1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Synthesize TLB refill handlers at runtime. 7 * 8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer 9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki 10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org) 11 * Copyright (C) 2008, 2009 Cavium Networks, Inc. 12 * Copyright (C) 2011 MIPS Technologies, Inc. 13 * 14 * ... and the days got worse and worse and now you see 15 * I've gone completely out of my mind. 16 * 17 * They're coming to take me a away haha 18 * they're coming to take me a away hoho hihi haha 19 * to the funny farm where code is beautiful all the time ... 20 * 21 * (Condolences to Napoleon XIV) 22 */ 23 24 #include <linux/bug.h> 25 #include <linux/export.h> 26 #include <linux/kernel.h> 27 #include <linux/types.h> 28 #include <linux/smp.h> 29 #include <linux/string.h> 30 #include <linux/cache.h> 31 32 #include <asm/cacheflush.h> 33 #include <asm/cpu-type.h> 34 #include <asm/pgtable.h> 35 #include <asm/war.h> 36 #include <asm/uasm.h> 37 #include <asm/setup.h> 38 #include <asm/tlbex.h> 39 40 static int mips_xpa_disabled; 41 42 static int __init xpa_disable(char *s) 43 { 44 mips_xpa_disabled = 1; 45 46 return 1; 47 } 48 49 __setup("noxpa", xpa_disable); 50 51 /* 52 * TLB load/store/modify handlers. 53 * 54 * Only the fastpath gets synthesized at runtime, the slowpath for 55 * do_page_fault remains normal asm. 56 */ 57 extern void tlb_do_page_fault_0(void); 58 extern void tlb_do_page_fault_1(void); 59 60 struct work_registers { 61 int r1; 62 int r2; 63 int r3; 64 }; 65 66 struct tlb_reg_save { 67 unsigned long a; 68 unsigned long b; 69 } ____cacheline_aligned_in_smp; 70 71 static struct tlb_reg_save handler_reg_save[NR_CPUS]; 72 73 static inline int r45k_bvahwbug(void) 74 { 75 /* XXX: We should probe for the presence of this bug, but we don't. */ 76 return 0; 77 } 78 79 static inline int r4k_250MHZhwbug(void) 80 { 81 /* XXX: We should probe for the presence of this bug, but we don't. */ 82 return 0; 83 } 84 85 static inline int __maybe_unused bcm1250_m3_war(void) 86 { 87 return BCM1250_M3_WAR; 88 } 89 90 static inline int __maybe_unused r10000_llsc_war(void) 91 { 92 return R10000_LLSC_WAR; 93 } 94 95 static int use_bbit_insns(void) 96 { 97 switch (current_cpu_type()) { 98 case CPU_CAVIUM_OCTEON: 99 case CPU_CAVIUM_OCTEON_PLUS: 100 case CPU_CAVIUM_OCTEON2: 101 case CPU_CAVIUM_OCTEON3: 102 return 1; 103 default: 104 return 0; 105 } 106 } 107 108 static int use_lwx_insns(void) 109 { 110 switch (current_cpu_type()) { 111 case CPU_CAVIUM_OCTEON2: 112 case CPU_CAVIUM_OCTEON3: 113 return 1; 114 default: 115 return 0; 116 } 117 } 118 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \ 119 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0 120 static bool scratchpad_available(void) 121 { 122 return true; 123 } 124 static int scratchpad_offset(int i) 125 { 126 /* 127 * CVMSEG starts at address -32768 and extends for 128 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines. 129 */ 130 i += 1; /* Kernel use starts at the top and works down. */ 131 return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768; 132 } 133 #else 134 static bool scratchpad_available(void) 135 { 136 return false; 137 } 138 static int scratchpad_offset(int i) 139 { 140 BUG(); 141 /* Really unreachable, but evidently some GCC want this. */ 142 return 0; 143 } 144 #endif 145 /* 146 * Found by experiment: At least some revisions of the 4kc throw under 147 * some circumstances a machine check exception, triggered by invalid 148 * values in the index register. Delaying the tlbp instruction until 149 * after the next branch, plus adding an additional nop in front of 150 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows 151 * why; it's not an issue caused by the core RTL. 152 * 153 */ 154 static int m4kc_tlbp_war(void) 155 { 156 return (current_cpu_data.processor_id & 0xffff00) == 157 (PRID_COMP_MIPS | PRID_IMP_4KC); 158 } 159 160 /* Handle labels (which must be positive integers). */ 161 enum label_id { 162 label_second_part = 1, 163 label_leave, 164 label_vmalloc, 165 label_vmalloc_done, 166 label_tlbw_hazard_0, 167 label_split = label_tlbw_hazard_0 + 8, 168 label_tlbl_goaround1, 169 label_tlbl_goaround2, 170 label_nopage_tlbl, 171 label_nopage_tlbs, 172 label_nopage_tlbm, 173 label_smp_pgtable_change, 174 label_r3000_write_probe_fail, 175 label_large_segbits_fault, 176 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 177 label_tlb_huge_update, 178 #endif 179 }; 180 181 UASM_L_LA(_second_part) 182 UASM_L_LA(_leave) 183 UASM_L_LA(_vmalloc) 184 UASM_L_LA(_vmalloc_done) 185 /* _tlbw_hazard_x is handled differently. */ 186 UASM_L_LA(_split) 187 UASM_L_LA(_tlbl_goaround1) 188 UASM_L_LA(_tlbl_goaround2) 189 UASM_L_LA(_nopage_tlbl) 190 UASM_L_LA(_nopage_tlbs) 191 UASM_L_LA(_nopage_tlbm) 192 UASM_L_LA(_smp_pgtable_change) 193 UASM_L_LA(_r3000_write_probe_fail) 194 UASM_L_LA(_large_segbits_fault) 195 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 196 UASM_L_LA(_tlb_huge_update) 197 #endif 198 199 static int hazard_instance; 200 201 static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance) 202 { 203 switch (instance) { 204 case 0 ... 7: 205 uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance); 206 return; 207 default: 208 BUG(); 209 } 210 } 211 212 static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance) 213 { 214 switch (instance) { 215 case 0 ... 7: 216 uasm_build_label(l, *p, label_tlbw_hazard_0 + instance); 217 break; 218 default: 219 BUG(); 220 } 221 } 222 223 /* 224 * pgtable bits are assigned dynamically depending on processor feature 225 * and statically based on kernel configuration. This spits out the actual 226 * values the kernel is using. Required to make sense from disassembled 227 * TLB exception handlers. 228 */ 229 static void output_pgtable_bits_defines(void) 230 { 231 #define pr_define(fmt, ...) \ 232 pr_debug("#define " fmt, ##__VA_ARGS__) 233 234 pr_debug("#include <asm/asm.h>\n"); 235 pr_debug("#include <asm/regdef.h>\n"); 236 pr_debug("\n"); 237 238 pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT); 239 pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT); 240 pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT); 241 pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT); 242 pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT); 243 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 244 pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT); 245 #endif 246 #ifdef _PAGE_NO_EXEC_SHIFT 247 if (cpu_has_rixi) 248 pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT); 249 #endif 250 pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT); 251 pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT); 252 pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT); 253 pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT); 254 pr_debug("\n"); 255 } 256 257 static inline void dump_handler(const char *symbol, const u32 *handler, int count) 258 { 259 int i; 260 261 pr_debug("LEAF(%s)\n", symbol); 262 263 pr_debug("\t.set push\n"); 264 pr_debug("\t.set noreorder\n"); 265 266 for (i = 0; i < count; i++) 267 pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]); 268 269 pr_debug("\t.set\tpop\n"); 270 271 pr_debug("\tEND(%s)\n", symbol); 272 } 273 274 /* The only general purpose registers allowed in TLB handlers. */ 275 #define K0 26 276 #define K1 27 277 278 /* Some CP0 registers */ 279 #define C0_INDEX 0, 0 280 #define C0_ENTRYLO0 2, 0 281 #define C0_TCBIND 2, 2 282 #define C0_ENTRYLO1 3, 0 283 #define C0_CONTEXT 4, 0 284 #define C0_PAGEMASK 5, 0 285 #define C0_PWBASE 5, 5 286 #define C0_PWFIELD 5, 6 287 #define C0_PWSIZE 5, 7 288 #define C0_PWCTL 6, 6 289 #define C0_BADVADDR 8, 0 290 #define C0_PGD 9, 7 291 #define C0_ENTRYHI 10, 0 292 #define C0_EPC 14, 0 293 #define C0_XCONTEXT 20, 0 294 295 #ifdef CONFIG_64BIT 296 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT) 297 #else 298 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT) 299 #endif 300 301 /* The worst case length of the handler is around 18 instructions for 302 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs. 303 * Maximum space available is 32 instructions for R3000 and 64 304 * instructions for R4000. 305 * 306 * We deliberately chose a buffer size of 128, so we won't scribble 307 * over anything important on overflow before we panic. 308 */ 309 static u32 tlb_handler[128]; 310 311 /* simply assume worst case size for labels and relocs */ 312 static struct uasm_label labels[128]; 313 static struct uasm_reloc relocs[128]; 314 315 static int check_for_high_segbits; 316 static bool fill_includes_sw_bits; 317 318 static unsigned int kscratch_used_mask; 319 320 static inline int __maybe_unused c0_kscratch(void) 321 { 322 switch (current_cpu_type()) { 323 case CPU_XLP: 324 case CPU_XLR: 325 return 22; 326 default: 327 return 31; 328 } 329 } 330 331 static int allocate_kscratch(void) 332 { 333 int r; 334 unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask; 335 336 r = ffs(a); 337 338 if (r == 0) 339 return -1; 340 341 r--; /* make it zero based */ 342 343 kscratch_used_mask |= (1 << r); 344 345 return r; 346 } 347 348 static int scratch_reg; 349 int pgd_reg; 350 EXPORT_SYMBOL_GPL(pgd_reg); 351 enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch}; 352 353 static struct work_registers build_get_work_registers(u32 **p) 354 { 355 struct work_registers r; 356 357 if (scratch_reg >= 0) { 358 /* Save in CPU local C0_KScratch? */ 359 UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg); 360 r.r1 = K0; 361 r.r2 = K1; 362 r.r3 = 1; 363 return r; 364 } 365 366 if (num_possible_cpus() > 1) { 367 /* Get smp_processor_id */ 368 UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG); 369 UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT); 370 371 /* handler_reg_save index in K0 */ 372 UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save))); 373 374 UASM_i_LA(p, K1, (long)&handler_reg_save); 375 UASM_i_ADDU(p, K0, K0, K1); 376 } else { 377 UASM_i_LA(p, K0, (long)&handler_reg_save); 378 } 379 /* K0 now points to save area, save $1 and $2 */ 380 UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0); 381 UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0); 382 383 r.r1 = K1; 384 r.r2 = 1; 385 r.r3 = 2; 386 return r; 387 } 388 389 static void build_restore_work_registers(u32 **p) 390 { 391 if (scratch_reg >= 0) { 392 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg); 393 return; 394 } 395 /* K0 already points to save area, restore $1 and $2 */ 396 UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0); 397 UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0); 398 } 399 400 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT 401 402 /* 403 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current, 404 * we cannot do r3000 under these circumstances. 