xref: /openbmc/linux/arch/mips/mm/tlbex.c (revision 25985edc)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Synthesize TLB refill handlers at runtime.
7  *
8  * Copyright (C) 2004, 2005, 2006, 2008  Thiemo Seufer
9  * Copyright (C) 2005, 2007, 2008, 2009  Maciej W. Rozycki
10  * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
11  * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12  *
13  * ... and the days got worse and worse and now you see
14  * I've gone completly out of my mind.
15  *
16  * They're coming to take me a away haha
17  * they're coming to take me a away hoho hihi haha
18  * to the funny farm where code is beautiful all the time ...
19  *
20  * (Condolences to Napoleon XIV)
21  */
22 
23 #include <linux/bug.h>
24 #include <linux/kernel.h>
25 #include <linux/types.h>
26 #include <linux/smp.h>
27 #include <linux/string.h>
28 #include <linux/init.h>
29 #include <linux/cache.h>
30 
31 #include <asm/cacheflush.h>
32 #include <asm/pgtable.h>
33 #include <asm/war.h>
34 #include <asm/uasm.h>
35 
36 /*
37  * TLB load/store/modify handlers.
38  *
39  * Only the fastpath gets synthesized at runtime, the slowpath for
40  * do_page_fault remains normal asm.
41  */
42 extern void tlb_do_page_fault_0(void);
43 extern void tlb_do_page_fault_1(void);
44 
45 
46 static inline int r45k_bvahwbug(void)
47 {
48 	/* XXX: We should probe for the presence of this bug, but we don't. */
49 	return 0;
50 }
51 
52 static inline int r4k_250MHZhwbug(void)
53 {
54 	/* XXX: We should probe for the presence of this bug, but we don't. */
55 	return 0;
56 }
57 
58 static inline int __maybe_unused bcm1250_m3_war(void)
59 {
60 	return BCM1250_M3_WAR;
61 }
62 
63 static inline int __maybe_unused r10000_llsc_war(void)
64 {
65 	return R10000_LLSC_WAR;
66 }
67 
68 static int use_bbit_insns(void)
69 {
70 	switch (current_cpu_type()) {
71 	case CPU_CAVIUM_OCTEON:
72 	case CPU_CAVIUM_OCTEON_PLUS:
73 	case CPU_CAVIUM_OCTEON2:
74 		return 1;
75 	default:
76 		return 0;
77 	}
78 }
79 
80 static int use_lwx_insns(void)
81 {
82 	switch (current_cpu_type()) {
83 	case CPU_CAVIUM_OCTEON2:
84 		return 1;
85 	default:
86 		return 0;
87 	}
88 }
89 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
90     CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
91 static bool scratchpad_available(void)
92 {
93 	return true;
94 }
95 static int scratchpad_offset(int i)
96 {
97 	/*
98 	 * CVMSEG starts at address -32768 and extends for
99 	 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
100 	 */
101 	i += 1; /* Kernel use starts at the top and works down. */
102 	return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
103 }
104 #else
105 static bool scratchpad_available(void)
106 {
107 	return false;
108 }
109 static int scratchpad_offset(int i)
110 {
111 	BUG();
112 	/* Really unreachable, but evidently some GCC want this. */
113 	return 0;
114 }
115 #endif
116 /*
117  * Found by experiment: At least some revisions of the 4kc throw under
118  * some circumstances a machine check exception, triggered by invalid
119  * values in the index register.  Delaying the tlbp instruction until
120  * after the next branch,  plus adding an additional nop in front of
121  * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
122  * why; it's not an issue caused by the core RTL.
123  *
124  */
125 static int __cpuinit m4kc_tlbp_war(void)
126 {
127 	return (current_cpu_data.processor_id & 0xffff00) ==
128 	       (PRID_COMP_MIPS | PRID_IMP_4KC);
129 }
130 
131 /* Handle labels (which must be positive integers). */
132 enum label_id {
133 	label_second_part = 1,
134 	label_leave,
135 	label_vmalloc,
136 	label_vmalloc_done,
137 	label_tlbw_hazard,
138 	label_split,
139 	label_tlbl_goaround1,
140 	label_tlbl_goaround2,
141 	label_nopage_tlbl,
142 	label_nopage_tlbs,
143 	label_nopage_tlbm,
144 	label_smp_pgtable_change,
145 	label_r3000_write_probe_fail,
146 	label_large_segbits_fault,
147 #ifdef CONFIG_HUGETLB_PAGE
148 	label_tlb_huge_update,
149 #endif
150 };
151 
152 UASM_L_LA(_second_part)
153 UASM_L_LA(_leave)
154 UASM_L_LA(_vmalloc)
155 UASM_L_LA(_vmalloc_done)
156 UASM_L_LA(_tlbw_hazard)
157 UASM_L_LA(_split)
158 UASM_L_LA(_tlbl_goaround1)
159 UASM_L_LA(_tlbl_goaround2)
160 UASM_L_LA(_nopage_tlbl)
161 UASM_L_LA(_nopage_tlbs)
162 UASM_L_LA(_nopage_tlbm)
163 UASM_L_LA(_smp_pgtable_change)
164 UASM_L_LA(_r3000_write_probe_fail)
165 UASM_L_LA(_large_segbits_fault)
166 #ifdef CONFIG_HUGETLB_PAGE
167 UASM_L_LA(_tlb_huge_update)
168 #endif
169 
170 /*
171  * For debug purposes.
172  */
173 static inline void dump_handler(const u32 *handler, int count)
174 {
175 	int i;
176 
177 	pr_debug("\t.set push\n");
178 	pr_debug("\t.set noreorder\n");
179 
180 	for (i = 0; i < count; i++)
181 		pr_debug("\t%p\t.word 0x%08x\n", &handler[i], handler[i]);
182 
183 	pr_debug("\t.set pop\n");
184 }
185 
186 /* The only general purpose registers allowed in TLB handlers. */
187 #define K0		26
188 #define K1		27
189 
190 /* Some CP0 registers */
191 #define C0_INDEX	0, 0
192 #define C0_ENTRYLO0	2, 0
193 #define C0_TCBIND	2, 2
194 #define C0_ENTRYLO1	3, 0
195 #define C0_CONTEXT	4, 0
196 #define C0_PAGEMASK	5, 0
197 #define C0_BADVADDR	8, 0
198 #define C0_ENTRYHI	10, 0
199 #define C0_EPC		14, 0
200 #define C0_XCONTEXT	20, 0
201 
202 #ifdef CONFIG_64BIT
203 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
204 #else
205 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
206 #endif
207 
208 /* The worst case length of the handler is around 18 instructions for
209  * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
210  * Maximum space available is 32 instructions for R3000 and 64
211  * instructions for R4000.
212  *
213  * We deliberately chose a buffer size of 128, so we won't scribble
214  * over anything important on overflow before we panic.
215  */
216 static u32 tlb_handler[128] __cpuinitdata;
217 
218 /* simply assume worst case size for labels and relocs */
219 static struct uasm_label labels[128] __cpuinitdata;
220 static struct uasm_reloc relocs[128] __cpuinitdata;
221 
222 #ifdef CONFIG_64BIT
223 static int check_for_high_segbits __cpuinitdata;
224 #endif
225 
226 static int check_for_high_segbits __cpuinitdata;
227 
228 static unsigned int kscratch_used_mask __cpuinitdata;
229 
230 static int __cpuinit allocate_kscratch(void)
231 {
232 	int r;
233 	unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
234 
235 	r = ffs(a);
236 
237 	if (r == 0)
238 		return -1;
239 
240 	r--; /* make it zero based */
241 
242 	kscratch_used_mask |= (1 << r);
243 
244 	return r;
245 }
246 
247 static int scratch_reg __cpuinitdata;
248 static int pgd_reg __cpuinitdata;
249 enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
250 
251 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
252 
253 /*
254  * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
255  * we cannot do r3000 under these circumstances.
256  *
257  * Declare pgd_current here instead of including mmu_context.h to avoid type
258  * conflicts for tlbmiss_handler_setup_pgd
259  */
260 extern unsigned long pgd_current[];
261 
262 /*
263  * The R3000 TLB handler is simple.
264  */
265 static void __cpuinit build_r3000_tlb_refill_handler(void)
266 {
267 	long pgdc = (long)pgd_current;
268 	u32 *p;
269 
270 	memset(tlb_handler, 0, sizeof(tlb_handler));
271 	p = tlb_handler;
272 
273 	uasm_i_mfc0(&p, K0, C0_BADVADDR);
274 	uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
275 	uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
276 	uasm_i_srl(&p, K0, K0, 22); /* load delay */
277 	uasm_i_sll(&p, K0, K0, 2);
278 	uasm_i_addu(&p, K1, K1, K0);
279 	uasm_i_mfc0(&p, K0, C0_CONTEXT);
280 	uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
281 	uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
282 	uasm_i_addu(&p, K1, K1, K0);
283 	uasm_i_lw(&p, K0, 0, K1);
284 	uasm_i_nop(&p); /* load delay */
285 	uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
286 	uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
287 	uasm_i_tlbwr(&p); /* cp0 delay */
288 	uasm_i_jr(&p, K1);
289 	uasm_i_rfe(&p); /* branch delay */
290 
291 	if (p > tlb_handler + 32)
292 		panic("TLB refill handler space exceeded");
293 
294 	pr_debug("Wrote TLB refill handler (%u instructions).\n",
295 		 (unsigned int)(p - tlb_handler));
296 
297 	memcpy((void *)ebase, tlb_handler, 0x80);
298 
299 	dump_handler((u32 *)ebase, 32);
300 }
301 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
302 
303 /*
304  * The R4000 TLB handler is much more complicated. We have two
305  * consecutive handler areas with 32 instructions space each.
