2186 uasm_i_andi(&p, wr.r3, wr.r3, 2); 2187 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2); 2188 } 2189 if (PM_DEFAULT_MASK == 0) 2190 uasm_i_nop(&p); 2191 /* 2192 * We clobbered C0_PAGEMASK, restore it. On the other branch 2193 * it is restored in build_huge_tlb_write_entry. 2194 */ 2195 build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0); 2196 2197 uasm_l_tlbl_goaround2(&l, p); 2198 } 2199 uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID)); 2200 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2); 2201 #endif 2202 2203 uasm_l_nopage_tlbl(&l, p); 2204 build_restore_work_registers(&p); 2205 #ifdef CONFIG_CPU_MICROMIPS 2206 if ((unsigned long)tlb_do_page_fault_0 & 1) { 2207 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0)); 2208 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0)); 2209 uasm_i_jr(&p, K0); 2210 } else 2211 #endif 2212 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff); 2213 uasm_i_nop(&p); 2214 2215 if (p >= handle_tlbl_end) 2216 panic("TLB load handler fastpath space exceeded"); 2217 2218 uasm_resolve_relocs(relocs, labels); 2219 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n", 2220 (unsigned int)(p - handle_tlbl)); 2221 2222 dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_size); 2223 } 2224 2225 static void build_r4000_tlb_store_handler(void) 2226 { 2227 u32 *p = handle_tlbs; 2228 const int handle_tlbs_size = handle_tlbs_end - handle_tlbs; 2229 struct uasm_label *l = labels; 2230 struct uasm_reloc *r = relocs; 2231 struct work_registers wr; 2232 2233 memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0])); 2234 memset(labels, 0, sizeof(labels)); 2235 memset(relocs, 0, sizeof(relocs)); 2236 2237 wr = build_r4000_tlbchange_handler_head(&p, &l, &r); 2238 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs); 2239 if (m4kc_tlbp_war()) 2240 build_tlb_probe_entry(&p); 2241 build_make_write(&p, &r, wr.r1, wr.r2, wr.r3); 2242 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2); 2243 2244 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 2245 /* 2246 * This is the entry point when 2247 * build_r4000_tlbchange_handler_head spots a huge page. 2248 */ 2249 uasm_l_tlb_huge_update(&l, p); 2250 iPTE_LW(&p, wr.r1, wr.r2); 2251 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs); 2252 build_tlb_probe_entry(&p); 2253 uasm_i_ori(&p, wr.r1, wr.r1, 2254 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY); 2255 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2); 2256 #endif 2257 2258 uasm_l_nopage_tlbs(&l, p); 2259 build_restore_work_registers(&p); 2260 #ifdef CONFIG_CPU_MICROMIPS 2261 if ((unsigned long)tlb_do_page_fault_1 & 1) { 2262 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1)); 2263 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1)); 2264 uasm_i_jr(&p, K0); 2265 } else 2266 #endif 2267 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); 2268 uasm_i_nop(&p); 2269 2270 if (p >= handle_tlbs_end) 2271 panic("TLB store handler fastpath space exceeded"); 2272 2273 uasm_resolve_relocs(relocs, labels); 2274 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n", 2275 (unsigned int)(p - handle_tlbs)); 2276 2277 dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_size); 2278 } 2279 2280 static void build_r4000_tlb_modify_handler(void) 2281 { 2282 u32 *p = handle_tlbm; 2283 const int handle_tlbm_size = handle_tlbm_end - handle_tlbm; 2284 struct uasm_label *l = labels; 2285 struct uasm_reloc *r = relocs; 2286 struct work_registers wr; 2287 2288 memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0])); 2289 memset(labels, 0, sizeof(labels)); 2290 memset(relocs, 0, sizeof(relocs)); 2291 2292 wr = build_r4000_tlbchange_handler_head(&p, &l, &r); 2293 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm); 2294 if (m4kc_tlbp_war()) 2295 build_tlb_probe_entry(&p); 2296 /* Present and writable bits set, set accessed and dirty bits. */ 2297 build_make_write(&p, &r, wr.r1, wr.r2, wr.r3); 2298 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2); 2299 2300 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 2301 /* 2302 * This is the entry point when 2303 * build_r4000_tlbchange_handler_head spots a huge page. 2304 */ 2305 uasm_l_tlb_huge_update(&l, p); 2306 iPTE_LW(&p, wr.r1, wr.r2); 2307 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm); 2308 build_tlb_probe_entry(&p); 2309 uasm_i_ori(&p, wr.r1, wr.r1, 2310 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY); 2311 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2); 2312 #endif 2313 2314 uasm_l_nopage_tlbm(&l, p); 2315 build_restore_work_registers(&p); 2316 #ifdef CONFIG_CPU_MICROMIPS 2317 if ((unsigned long)tlb_do_page_fault_1 & 1) { 2318 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1)); 2319 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1)); 2320 uasm_i_jr(&p, K0); 2321 } else 2322 #endif 2323 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); 2324 uasm_i_nop(&p); 2325 2326 if (p >= handle_tlbm_end) 2327 panic("TLB modify handler fastpath space exceeded"); 2328 2329 uasm_resolve_relocs(relocs, labels); 2330 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n", 2331 (unsigned int)(p - handle_tlbm)); 2332 2333 dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_size); 2334 } 2335 2336 static void flush_tlb_handlers(void) 2337 { 2338 local_flush_icache_range((unsigned long)handle_tlbl, 2339 (unsigned long)handle_tlbl_end); 2340 local_flush_icache_range((unsigned long)handle_tlbs, 2341 (unsigned long)handle_tlbs_end); 2342 local_flush_icache_range((unsigned long)handle_tlbm, 2343 (unsigned long)handle_tlbm_end); 2344 local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd, 2345 (unsigned long)tlbmiss_handler_setup_pgd_end); 2346 } 2347 2348 static void print_htw_config(void) 2349 { 2350 unsigned long config; 2351 unsigned int pwctl; 2352 const int field = 2 * sizeof(unsigned long); 2353 2354 config = read_c0_pwfield(); 2355 pr_debug("PWField (0x%0*lx): GDI: 0x%02lx UDI: 0x%02lx MDI: 0x%02lx PTI: 0x%02lx PTEI: 0x%02lx\n", 2356 field, config, 2357 (config & MIPS_PWFIELD_GDI_MASK) >> MIPS_PWFIELD_GDI_SHIFT, 2358 (config & MIPS_PWFIELD_UDI_MASK) >> MIPS_PWFIELD_UDI_SHIFT, 2359 (config & MIPS_PWFIELD_MDI_MASK) >> MIPS_PWFIELD_MDI_SHIFT, 2360 (config & MIPS_PWFIELD_PTI_MASK) >> MIPS_PWFIELD_PTI_SHIFT, 2361 (config & MIPS_PWFIELD_PTEI_MASK) >> MIPS_PWFIELD_PTEI_SHIFT); 2362 2363 config = read_c0_pwsize(); 2364 pr_debug("PWSize (0x%0*lx): PS: 0x%lx GDW: 0x%02lx UDW: 0x%02lx MDW: 0x%02lx PTW: 0x%02lx PTEW: 0x%02lx\n", 2365 field, config, 2366 (config & MIPS_PWSIZE_PS_MASK) >> MIPS_PWSIZE_PS_SHIFT, 2367 (config & MIPS_PWSIZE_GDW_MASK) >> MIPS_PWSIZE_GDW_SHIFT, 2368 (config & MIPS_PWSIZE_UDW_MASK) >> MIPS_PWSIZE_UDW_SHIFT, 2369 (config & MIPS_PWSIZE_MDW_MASK) >> MIPS_PWSIZE_MDW_SHIFT, 2370 (config & MIPS_PWSIZE_PTW_MASK) >> MIPS_PWSIZE_PTW_SHIFT, 2371 (config & MIPS_PWSIZE_PTEW_MASK) >> MIPS_PWSIZE_PTEW_SHIFT); 