405 * 406 * Declare pgd_current here instead of including mmu_context.h to avoid type 407 * conflicts for tlbmiss_handler_setup_pgd 408 */ 409 extern unsigned long pgd_current[]; 410 411 /* 412 * The R3000 TLB handler is simple. 413 */ 414 static void build_r3000_tlb_refill_handler(void) 415 { 416 long pgdc = (long)pgd_current; 417 u32 *p; 418 419 memset(tlb_handler, 0, sizeof(tlb_handler)); 420 p = tlb_handler; 421 422 uasm_i_mfc0(&p, K0, C0_BADVADDR); 423 uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */ 424 uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1); 425 uasm_i_srl(&p, K0, K0, 22); /* load delay */ 426 uasm_i_sll(&p, K0, K0, 2); 427 uasm_i_addu(&p, K1, K1, K0); 428 uasm_i_mfc0(&p, K0, C0_CONTEXT); 429 uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */ 430 uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */ 431 uasm_i_addu(&p, K1, K1, K0); 432 uasm_i_lw(&p, K0, 0, K1); 433 uasm_i_nop(&p); /* load delay */ 434 uasm_i_mtc0(&p, K0, C0_ENTRYLO0); 435 uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */ 436 uasm_i_tlbwr(&p); /* cp0 delay */ 437 uasm_i_jr(&p, K1); 438 uasm_i_rfe(&p); /* branch delay */ 439 440 if (p > tlb_handler + 32) 441 panic("TLB refill handler space exceeded"); 442 443 pr_debug("Wrote TLB refill handler (%u instructions).\n", 444 (unsigned int)(p - tlb_handler)); 445 446 memcpy((void *)ebase, tlb_handler, 0x80); 447 local_flush_icache_range(ebase, ebase + 0x80); 448 449 dump_handler("r3000_tlb_refill", (u32 *)ebase, 32); 450 } 451 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */ 452 453 /* 454 * The R4000 TLB handler is much more complicated. We have two 455 * consecutive handler areas with 32 instructions space each. 456 * Since they aren't used at the same time, we can overflow in the 457 * other one.To keep things simple, we first assume linear space, 458 * then we relocate it to the final handler layout as needed. 459 */ 460 static u32 final_handler[64]; 461 462 /* 463 * Hazards 464 * 465 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0: 466 * 2. A timing hazard exists for the TLBP instruction. 467 * 468 * stalling_instruction 469 * TLBP 470 * 471 * The JTLB is being read for the TLBP throughout the stall generated by the 472 * previous instruction. This is not really correct as the stalling instruction 473 * can modify the address used to access the JTLB. The failure symptom is that 474 * the TLBP instruction will use an address created for the stalling instruction 475 * and not the address held in C0_ENHI and thus report the wrong results. 476 * 477 * The software work-around is to not allow the instruction preceding the TLBP 478 * to stall - make it an NOP or some other instruction guaranteed not to stall. 479 * 480 * Errata 2 will not be fixed. This errata is also on the R5000. 481 * 482 * As if we MIPS hackers wouldn't know how to nop pipelines happy ... 483 */ 484 static void __maybe_unused build_tlb_probe_entry(u32 **p) 485 { 486 switch (current_cpu_type()) { 487 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */ 488 case CPU_R4600: 489 case CPU_R4700: 490 case CPU_R5000: 491 case CPU_NEVADA: 492 uasm_i_nop(p); 493 uasm_i_tlbp(p); 494 break; 495 496 default: 497 uasm_i_tlbp(p); 498 break; 499 } 500 } 501 502 void build_tlb_write_entry(u32 **p, struct uasm_label **l, 503 struct uasm_reloc **r, 504 enum tlb_write_entry wmode) 505 { 506 void(*tlbw)(u32 **) = NULL; 507 508 switch (wmode) { 509 case tlb_random: tlbw = uasm_i_tlbwr; break; 510 case tlb_indexed: tlbw = uasm_i_tlbwi; break; 511 } 512 513 if (cpu_has_mips_r2_r6) { 514 if (cpu_has_mips_r2_exec_hazard) 515 uasm_i_ehb(p); 516 tlbw(p); 517 return; 518 } 519 520 switch (current_cpu_type()) { 521 case CPU_R4000PC: 522 case CPU_R4000SC: 523 case CPU_R4000MC: 524 case CPU_R4400PC: 525 case CPU_R4400SC: 526 case CPU_R4400MC: 527 /* 528 * This branch uses up a mtc0 hazard nop slot and saves 529 * two nops after the tlbw instruction. 530 */ 531 uasm_bgezl_hazard(p, r, hazard_instance); 532 tlbw(p); 533 uasm_bgezl_label(l, p, hazard_instance); 534 hazard_instance++; 535 uasm_i_nop(p); 536 break; 537 538 case CPU_R4600: 539 case CPU_R4700: 540 uasm_i_nop(p); 541 tlbw(p); 542 uasm_i_nop(p); 543 break; 544 545 case CPU_R5000: 546 case CPU_NEVADA: 547 uasm_i_nop(p); /* QED specifies 2 nops hazard */ 548 uasm_i_nop(p); /* QED specifies 2 nops hazard */ 549 tlbw(p); 550 break; 551 552 case CPU_R4300: 553 case CPU_5KC: 554 case CPU_TX49XX: 555 case CPU_PR4450: 556 case CPU_XLR: 557 uasm_i_nop(p); 558 tlbw(p); 559 break; 560 561 case CPU_R10000: 562 case CPU_R12000: 563 case CPU_R14000: 564 case CPU_R16000: 565 case CPU_4KC: 566 case CPU_4KEC: 567 case CPU_M14KC: 568 case CPU_M14KEC: 569 case CPU_SB1: 570 case CPU_SB1A: 571 case CPU_4KSC: 572 case CPU_20KC: 573 case CPU_25KF: 574 case CPU_BMIPS32: 575 case CPU_BMIPS3300: 576 case CPU_BMIPS4350: 577 case CPU_BMIPS4380: 578 case CPU_BMIPS5000: 579 case CPU_LOONGSON2: 580 case CPU_LOONGSON3: 581 case CPU_R5500: 582 if (m4kc_tlbp_war()) 583 uasm_i_nop(p); 584 case CPU_ALCHEMY: 585 tlbw(p); 586 break; 587 588 case CPU_RM7000: 589 uasm_i_nop(p); 590 uasm_i_nop(p); 591 uasm_i_nop(p); 592 uasm_i_nop(p); 593 tlbw(p); 594 break; 595 596 case CPU_VR4111: 597 case CPU_VR4121: 598 case CPU_VR4122: 599 case CPU_VR4181: 600 case CPU_VR4181A: 601 uasm_i_nop(p); 602 uasm_i_nop(p); 603 tlbw(p); 604 uasm_i_nop(p); 605 uasm_i_nop(p); 606 break; 607 608 case CPU_VR4131: 609 case CPU_VR4133: 610 case CPU_R5432: 611 uasm_i_nop(p); 612 uasm_i_nop(p); 613 tlbw(p); 614 break; 615 616 case CPU_JZRISC: 617 tlbw(p); 618 uasm_i_nop(p); 619 break; 620 621 default: 622 panic("No TLB refill handler yet (CPU type: %d)", 623 current_cpu_type()); 624 break; 625 } 626 } 627 EXPORT_SYMBOL_GPL(build_tlb_write_entry); 628 629 static __maybe_unused void build_convert_pte_to_entrylo(u32 **p, 630 unsigned int reg) 631 { 632 if (_PAGE_GLOBAL_SHIFT == 0) { 633 /* pte_t is already in EntryLo format */ 634 return; 635 } 636 637 if (cpu_has_rixi && _PAGE_NO_EXEC) { 638 if (fill_includes_sw_bits) { 639 UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL)); 640 } else { 641 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_NO_EXEC)); 642 UASM_i_ROTR(p, reg, reg, 643 ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC)); 644 } 645 } else { 646 #ifdef CONFIG_PHYS_ADDR_T_64BIT 647 uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL)); 648 #else 649 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL)); 650 #endif 651 } 652 } 653 654 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 655 656 static void build_restore_pagemask(u32 **p, struct uasm_reloc **r, 657 unsigned int tmp, enum label_id lid, 658 int restore_scratch) 659 { 660 if (restore_scratch) { 661 /* Reset default page size */ 662 if (PM_DEFAULT_MASK >> 16) { 663 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16); 664 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff); 665 uasm_i_mtc0(p, tmp, C0_PAGEMASK); 666 uasm_il_b(p, r, lid); 667 } else if (PM_DEFAULT_MASK) { 668 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK); 669 uasm_i_mtc0(p, tmp, C0_PAGEMASK); 670 uasm_il_b(p, r, lid); 671 } else { 672 uasm_i_mtc0(p, 0, C0_PAGEMASK); 673 uasm_il_b(p, r, lid); 674 } 675 if (scratch_reg >= 0) 676 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg); 677 else 678 UASM_i_LW(p, 1, scratchpad_offset(0), 0); 679 } else { 680 /* Reset default page size */ 681 if (PM_DEFAULT_MASK >> 16) { 682 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16); 683 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff); 684 uasm_il_b(p, r, lid); 685 uasm_i_mtc0(p, tmp, C0_PAGEMASK); 686 } else if (PM_DEFAULT_MASK) { 687 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK); 688 uasm_il_b(p, r, lid); 689 uasm_i_mtc0(p, tmp, C0_PAGEMASK); 690 } else { 691 uasm_il_b(p, r, lid); 692 uasm_i_mtc0(p, 0, C0_PAGEMASK); 693 } 694 } 695 } 696 697 static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l, 698 struct uasm_reloc **r, 699 unsigned int tmp, 700 enum tlb_write_entry wmode, 701 int restore_scratch) 702 { 703 /* Set huge page tlb entry size */ 704 uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16); 705 uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff); 706 uasm_i_mtc0(p, tmp, C0_PAGEMASK); 707 708 build_tlb_write_entry(p, l, r, wmode); 709 710 build_restore_pagemask(p, r, tmp, label_leave, restore_scratch); 711 } 712 713 /* 714 * Check if Huge PTE is present, if so then jump to LABEL. 