306  * Since they aren't used at the same time, we can overflow in the
307  * other one.To keep things simple, we first assume linear space,
308  * then we relocate it to the final handler layout as needed.
309  */
310 static u32 final_handler[64] __cpuinitdata;
311 
312 /*
313  * Hazards
314  *
315  * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
316  * 2. A timing hazard exists for the TLBP instruction.
317  *
318  *      stalling_instruction
319  *      TLBP
320  *
321  * The JTLB is being read for the TLBP throughout the stall generated by the
322  * previous instruction. This is not really correct as the stalling instruction
323  * can modify the address used to access the JTLB.  The failure symptom is that
324  * the TLBP instruction will use an address created for the stalling instruction
325  * and not the address held in C0_ENHI and thus report the wrong results.
326  *
327  * The software work-around is to not allow the instruction preceding the TLBP
328  * to stall - make it an NOP or some other instruction guaranteed not to stall.
329  *
330  * Errata 2 will not be fixed.  This errata is also on the R5000.
331  *
332  * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
333  */
334 static void __cpuinit __maybe_unused build_tlb_probe_entry(u32 **p)
335 {
336 	switch (current_cpu_type()) {
337 	/* Found by experiment: R4600 v2.0/R4700 needs this, too.  */
338 	case CPU_R4600:
339 	case CPU_R4700:
340 	case CPU_R5000:
341 	case CPU_R5000A:
342 	case CPU_NEVADA:
343 		uasm_i_nop(p);
344 		uasm_i_tlbp(p);
345 		break;
346 
347 	default:
348 		uasm_i_tlbp(p);
349 		break;
350 	}
351 }
352 
353 /*
354  * Write random or indexed TLB entry, and care about the hazards from
355  * the preceding mtc0 and for the following eret.
356  */
357 enum tlb_write_entry { tlb_random, tlb_indexed };
358 
359 static void __cpuinit build_tlb_write_entry(u32 **p, struct uasm_label **l,
360 					 struct uasm_reloc **r,
361 					 enum tlb_write_entry wmode)
362 {
363 	void(*tlbw)(u32 **) = NULL;
364 
365 	switch (wmode) {
366 	case tlb_random: tlbw = uasm_i_tlbwr; break;
367 	case tlb_indexed: tlbw = uasm_i_tlbwi; break;
368 	}
369 
370 	if (cpu_has_mips_r2) {
371 		if (cpu_has_mips_r2_exec_hazard)
372 			uasm_i_ehb(p);
373 		tlbw(p);
374 		return;
375 	}
376 
377 	switch (current_cpu_type()) {
378 	case CPU_R4000PC:
379 	case CPU_R4000SC:
380 	case CPU_R4000MC:
381 	case CPU_R4400PC:
382 	case CPU_R4400SC:
383 	case CPU_R4400MC:
384 		/*
385 		 * This branch uses up a mtc0 hazard nop slot and saves
386 		 * two nops after the tlbw instruction.
387 		 */
388 		uasm_il_bgezl(p, r, 0, label_tlbw_hazard);
389 		tlbw(p);
390 		uasm_l_tlbw_hazard(l, *p);
391 		uasm_i_nop(p);
392 		break;
393 
394 	case CPU_R4600:
395 	case CPU_R4700:
396 	case CPU_R5000:
397 	case CPU_R5000A:
398 		uasm_i_nop(p);
399 		tlbw(p);
400 		uasm_i_nop(p);
401 		break;
402 
403 	case CPU_R4300:
404 	case CPU_5KC:
405 	case CPU_TX49XX:
406 	case CPU_PR4450:
407 		uasm_i_nop(p);
408 		tlbw(p);
409 		break;
410 
411 	case CPU_R10000:
412 	case CPU_R12000:
413 	case CPU_R14000:
414 	case CPU_4KC:
415 	case CPU_4KEC:
416 	case CPU_SB1:
417 	case CPU_SB1A:
418 	case CPU_4KSC:
419 	case CPU_20KC:
420 	case CPU_25KF:
421 	case CPU_BMIPS32:
422 	case CPU_BMIPS3300:
423 	case CPU_BMIPS4350:
424 	case CPU_BMIPS4380:
425 	case CPU_BMIPS5000:
426 	case CPU_LOONGSON2:
427 	case CPU_R5500:
428 		if (m4kc_tlbp_war())
429 			uasm_i_nop(p);
430 	case CPU_ALCHEMY:
431 		tlbw(p);
432 		break;
433 
434 	case CPU_NEVADA:
435 		uasm_i_nop(p); /* QED specifies 2 nops hazard */
436 		/*
437 		 * This branch uses up a mtc0 hazard nop slot and saves
438 		 * a nop after the tlbw instruction.
439 		 */
440 		uasm_il_bgezl(p, r, 0, label_tlbw_hazard);
441 		tlbw(p);
442 		uasm_l_tlbw_hazard(l, *p);
443 		break;
444 
445 	case CPU_RM7000:
446 		uasm_i_nop(p);
447 		uasm_i_nop(p);
448 		uasm_i_nop(p);
449 		uasm_i_nop(p);
450 		tlbw(p);
451 		break;
452 
453 	case CPU_RM9000:
454 		/*
455 		 * When the JTLB is updated by tlbwi or tlbwr, a subsequent
456 		 * use of the JTLB for instructions should not occur for 4
457 		 * cpu cycles and use for data translations should not occur
458 		 * for 3 cpu cycles.
459 		 */
460 		uasm_i_ssnop(p);
461 		uasm_i_ssnop(p);
462 		uasm_i_ssnop(p);
463 		uasm_i_ssnop(p);
464 		tlbw(p);
465 		uasm_i_ssnop(p);
466 		uasm_i_ssnop(p);
467 		uasm_i_ssnop(p);
468 		uasm_i_ssnop(p);
469 		break;
470 
471 	case CPU_VR4111:
472 	case CPU_VR4121:
473 	case CPU_VR4122:
474 	case CPU_VR4181:
475 	case CPU_VR4181A:
476 		uasm_i_nop(p);
477 		uasm_i_nop(p);
478 		tlbw(p);
479 		uasm_i_nop(p);
480 		uasm_i_nop(p);
481 		break;
482 
483 	case CPU_VR4131:
484 	case CPU_VR4133:
485 	case CPU_R5432:
486 		uasm_i_nop(p);
487 		uasm_i_nop(p);
488 		tlbw(p);
489 		break;
490 
491 	case CPU_JZRISC:
492 		tlbw(p);
493 		uasm_i_nop(p);
494 		break;
495 
496 	default:
497 		panic("No TLB refill handler yet (CPU type: %d)",
498 		      current_cpu_data.cputype);
499 		break;
500 	}
501 }
502 
503 static __cpuinit __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
504 								  unsigned int reg)
505 {
506 	if (kernel_uses_smartmips_rixi) {
507 		UASM_i_SRL(p, reg, reg, ilog2(_PAGE_NO_EXEC));
508 		UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
509 	} else {
510 #ifdef CONFIG_64BIT_PHYS_ADDR
511 		uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
512 #else
513 		UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
514 #endif
515 	}
516 }
517 
518 #ifdef CONFIG_HUGETLB_PAGE
519 
520 static __cpuinit void build_restore_pagemask(u32 **p,
521 					     struct uasm_reloc **r,
522 					     unsigned int tmp,
523 					     enum label_id lid,
524 					     int restore_scratch)
525 {
526 	if (restore_scratch) {
527 		/* Reset default page size */
528 		if (PM_DEFAULT_MASK >> 16) {
529 			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
530 			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
531 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
532 			uasm_il_b(p, r, lid);
533 		} else if (PM_DEFAULT_MASK) {
534 			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
535 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
536 			uasm_il_b(p, r, lid);
537 		} else {
538 			uasm_i_mtc0(p, 0, C0_PAGEMASK);
539 			uasm_il_b(p, r, lid);
540 		}
541 		if (scratch_reg > 0)
542 			UASM_i_MFC0(p, 1, 31, scratch_reg);
543 		else
544 			UASM_i_LW(p, 1, scratchpad_offset(0), 0);
545 	} else {
546 		/* Reset default page size */
547 		if (PM_DEFAULT_MASK >> 16) {
548 			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
549 			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
550 			uasm_il_b(p, r, lid);
551 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
552 		} else if (PM_DEFAULT_MASK) {
553 			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
554 			uasm_il_b(p, r, lid);
555 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
556 		} else {
557 			uasm_il_b(p, r, lid);
558 			uasm_i_mtc0(p, 0, C0_PAGEMASK);
559 		}
560 	}
561 }
562 
563 static __cpuinit void build_huge_tlb_write_entry(u32 **p,
564 						 struct uasm_label **l,
565 						 struct uasm_reloc **r,
566 						 unsigned int tmp,
567 						 enum tlb_write_entry wmode,
568 						 int restore_scratch)
569 {
570 	/* Set huge page tlb entry size */
571 	uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
572 	uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
573 	uasm_i_mtc0(p, tmp, C0_PAGEMASK);
574 
575 	build_tlb_write_entry(p, l, r, wmode);
576 
577 	build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
578 }
579 
580 /*
581  * Check if Huge PTE is present, if so then jump to LABEL.