2372 2373 pwctl = read_c0_pwctl(); 2374 pr_debug("PWCtl (0x%x): PWEn: 0x%x XK: 0x%x XS: 0x%x XU: 0x%x DPH: 0x%x HugePg: 0x%x Psn: 0x%x\n", 2375 pwctl, 2376 (pwctl & MIPS_PWCTL_PWEN_MASK) >> MIPS_PWCTL_PWEN_SHIFT, 2377 (pwctl & MIPS_PWCTL_XK_MASK) >> MIPS_PWCTL_XK_SHIFT, 2378 (pwctl & MIPS_PWCTL_XS_MASK) >> MIPS_PWCTL_XS_SHIFT, 2379 (pwctl & MIPS_PWCTL_XU_MASK) >> MIPS_PWCTL_XU_SHIFT, 2380 (pwctl & MIPS_PWCTL_DPH_MASK) >> MIPS_PWCTL_DPH_SHIFT, 2381 (pwctl & MIPS_PWCTL_HUGEPG_MASK) >> MIPS_PWCTL_HUGEPG_SHIFT, 2382 (pwctl & MIPS_PWCTL_PSN_MASK) >> MIPS_PWCTL_PSN_SHIFT); 2383 } 2384 2385 static void config_htw_params(void) 2386 { 2387 unsigned long pwfield, pwsize, ptei; 2388 unsigned int config; 2389 2390 /* 2391 * We are using 2-level page tables, so we only need to 2392 * setup GDW and PTW appropriately. UDW and MDW will remain 0. 2393 * The default value of GDI/UDI/MDI/PTI is 0xc. It is illegal to 2394 * write values less than 0xc in these fields because the entire 2395 * write will be dropped. As a result of which, we must preserve 2396 * the original reset values and overwrite only what we really want. 2397 */ 2398 2399 pwfield = read_c0_pwfield(); 2400 /* re-initialize the GDI field */ 2401 pwfield &= ~MIPS_PWFIELD_GDI_MASK; 2402 pwfield |= PGDIR_SHIFT << MIPS_PWFIELD_GDI_SHIFT; 2403 /* re-initialize the PTI field including the even/odd bit */ 2404 pwfield &= ~MIPS_PWFIELD_PTI_MASK; 2405 pwfield |= PAGE_SHIFT << MIPS_PWFIELD_PTI_SHIFT; 2406 if (CONFIG_PGTABLE_LEVELS >= 3) { 2407 pwfield &= ~MIPS_PWFIELD_MDI_MASK; 2408 pwfield |= PMD_SHIFT << MIPS_PWFIELD_MDI_SHIFT; 2409 } 2410 /* Set the PTEI right shift */ 2411 ptei = _PAGE_GLOBAL_SHIFT << MIPS_PWFIELD_PTEI_SHIFT; 2412 pwfield |= ptei; 2413 write_c0_pwfield(pwfield); 2414 /* Check whether the PTEI value is supported */ 2415 back_to_back_c0_hazard(); 2416 pwfield = read_c0_pwfield(); 2417 if (((pwfield & MIPS_PWFIELD_PTEI_MASK) << MIPS_PWFIELD_PTEI_SHIFT) 2418 != ptei) { 2419 pr_warn("Unsupported PTEI field value: 0x%lx. HTW will not be enabled", 2420 ptei); 2421 /* 2422 * Drop option to avoid HTW being enabled via another path 2423 * (eg htw_reset()) 2424 */ 2425 current_cpu_data.options &= ~MIPS_CPU_HTW; 2426 return; 2427 } 2428 2429 pwsize = ilog2(PTRS_PER_PGD) << MIPS_PWSIZE_GDW_SHIFT; 2430 pwsize |= ilog2(PTRS_PER_PTE) << MIPS_PWSIZE_PTW_SHIFT; 2431 if (CONFIG_PGTABLE_LEVELS >= 3) 2432 pwsize |= ilog2(PTRS_PER_PMD) << MIPS_PWSIZE_MDW_SHIFT; 2433 2434 /* Set pointer size to size of directory pointers */ 2435 if (config_enabled(CONFIG_64BIT)) 2436 pwsize |= MIPS_PWSIZE_PS_MASK; 2437 /* PTEs may be multiple pointers long (e.g. with XPA) */ 2438 pwsize |= ((PTE_T_LOG2 - PGD_T_LOG2) << MIPS_PWSIZE_PTEW_SHIFT) 2439 & MIPS_PWSIZE_PTEW_MASK; 2440 2441 write_c0_pwsize(pwsize); 2442 2443 /* Make sure everything is set before we enable the HTW */ 2444 back_to_back_c0_hazard(); 2445 2446 /* 2447 * Enable HTW (and only for XUSeg on 64-bit), and disable the rest of 2448 * the pwctl fields. 