715 */ 716 static void 717 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp, 718 unsigned int pmd, int lid) 719 { 720 UASM_i_LW(p, tmp, 0, pmd); 721 if (use_bbit_insns()) { 722 uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid); 723 } else { 724 uasm_i_andi(p, tmp, tmp, _PAGE_HUGE); 725 uasm_il_bnez(p, r, tmp, lid); 726 } 727 } 728 729 static void build_huge_update_entries(u32 **p, unsigned int pte, 730 unsigned int tmp) 731 { 732 int small_sequence; 733 734 /* 735 * A huge PTE describes an area the size of the 736 * configured huge page size. This is twice the 737 * of the large TLB entry size we intend to use. 738 * A TLB entry half the size of the configured 739 * huge page size is configured into entrylo0 740 * and entrylo1 to cover the contiguous huge PTE 741 * address space. 742 */ 743 small_sequence = (HPAGE_SIZE >> 7) < 0x10000; 744 745 /* We can clobber tmp. It isn't used after this.*/ 746 if (!small_sequence) 747 uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16)); 748 749 build_convert_pte_to_entrylo(p, pte); 750 UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */ 751 /* convert to entrylo1 */ 752 if (small_sequence) 753 UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7); 754 else 755 UASM_i_ADDU(p, pte, pte, tmp); 756 757 UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */ 758 } 759 760 static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r, 761 struct uasm_label **l, 762 unsigned int pte, 763 unsigned int ptr) 764 { 765 #ifdef CONFIG_SMP 766 UASM_i_SC(p, pte, 0, ptr); 767 uasm_il_beqz(p, r, pte, label_tlb_huge_update); 768 UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */ 769 #else 770 UASM_i_SW(p, pte, 0, ptr); 771 #endif 772 build_huge_update_entries(p, pte, ptr); 773 build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0); 774 } 775 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */ 776 777 #ifdef CONFIG_64BIT 778 /* 779 * TMP and PTR are scratch. 780 * TMP will be clobbered, PTR will hold the pmd entry. 781 */ 782 void build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r, 783 unsigned int tmp, unsigned int ptr) 784 { 785 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT 786 long pgdc = (long)pgd_current; 787 #endif 788 /* 789 * The vmalloc handling is not in the hotpath. 790 */ 791 uasm_i_dmfc0(p, tmp, C0_BADVADDR); 792 793 if (check_for_high_segbits) { 794 /* 795 * The kernel currently implicitely assumes that the 796 * MIPS SEGBITS parameter for the processor is 797 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never 798 * allocate virtual addresses outside the maximum 799 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But 800 * that doesn't prevent user code from accessing the 801 * higher xuseg addresses. Here, we make sure that 802 * everything but the lower xuseg addresses goes down 803 * the module_alloc/vmalloc path. 804 */ 805 uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3); 806 uasm_il_bnez(p, r, ptr, label_vmalloc); 807 } else { 808 uasm_il_bltz(p, r, tmp, label_vmalloc); 809 } 810 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */ 811 812 if (pgd_reg != -1) { 813 /* pgd is in pgd_reg */ 814 if (cpu_has_ldpte) 815 UASM_i_MFC0(p, ptr, C0_PWBASE); 816 else 817 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg); 818 } else { 819 #if defined(CONFIG_MIPS_PGD_C0_CONTEXT) 820 /* 821 * &pgd << 11 stored in CONTEXT [23..63]. 822 */ 823 UASM_i_MFC0(p, ptr, C0_CONTEXT); 824 825 /* Clear lower 23 bits of context. */ 826 uasm_i_dins(p, ptr, 0, 0, 23); 827 828 /* 1 0 1 0 1 << 6 xkphys cached */ 829 uasm_i_ori(p, ptr, ptr, 0x540); 830 uasm_i_drotr(p, ptr, ptr, 11); 831 #elif defined(CONFIG_SMP) 832 UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG); 833 uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT); 834 UASM_i_LA_mostly(p, tmp, pgdc); 835 uasm_i_daddu(p, ptr, ptr, tmp); 836 uasm_i_dmfc0(p, tmp, C0_BADVADDR); 837 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr); 838 #else 839 UASM_i_LA_mostly(p, ptr, pgdc); 840 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr); 841 #endif 842 } 843 844 uasm_l_vmalloc_done(l, *p); 845 846 /* get pgd offset in bytes */ 847 uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3); 848 849 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3); 850 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */ 851 #ifndef __PAGETABLE_PMD_FOLDED 852 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */ 853 uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */ 854 uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */ 855 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3); 856 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */ 857 #endif 858 } 859 EXPORT_SYMBOL_GPL(build_get_pmde64); 860 861 /* 862 * BVADDR is the faulting address, PTR is scratch. 863 * PTR will hold the pgd for vmalloc. 864 */ 865 static void 866 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r, 867 unsigned int bvaddr, unsigned int ptr, 868 enum vmalloc64_mode mode) 869 { 870 long swpd = (long)swapper_pg_dir; 871 int single_insn_swpd; 872 int did_vmalloc_branch = 0; 873 874 single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd); 875 876 uasm_l_vmalloc(l, *p); 877 878 if (mode != not_refill && check_for_high_segbits) { 879 if (single_insn_swpd) { 880 uasm_il_bltz(p, r, bvaddr, label_vmalloc_done); 881 uasm_i_lui(p, ptr, uasm_rel_hi(swpd)); 882 did_vmalloc_branch = 1; 883 /* fall through */ 884 } else { 885 uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault); 886 } 887 } 888 if (!did_vmalloc_branch) { 889 if (single_insn_swpd) { 890 uasm_il_b(p, r, label_vmalloc_done); 891 uasm_i_lui(p, ptr, uasm_rel_hi(swpd)); 892 } else { 893 UASM_i_LA_mostly(p, ptr, swpd); 894 uasm_il_b(p, r, label_vmalloc_done); 895 if (uasm_in_compat_space_p(swpd)) 896 uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd)); 897 else 898 uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd)); 899 } 900 } 901 if (mode != not_refill && check_for_high_segbits) { 902 uasm_l_large_segbits_fault(l, *p); 903 /* 904 * We get here if we are an xsseg address, or if we are 905 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary. 906 * 907 * Ignoring xsseg (assume disabled so would generate 908 * (address errors?), the only remaining possibility 909 * is the upper xuseg addresses. On processors with 910 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these 911 * addresses would have taken an address error. We try 912 * to mimic that here by taking a load/istream page 913 * fault. 914 */ 915 UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0); 916 uasm_i_jr(p, ptr); 917 918 if (mode == refill_scratch) { 919 if (scratch_reg >= 0) 920 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg); 921 else 922 UASM_i_LW(p, 1, scratchpad_offset(0), 0); 923 } else { 924 uasm_i_nop(p); 925 } 926 } 927 } 928 929 #else /* !CONFIG_64BIT */ 930 931 /* 932 * TMP and PTR are scratch. 933 * TMP will be clobbered, PTR will hold the pgd entry. 934 */ 935 void build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr) 936 { 937 if (pgd_reg != -1) { 938 /* pgd is in pgd_reg */ 939 uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg); 940 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */ 941 } else { 942 long pgdc = (long)pgd_current; 943 944 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */ 945 #ifdef CONFIG_SMP 946 uasm_i_mfc0(p, ptr, SMP_CPUID_REG); 947 UASM_i_LA_mostly(p, tmp, pgdc); 948 uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT); 949 uasm_i_addu(p, ptr, tmp, ptr); 950 #else 951 UASM_i_LA_mostly(p, ptr, pgdc); 952 #endif 953 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */ 954 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr); 955 } 956 uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */ 957 uasm_i_sll(p, tmp, tmp, PGD_T_LOG2); 958 uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */ 959 } 960 EXPORT_SYMBOL_GPL(build_get_pgde32); 961 962 #endif /* !CONFIG_64BIT */ 963 964 static void build_adjust_context(u32 **p, unsigned int ctx) 965 { 966 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12; 967 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1); 968 969 switch (current_cpu_type()) { 970 case CPU_VR41XX: 971 case CPU_VR4111: 972 case CPU_VR4121: 973 case CPU_VR4122: 974 case CPU_VR4131: 975 case CPU_VR4181: 976 case CPU_VR4181A: 977 case CPU_VR4133: 978 shift += 2; 979 break; 980 981 default: 982 break; 983 } 984 985 if (shift) 986 UASM_i_SRL(p, ctx, ctx, shift); 987 uasm_i_andi(p, ctx, ctx, mask); 988 } 989 990 void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr) 991 { 992 /* 993 * Bug workaround for the Nevada. It seems as if under certain 994 * circumstances the move from cp0_context might produce a 995 * bogus result when the mfc0 instruction and its consumer are 996 * in a different cacheline or a load instruction, probably any 997 * memory reference, is between them. 998 */ 999 switch (current_cpu_type()) { 1000 case CPU_NEVADA: 1001 UASM_i_LW(p, ptr, 0, ptr); 1002 GET_CONTEXT(p, tmp); /* get context reg */ 1003 break; 1004 1005 default: 1006 GET_CONTEXT(p, tmp); /* get context reg */ 1007 UASM_i_LW(p, ptr, 0, ptr); 1008 break; 1009 } 1010 1011 build_adjust_context(p, tmp); 1012 UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */ 1013 } 1014 EXPORT_SYMBOL_GPL(build_get_ptep); 1015 1016 void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep) 1017 { 1018 int pte_off_even = 0; 1019 int pte_off_odd = sizeof(pte_t); 1020 1021 #if defined(CONFIG_CPU_MIPS32) && defined(CONFIG_PHYS_ADDR_T_64BIT) 1022 /* The low 32 bits of EntryLo is stored in pte_high */ 1023 pte_off_even += offsetof(pte_t, pte_high); 1024 pte_off_odd += offsetof(pte_t, pte_high); 1025 #endif 1026 1027 if (IS_ENABLED(CONFIG_XPA)) { 1028 uasm_i_lw(p, tmp, pte_off_even, ptep); /* even pte */ 1029 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); 1030 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); 1031 1032 if (cpu_has_xpa && !mips_xpa_disabled) { 1033 uasm_i_lw(p, tmp, 0, ptep); 1034 uasm_i_ext(p, tmp, tmp, 0, 24); 1035 uasm_i_mthc0(p, tmp, C0_ENTRYLO0); 1036 } 1037 1038 uasm_i_lw(p, tmp, pte_off_odd, ptep); /* odd pte */ 1039 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); 1040 UASM_i_MTC0(p, tmp, C0_ENTRYLO1); 1041 1042 if (cpu_has_xpa && !mips_xpa_disabled) { 1043 uasm_i_lw(p, tmp, sizeof(pte_t), ptep); 1044 uasm_i_ext(p, tmp, tmp, 0, 24); 1045 uasm_i_mthc0(p, tmp, C0_ENTRYLO1); 1046 } 1047 return; 1048 } 1049 1050 UASM_i_LW(p, tmp, pte_off_even, ptep); /* get even pte */ 1051 UASM_i_LW(p, ptep, pte_off_odd, ptep); /* get odd pte */ 1052 if (r45k_bvahwbug()) 1053 build_tlb_probe_entry(p); 1054 build_convert_pte_to_entrylo(p, tmp); 1055 if (r4k_250MHZhwbug()) 1056 UASM_i_MTC0(p, 0, C0_ENTRYLO0); 1057 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */ 1058 build_convert_pte_to_entrylo(p, ptep); 1059 if (r45k_bvahwbug()) 1060 uasm_i_mfc0(p, tmp, C0_INDEX); 1061 if (r4k_250MHZhwbug()) 1062 UASM_i_MTC0(p, 0, C0_ENTRYLO1); 1063 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */ 1064 } 1065 EXPORT_SYMBOL_GPL(build_update_entries); 1066 1067 struct mips_huge_tlb_info { 1068 int huge_pte; 1069 int restore_scratch; 1070 bool need_reload_pte; 1071 }; 1072 1073 static struct mips_huge_tlb_info 1074 build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l, 1075 struct uasm_reloc **r, unsigned int tmp, 1076 unsigned int ptr, int c0_scratch_reg) 1077 { 1078 struct mips_huge_tlb_info rv; 1079 unsigned int even, odd; 1080 int vmalloc_branch_delay_filled = 0; 1081 const int scratch = 1; /* Our extra working register */ 1082 1083 rv.huge_pte = scratch; 1084 rv.restore_scratch = 0; 1085 rv.need_reload_pte = false; 1086 1087 if (check_for_high_segbits) { 1088 UASM_i_MFC0(p, tmp, C0_BADVADDR); 1089 1090 if (pgd_reg != -1) 1091 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg); 1092 else 1093 UASM_i_MFC0(p, ptr, C0_CONTEXT); 1094 1095 if (c0_scratch_reg >= 0) 1096 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg); 1097 else 1098 UASM_i_SW(p, scratch, scratchpad_offset(0), 0); 1099 1100 uasm_i_dsrl_safe(p, scratch, tmp, 1101 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3); 1102 uasm_il_bnez(p, r, scratch, label_vmalloc); 1103 1104 if (pgd_reg == -1) { 1105 vmalloc_branch_delay_filled = 1; 1106 /* Clear lower 23 bits of context. */ 1107 uasm_i_dins(p, ptr, 0, 0, 23); 1108 } 1109 } else { 1110 if (pgd_reg != -1) 1111 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg); 1112 else 1113 UASM_i_MFC0(p, ptr, C0_CONTEXT); 1114 1115 UASM_i_MFC0(p, tmp, C0_BADVADDR); 1116 1117 if (c0_scratch_reg >= 0) 1118 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg); 1119 else 1120 UASM_i_SW(p, scratch, scratchpad_offset(0), 0); 1121 1122 if (pgd_reg == -1) 1123 /* Clear lower 23 bits of context. */ 1124 uasm_i_dins(p, ptr, 0, 0, 23); 1125 1126 uasm_il_bltz(p, r, tmp, label_vmalloc); 1127 } 1128 1129 if (pgd_reg == -1) { 1130 vmalloc_branch_delay_filled = 1; 1131 /* 1 0 1 0 1 << 6 xkphys cached */ 1132 uasm_i_ori(p, ptr, ptr, 0x540); 1133 uasm_i_drotr(p, ptr, ptr, 11); 1134 } 1135 1136 #ifdef __PAGETABLE_PMD_FOLDED 1137 #define LOC_PTEP scratch 1138 #else 1139 #define LOC_PTEP ptr 1140 #endif 1141 1142 if (!vmalloc_branch_delay_filled) 1143 /* get pgd offset in bytes */ 1144 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3); 1145 1146 uasm_l_vmalloc_done(l, *p); 1147 1148 /* 1149 * tmp ptr 1150 * fall-through case = badvaddr *pgd_current 1151 * vmalloc case = badvaddr swapper_pg_dir 1152 */ 1153 1154 if (vmalloc_branch_delay_filled) 1155 /* get pgd offset in bytes */ 1156 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3); 1157 1158 #ifdef __PAGETABLE_PMD_FOLDED 1159 GET_CONTEXT(p, tmp); /* get context reg */ 1160 #endif 1161 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3); 1162 1163 if (use_lwx_insns()) { 1164 UASM_i_LWX(p, LOC_PTEP, scratch, ptr); 1165 } else { 1166 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */ 1167 uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */ 1168 } 1169 1170 #ifndef __PAGETABLE_PMD_FOLDED 1171 /* get pmd offset in bytes */ 1172 uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3); 1173 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3); 1174 GET_CONTEXT(p, tmp); /* get context reg */ 1175 1176 if (use_lwx_insns()) { 1177 UASM_i_LWX(p, scratch, scratch, ptr); 1178 } else { 1179 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */ 1180 UASM_i_LW(p, scratch, 0, ptr); 1181 } 1182 #endif 1183 /* Adjust the context during the load latency. */ 1184 build_adjust_context(p, tmp); 1185 1186 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 1187 uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update); 1188 /* 1189 * The in the LWX case we don't want to do the load in the 1190 * delay slot. It cannot issue in the same cycle and may be 1191 * speculative and unneeded. 1192 */ 1193 if (use_lwx_insns()) 1194 uasm_i_nop(p); 1195 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */ 1196 1197 1198 /* build_update_entries */ 1199 if (use_lwx_insns()) { 1200 even = ptr; 1201 odd = tmp; 1202 UASM_i_LWX(p, even, scratch, tmp); 1203 UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t)); 1204 UASM_i_LWX(p, odd, scratch, tmp); 1205 } else { 1206 UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */ 1207 even = tmp; 1208 odd = ptr; 1209 UASM_i_LW(p, even, 0, ptr); /* get even pte */ 1210 UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */ 1211 } 1212 if (cpu_has_rixi) { 1213 uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL)); 1214 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */ 1215 uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL)); 1216 } else { 1217 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL)); 1218 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */ 1219 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL)); 1220 } 1221 UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */ 1222 1223 if (c0_scratch_reg >= 0) { 1224 UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg); 1225 build_tlb_write_entry(p, l, r, tlb_random); 1226 uasm_l_leave(l, *p); 1227 rv.restore_scratch = 1; 1228 } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) { 1229 build_tlb_write_entry(p, l, r, tlb_random); 1230 uasm_l_leave(l, *p); 1231 UASM_i_LW(p, scratch, scratchpad_offset(0), 0); 1232 } else { 1233 UASM_i_LW(p, scratch, scratchpad_offset(0), 0); 1234 build_tlb_write_entry(p, l, r, tlb_random); 1235 uasm_l_leave(l, *p); 1236 rv.restore_scratch = 1; 1237 } 1238 1239 uasm_i_eret(p); /* return from trap */ 1240 1241 return rv; 1242 } 1243 1244 /* 1245 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception 1246 * because EXL == 0. If we wrap, we can also use the 32 instruction 1247 * slots before the XTLB refill exception handler which belong to the 1248 * unused TLB refill exception. 1249 */ 1250 #define MIPS64_REFILL_INSNS 32 1251 1252 static void build_r4000_tlb_refill_handler(void) 1253 { 1254 u32 *p = tlb_handler; 1255 struct uasm_label *l = labels; 1256 struct uasm_reloc *r = relocs; 1257 u32 *f; 1258 unsigned int final_len; 1259 struct mips_huge_tlb_info htlb_info __maybe_unused; 1260 enum vmalloc64_mode vmalloc_mode __maybe_unused; 1261 1262 memset(tlb_handler, 0, sizeof(tlb_handler)); 1263 memset(labels, 0, sizeof(labels)); 1264 memset(relocs, 0, sizeof(relocs)); 1265 memset(final_handler, 0, sizeof(final_handler)); 1266 1267 if (IS_ENABLED(CONFIG_64BIT) && (scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) { 1268 htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1, 1269 scratch_reg); 1270 vmalloc_mode = refill_scratch; 1271 } else { 1272 htlb_info.huge_pte = K0; 1273 htlb_info.restore_scratch = 0; 1274 htlb_info.need_reload_pte = true; 1275 vmalloc_mode = refill_noscratch; 1276 /* 1277 * create the plain linear handler 1278 */ 1279 if (bcm1250_m3_war()) { 1280 unsigned int segbits = 44; 1281 1282 uasm_i_dmfc0(&p, K0, C0_BADVADDR); 1283 uasm_i_dmfc0(&p, K1, C0_ENTRYHI); 1284 uasm_i_xor(&p, K0, K0, K1); 1285 uasm_i_dsrl_safe(&p, K1, K0, 62); 1286 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1); 1287 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits); 1288 uasm_i_or(&p, K0, K0, K1); 1289 uasm_il_bnez(&p, &r, K0, label_leave); 1290 /* No need for uasm_i_nop */ 1291 } 1292 1293 #ifdef CONFIG_64BIT 1294 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */ 1295 #else 1296 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */ 1297 #endif 1298 1299 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 1300 build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update); 1301 #endif 1302 1303 build_get_ptep(&p, K0, K1); 1304 build_update_entries(&p, K0, K1); 1305 build_tlb_write_entry(&p, &l, &r, tlb_random); 1306 uasm_l_leave(&l, p); 1307 uasm_i_eret(&p); /* return from trap */ 1308 } 1309 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 1310 uasm_l_tlb_huge_update(&l, p); 1311 if (htlb_info.need_reload_pte) 1312 UASM_i_LW(&p, htlb_info.huge_pte, 0, K1); 1313 build_huge_update_entries(&p, htlb_info.huge_pte, K1); 1314 build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random, 1315 htlb_info.restore_scratch); 1316 #endif 1317 1318 #ifdef CONFIG_64BIT 1319 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode); 1320 #endif 1321 1322 /* 1323 * Overflow check: For the 64bit handler, we need at least one 1324 * free instruction slot for the wrap-around branch. In worst 1325 * case, if the intended insertion point is a delay slot, we 1326 * need three, with the second nop'ed and the third being 1327 * unused. 