582  */
583 static void __cpuinit
584 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
585 		unsigned int pmd, int lid)
586 {
587 	UASM_i_LW(p, tmp, 0, pmd);
588 	if (use_bbit_insns()) {
589 		uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
590 	} else {
591 		uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
592 		uasm_il_bnez(p, r, tmp, lid);
593 	}
594 }
595 
596 static __cpuinit void build_huge_update_entries(u32 **p,
597 						unsigned int pte,
598 						unsigned int tmp)
599 {
600 	int small_sequence;
601 
602 	/*
603 	 * A huge PTE describes an area the size of the
604 	 * configured huge page size. This is twice the
605 	 * of the large TLB entry size we intend to use.
606 	 * A TLB entry half the size of the configured
607 	 * huge page size is configured into entrylo0
608 	 * and entrylo1 to cover the contiguous huge PTE
609 	 * address space.
610 	 */
611 	small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
612 
613 	/* We can clobber tmp.  It isn't used after this.*/
614 	if (!small_sequence)
615 		uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
616 
617 	build_convert_pte_to_entrylo(p, pte);
618 	UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
619 	/* convert to entrylo1 */
620 	if (small_sequence)
621 		UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
622 	else
623 		UASM_i_ADDU(p, pte, pte, tmp);
624 
625 	UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
626 }
627 
628 static __cpuinit void build_huge_handler_tail(u32 **p,
629 					      struct uasm_reloc **r,
630 					      struct uasm_label **l,
631 					      unsigned int pte,
632 					      unsigned int ptr)
633 {
634 #ifdef CONFIG_SMP
635 	UASM_i_SC(p, pte, 0, ptr);
636 	uasm_il_beqz(p, r, pte, label_tlb_huge_update);
637 	UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
638 #else
639 	UASM_i_SW(p, pte, 0, ptr);
640 #endif
641 	build_huge_update_entries(p, pte, ptr);
642 	build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
643 }
644 #endif /* CONFIG_HUGETLB_PAGE */
645 
646 #ifdef CONFIG_64BIT
647 /*
648  * TMP and PTR are scratch.
649  * TMP will be clobbered, PTR will hold the pmd entry.
650  */
651 static void __cpuinit
652 build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
653 		 unsigned int tmp, unsigned int ptr)
654 {
655 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
656 	long pgdc = (long)pgd_current;
657 #endif
658 	/*
659 	 * The vmalloc handling is not in the hotpath.
660 	 */
661 	uasm_i_dmfc0(p, tmp, C0_BADVADDR);
662 
663 	if (check_for_high_segbits) {
664 		/*
665 		 * The kernel currently implicitely assumes that the
666 		 * MIPS SEGBITS parameter for the processor is
667 		 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
668 		 * allocate virtual addresses outside the maximum
669 		 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
670 		 * that doesn't prevent user code from accessing the
671 		 * higher xuseg addresses.  Here, we make sure that
672 		 * everything but the lower xuseg addresses goes down
673 		 * the module_alloc/vmalloc path.
674 		 */
675 		uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
676 		uasm_il_bnez(p, r, ptr, label_vmalloc);
677 	} else {
678 		uasm_il_bltz(p, r, tmp, label_vmalloc);
679 	}
680 	/* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
681 
682 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
683 	if (pgd_reg != -1) {
684 		/* pgd is in pgd_reg */
685 		UASM_i_MFC0(p, ptr, 31, pgd_reg);
686 	} else {
687 		/*
688 		 * &pgd << 11 stored in CONTEXT [23..63].
689 		 */
690 		UASM_i_MFC0(p, ptr, C0_CONTEXT);
691 
692 		/* Clear lower 23 bits of context. */
693 		uasm_i_dins(p, ptr, 0, 0, 23);
694 
695 		/* 1 0  1 0 1  << 6  xkphys cached */
696 		uasm_i_ori(p, ptr, ptr, 0x540);
697 		uasm_i_drotr(p, ptr, ptr, 11);
698 	}
699 #elif defined(CONFIG_SMP)
700 # ifdef  CONFIG_MIPS_MT_SMTC
701 	/*
702 	 * SMTC uses TCBind value as "CPU" index
703 	 */
704 	uasm_i_mfc0(p, ptr, C0_TCBIND);
705 	uasm_i_dsrl_safe(p, ptr, ptr, 19);
706 # else
707 	/*
708 	 * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
709 	 * stored in CONTEXT.
710 	 */
711 	uasm_i_dmfc0(p, ptr, C0_CONTEXT);
712 	uasm_i_dsrl_safe(p, ptr, ptr, 23);
713 # endif
714 	UASM_i_LA_mostly(p, tmp, pgdc);
715 	uasm_i_daddu(p, ptr, ptr, tmp);
716 	uasm_i_dmfc0(p, tmp, C0_BADVADDR);
717 	uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
718 #else
719 	UASM_i_LA_mostly(p, ptr, pgdc);
720 	uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
721 #endif
722 
723 	uasm_l_vmalloc_done(l, *p);
724 
725 	/* get pgd offset in bytes */
726 	uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
727 
728 	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
729 	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
730 #ifndef __PAGETABLE_PMD_FOLDED
731 	uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
732 	uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
733 	uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
734 	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
735 	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
736 #endif
737 }
738 
739 /*
740  * BVADDR is the faulting address, PTR is scratch.
741  * PTR will hold the pgd for vmalloc.
742  */
743 static void __cpuinit
744 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
745 			unsigned int bvaddr, unsigned int ptr,
746 			enum vmalloc64_mode mode)
747 {
748 	long swpd = (long)swapper_pg_dir;
749 	int single_insn_swpd;
750 	int did_vmalloc_branch = 0;
751 
752 	single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
753 
754 	uasm_l_vmalloc(l, *p);
755 
756 	if (mode != not_refill && check_for_high_segbits) {
757 		if (single_insn_swpd) {
758 			uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
759 			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
760 			did_vmalloc_branch = 1;
761 			/* fall through */
762 		} else {
763 			uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
764 		}
765 	}
766 	if (!did_vmalloc_branch) {
767 		if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
768 			uasm_il_b(p, r, label_vmalloc_done);
769 			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
770 		} else {
771 			UASM_i_LA_mostly(p, ptr, swpd);
772 			uasm_il_b(p, r, label_vmalloc_done);
773 			if (uasm_in_compat_space_p(swpd))
774 				uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
775 			else
776 				uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
777 		}
778 	}
779 	if (mode != not_refill && check_for_high_segbits) {
780 		uasm_l_large_segbits_fault(l, *p);
781 		/*
782 		 * We get here if we are an xsseg address, or if we are
783 		 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
784 		 *
785 		 * Ignoring xsseg (assume disabled so would generate
786 		 * (address errors?), the only remaining possibility
787 		 * is the upper xuseg addresses.  On processors with
788 		 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
789 		 * addresses would have taken an address error. We try
790 		 * to mimic that here by taking a load/istream page
791 		 * fault.
792 		 */
793 		UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
794 		uasm_i_jr(p, ptr);
795 
796 		if (mode == refill_scratch) {
797 			if (scratch_reg > 0)
798 				UASM_i_MFC0(p, 1, 31, scratch_reg);
799 			else
800 				UASM_i_LW(p, 1, scratchpad_offset(0), 0);
801 		} else {
802 			uasm_i_nop(p);
803 		}
804 	}
805 }
806 
807 #else /* !CONFIG_64BIT */
808 
809 /*
810  * TMP and PTR are scratch.
811  * TMP will be clobbered, PTR will hold the pgd entry.
812  */
813 static void __cpuinit __maybe_unused
814 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
815 {
816 	long pgdc = (long)pgd_current;
817 
818 	/* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
819 #ifdef CONFIG_SMP
820 #ifdef  CONFIG_MIPS_MT_SMTC
821 	/*
822 	 * SMTC uses TCBind value as "CPU" index
823 	 */
824 	uasm_i_mfc0(p, ptr, C0_TCBIND);
825 	UASM_i_LA_mostly(p, tmp, pgdc);
826 	uasm_i_srl(p, ptr, ptr, 19);
827 #else
828 	/*
829 	 * smp_processor_id() << 3 is stored in CONTEXT.