2449 */ 2450 config = 1 << MIPS_PWCTL_PWEN_SHIFT; 2451 if (config_enabled(CONFIG_64BIT)) 2452 config |= MIPS_PWCTL_XU_MASK; 2453 write_c0_pwctl(config); 2454 pr_info("Hardware Page Table Walker enabled\n"); 2455 2456 print_htw_config(); 2457 } 2458 2459 static void config_xpa_params(void) 2460 { 2461 #ifdef CONFIG_XPA 2462 unsigned int pagegrain; 2463 2464 if (mips_xpa_disabled) { 2465 pr_info("Extended Physical Addressing (XPA) disabled\n"); 2466 return; 2467 } 2468 2469 pagegrain = read_c0_pagegrain(); 2470 write_c0_pagegrain(pagegrain | PG_ELPA); 2471 back_to_back_c0_hazard(); 2472 pagegrain = read_c0_pagegrain(); 2473 2474 if (pagegrain & PG_ELPA) 2475 pr_info("Extended Physical Addressing (XPA) enabled\n"); 2476 else 2477 panic("Extended Physical Addressing (XPA) disabled"); 2478 #endif 2479 } 2480 2481 static void check_pabits(void) 2482 { 2483 unsigned long entry; 2484 unsigned pabits, fillbits; 2485 2486 if (!cpu_has_rixi || !_PAGE_NO_EXEC) { 2487 /* 2488 * We'll only be making use of the fact that we can rotate bits 2489 * into the fill if the CPU supports RIXI, so don't bother 2490 * probing this for CPUs which don't. 2491 */ 2492 return; 2493 } 2494 2495 write_c0_entrylo0(~0ul); 2496 back_to_back_c0_hazard(); 2497 entry = read_c0_entrylo0(); 2498 2499 /* clear all non-PFN bits */ 2500 entry &= ~((1 << MIPS_ENTRYLO_PFN_SHIFT) - 1); 2501 entry &= ~(MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI); 2502 2503 /* find a lower bound on PABITS, and upper bound on fill bits */ 2504 pabits = fls_long(entry) + 6; 2505 fillbits = max_t(int, (int)BITS_PER_LONG - pabits, 0); 2506 2507 /* minus the RI & XI bits */ 2508 fillbits -= min_t(unsigned, fillbits, 2); 2509 2510 if (fillbits >= ilog2(_PAGE_NO_EXEC)) 2511 fill_includes_sw_bits = true; 2512 2513 pr_debug("Entry* registers contain %u fill bits\n", fillbits); 2514 } 2515 2516 void build_tlb_refill_handler(void) 2517 { 2518 /* 2519 * The refill handler is generated per-CPU, multi-node systems 2520 * may have local storage for it. The other handlers are only 2521 * needed once. 2522 */ 2523 static int run_once = 0; 2524 2525 if (config_enabled(CONFIG_XPA) && !cpu_has_rixi) 2526 panic("Kernels supporting XPA currently require CPUs with RIXI"); 2527 2528 output_pgtable_bits_defines(); 2529 check_pabits(); 2530 2531 #ifdef CONFIG_64BIT 2532 check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3); 2533 #endif 2534 2535 switch (current_cpu_type()) { 2536 case CPU_R2000: 2537 case CPU_R3000: 2538 case CPU_R3000A: 2539 case CPU_R3081E: 2540 case CPU_TX3912: 2541 case CPU_TX3922: 2542 case CPU_TX3927: 2543 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT 2544 if (cpu_has_local_ebase) 2545 build_r3000_tlb_refill_handler(); 2546 if (!run_once) { 2547 if (!cpu_has_local_ebase) 2548 build_r3000_tlb_refill_handler(); 2549 build_setup_pgd(); 2550 build_r3000_tlb_load_handler(); 2551 build_r3000_tlb_store_handler(); 2552 build_r3000_tlb_modify_handler(); 2553 flush_tlb_handlers(); 2554 run_once++; 2555 } 2556 #else 2557 panic("No R3000 TLB refill handler"); 2558 #endif 2559 break; 2560 2561 case CPU_R6000: 2562 case CPU_R6000A: 2563 panic("No R6000 TLB refill handler yet"); 2564 break; 2565 2566 case CPU_R8000: 2567 panic("No R8000 TLB refill handler yet"); 2568 break; 2569 2570 default: 2571 if (cpu_has_ldpte) 2572 setup_pw(); 2573 2574 if (!run_once) { 2575 scratch_reg = allocate_kscratch(); 2576 build_setup_pgd(); 2577 build_r4000_tlb_load_handler(); 2578 build_r4000_tlb_store_handler(); 2579 build_r4000_tlb_modify_handler(); 2580 if (cpu_has_ldpte) 2581 build_loongson3_tlb_refill_handler(); 2582 else if (!cpu_has_local_ebase) 2583 build_r4000_tlb_refill_handler(); 2584 flush_tlb_handlers(); 2585 run_once++; 2586 } 2587 if (cpu_has_local_ebase) 2588 build_r4000_tlb_refill_handler(); 2589 if (cpu_has_xpa) 2590 config_xpa_params(); 2591 if (cpu_has_htw) 2592 config_htw_params(); 2593 } 2594 } 2595