1328 */ 1329 switch (boot_cpu_type()) { 1330 default: 1331 if (sizeof(long) == 4) { 1332 case CPU_LOONGSON2: 1333 /* Loongson2 ebase is different than r4k, we have more space */ 1334 if ((p - tlb_handler) > 64) 1335 panic("TLB refill handler space exceeded"); 1336 /* 1337 * Now fold the handler in the TLB refill handler space. 1338 */ 1339 f = final_handler; 1340 /* Simplest case, just copy the handler. */ 1341 uasm_copy_handler(relocs, labels, tlb_handler, p, f); 1342 final_len = p - tlb_handler; 1343 break; 1344 } else { 1345 if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1) 1346 || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3) 1347 && uasm_insn_has_bdelay(relocs, 1348 tlb_handler + MIPS64_REFILL_INSNS - 3))) 1349 panic("TLB refill handler space exceeded"); 1350 /* 1351 * Now fold the handler in the TLB refill handler space. 1352 */ 1353 f = final_handler + MIPS64_REFILL_INSNS; 1354 if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) { 1355 /* Just copy the handler. */ 1356 uasm_copy_handler(relocs, labels, tlb_handler, p, f); 1357 final_len = p - tlb_handler; 1358 } else { 1359 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 1360 const enum label_id ls = label_tlb_huge_update; 1361 #else 1362 const enum label_id ls = label_vmalloc; 1363 #endif 1364 u32 *split; 1365 int ov = 0; 1366 int i; 1367 1368 for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++) 1369 ; 1370 BUG_ON(i == ARRAY_SIZE(labels)); 1371 split = labels[i].addr; 1372 1373 /* 1374 * See if we have overflown one way or the other. 1375 */ 1376 if (split > tlb_handler + MIPS64_REFILL_INSNS || 1377 split < p - MIPS64_REFILL_INSNS) 1378 ov = 1; 1379 1380 if (ov) { 1381 /* 1382 * Split two instructions before the end. One 1383 * for the branch and one for the instruction 1384 * in the delay slot. 1385 */ 1386 split = tlb_handler + MIPS64_REFILL_INSNS - 2; 1387 1388 /* 1389 * If the branch would fall in a delay slot, 1390 * we must back up an additional instruction 1391 * so that it is no longer in a delay slot. 1392 */ 1393 if (uasm_insn_has_bdelay(relocs, split - 1)) 1394 split--; 1395 } 1396 /* Copy first part of the handler. */ 1397 uasm_copy_handler(relocs, labels, tlb_handler, split, f); 1398 f += split - tlb_handler; 1399 1400 if (ov) { 1401 /* Insert branch. */ 1402 uasm_l_split(&l, final_handler); 1403 uasm_il_b(&f, &r, label_split); 1404 if (uasm_insn_has_bdelay(relocs, split)) 1405 uasm_i_nop(&f); 1406 else { 1407 uasm_copy_handler(relocs, labels, 1408 split, split + 1, f); 1409 uasm_move_labels(labels, f, f + 1, -1); 1410 f++; 1411 split++; 1412 } 1413 } 1414 1415 /* Copy the rest of the handler. */ 1416 uasm_copy_handler(relocs, labels, split, p, final_handler); 1417 final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) + 1418 (p - split); 1419 } 1420 } 1421 break; 1422 } 1423 1424 uasm_resolve_relocs(relocs, labels); 1425 pr_debug("Wrote TLB refill handler (%u instructions).\n", 1426 final_len); 1427 1428 memcpy((void *)ebase, final_handler, 0x100); 1429 local_flush_icache_range(ebase, ebase + 0x100); 1430 1431 dump_handler("r4000_tlb_refill", (u32 *)ebase, 64); 1432 } 1433 1434 static void setup_pw(void) 1435 { 1436 unsigned long pgd_i, pgd_w; 1437 #ifndef __PAGETABLE_PMD_FOLDED 1438 unsigned long pmd_i, pmd_w; 1439 #endif 1440 unsigned long pt_i, pt_w; 1441 unsigned long pte_i, pte_w; 1442 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 1443 unsigned long psn; 1444 1445 psn = ilog2(_PAGE_HUGE); /* bit used to indicate huge page */ 1446 #endif 1447 pgd_i = PGDIR_SHIFT; /* 1st level PGD */ 1448 #ifndef __PAGETABLE_PMD_FOLDED 1449 pgd_w = PGDIR_SHIFT - PMD_SHIFT + PGD_ORDER; 1450 1451 pmd_i = PMD_SHIFT; /* 2nd level PMD */ 1452 pmd_w = PMD_SHIFT - PAGE_SHIFT; 1453 #else 1454 pgd_w = PGDIR_SHIFT - PAGE_SHIFT + PGD_ORDER; 1455 #endif 1456 1457 pt_i = PAGE_SHIFT; /* 3rd level PTE */ 1458 pt_w = PAGE_SHIFT - 3; 1459 1460 pte_i = ilog2(_PAGE_GLOBAL); 1461 pte_w = 0; 1462 1463 #ifndef __PAGETABLE_PMD_FOLDED 1464 write_c0_pwfield(pgd_i << 24 | pmd_i << 12 | pt_i << 6 | pte_i); 1465 write_c0_pwsize(1 << 30 | pgd_w << 24 | pmd_w << 12 | pt_w << 6 | pte_w); 1466 #else 1467 write_c0_pwfield(pgd_i << 24 | pt_i << 6 | pte_i); 1468 write_c0_pwsize(1 << 30 | pgd_w << 24 | pt_w << 6 | pte_w); 1469 #endif 1470 1471 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 1472 write_c0_pwctl(1 << 6 | psn); 1473 #endif 1474 write_c0_kpgd(swapper_pg_dir); 1475 kscratch_used_mask |= (1 << 7); /* KScratch6 is used for KPGD */ 1476 } 1477 1478 static void build_loongson3_tlb_refill_handler(void) 1479 { 1480 u32 *p = tlb_handler; 1481 struct uasm_label *l = labels; 1482 struct uasm_reloc *r = relocs; 1483 1484 memset(labels, 0, sizeof(labels)); 1485 memset(relocs, 0, sizeof(relocs)); 1486 memset(tlb_handler, 0, sizeof(tlb_handler)); 1487 1488 if (check_for_high_segbits) { 1489 uasm_i_dmfc0(&p, K0, C0_BADVADDR); 1490 uasm_i_dsrl_safe(&p, K1, K0, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3); 1491 uasm_il_beqz(&p, &r, K1, label_vmalloc); 1492 uasm_i_nop(&p); 1493 1494 uasm_il_bgez(&p, &r, K0, label_large_segbits_fault); 1495 uasm_i_nop(&p); 1496 uasm_l_vmalloc(&l, p); 1497 } 1498 1499 uasm_i_dmfc0(&p, K1, C0_PGD); 1500 1501 uasm_i_lddir(&p, K0, K1, 3); /* global page dir */ 1502 #ifndef __PAGETABLE_PMD_FOLDED 1503 uasm_i_lddir(&p, K1, K0, 1); /* middle page dir */ 1504 #endif 1505 uasm_i_ldpte(&p, K1, 0); /* even */ 1506 uasm_i_ldpte(&p, K1, 1); /* odd */ 1507 uasm_i_tlbwr(&p); 1508 1509 /* restore page mask */ 1510 if (PM_DEFAULT_MASK >> 16) { 1511 uasm_i_lui(&p, K0, PM_DEFAULT_MASK >> 16); 1512 uasm_i_ori(&p, K0, K0, PM_DEFAULT_MASK & 0xffff); 1513 uasm_i_mtc0(&p, K0, C0_PAGEMASK); 1514 } else if (PM_DEFAULT_MASK) { 1515 uasm_i_ori(&p, K0, 0, PM_DEFAULT_MASK); 1516 uasm_i_mtc0(&p, K0, C0_PAGEMASK); 1517 } else { 1518 uasm_i_mtc0(&p, 0, C0_PAGEMASK); 1519 } 1520 1521 uasm_i_eret(&p); 1522 1523 if (check_for_high_segbits) { 1524 uasm_l_large_segbits_fault(&l, p); 1525 UASM_i_LA(&p, K1, (unsigned long)tlb_do_page_fault_0); 1526 uasm_i_jr(&p, K1); 1527 uasm_i_nop(&p); 1528 } 1529 1530 uasm_resolve_relocs(relocs, labels); 1531 memcpy((void *)(ebase + 0x80), tlb_handler, 0x80); 1532 local_flush_icache_range(ebase + 0x80, ebase + 0x100); 1533 dump_handler("loongson3_tlb_refill", (u32 *)(ebase + 0x80), 32); 1534 } 1535 1536 extern u32 handle_tlbl[], handle_tlbl_end[]; 1537 extern u32 handle_tlbs[], handle_tlbs_end[]; 1538 extern u32 handle_tlbm[], handle_tlbm_end[]; 1539 extern u32 tlbmiss_handler_setup_pgd_start[]; 1540 extern u32 tlbmiss_handler_setup_pgd[]; 1541 EXPORT_SYMBOL_GPL(tlbmiss_handler_setup_pgd); 1542 extern u32 tlbmiss_handler_setup_pgd_end[]; 1543 1544 static void build_setup_pgd(void) 1545 { 1546 const int a0 = 4; 1547 const int __maybe_unused a1 = 5; 1548 const int __maybe_unused a2 = 6; 1549 u32 *p = tlbmiss_handler_setup_pgd_start; 1550 const int tlbmiss_handler_setup_pgd_size = 1551 tlbmiss_handler_setup_pgd_end - tlbmiss_handler_setup_pgd_start; 1552 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT 1553 long pgdc = (long)pgd_current; 1554 #endif 1555 1556 memset(tlbmiss_handler_setup_pgd, 0, tlbmiss_handler_setup_pgd_size * 1557 sizeof(tlbmiss_handler_setup_pgd[0])); 1558 memset(labels, 0, sizeof(labels)); 1559 memset(relocs, 0, sizeof(relocs)); 1560 pgd_reg = allocate_kscratch(); 1561 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT 1562 if (pgd_reg == -1) { 1563 struct uasm_label *l = labels; 1564 struct uasm_reloc *r = relocs; 1565 1566 /* PGD << 11 in c0_Context */ 1567 /* 1568 * If it is a ckseg0 address, convert to a physical 1569 * address. Shifting right by 29 and adding 4 will 1570 * result in zero for these addresses. 1571 * 1572 */ 1573 UASM_i_SRA(&p, a1, a0, 29); 1574 UASM_i_ADDIU(&p, a1, a1, 4); 1575 uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1); 1576 uasm_i_nop(&p); 1577 uasm_i_dinsm(&p, a0, 0, 29, 64 - 29); 1578 uasm_l_tlbl_goaround1(&l, p); 1579 UASM_i_SLL(&p, a0, a0, 11); 1580 uasm_i_jr(&p, 31); 1581 UASM_i_MTC0(&p, a0, C0_CONTEXT); 1582 } else { 1583 /* PGD in c0_KScratch */ 1584 uasm_i_jr(&p, 31); 1585 if (cpu_has_ldpte) 1586 UASM_i_MTC0(&p, a0, C0_PWBASE); 1587 else 1588 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg); 1589 } 1590 #else 1591 #ifdef CONFIG_SMP 1592 /* Save PGD to pgd_current[smp_processor_id()] */ 1593 UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG); 1594 UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT); 1595 UASM_i_LA_mostly(&p, a2, pgdc); 1596 UASM_i_ADDU(&p, a2, a2, a1); 1597 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2); 1598 #else 1599 UASM_i_LA_mostly(&p, a2, pgdc); 1600 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2); 1601 #endif /* SMP */ 1602 uasm_i_jr(&p, 31); 1603 1604 /* if pgd_reg is allocated, save PGD also to scratch register */ 1605 if (pgd_reg != -1) 1606 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg); 1607 else 1608 uasm_i_nop(&p); 1609 #endif 1610 if (p >= tlbmiss_handler_setup_pgd_end) 1611 panic("tlbmiss_handler_setup_pgd space exceeded"); 1612 1613 uasm_resolve_relocs(relocs, labels); 1614 pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n", 1615 (unsigned int)(p - tlbmiss_handler_setup_pgd)); 1616 1617 dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd, 1618 tlbmiss_handler_setup_pgd_size); 1619 } 1620 1621 static void 1622 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr) 1623 { 1624 #ifdef CONFIG_SMP 1625 # ifdef CONFIG_PHYS_ADDR_T_64BIT 1626 if (cpu_has_64bits) 1627 uasm_i_lld(p, pte, 0, ptr); 1628 else 1629 # endif 1630 UASM_i_LL(p, pte, 0, ptr); 1631 #else 1632 # ifdef CONFIG_PHYS_ADDR_T_64BIT 1633 if (cpu_has_64bits) 1634 uasm_i_ld(p, pte, 0, ptr); 1635 else 1636 # endif 1637 UASM_i_LW(p, pte, 0, ptr); 1638 #endif 1639 } 1640 1641 static void 1642 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr, 1643 unsigned int mode, unsigned int scratch) 1644 { 1645 