830          */
831 	uasm_i_mfc0(p, ptr, C0_CONTEXT);
832 	UASM_i_LA_mostly(p, tmp, pgdc);
833 	uasm_i_srl(p, ptr, ptr, 23);
834 #endif
835 	uasm_i_addu(p, ptr, tmp, ptr);
836 #else
837 	UASM_i_LA_mostly(p, ptr, pgdc);
838 #endif
839 	uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
840 	uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
841 	uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
842 	uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
843 	uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
844 }
845 
846 #endif /* !CONFIG_64BIT */
847 
848 static void __cpuinit build_adjust_context(u32 **p, unsigned int ctx)
849 {
850 	unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
851 	unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
852 
853 	switch (current_cpu_type()) {
854 	case CPU_VR41XX:
855 	case CPU_VR4111:
856 	case CPU_VR4121:
857 	case CPU_VR4122:
858 	case CPU_VR4131:
859 	case CPU_VR4181:
860 	case CPU_VR4181A:
861 	case CPU_VR4133:
862 		shift += 2;
863 		break;
864 
865 	default:
866 		break;
867 	}
868 
869 	if (shift)
870 		UASM_i_SRL(p, ctx, ctx, shift);
871 	uasm_i_andi(p, ctx, ctx, mask);
872 }
873 
874 static void __cpuinit build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
875 {
876 	/*
877 	 * Bug workaround for the Nevada. It seems as if under certain
878 	 * circumstances the move from cp0_context might produce a
879 	 * bogus result when the mfc0 instruction and its consumer are
880 	 * in a different cacheline or a load instruction, probably any
881 	 * memory reference, is between them.
882 	 */
883 	switch (current_cpu_type()) {
884 	case CPU_NEVADA:
885 		UASM_i_LW(p, ptr, 0, ptr);
886 		GET_CONTEXT(p, tmp); /* get context reg */
887 		break;
888 
889 	default:
890 		GET_CONTEXT(p, tmp); /* get context reg */
891 		UASM_i_LW(p, ptr, 0, ptr);
892 		break;
893 	}
894 
895 	build_adjust_context(p, tmp);
896 	UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
897 }
898 
899 static void __cpuinit build_update_entries(u32 **p, unsigned int tmp,
900 					unsigned int ptep)
901 {
902 	/*
903 	 * 64bit address support (36bit on a 32bit CPU) in a 32bit
904 	 * Kernel is a special case. Only a few CPUs use it.
905 	 */
906 #ifdef CONFIG_64BIT_PHYS_ADDR
907 	if (cpu_has_64bits) {
908 		uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
909 		uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
910 		if (kernel_uses_smartmips_rixi) {
911 			UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_NO_EXEC));
912 			UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_NO_EXEC));
913 			UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
914 			UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
915 			UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
916 		} else {
917 			uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
918 			UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
919 			uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
920 		}
921 		UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
922 	} else {
923 		int pte_off_even = sizeof(pte_t) / 2;
924 		int pte_off_odd = pte_off_even + sizeof(pte_t);
925 
926 		/* The pte entries are pre-shifted */
927 		uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
928 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
929 		uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
930 		UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
931 	}
932 #else
933 	UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
934 	UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
935 	if (r45k_bvahwbug())
936 		build_tlb_probe_entry(p);
937 	if (kernel_uses_smartmips_rixi) {
938 		UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_NO_EXEC));
939 		UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_NO_EXEC));
940 		UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
941 		if (r4k_250MHZhwbug())
942 			UASM_i_MTC0(p, 0, C0_ENTRYLO0);
943 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
944 		UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
945 	} else {
946 		UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
947 		if (r4k_250MHZhwbug())
948 			UASM_i_MTC0(p, 0, C0_ENTRYLO0);
949 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
950 		UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
951 		if (r45k_bvahwbug())
952 			uasm_i_mfc0(p, tmp, C0_INDEX);
953 	}
954 	if (r4k_250MHZhwbug())
955 		UASM_i_MTC0(p, 0, C0_ENTRYLO1);
956 	UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
957 #endif
958 }
959 
960 struct mips_huge_tlb_info {
961 	int huge_pte;
962 	int restore_scratch;
963 };
964 
965 static struct mips_huge_tlb_info __cpuinit
966 build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
967 			       struct uasm_reloc **r, unsigned int tmp,
968 			       unsigned int ptr, int c0_scratch)
969 {
970 	struct mips_huge_tlb_info rv;
971 	unsigned int even, odd;
972 	int vmalloc_branch_delay_filled = 0;
973 	const int scratch = 1; /* Our extra working register */
974 
975 	rv.huge_pte = scratch;
976 	rv.restore_scratch = 0;
977 
978 	if (check_for_high_segbits) {
979 		UASM_i_MFC0(p, tmp, C0_BADVADDR);
980 
981 		if (pgd_reg != -1)
982 			UASM_i_MFC0(p, ptr, 31, pgd_reg);
983 		else
984 			UASM_i_MFC0(p, ptr, C0_CONTEXT);
985 
986 		if (c0_scratch >= 0)
987 			UASM_i_MTC0(p, scratch, 31, c0_scratch);
988 		else
989 			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
990 
991 		uasm_i_dsrl_safe(p, scratch, tmp,
992 				 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
993 		uasm_il_bnez(p, r, scratch, label_vmalloc);
994 
995 		if (pgd_reg == -1) {
996 			vmalloc_branch_delay_filled = 1;
997 			/* Clear lower 23 bits of context. */
998 			uasm_i_dins(p, ptr, 0, 0, 23);
999 		}
1000 	} else {
1001 		if (pgd_reg != -1)
1002 			UASM_i_MFC0(p, ptr, 31, pgd_reg);
1003 		else
1004 			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1005 
1006 		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1007 
1008 		if (c0_scratch >= 0)
1009 			UASM_i_MTC0(p, scratch, 31, c0_scratch);
1010 		else
1011 			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1012 
1013 		if (pgd_reg == -1)
1014 			/* Clear lower 23 bits of context. */
1015 			uasm_i_dins(p, ptr, 0, 0, 23);
1016 
1017 		uasm_il_bltz(p, r, tmp, label_vmalloc);
1018 	}
1019 
1020 	if (pgd_reg == -1) {
1021 		vmalloc_branch_delay_filled = 1;
1022 		/* 1 0  1 0 1  << 6  xkphys cached */
1023 		uasm_i_ori(p, ptr, ptr, 0x540);
1024 		uasm_i_drotr(p, ptr, ptr, 11);
1025 	}
1026 
1027 #ifdef __PAGETABLE_PMD_FOLDED
1028 #define LOC_PTEP scratch
1029 #else
1030 #define LOC_PTEP ptr
1031 #endif
1032 
1033 	if (!vmalloc_branch_delay_filled)
1034 		/* get pgd offset in bytes */
1035 		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1036 
1037 	uasm_l_vmalloc_done(l, *p);
1038 
1039 	/*
1040 	 *                         tmp          ptr
1041 	 * fall-through case =   badvaddr  *pgd_current
1042 	 * vmalloc case      =   badvaddr  swapper_pg_dir
1043 	 */
1044 
1045 	if (vmalloc_branch_delay_filled)
1046 		/* get pgd offset in bytes */
1047 		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1048 
1049 #ifdef __PAGETABLE_PMD_FOLDED
1050 	GET_CONTEXT(p, tmp); /* get context reg */
1051 #endif
1052 	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1053 
1054 	if (use_lwx_insns()) {
1055 		UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1056 	} else {
1057 		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1058 		uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1059 	}
1060 
1061 #ifndef __PAGETABLE_PMD_FOLDED
1062 	/* get pmd offset in bytes */
1063 	uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1064 	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1065 	GET_CONTEXT(p, tmp); /* get context reg */
1066 
1067 	if (use_lwx_insns()) {
1068 		UASM_i_LWX(p, scratch, scratch, ptr);
1069 	} else {
1070 		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1071 		UASM_i_LW(p, scratch, 0, ptr);
1072 	}
1073 #endif
1074 	/* Adjust the context during the load latency. */
1075 	build_adjust_context(p, tmp);
1076 
1077 #ifdef CONFIG_HUGETLB_PAGE
1078 	uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1079 	/*
1080 	 * The in the LWX case we don't want to do the load in the
1081 	 * delay slot.  It cannot issue in the same cycle and may be
1082 	 * speculative and unneeded.
1083 	 */
1084 	if (use_lwx_insns())
1085 		uasm_i_nop(p);
1086 #endif /* CONFIG_HUGETLB_PAGE */
1087 
1088 
1089 	/* build_update_entries */
1090 	if (use_lwx_insns()) {
1091 		even = ptr;
1092 		odd = tmp;
1093 		UASM_i_LWX(p, even, scratch, tmp);
1094 		UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1095 		UASM_i_LWX(p, odd, scratch, tmp);
1096 	} else {
1097 		UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1098 		even = tmp;
1099 		odd = ptr;
1100 		UASM_i_LW(p, even, 0, ptr); /* get even pte */
1101 		UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1102 	}
1103 	if (kernel_uses_smartmips_rixi) {
1104 		uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_NO_EXEC));
1105 		uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_NO_EXEC));
1106 		uasm_i_drotr(p, even, even,
1107 			     ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
1108 		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1109 		uasm_i_drotr(p, odd, odd,
1110 			     ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
1111 	} else {
1112 		uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1113 		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1114 		uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1115 	}
1116 	UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1117 
1118 	if (c0_scratch >= 0) {
1119 		UASM_i_MFC0(p, scratch, 31, c0_scratch);
1120 		build_tlb_write_entry(p, l, r, tlb_random);
1121 		uasm_l_leave(l, *p);
1122 		rv.restore_scratch = 1;
1123 	} else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13)  {
1124 		build_tlb_write_entry(p, l, r, tlb_random);
1125 		uasm_l_leave(l, *p);
1126 		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1127 	} else {
1128 		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1129 		build_tlb_write_entry(p, l, r, tlb_random);
1130 		uasm_l_leave(l, *p);
1131 		rv.restore_scratch = 1;
1132 	}
1133 
1134 	uasm_i_eret(p); /* return from trap */
1135 
1136 	return rv;
1137 }
1138 
1139 /*
1140  * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1141  * because EXL == 0.  If we wrap, we can also use the 32 instruction
1142  * slots before the XTLB refill exception handler which belong to the
1143  * unused TLB refill exception.
1144  */
1145 #define MIPS64_REFILL_INSNS 32
1146 
1147 static void __cpuinit build_r4000_tlb_refill_handler(void)
1148 {
1149 	u32 *p = tlb_handler;
1150 	struct uasm_label *l = labels;
1151 	struct uasm_reloc *r = relocs;
1152 	u32 *f;
1153 	unsigned int final_len;
1154 	struct mips_huge_tlb_info htlb_info;
1155 	enum vmalloc64_mode vmalloc_mode;
1156 
1157 	memset(tlb_handler, 0, sizeof(tlb_handler));
1158 	memset(labels, 0, sizeof(labels));
1159 	memset(relocs, 0, sizeof(relocs));
1160 	memset(final_handler, 0, sizeof(final_handler));
1161 
1162 	if (scratch_reg == 0)
1163 		scratch_reg = allocate_kscratch();
1164 
1165 	if ((scratch_reg > 0 || scratchpad_available()) && use_bbit_insns()) {
1166 		htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1167 							  scratch_reg);
1168 		vmalloc_mode = refill_scratch;
1169 	} else {
1170 		htlb_info.huge_pte = K0;
1171 		htlb_info.restore_scratch = 0;
1172 		vmalloc_mode = refill_noscratch;
1173 		/*
1174 		 * create the plain linear handler
1175 		 */
1176 		if (bcm1250_m3_war()) {
1177 			unsigned int segbits = 44;
1178 
1179 			uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1180 			uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1181 			uasm_i_xor(&p, K0, K0, K1);
1182 			uasm_i_dsrl_safe(&p, K1, K0, 62);
1183 			uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1184 			uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1185 			uasm_i_or(&p, K0, K0, K1);
1186 			uasm_il_bnez(&p, &r, K0, label_leave);
1187 			/* No need for uasm_i_nop */
1188 		}
1189 
1190 #ifdef CONFIG_64BIT
1191 		build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1192 #else
1193 		build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1194 #endif
1195 
1196 #ifdef CONFIG_HUGETLB_PAGE
1197 		build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1198 #endif
1199 
1200 		build_get_ptep(&p, K0, K1);
1201 		build_update_entries(&p, K0, K1);
1202 		build_tlb_write_entry(&p, &l, &r, tlb_random);
1203 		uasm_l_leave(&l, p);
1204 		uasm_i_eret(&p); /* return from trap */
1205 	}
1206 #ifdef CONFIG_HUGETLB_PAGE
1207 	uasm_l_tlb_huge_update(&l, p);
1208 	build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1209 	build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1210 				   htlb_info.restore_scratch);
1211 #endif
1212 
1213 #ifdef CONFIG_64BIT
1214 	build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1215 #endif
1216 
1217 	/*
1218 	 * Overflow check: For the 64bit handler, we need at least one
1219 	 * free instruction slot for the wrap-around branch. In worst
1220 	 * case, if the intended insertion point is a delay slot, we
1221 	 * need three, with the second nop'ed and the third being
1222 	 * unused.
1223 	 */
1224 	/* Loongson2 ebase is different than r4k, we have more space */
1225 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1226 	if ((p - tlb_handler) > 64)
1227 		panic("TLB refill handler space exceeded");
1228 #else
1229 	if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1230 	    || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1231 		&& uasm_insn_has_bdelay(relocs,
1232 					tlb_handler + MIPS64_REFILL_INSNS - 3)))
1233 		panic("TLB refill handler space exceeded");
1234 #endif
1235 
1236 	/*
1237 	 * Now fold the handler in the TLB refill handler space.
1238 	 */
1239 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1240 	f = final_handler;
1241 	/* Simplest case, just copy the handler. */
1242 	uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1243 	final_len = p - tlb_handler;
1244 #else /* CONFIG_64BIT */
1245 	f = final_handler + MIPS64_REFILL_INSNS;
1246 	if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1247 		/* Just copy the handler. */
1248 		uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1249 		final_len = p - tlb_handler;
1250 	} else {
1251 #if defined(CONFIG_HUGETLB_PAGE)
1252 		const enum label_id ls = label_tlb_huge_update;
1253 #else
1254 		const enum label_id ls = label_vmalloc;
1255 #endif
1256 		u32 *split;
1257 		int ov = 0;
1258 		int i;
1259 
1260 		for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1261 			;
1262 		BUG_ON(i == ARRAY_SIZE(labels));
1263 		split = labels[i].addr;
1264 
1265 		/*
1266 		 * See if we have overflown one way or the other.
1267 		 */
1268 		if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1269 		    split < p - MIPS64_REFILL_INSNS)
1270 			ov = 1;
1271 
1272 		if (ov) {
1273 			/*
1274 			 * Split two instructions before the end.  One
1275 			 * for the branch and one for the instruction
1276 			 * in the delay slot.
1277 			 */
1278 			split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1279 
1280 			/*
1281 			 * If the branch would fall in a delay slot,
1282 			 * we must back up an additional instruction
1283 			 * so that it is no longer in a delay slot.
1284 			 */
1285 			if (uasm_insn_has_bdelay(relocs, split - 1))
1286 				split--;
1287 		}
1288 		/* Copy first part of the handler. */
1289 		uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1290 		f += split - tlb_handler;
1291 
1292 		if (ov) {
1293 			/* Insert branch. */
1294 			uasm_l_split(&l, final_handler);
1295 			uasm_il_b(&f, &r, label_split);
1296 			if (uasm_insn_has_bdelay(relocs, split))
1297 				uasm_i_nop(&f);
1298 			else {
1299 				uasm_copy_handler(relocs, labels,
1300 						  split, split + 1, f);
1301 				uasm_move_labels(labels, f, f + 1, -1);
1302 				f++;
1303 				split++;
1304 			}
1305 		}
1306 
1307 		/* Copy the rest of the handler. */
1308 		uasm_copy_handler(relocs, labels, split, p, final_handler);
1309 		final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1310 			    (p - split);
1311 	}
1312 #endif /* CONFIG_64BIT */
1313 
1314 	uasm_resolve_relocs(relocs, labels);
1315 	pr_debug("Wrote TLB refill handler (%u instructions).\n",
1316 		 final_len);
1317 
1318 	memcpy((void *)ebase, final_handler, 0x100);
1319 
1320 	dump_handler((u32 *)ebase, 64);
1321 }
1322 
1323 /*
1324  * 128 instructions for the fastpath handler is generous and should
1325  * never be exceeded.
1326  */
1327 #define FASTPATH_SIZE 128
1328 
1329 u32 handle_tlbl[FASTPATH_SIZE] __cacheline_aligned;
1330 u32 handle_tlbs[FASTPATH_SIZE] __cacheline_aligned;
1331 u32 handle_tlbm[FASTPATH_SIZE] __cacheline_aligned;
1332 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1333 u32 tlbmiss_handler_setup_pgd[16] __cacheline_aligned;
1334 
1335 static void __cpuinit build_r4000_setup_pgd(void)
1336 {
1337 	const int a0 = 4;
1338 	const int a1 = 5;
1339 	u32 *p = tlbmiss_handler_setup_pgd;
1340 	struct uasm_label *l = labels;
1341 	struct uasm_reloc *r = relocs;
1342 
1343 	memset(tlbmiss_handler_setup_pgd, 0, sizeof(tlbmiss_handler_setup_pgd));
1344 	memset(labels, 0, sizeof(labels));
1345 	memset(relocs, 0, sizeof(relocs));
1346 
1347 	pgd_reg = allocate_kscratch();
1348 
1349 	if (pgd_reg == -1) {
1350 		/* PGD << 11 in c0_Context */
1351 		/*
1352 		 * If it is a ckseg0 address, convert to a physical
1353 		 * address.  Shifting right by 29 and adding 4 will
1354 		 * result in zero for these addresses.