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY); 1646 unsigned int swmode = mode & ~hwmode; 1647 1648 if (IS_ENABLED(CONFIG_XPA) && !cpu_has_64bits) { 1649 uasm_i_lui(p, scratch, swmode >> 16); 1650 uasm_i_or(p, pte, pte, scratch); 1651 BUG_ON(swmode & 0xffff); 1652 } else { 1653 uasm_i_ori(p, pte, pte, mode); 1654 } 1655 1656 #ifdef CONFIG_SMP 1657 # ifdef CONFIG_PHYS_ADDR_T_64BIT 1658 if (cpu_has_64bits) 1659 uasm_i_scd(p, pte, 0, ptr); 1660 else 1661 # endif 1662 UASM_i_SC(p, pte, 0, ptr); 1663 1664 if (r10000_llsc_war()) 1665 uasm_il_beqzl(p, r, pte, label_smp_pgtable_change); 1666 else 1667 uasm_il_beqz(p, r, pte, label_smp_pgtable_change); 1668 1669 # ifdef CONFIG_PHYS_ADDR_T_64BIT 1670 if (!cpu_has_64bits) { 1671 /* no uasm_i_nop needed */ 1672 uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr); 1673 uasm_i_ori(p, pte, pte, hwmode); 1674 BUG_ON(hwmode & ~0xffff); 1675 uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr); 1676 uasm_il_beqz(p, r, pte, label_smp_pgtable_change); 1677 /* no uasm_i_nop needed */ 1678 uasm_i_lw(p, pte, 0, ptr); 1679 } else 1680 uasm_i_nop(p); 1681 # else 1682 uasm_i_nop(p); 1683 # endif 1684 #else 1685 # ifdef CONFIG_PHYS_ADDR_T_64BIT 1686 if (cpu_has_64bits) 1687 uasm_i_sd(p, pte, 0, ptr); 1688 else 1689 # endif 1690 UASM_i_SW(p, pte, 0, ptr); 1691 1692 # ifdef CONFIG_PHYS_ADDR_T_64BIT 1693 if (!cpu_has_64bits) { 1694 uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr); 1695 uasm_i_ori(p, pte, pte, hwmode); 1696 BUG_ON(hwmode & ~0xffff); 1697 uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr); 1698 uasm_i_lw(p, pte, 0, ptr); 1699 } 1700 # endif 1701 #endif 1702 } 1703 1704 /* 1705 * Check if PTE is present, if not then jump to LABEL. PTR points to 1706 * the page table where this PTE is located, PTE will be re-loaded 1707 * with it's original value. 1708 */ 1709 static void 1710 build_pte_present(u32 **p, struct uasm_reloc **r, 1711 int pte, int ptr, int scratch, enum label_id lid) 1712 { 1713 int t = scratch >= 0 ? scratch : pte; 1714 int cur = pte; 1715 1716 if (cpu_has_rixi) { 1717 if (use_bbit_insns()) { 1718 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid); 1719 uasm_i_nop(p); 1720 } else { 1721 if (_PAGE_PRESENT_SHIFT) { 1722 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT); 1723 cur = t; 1724 } 1725 uasm_i_andi(p, t, cur, 1); 1726 uasm_il_beqz(p, r, t, lid); 1727 if (pte == t) 1728 /* You lose the SMP race :-(*/ 1729 iPTE_LW(p, pte, ptr); 1730 } 1731 } else { 1732 if (_PAGE_PRESENT_SHIFT) { 1733 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT); 1734 cur = t; 1735 } 1736 uasm_i_andi(p, t, cur, 1737 (_PAGE_PRESENT | _PAGE_NO_READ) >> _PAGE_PRESENT_SHIFT); 1738 uasm_i_xori(p, t, t, _PAGE_PRESENT >> _PAGE_PRESENT_SHIFT); 1739 uasm_il_bnez(p, r, t, lid); 1740 if (pte == t) 1741 /* You lose the SMP race :-(*/ 1742 iPTE_LW(p, pte, ptr); 1743 } 1744 } 1745 1746 /* Make PTE valid, store result in PTR. */ 1747 static void 1748 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte, 1749 unsigned int ptr, unsigned int scratch) 1750 { 1751 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED; 1752 1753 iPTE_SW(p, r, pte, ptr, mode, scratch); 1754 } 1755 1756 /* 1757 * Check if PTE can be written to, if not branch to LABEL. Regardless 1758 * restore PTE with value from PTR when done. 1759 */ 1760 static void 1761 build_pte_writable(u32 **p, struct uasm_reloc **r, 1762 unsigned int pte, unsigned int ptr, int scratch, 1763 enum label_id lid) 1764 { 1765 int t = scratch >= 0 ? scratch : pte; 1766 int cur = pte; 1767 1768 if (_PAGE_PRESENT_SHIFT) { 1769 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT); 1770 cur = t; 1771 } 1772 uasm_i_andi(p, t, cur, 1773 (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT); 1774 uasm_i_xori(p, t, t, 1775 (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT); 1776 uasm_il_bnez(p, r, t, lid); 1777 if (pte == t) 1778 /* You lose the SMP race :-(*/ 1779 iPTE_LW(p, pte, ptr); 1780 else 1781 uasm_i_nop(p); 1782 } 1783 1784 /* Make PTE writable, update software status bits as well, then store 1785 * at PTR. 1786 */ 1787 static void 1788 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte, 1789 unsigned int ptr, unsigned int scratch) 1790 { 1791 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID 1792 | _PAGE_DIRTY); 1793 1794 iPTE_SW(p, r, pte, ptr, mode, scratch); 1795 } 1796 1797 /* 1798 * Check if PTE can be modified, if not branch to LABEL. Regardless 1799 * restore PTE with value from PTR when done. 1800 */ 1801 static void 1802 build_pte_modifiable(u32 **p, struct uasm_reloc **r, 1803 unsigned int pte, unsigned int ptr, int scratch, 1804 enum label_id lid) 1805 { 1806 if (use_bbit_insns()) { 1807 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid); 1808 uasm_i_nop(p); 1809 } else { 1810 int t = scratch >= 0 ? scratch : pte; 1811 uasm_i_srl(p, t, pte, _PAGE_WRITE_SHIFT); 1812 uasm_i_andi(p, t, t, 1); 1813 uasm_il_beqz(p, r, t, lid); 1814 if (pte == t) 1815 /* You lose the SMP race :-(*/ 1816 iPTE_LW(p, pte, ptr); 1817 } 1818 } 1819 1820 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT 1821 1822 1823 /* 1824 * R3000 style TLB load/store/modify handlers. 1825 */ 1826 1827 /* 1828 * This places the pte into ENTRYLO0 and writes it with tlbwi. 1829 * Then it returns. 1830 */ 1831 static void 1832 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp) 1833 { 1834 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */ 1835 uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */ 1836 uasm_i_tlbwi(p); 1837 uasm_i_jr(p, tmp); 1838 uasm_i_rfe(p); /* branch delay */ 1839 } 1840 1841 /* 1842 * This places the pte into ENTRYLO0 and writes it with tlbwi 1843 * or tlbwr as appropriate. This is because the index register 1844 * may have the probe fail bit set as a result of a trap on a 1845 * kseg2 access, i.e. without refill. Then it returns. 1846 */ 1847 static void 1848 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l, 1849 struct uasm_reloc **r, unsigned int pte, 1850 unsigned int tmp) 1851 { 1852 uasm_i_mfc0(p, tmp, C0_INDEX); 1853 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */ 1854 uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */ 1855 uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */ 1856 uasm_i_tlbwi(p); /* cp0 delay */ 1857 uasm_i_jr(p, tmp); 1858 uasm_i_rfe(p); /* branch delay */ 1859 uasm_l_r3000_write_probe_fail(l, *p); 1860 uasm_i_tlbwr(p); /* cp0 delay */ 1861 uasm_i_jr(p, tmp); 1862 uasm_i_rfe(p); /* branch delay */ 1863 } 1864 1865 static void 1866 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte, 1867 unsigned int ptr) 1868 { 1869 long pgdc = (long)pgd_current; 1870 1871 uasm_i_mfc0(p, pte, C0_BADVADDR); 1872 uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */ 1873 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr); 1874 uasm_i_srl(p, pte, pte, 22); /* load delay */ 1875 uasm_i_sll(p, pte, pte, 2); 1876 uasm_i_addu(p, ptr, ptr, pte); 1877 uasm_i_mfc0(p, pte, C0_CONTEXT); 1878 uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */ 1879 uasm_i_andi(p, pte, pte, 0xffc); /* load delay */ 1880 uasm_i_addu(p, ptr, ptr, pte); 1881 uasm_i_lw(p, pte, 0, ptr); 1882 uasm_i_tlbp(p); /* load delay */ 1883 } 1884 1885 static void build_r3000_tlb_load_handler(void) 1886 { 1887 u32 *p = handle_tlbl; 1888 const int handle_tlbl_size = handle_tlbl_end - handle_tlbl; 1889 struct uasm_label *l = labels; 1890 struct uasm_reloc *r = relocs; 1891 1892 memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0])); 1893 memset(labels, 0, sizeof(labels)); 1894 memset(relocs, 0, sizeof(relocs)); 1895 1896 build_r3000_tlbchange_handler_head(&p, K0, K1); 1897 build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl); 1898 uasm_i_nop(&p); /* load delay */ 1899 build_make_valid(&p, &r, K0, K1, -1); 1900 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1); 1901 1902 uasm_l_nopage_tlbl(&l, p); 1903 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff); 1904 uasm_i_nop(&p); 1905 1906 if (p >= handle_tlbl_end) 1907 panic("TLB load handler fastpath space exceeded"); 1908 1909 uasm_resolve_relocs(relocs, labels); 1910 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n", 1911 (unsigned int)(p - handle_tlbl)); 1912 1913 dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_size); 1914 } 1915 1916 static void build_r3000_tlb_store_handler(void) 1917 { 1918 u32 *p = handle_tlbs; 1919 const int handle_tlbs_size = handle_tlbs_end - handle_tlbs; 1920 struct uasm_label *l = labels; 1921 struct uasm_reloc *r = relocs; 1922 1923 memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0])); 1924 memset(labels, 0, sizeof(labels)); 1925 memset(relocs, 0, sizeof(relocs)); 1926 1927 build_r3000_tlbchange_handler_head(&p, K0, K1); 1928 build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs); 1929 uasm_i_nop(&p); /* load delay */ 1930 build_make_write(&p, &r, K0, K1, -1); 1931 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1); 1932 1933 uasm_l_nopage_tlbs(&l, p); 1934 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); 1935 uasm_i_nop(&p); 1936 1937 if (p >= handle_tlbs_end) 1938 panic("TLB store handler fastpath space exceeded"); 1939 1940 uasm_resolve_relocs(relocs, labels); 1941 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n", 1942 (unsigned int)(p - handle_tlbs)); 1943 1944 dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_size); 1945 } 1946 1947 static void build_r3000_tlb_modify_handler(void) 1948 { 1949 u32 *p = handle_tlbm; 1950 const int handle_tlbm_size = handle_tlbm_end - handle_tlbm; 1951 struct uasm_label *l = labels; 1952 struct uasm_reloc *r = relocs; 1953 1954 memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0])); 1955 memset(labels, 0, sizeof(labels)); 1956 memset(relocs, 0, sizeof(relocs)); 1957 1958 build_r3000_tlbchange_handler_head(&p, K0, K1); 1959 build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm); 1960 uasm_i_nop(&p); /* load delay */ 1961 build_make_write(&p, &r, K0, K1, -1); 1962 build_r3000_pte_reload_tlbwi(&p, K0, K1); 1963 1964 uasm_l_nopage_tlbm(&l, p); 1965 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); 1966 uasm_i_nop(&p); 1967 1968 if (p >= handle_tlbm_end) 1969 panic("TLB modify handler fastpath space exceeded"); 1970 1971 uasm_resolve_relocs(relocs, labels); 1972 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n", 1973 (unsigned int)(p - handle_tlbm)); 1974 1975 dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_size); 1976 } 1977 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */ 1978 1979 /* 1980 * R4000 style TLB load/store/modify handlers. 