1355 		 *
1356 		 */
1357 		UASM_i_SRA(&p, a1, a0, 29);
1358 		UASM_i_ADDIU(&p, a1, a1, 4);
1359 		uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1360 		uasm_i_nop(&p);
1361 		uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1362 		uasm_l_tlbl_goaround1(&l, p);
1363 		UASM_i_SLL(&p, a0, a0, 11);
1364 		uasm_i_jr(&p, 31);
1365 		UASM_i_MTC0(&p, a0, C0_CONTEXT);
1366 	} else {
1367 		/* PGD in c0_KScratch */
1368 		uasm_i_jr(&p, 31);
1369 		UASM_i_MTC0(&p, a0, 31, pgd_reg);
1370 	}
1371 	if (p - tlbmiss_handler_setup_pgd > ARRAY_SIZE(tlbmiss_handler_setup_pgd))
1372 		panic("tlbmiss_handler_setup_pgd space exceeded");
1373 	uasm_resolve_relocs(relocs, labels);
1374 	pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1375 		 (unsigned int)(p - tlbmiss_handler_setup_pgd));
1376 
1377 	dump_handler(tlbmiss_handler_setup_pgd,
1378 		     ARRAY_SIZE(tlbmiss_handler_setup_pgd));
1379 }
1380 #endif
1381 
1382 static void __cpuinit
1383 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1384 {
1385 #ifdef CONFIG_SMP
1386 # ifdef CONFIG_64BIT_PHYS_ADDR
1387 	if (cpu_has_64bits)
1388 		uasm_i_lld(p, pte, 0, ptr);
1389 	else
1390 # endif
1391 		UASM_i_LL(p, pte, 0, ptr);
1392 #else
1393 # ifdef CONFIG_64BIT_PHYS_ADDR
1394 	if (cpu_has_64bits)
1395 		uasm_i_ld(p, pte, 0, ptr);
1396 	else
1397 # endif
1398 		UASM_i_LW(p, pte, 0, ptr);
1399 #endif
1400 }
1401 
1402 static void __cpuinit
1403 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1404 	unsigned int mode)
1405 {
1406 #ifdef CONFIG_64BIT_PHYS_ADDR
1407 	unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1408 #endif
1409 
1410 	uasm_i_ori(p, pte, pte, mode);
1411 #ifdef CONFIG_SMP
1412 # ifdef CONFIG_64BIT_PHYS_ADDR
1413 	if (cpu_has_64bits)
1414 		uasm_i_scd(p, pte, 0, ptr);
1415 	else
1416 # endif
1417 		UASM_i_SC(p, pte, 0, ptr);
1418 
1419 	if (r10000_llsc_war())
1420 		uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1421 	else
1422 		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1423 
1424 # ifdef CONFIG_64BIT_PHYS_ADDR
1425 	if (!cpu_has_64bits) {
1426 		/* no uasm_i_nop needed */
1427 		uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1428 		uasm_i_ori(p, pte, pte, hwmode);
1429 		uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1430 		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1431 		/* no uasm_i_nop needed */
1432 		uasm_i_lw(p, pte, 0, ptr);
1433 	} else
1434 		uasm_i_nop(p);
1435 # else
1436 	uasm_i_nop(p);
1437 # endif
1438 #else
1439 # ifdef CONFIG_64BIT_PHYS_ADDR
1440 	if (cpu_has_64bits)
1441 		uasm_i_sd(p, pte, 0, ptr);
1442 	else
1443 # endif
1444 		UASM_i_SW(p, pte, 0, ptr);
1445 
1446 # ifdef CONFIG_64BIT_PHYS_ADDR
1447 	if (!cpu_has_64bits) {
1448 		uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1449 		uasm_i_ori(p, pte, pte, hwmode);
1450 		uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1451 		uasm_i_lw(p, pte, 0, ptr);
1452 	}
1453 # endif
1454 #endif
1455 }
1456 
1457 /*
1458  * Check if PTE is present, if not then jump to LABEL. PTR points to
1459  * the page table where this PTE is located, PTE will be re-loaded
1460  * with it's original value.
1461  */
1462 static void __cpuinit
1463 build_pte_present(u32 **p, struct uasm_reloc **r,
1464 		  unsigned int pte, unsigned int ptr, enum label_id lid)
1465 {
1466 	if (kernel_uses_smartmips_rixi) {
1467 		if (use_bbit_insns()) {
1468 			uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1469 			uasm_i_nop(p);
1470 		} else {
1471 			uasm_i_andi(p, pte, pte, _PAGE_PRESENT);
1472 			uasm_il_beqz(p, r, pte, lid);
1473 			iPTE_LW(p, pte, ptr);
1474 		}
1475 	} else {
1476 		uasm_i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
1477 		uasm_i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
1478 		uasm_il_bnez(p, r, pte, lid);
1479 		iPTE_LW(p, pte, ptr);
1480 	}
1481 }
1482 
1483 /* Make PTE valid, store result in PTR. */
1484 static void __cpuinit
1485 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1486 		 unsigned int ptr)
1487 {
1488 	unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1489 
1490 	iPTE_SW(p, r, pte, ptr, mode);
1491 }
1492 
1493 /*
1494  * Check if PTE can be written to, if not branch to LABEL. Regardless
1495  * restore PTE with value from PTR when done.
1496  */
1497 static void __cpuinit
1498 build_pte_writable(u32 **p, struct uasm_reloc **r,
1499 		   unsigned int pte, unsigned int ptr, enum label_id lid)
1500 {
1501 	if (use_bbit_insns()) {
1502 		uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1503 		uasm_i_nop(p);
1504 		uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1505 		uasm_i_nop(p);
1506 	} else {
1507 		uasm_i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
1508 		uasm_i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
1509 		uasm_il_bnez(p, r, pte, lid);
1510 		iPTE_LW(p, pte, ptr);
1511 	}
1512 }
1513 
1514 /* Make PTE writable, update software status bits as well, then store
1515  * at PTR.
1516  */
1517 static void __cpuinit
1518 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1519 		 unsigned int ptr)
1520 {
1521 	unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1522 			     | _PAGE_DIRTY);
1523 
1524 	iPTE_SW(p, r, pte, ptr, mode);
1525 }
1526 
1527 /*
1528  * Check if PTE can be modified, if not branch to LABEL. Regardless
1529  * restore PTE with value from PTR when done.
1530  */
1531 static void __cpuinit
1532 build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1533 		     unsigned int pte, unsigned int ptr, enum label_id lid)
1534 {
1535 	if (use_bbit_insns()) {
1536 		uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1537 		uasm_i_nop(p);
1538 	} else {
1539 		uasm_i_andi(p, pte, pte, _PAGE_WRITE);
1540 		uasm_il_beqz(p, r, pte, lid);
1541 		iPTE_LW(p, pte, ptr);
1542 	}
1543 }
1544 
1545 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1546 
1547 
1548 /*
1549  * R3000 style TLB load/store/modify handlers.
1550  */
1551 
1552 /*
1553  * This places the pte into ENTRYLO0 and writes it with tlbwi.
1554  * Then it returns.
1555  */
1556 static void __cpuinit
1557 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1558 {
1559 	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1560 	uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1561 	uasm_i_tlbwi(p);
1562 	uasm_i_jr(p, tmp);
1563 	uasm_i_rfe(p); /* branch delay */
1564 }
1565 
1566 /*
1567  * This places the pte into ENTRYLO0 and writes it with tlbwi
1568  * or tlbwr as appropriate.  This is because the index register
1569  * may have the probe fail bit set as a result of a trap on a
1570  * kseg2 access, i.e. without refill.  Then it returns.