1981 */ 1982 static struct work_registers 1983 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l, 1984 struct uasm_reloc **r) 1985 { 1986 struct work_registers wr = build_get_work_registers(p); 1987 1988 #ifdef CONFIG_64BIT 1989 build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */ 1990 #else 1991 build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */ 1992 #endif 1993 1994 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 1995 /* 1996 * For huge tlb entries, pmd doesn't contain an address but 1997 * instead contains the tlb pte. Check the PAGE_HUGE bit and 1998 * see if we need to jump to huge tlb processing. 1999 */ 2000 build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update); 2001 #endif 2002 2003 UASM_i_MFC0(p, wr.r1, C0_BADVADDR); 2004 UASM_i_LW(p, wr.r2, 0, wr.r2); 2005 UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2); 2006 uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2); 2007 UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1); 2008 2009 #ifdef CONFIG_SMP 2010 uasm_l_smp_pgtable_change(l, *p); 2011 #endif 2012 iPTE_LW(p, wr.r1, wr.r2); /* get even pte */ 2013 if (!m4kc_tlbp_war()) { 2014 build_tlb_probe_entry(p); 2015 if (cpu_has_htw) { 2016 /* race condition happens, leaving */ 2017 uasm_i_ehb(p); 2018 uasm_i_mfc0(p, wr.r3, C0_INDEX); 2019 uasm_il_bltz(p, r, wr.r3, label_leave); 2020 uasm_i_nop(p); 2021 } 2022 } 2023 return wr; 2024 } 2025 2026 static void 2027 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l, 2028 struct uasm_reloc **r, unsigned int tmp, 2029 unsigned int ptr) 2030 { 2031 uasm_i_ori(p, ptr, ptr, sizeof(pte_t)); 2032 uasm_i_xori(p, ptr, ptr, sizeof(pte_t)); 2033 build_update_entries(p, tmp, ptr); 2034 build_tlb_write_entry(p, l, r, tlb_indexed); 2035 uasm_l_leave(l, *p); 2036 build_restore_work_registers(p); 2037 uasm_i_eret(p); /* return from trap */ 2038 2039 #ifdef CONFIG_64BIT 2040 build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill); 2041 #endif 2042 } 2043 2044 static void build_r4000_tlb_load_handler(void) 2045 { 2046 u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbl); 2047 const int handle_tlbl_size = handle_tlbl_end - handle_tlbl; 2048 struct uasm_label *l = labels; 2049 struct uasm_reloc *r = relocs; 2050 struct work_registers wr; 2051 2052 memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0])); 2053 memset(labels, 0, sizeof(labels)); 2054 memset(relocs, 0, sizeof(relocs)); 2055 2056 if (bcm1250_m3_war()) { 2057 unsigned int segbits = 44; 2058 2059 uasm_i_dmfc0(&p, K0, C0_BADVADDR); 2060 uasm_i_dmfc0(&p, K1, C0_ENTRYHI); 2061 uasm_i_xor(&p, K0, K0, K1); 2062 uasm_i_dsrl_safe(&p, K1, K0, 62); 2063 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1); 2064 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits); 2065 uasm_i_or(&p, K0, K0, K1); 2066 uasm_il_bnez(&p, &r, K0, label_leave); 2067 /* No need for uasm_i_nop */ 2068 } 2069 2070 wr = build_r4000_tlbchange_handler_head(&p, &l, &r); 2071 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl); 2072 if (m4kc_tlbp_war()) 2073 build_tlb_probe_entry(&p); 2074 2075 if (cpu_has_rixi && !cpu_has_rixiex) { 2076 /* 2077 * If the page is not _PAGE_VALID, RI or XI could not 2078 * have triggered it. Skip the expensive test.. 2079 */ 2080 if (use_bbit_insns()) { 2081 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID), 2082 label_tlbl_goaround1); 2083 } else { 2084 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID); 2085 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1); 2086 } 2087 uasm_i_nop(&p); 2088 2089 uasm_i_tlbr(&p); 2090 2091 switch (current_cpu_type()) { 2092 default: 2093 if (cpu_has_mips_r2_exec_hazard) { 2094 uasm_i_ehb(&p); 2095 2096 case CPU_CAVIUM_OCTEON: 2097 case CPU_CAVIUM_OCTEON_PLUS: 2098 case CPU_CAVIUM_OCTEON2: 2099 break; 2100 } 2101 } 2102 2103 /* Examine entrylo 0 or 1 based on ptr. */ 2104 if (use_bbit_insns()) { 2105 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8); 2106 } else { 2107 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t)); 2108 uasm_i_beqz(&p, wr.r3, 8); 2109 } 2110 /* load it in the delay slot*/ 2111 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0); 2112 /* load it if ptr is odd */ 2113 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1); 2114 /* 2115 * If the entryLo (now in wr.r3) is valid (bit 1), RI or 2116 * XI must have triggered it. 2117 */ 2118 if (use_bbit_insns()) { 2119 uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl); 2120 uasm_i_nop(&p); 2121 uasm_l_tlbl_goaround1(&l, p); 2122 } else { 2123 uasm_i_andi(&p, wr.r3, wr.r3, 2); 2124 uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl); 2125 uasm_i_nop(&p); 2126 } 2127 uasm_l_tlbl_goaround1(&l, p); 2128 } 2129 build_make_valid(&p, &r, wr.r1, wr.r2, wr.r3); 2130 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2); 2131 2132 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 2133 /* 2134 * This is the entry point when build_r4000_tlbchange_handler_head 2135 * spots a huge page. 2136 */ 2137 uasm_l_tlb_huge_update(&l, p); 2138 iPTE_LW(&p, wr.r1, wr.r2); 2139 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl); 2140 build_tlb_probe_entry(&p); 2141 2142 if (cpu_has_rixi && !cpu_has_rixiex) { 2143 /* 2144 * If the page is not _PAGE_VALID, RI or XI could not 2145 * have triggered it. Skip the expensive test.. 2146 */ 2147 if (use_bbit_insns()) { 2148 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID), 2149 label_tlbl_goaround2); 2150 } else { 2151 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID); 2152 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2); 2153 } 2154 uasm_i_nop(&p); 2155 2156 uasm_i_tlbr(&p); 2157 2158 switch (current_cpu_type()) { 2159 default: 2160 if (cpu_has_mips_r2_exec_hazard) { 2161 uasm_i_ehb(&p); 2162 2163 case CPU_CAVIUM_OCTEON: 2164 case CPU_CAVIUM_OCTEON_PLUS: 2165 case CPU_CAVIUM_OCTEON2: 2166 break; 2167 } 2168 } 2169 2170 /* Examine entrylo 0 or 1 based on ptr. */ 2171 if (use_bbit_insns()) { 2172 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8); 2173 } else { 2174 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t)); 2175 uasm_i_beqz(&p, wr.r3, 8); 2176 } 2177 /* load it in the delay slot*/ 2178 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0); 2179 /* load it if ptr is odd */ 2180 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1); 2181 /* 2182 * If the entryLo (now in wr.r3) is valid (bit 1), RI or 2183 * XI must have triggered it. 2184 */ 2185 if (use_bbit_insns()) { 2186 uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2); 2187 } else { 2188 uasm_i_andi(&p, wr.r3, wr.r3, 2); 2189 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2); 2190 } 2191 if (PM_DEFAULT_MASK == 0) 2192 uasm_i_nop(&p); 2193 /* 2194 * We clobbered C0_PAGEMASK, restore it. On the other branch 2195 * it is restored in build_huge_tlb_write_entry. 2196 */ 2197 build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0); 2198 2199 uasm_l_tlbl_goaround2(&l, p); 2200 } 2201 uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID)); 2202 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2); 2203 #endif 2204 2205 uasm_l_nopage_tlbl(&l, p); 2206 build_restore_work_registers(&p); 2207 #ifdef CONFIG_CPU_MICROMIPS 2208 if ((unsigned long)tlb_do_page_fault_0 & 1) { 2209 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0)); 2210 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0)); 2211 uasm_i_jr(&p, K0); 2212 } else 2213 #endif 2214 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff); 2215 uasm_i_nop(&p); 2216 2217 if (p >= handle_tlbl_end) 2218 panic("TLB load handler fastpath space exceeded"); 2219 2220 uasm_resolve_relocs(relocs, labels); 2221 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n", 2222 (unsigned int)(p - handle_tlbl)); 2223 2224 dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_size); 2225 } 2226 2227 static void build_r4000_tlb_store_handler(void) 2228 { 2229 u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbs); 2230 const int handle_tlbs_size = handle_tlbs_end - handle_tlbs; 2231 struct uasm_label *l = labels; 2232 struct uasm_reloc *r = relocs; 2233 struct work_registers wr; 2234 2235 memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0])); 2236 memset(labels, 0, sizeof(labels)); 2237 memset(relocs, 0, sizeof(relocs)); 2238 2239 wr = build_r4000_tlbchange_handler_head(&p, &l, &r); 2240 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs); 2241 if (m4kc_tlbp_war()) 2242 build_tlb_probe_entry(&p); 2243 build_make_write(&p, &r, wr.r1, wr.r2, wr.r3); 2244 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2); 2245 2246 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 2247 /* 2248 * This is the entry point when 2249 * build_r4000_tlbchange_handler_head spots a huge page. 2250 */ 2251 uasm_l_tlb_huge_update(&l, p); 2252 iPTE_LW(&p, wr.r1, wr.r2); 2253 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs); 2254 build_tlb_probe_entry(&p); 2255 uasm_i_ori(&p, wr.r1, wr.r1, 