1571  */
1572 static void __cpuinit
1573 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1574 			     struct uasm_reloc **r, unsigned int pte,
1575 			     unsigned int tmp)
1576 {
1577 	uasm_i_mfc0(p, tmp, C0_INDEX);
1578 	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1579 	uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1580 	uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1581 	uasm_i_tlbwi(p); /* cp0 delay */
1582 	uasm_i_jr(p, tmp);
1583 	uasm_i_rfe(p); /* branch delay */
1584 	uasm_l_r3000_write_probe_fail(l, *p);
1585 	uasm_i_tlbwr(p); /* cp0 delay */
1586 	uasm_i_jr(p, tmp);
1587 	uasm_i_rfe(p); /* branch delay */
1588 }
1589 
1590 static void __cpuinit
1591 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1592 				   unsigned int ptr)
1593 {
1594 	long pgdc = (long)pgd_current;
1595 
1596 	uasm_i_mfc0(p, pte, C0_BADVADDR);
1597 	uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1598 	uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1599 	uasm_i_srl(p, pte, pte, 22); /* load delay */
1600 	uasm_i_sll(p, pte, pte, 2);
1601 	uasm_i_addu(p, ptr, ptr, pte);
1602 	uasm_i_mfc0(p, pte, C0_CONTEXT);
1603 	uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1604 	uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1605 	uasm_i_addu(p, ptr, ptr, pte);
1606 	uasm_i_lw(p, pte, 0, ptr);
1607 	uasm_i_tlbp(p); /* load delay */
1608 }
1609 
1610 static void __cpuinit build_r3000_tlb_load_handler(void)
1611 {
1612 	u32 *p = handle_tlbl;
1613 	struct uasm_label *l = labels;
1614 	struct uasm_reloc *r = relocs;
1615 
1616 	memset(handle_tlbl, 0, sizeof(handle_tlbl));
1617 	memset(labels, 0, sizeof(labels));
1618 	memset(relocs, 0, sizeof(relocs));
1619 
1620 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1621 	build_pte_present(&p, &r, K0, K1, label_nopage_tlbl);
1622 	uasm_i_nop(&p); /* load delay */
1623 	build_make_valid(&p, &r, K0, K1);
1624 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1625 
1626 	uasm_l_nopage_tlbl(&l, p);
1627 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1628 	uasm_i_nop(&p);
1629 
1630 	if ((p - handle_tlbl) > FASTPATH_SIZE)
1631 		panic("TLB load handler fastpath space exceeded");
1632 
1633 	uasm_resolve_relocs(relocs, labels);
1634 	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1635 		 (unsigned int)(p - handle_tlbl));
1636 
1637 	dump_handler(handle_tlbl, ARRAY_SIZE(handle_tlbl));
1638 }
1639 
1640 static void __cpuinit build_r3000_tlb_store_handler(void)
1641 {
1642 	u32 *p = handle_tlbs;
1643 	struct uasm_label *l = labels;
1644 	struct uasm_reloc *r = relocs;
1645 
1646 	memset(handle_tlbs, 0, sizeof(handle_tlbs));
1647 	memset(labels, 0, sizeof(labels));
1648 	memset(relocs, 0, sizeof(relocs));
1649 
1650 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1651 	build_pte_writable(&p, &r, K0, K1, label_nopage_tlbs);
1652 	uasm_i_nop(&p); /* load delay */
1653 	build_make_write(&p, &r, K0, K1);
1654 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1655 
1656 	uasm_l_nopage_tlbs(&l, p);
1657 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1658 	uasm_i_nop(&p);
1659 
1660 	if ((p - handle_tlbs) > FASTPATH_SIZE)
1661 		panic("TLB store handler fastpath space exceeded");
1662 
1663 	uasm_resolve_relocs(relocs, labels);
1664 	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1665 		 (unsigned int)(p - handle_tlbs));
1666 
1667 	dump_handler(handle_tlbs, ARRAY_SIZE(handle_tlbs));
1668 }
1669 
1670 static void __cpuinit build_r3000_tlb_modify_handler(void)
1671 {
1672 	u32 *p = handle_tlbm;
1673 	struct uasm_label *l = labels;
1674 	struct uasm_reloc *r = relocs;
1675 
1676 	memset(handle_tlbm, 0, sizeof(handle_tlbm));
1677 	memset(labels, 0, sizeof(labels));
1678 	memset(relocs, 0, sizeof(relocs));
1679 
1680 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1681 	build_pte_modifiable(&p, &r, K0, K1, label_nopage_tlbm);
1682 	uasm_i_nop(&p); /* load delay */
1683 	build_make_write(&p, &r, K0, K1);
1684 	build_r3000_pte_reload_tlbwi(&p, K0, K1);
1685 
1686 	uasm_l_nopage_tlbm(&l, p);
1687 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1688 	uasm_i_nop(&p);
1689 
1690 	if ((p - handle_tlbm) > FASTPATH_SIZE)
1691 		panic("TLB modify handler fastpath space exceeded");
1692 
1693 	uasm_resolve_relocs(relocs, labels);
1694 	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1695 		 (unsigned int)(p - handle_tlbm));
1696 
1697 	dump_handler(handle_tlbm, ARRAY_SIZE(handle_tlbm));
1698 }
1699 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1700 
1701 /*
1702  * R4000 style TLB load/store/modify handlers.
1703  */
1704 static void __cpuinit
1705 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1706 				   struct uasm_reloc **r, unsigned int pte,
1707 				   unsigned int ptr)
1708 {
1709 #ifdef CONFIG_64BIT
1710 	build_get_pmde64(p, l, r, pte, ptr); /* get pmd in ptr */
1711 #else
1712 	build_get_pgde32(p, pte, ptr); /* get pgd in ptr */
1713 #endif
1714 
1715 #ifdef CONFIG_HUGETLB_PAGE
1716 	/*
1717 	 * For huge tlb entries, pmd doesn't contain an address but
1718 	 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1719 	 * see if we need to jump to huge tlb processing.
1720 	 */
1721 	build_is_huge_pte(p, r, pte, ptr, label_tlb_huge_update);
1722 #endif
1723 
1724 	UASM_i_MFC0(p, pte, C0_BADVADDR);
1725 	UASM_i_LW(p, ptr, 0, ptr);
1726 	UASM_i_SRL(p, pte, pte, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1727 	uasm_i_andi(p, pte, pte, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1728 	UASM_i_ADDU(p, ptr, ptr, pte);
1729 
1730 #ifdef CONFIG_SMP
1731 	uasm_l_smp_pgtable_change(l, *p);
1732 #endif
1733 	iPTE_LW(p, pte, ptr); /* get even pte */
1734 	if (!m4kc_tlbp_war())
1735 		build_tlb_probe_entry(p);
1736 }
1737 
1738 static void __cpuinit
1739 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1740 				   struct uasm_reloc **r, unsigned int tmp,
1741 				   unsigned int ptr)
1742 {
1743 	uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1744 	uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1745 	build_update_entries(p, tmp, ptr);
1746 	build_tlb_write_entry(p, l, r, tlb_indexed);
1747 	uasm_l_leave(l, *p);
1748 	uasm_i_eret(p); /* return from trap */
1749 
1750 #ifdef CONFIG_64BIT
1751 	build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
1752 #endif
1753 }
1754 
1755 static void __cpuinit build_r4000_tlb_load_handler(void)
1756 {
1757 	u32 *p = handle_tlbl;
1758 	struct uasm_label *l = labels;
1759 	struct uasm_reloc *r = relocs;
1760 
1761 	memset(handle_tlbl, 0, sizeof(handle_tlbl));
1762 	memset(labels, 0, sizeof(labels));
1763 	memset(relocs, 0, sizeof(relocs));
1764 
1765 	if (bcm1250_m3_war()) {
1766 		unsigned int segbits = 44;
1767 
1768 		uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1769 		uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1770 		uasm_i_xor(&p, K0, K0, K1);
1771 		uasm_i_dsrl_safe(&p, K1, K0, 62);
1772 		uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1773 		uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1774 		uasm_i_or(&p, K0, K0, K1);
1775 		uasm_il_bnez(&p, &r, K0, label_leave);
1776 		/* No need for uasm_i_nop */
1777 	}
1778 
1779 	build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1780 	build_pte_present(&p, &r, K0, K1, label_nopage_tlbl);
1781 	if (m4kc_tlbp_war())
1782 		build_tlb_probe_entry(&p);
1783 
1784 	if (kernel_uses_smartmips_rixi) {
1785 		/*
1786 		 * If the page is not _PAGE_VALID, RI or XI could not
1787 		 * have triggered it.  Skip the expensive test..
1788 		 */
1789 		if (use_bbit_insns()) {
1790 			uasm_il_bbit0(&p, &r, K0, ilog2(_PAGE_VALID),
1791 				      label_tlbl_goaround1);
1792 		} else {
1793 			uasm_i_andi(&p, K0, K0, _PAGE_VALID);
1794 			uasm_il_beqz(&p, &r, K0, label_tlbl_goaround1);
1795 		}
1796 		uasm_i_nop(&p);
1797 
1798 		uasm_i_tlbr(&p);
1799 		/* Examine  entrylo 0 or 1 based on ptr. */
1800 		if (use_bbit_insns()) {
1801 			uasm_i_bbit0(&p, K1, ilog2(sizeof(pte_t)), 8);
1802 		} else {
1803 			uasm_i_andi(&p, K0, K1, sizeof(pte_t));
1804 			uasm_i_beqz(&p, K0, 8);
1805 		}
1806 
1807 		UASM_i_MFC0(&p, K0, C0_ENTRYLO0); /* load it in the delay slot*/
1808 		UASM_i_MFC0(&p, K0, C0_ENTRYLO1); /* load it if ptr is odd */
1809 		/*
1810 		 * If the entryLo (now in K0) is valid (bit 1), RI or
1811 		 * XI must have triggered it.
1812 		 */
1813 		if (use_bbit_insns()) {
1814 			uasm_il_bbit1(&p, &r, K0, 1, label_nopage_tlbl);
1815 			/* Reload the PTE value */
1816 			iPTE_LW(&p, K0, K1);
1817 			uasm_l_tlbl_goaround1(&l, p);
1818 		} else {
1819 			uasm_i_andi(&p, K0, K0, 2);
1820 			uasm_il_bnez(&p, &r, K0, label_nopage_tlbl);
1821 			uasm_l_tlbl_goaround1(&l, p);
1822 			/* Reload the PTE value */
1823 			iPTE_LW(&p, K0, K1);
1824 		}
1825 	}
1826 	build_make_valid(&p, &r, K0, K1);
1827 	build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1828 
1829 #ifdef CONFIG_HUGETLB_PAGE
1830 	/*
1831 	 * This is the entry point when build_r4000_tlbchange_handler_head
1832 	 * spots a huge page.
1833 	 */
1834 	uasm_l_tlb_huge_update(&l, p);
1835 	iPTE_LW(&p, K0, K1);
1836 	build_pte_present(&p, &r, K0, K1, label_nopage_tlbl);
1837 	build_tlb_probe_entry(&p);
1838 
1839 	if (kernel_uses_smartmips_rixi) {
1840 		/*
1841 		 * If the page is not _PAGE_VALID, RI or XI could not
1842 		 * have triggered it.  Skip the expensive test..
1843 		 */
1844 		if (use_bbit_insns()) {
1845 			uasm_il_bbit0(&p, &r, K0, ilog2(_PAGE_VALID),
1846 				      label_tlbl_goaround2);
1847 		} else {
1848 			uasm_i_andi(&p, K0, K0, _PAGE_VALID);
1849 			uasm_il_beqz(&p, &r, K0, label_tlbl_goaround2);
1850 		}
1851 		uasm_i_nop(&p);
1852 
1853 		uasm_i_tlbr(&p);
1854 		/* Examine  entrylo 0 or 1 based on ptr. */
1855 		if (use_bbit_insns()) {
1856 			uasm_i_bbit0(&p, K1, ilog2(sizeof(pte_t)), 8);
1857 		} else {
1858 			uasm_i_andi(&p, K0, K1, sizeof(pte_t));
1859 			uasm_i_beqz(&p, K0, 8);
1860 		}
1861 		UASM_i_MFC0(&p, K0, C0_ENTRYLO0); /* load it in the delay slot*/
1862 		UASM_i_MFC0(&p, K0, C0_ENTRYLO1); /* load it if ptr is odd */
1863 		/*
1864 		 * If the entryLo (now in K0) is valid (bit 1), RI or
1865 		 * XI must have triggered it.
1866 		 */
1867 		if (use_bbit_insns()) {
1868 			uasm_il_bbit0(&p, &r, K0, 1, label_tlbl_goaround2);
1869 		} else {
1870 			uasm_i_andi(&p, K0, K0, 2);
1871 			uasm_il_beqz(&p, &r, K0, label_tlbl_goaround2);
1872 		}
1873 		/* Reload the PTE value */
1874 		iPTE_LW(&p, K0, K1);
1875 
1876 		/*
1877 		 * We clobbered C0_PAGEMASK, restore it.  On the other branch
1878 		 * it is restored in build_huge_tlb_write_entry.
1879 		 */
1880 		build_restore_pagemask(&p, &r, K0, label_nopage_tlbl, 0);
1881 
1882 		uasm_l_tlbl_goaround2(&l, p);
1883 	}
1884 	uasm_i_ori(&p, K0, K0, (_PAGE_ACCESSED | _PAGE_VALID));
1885 	build_huge_handler_tail(&p, &r, &l, K0, K1);
1886 #endif
1887 
1888 	uasm_l_nopage_tlbl(&l, p);
1889 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1890 	uasm_i_nop(&p);
1891 
1892 	if ((p - handle_tlbl) > FASTPATH_SIZE)
1893 		panic("TLB load handler fastpath space exceeded");
1894 
1895 	uasm_resolve_relocs(relocs, labels);
1896 	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1897 		 (unsigned int)(p - handle_tlbl));
1898 
1899 	dump_handler(handle_tlbl, ARRAY_SIZE(handle_tlbl));
1900 }
1901 
1902 static void __cpuinit build_r4000_tlb_store_handler(void)
1903 {
1904 	u32 *p = handle_tlbs;
1905 	struct uasm_label *l = labels;
1906 	struct uasm_reloc *r = relocs;
1907 
1908 	memset(handle_tlbs, 0, sizeof(handle_tlbs));
1909 	memset(labels, 0, sizeof(labels));
1910 	memset(relocs, 0, sizeof(relocs));
1911 
1912 	build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1913 	build_pte_writable(&p, &r, K0, K1, label_nopage_tlbs);
1914 	if (m4kc_tlbp_war())
1915 		build_tlb_probe_entry(&p);
1916 	build_make_write(&p, &r, K0, K1);
1917 	build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1918 
1919 #ifdef CONFIG_HUGETLB_PAGE
1920 	/*
1921 	 * This is the entry point when
1922 	 * build_r4000_tlbchange_handler_head spots a huge page.
1923 	 */
1924 	uasm_l_tlb_huge_update(&l, p);
1925 	iPTE_LW(&p, K0, K1);
1926 	build_pte_writable(&p, &r, K0, K1, label_nopage_tlbs);
1927 	build_tlb_probe_entry(&p);
1928 	uasm_i_ori(&p, K0, K0,
1929 		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
1930 	build_huge_handler_tail(&p, &r, &l, K0, K1);
1931 #endif
1932 
1933 	uasm_l_nopage_tlbs(&l, p);
1934 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1935 	uasm_i_nop(&p);
1936 
1937 	if ((p - handle_tlbs) > FASTPATH_SIZE)
1938 		panic("TLB store handler fastpath space exceeded");
1939 
1940 	uasm_resolve_relocs(relocs, labels);
1941 	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1942 		 (unsigned int)(p - handle_tlbs));
1943 
1944 	dump_handler(handle_tlbs, ARRAY_SIZE(handle_tlbs));
1945 }
1946 
1947 static void __cpuinit build_r4000_tlb_modify_handler(void)
1948 {
1949 	u32 *p = handle_tlbm;
1950 	struct uasm_label *l = labels;
1951 	struct uasm_reloc *r = relocs;
1952 
1953 	memset(handle_tlbm, 0, sizeof(handle_tlbm));
1954 	memset(labels, 0, sizeof(labels));
1955 	memset(relocs, 0, sizeof(relocs));
1956 
1957 	build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1958 	build_pte_modifiable(&p, &r, K0, K1, label_nopage_tlbm);
1959 	if (m4kc_tlbp_war())
1960 		build_tlb_probe_entry(&p);
1961 	/* Present and writable bits set, set accessed and dirty bits. */
1962 	build_make_write(&p, &r, K0, K1);
1963 	build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1964 
1965 #ifdef CONFIG_HUGETLB_PAGE
1966 	/*
1967 	 * This is the entry point when
1968 	 * build_r4000_tlbchange_handler_head spots a huge page.
1969 	 */
1970 	uasm_l_tlb_huge_update(&l, p);
1971 	iPTE_LW(&p, K0, K1);
1972 	build_pte_modifiable(&p, &r, K0, K1, label_nopage_tlbm);
1973 	build_tlb_probe_entry(&p);
1974 	uasm_i_ori(&p, K0, K0,
1975 		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
1976 	build_huge_handler_tail(&p, &r, &l, K0, K1);
1977 #endif
1978 
1979 	uasm_l_nopage_tlbm(&l, p);
1980 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1981 	uasm_i_nop(&p);
1982 
1983 	if ((p - handle_tlbm) > FASTPATH_SIZE)
1984 		panic("TLB modify handler fastpath space exceeded");
1985 
1986 	uasm_resolve_relocs(relocs, labels);
1987 	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1988 		 (unsigned int)(p - handle_tlbm));
1989 
1990 	dump_handler(handle_tlbm, ARRAY_SIZE(handle_tlbm));
1991 }
1992 
1993 void __cpuinit build_tlb_refill_handler(void)
1994 {
1995 	/*
1996 	 * The refill handler is generated per-CPU, multi-node systems
1997 	 * may have local storage for it. The other handlers are only
1998 	 * needed once.
1999 	 */
2000 	static int run_once = 0;
2001 
2002 #ifdef CONFIG_64BIT
2003 	check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2004 #endif
2005 
2006 	switch (current_cpu_type()) {
2007 	case CPU_R2000:
2008 	case CPU_R3000:
2009 	case CPU_R3000A:
2010 	case CPU_R3081E:
2011 	case CPU_TX3912:
2012 	case CPU_TX3922:
2013 	case CPU_TX3927:
2014 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2015 		build_r3000_tlb_refill_handler();
2016 		if (!run_once) {
2017 			build_r3000_tlb_load_handler();
2018 			build_r3000_tlb_store_handler();
2019 			build_r3000_tlb_modify_handler();
2020 			run_once++;
2021 		}
2022 #else
2023 		panic("No R3000 TLB refill handler");
2024 #endif
2025 		break;
2026 
2027 	case CPU_R6000:
2028 	case CPU_R6000A:
2029 		panic("No R6000 TLB refill handler yet");
2030 		break;
2031 
2032 	case CPU_R8000:
2033 		panic("No R8000 TLB refill handler yet");
2034 		break;
2035 
2036 	default:
2037 		if (!run_once) {
2038 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2039 			build_r4000_setup_pgd();
2040 #endif
2041 			build_r4000_tlb_load_handler();
2042 			build_r4000_tlb_store_handler();
2043 			build_r4000_tlb_modify_handler();
2044 			run_once++;
2045 		}
2046 		build_r4000_tlb_refill_handler();
2047 	}
2048 }
2049 
2050 void __cpuinit flush_tlb_handlers(void)
2051 {
2052 	local_flush_icache_range((unsigned long)handle_tlbl,
2053 			   (unsigned long)handle_tlbl + sizeof(handle_tlbl));
2054 	local_flush_icache_range((unsigned long)handle_tlbs,
2055 			   (unsigned long)handle_tlbs + sizeof(handle_tlbs));
2056 	local_flush_icache_range((unsigned long)handle_tlbm,
2057 			   (unsigned long)handle_tlbm + sizeof(handle_tlbm));
2058 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2059 	local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2060 			   (unsigned long)tlbmiss_handler_setup_pgd + sizeof(handle_tlbm));
2061 #endif
2062 }
2063