2256 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY); 2257 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2); 2258 #endif 2259 2260 uasm_l_nopage_tlbs(&l, p); 2261 build_restore_work_registers(&p); 2262 #ifdef CONFIG_CPU_MICROMIPS 2263 if ((unsigned long)tlb_do_page_fault_1 & 1) { 2264 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1)); 2265 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1)); 2266 uasm_i_jr(&p, K0); 2267 } else 2268 #endif 2269 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); 2270 uasm_i_nop(&p); 2271 2272 if (p >= handle_tlbs_end) 2273 panic("TLB store handler fastpath space exceeded"); 2274 2275 uasm_resolve_relocs(relocs, labels); 2276 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n", 2277 (unsigned int)(p - handle_tlbs)); 2278 2279 dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_size); 2280 } 2281 2282 static void build_r4000_tlb_modify_handler(void) 2283 { 2284 u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbm); 2285 const int handle_tlbm_size = handle_tlbm_end - handle_tlbm; 2286 struct uasm_label *l = labels; 2287 struct uasm_reloc *r = relocs; 2288 struct work_registers wr; 2289 2290 memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0])); 2291 memset(labels, 0, sizeof(labels)); 2292 memset(relocs, 0, sizeof(relocs)); 2293 2294 wr = build_r4000_tlbchange_handler_head(&p, &l, &r); 2295 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm); 2296 if (m4kc_tlbp_war()) 2297 build_tlb_probe_entry(&p); 2298 /* Present and writable bits set, set accessed and dirty bits. */ 2299 build_make_write(&p, &r, wr.r1, wr.r2, wr.r3); 2300 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2); 2301 2302 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 2303 /* 2304 * This is the entry point when 2305 * build_r4000_tlbchange_handler_head spots a huge page. 2306 */ 2307 uasm_l_tlb_huge_update(&l, p); 2308 iPTE_LW(&p, wr.r1, wr.r2); 2309 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm); 2310 build_tlb_probe_entry(&p); 2311 uasm_i_ori(&p, wr.r1, wr.r1, 2312 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY); 2313 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2); 2314 #endif 2315 2316 uasm_l_nopage_tlbm(&l, p); 2317 build_restore_work_registers(&p); 2318 #ifdef CONFIG_CPU_MICROMIPS 2319 if ((unsigned long)tlb_do_page_fault_1 & 1) { 2320 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1)); 2321 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1)); 2322 uasm_i_jr(&p, K0); 2323 } else 2324 #endif 2325 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); 2326 uasm_i_nop(&p); 2327 2328 if (p >= handle_tlbm_end) 2329 panic("TLB modify handler fastpath space exceeded"); 2330 2331 uasm_resolve_relocs(relocs, labels); 2332 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n", 2333 (unsigned int)(p - handle_tlbm)); 2334 2335 dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_size); 2336 } 2337 2338 static void flush_tlb_handlers(void) 2339 { 2340 local_flush_icache_range((unsigned long)handle_tlbl, 2341 (unsigned long)handle_tlbl_end); 2342 local_flush_icache_range((unsigned long)handle_tlbs, 2343 (unsigned long)handle_tlbs_end); 2344 local_flush_icache_range((unsigned long)handle_tlbm, 2345 (unsigned long)handle_tlbm_end); 2346 local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd, 2347 (unsigned long)tlbmiss_handler_setup_pgd_end); 2348 } 2349 2350 static void print_htw_config(void) 2351 { 2352 unsigned long config; 2353 unsigned int pwctl; 2354 const int field = 2 * sizeof(unsigned long); 2355 2356 config = read_c0_pwfield(); 2357 pr_debug("PWField (0x%0*lx): GDI: 0x%02lx UDI: 0x%02lx MDI: 0x%02lx PTI: 0x%02lx PTEI: 0x%02lx\n", 2358 field, config, 2359 (config & MIPS_PWFIELD_GDI_MASK) >> MIPS_PWFIELD_GDI_SHIFT, 2360 (config & MIPS_PWFIELD_UDI_MASK) >> MIPS_PWFIELD_UDI_SHIFT, 2361 (config & MIPS_PWFIELD_MDI_MASK) >> MIPS_PWFIELD_MDI_SHIFT, 2362 (config & MIPS_PWFIELD_PTI_MASK) >> MIPS_PWFIELD_PTI_SHIFT, 2363 (config & MIPS_PWFIELD_PTEI_MASK) >> MIPS_PWFIELD_PTEI_SHIFT); 2364 2365 config = read_c0_pwsize(); 2366 pr_debug("PWSize (0x%0*lx): PS: 0x%lx GDW: 0x%02lx UDW: 0x%02lx MDW: 0x%02lx PTW: 0x%02lx PTEW: 0x%02lx\n", 2367 field, config, 2368 (config & MIPS_PWSIZE_PS_MASK) >> MIPS_PWSIZE_PS_SHIFT, 2369 (config & MIPS_PWSIZE_GDW_MASK) >> MIPS_PWSIZE_GDW_SHIFT, 2370 (config & MIPS_PWSIZE_UDW_MASK) >> MIPS_PWSIZE_UDW_SHIFT, 2371 (config & MIPS_PWSIZE_MDW_MASK) >> MIPS_PWSIZE_MDW_SHIFT, 2372 (config & MIPS_PWSIZE_PTW_MASK) >> MIPS_PWSIZE_PTW_SHIFT, 2373 (config & MIPS_PWSIZE_PTEW_MASK) >> MIPS_PWSIZE_PTEW_SHIFT); 2374 2375 pwctl = read_c0_pwctl(); 2376 pr_debug("PWCtl (0x%x): PWEn: 0x%x XK: 0x%x XS: 0x%x XU: 0x%x DPH: 0x%x HugePg: 0x%x Psn: 0x%x\n", 2377 pwctl, 2378 (pwctl & MIPS_PWCTL_PWEN_MASK) >> MIPS_PWCTL_PWEN_SHIFT, 2379 (pwctl & MIPS_PWCTL_XK_MASK) >> MIPS_PWCTL_XK_SHIFT, 2380 (pwctl & MIPS_PWCTL_XS_MASK) >> MIPS_PWCTL_XS_SHIFT, 2381 (pwctl & MIPS_PWCTL_XU_MASK) >> MIPS_PWCTL_XU_SHIFT, 2382 (pwctl & MIPS_PWCTL_DPH_MASK) >> MIPS_PWCTL_DPH_SHIFT, 2383 (pwctl & MIPS_PWCTL_HUGEPG_MASK) >> MIPS_PWCTL_HUGEPG_SHIFT, 2384 (pwctl & MIPS_PWCTL_PSN_MASK) >> MIPS_PWCTL_PSN_SHIFT); 2385 } 2386 2387 static void config_htw_params(void) 2388 { 2389 unsigned long pwfield, pwsize, ptei; 2390 unsigned int config; 2391 2392 /* 2393 * We are using 2-level page tables, so we only need to 2394 * setup GDW and PTW appropriately. UDW and MDW will remain 0. 2395 * The default value of GDI/UDI/MDI/PTI is 0xc. It is illegal to 2396 * write values less than 0xc in these fields because the entire 2397 * write will be dropped. As a result of which, we must preserve 2398 * the original reset values and overwrite only what we really want. 2399 */ 2400 2401 pwfield = read_c0_pwfield(); 2402 /* re-initialize the GDI field */ 2403 pwfield &= ~MIPS_PWFIELD_GDI_MASK; 2404 pwfield |= PGDIR_SHIFT << MIPS_PWFIELD_GDI_SHIFT; 2405 /* re-initialize the PTI field including the even/odd bit */ 2406 pwfield &= ~MIPS_PWFIELD_PTI_MASK; 2407 pwfield |= PAGE_SHIFT << MIPS_PWFIELD_PTI_SHIFT; 2408 if (CONFIG_PGTABLE_LEVELS >= 3) { 2409 pwfield &= ~MIPS_PWFIELD_MDI_MASK; 2410 pwfield |= PMD_SHIFT << MIPS_PWFIELD_MDI_SHIFT; 2411 } 2412 /* Set the PTEI right shift */ 2413 ptei = _PAGE_GLOBAL_SHIFT << MIPS_PWFIELD_PTEI_SHIFT; 2414 pwfield |= ptei; 2415 write_c0_pwfield(pwfield); 2416 /* Check whether the PTEI value is supported */ 2417 back_to_back_c0_hazard(); 2418 pwfield = read_c0_pwfield(); 2419 if (((pwfield & MIPS_PWFIELD_PTEI_MASK) << MIPS_PWFIELD_PTEI_SHIFT) 2420 != ptei) { 2421 pr_warn("Unsupported PTEI field value: 0x%lx. HTW will not be enabled", 2422 ptei); 2423 /* 2424 * Drop option to avoid HTW being enabled via another path 2425 * (eg htw_reset()) 2426 */ 2427 current_cpu_data.options &= ~MIPS_CPU_HTW; 2428 return; 2429 } 2430 2431 pwsize = ilog2(PTRS_PER_PGD) << MIPS_PWSIZE_GDW_SHIFT; 2432 pwsize |= ilog2(PTRS_PER_PTE) << MIPS_PWSIZE_PTW_SHIFT; 2433 if (CONFIG_PGTABLE_LEVELS >= 3) 2434 pwsize |= ilog2(PTRS_PER_PMD) << MIPS_PWSIZE_MDW_SHIFT; 2435 2436 /* Set pointer size to size of directory pointers */ 2437 if (IS_ENABLED(CONFIG_64BIT)) 2438 pwsize |= MIPS_PWSIZE_PS_MASK; 2439 /* PTEs may be multiple pointers long (e.g. with XPA) */ 2440 pwsize |= ((PTE_T_LOG2 - PGD_T_LOG2) << MIPS_PWSIZE_PTEW_SHIFT) 2441 & MIPS_PWSIZE_PTEW_MASK; 2442 2443 write_c0_pwsize(pwsize); 2444 2445 /* Make sure everything is set before we enable the HTW */ 2446 back_to_back_c0_hazard(); 2447 2448 /* 2449 * Enable HTW (and only for XUSeg on 64-bit), and disable the rest of 2450 * the pwctl fields. 2451 */ 2452 config = 1 << MIPS_PWCTL_PWEN_SHIFT; 2453 if (IS_ENABLED(CONFIG_64BIT)) 2454 config |= MIPS_PWCTL_XU_MASK; 2455 write_c0_pwctl(config); 2456 pr_info("Hardware Page Table Walker enabled\n"); 2457 2458 print_htw_config(); 2459 } 2460 2461 static void config_xpa_params(void) 2462 { 2463 #ifdef CONFIG_XPA 2464 unsigned int pagegrain; 2465 2466 if (mips_xpa_disabled) { 2467 pr_info("Extended Physical Addressing (XPA) disabled\n"); 2468 return; 2469 } 2470 2471 pagegrain = read_c0_pagegrain(); 2472 write_c0_pagegrain(pagegrain | PG_ELPA); 2473 back_to_back_c0_hazard(); 2474 pagegrain = read_c0_pagegrain(); 2475 2476 if (pagegrain & PG_ELPA) 2477 pr_info("Extended Physical Addressing (XPA) enabled\n"); 2478 else 2479 panic("Extended Physical Addressing (XPA) disabled"); 2480 #endif 2481 } 2482 2483 static void check_pabits(void) 2484 { 2485 unsigned long entry; 2486 unsigned pabits, fillbits; 2487 2488 if (!cpu_has_rixi || !_PAGE_NO_EXEC) { 2489 /* 2490 * We'll only be making use of the fact that we can rotate bits 2491 * into the fill if the CPU supports RIXI, so don't bother 2492 * probing this for CPUs which don't. 2493 */ 2494 return; 2495 } 2496 2497 write_c0_entrylo0(~0ul); 2498 back_to_back_c0_hazard(); 2499 entry = read_c0_entrylo0(); 2500 2501 /* clear all non-PFN bits */ 2502 entry &= ~((1 << MIPS_ENTRYLO_PFN_SHIFT) - 1); 2503 entry &= ~(MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI); 2504 2505 /* find a lower bound on PABITS, and upper bound on fill bits */ 2506 pabits = fls_long(entry) + 6; 2507 fillbits = max_t(int, (int)BITS_PER_LONG - pabits, 0); 2508 2509 /* minus the RI & XI bits */ 2510 fillbits -= min_t(unsigned, fillbits, 2); 2511 2512 if (fillbits >= ilog2(_PAGE_NO_EXEC)) 2513 fill_includes_sw_bits = true; 2514 2515 pr_debug("Entry* registers contain %u fill bits\n", fillbits); 2516 } 2517 2518 void build_tlb_refill_handler(void) 2519 { 2520 /* 2521 * The refill handler is generated per-CPU, multi-node systems 2522 * may have local storage for it. The other handlers are only 2523 * needed once. 2524 */ 2525 static int run_once = 0; 2526 2527 if (IS_ENABLED(CONFIG_XPA) && !cpu_has_rixi) 2528 panic("Kernels supporting XPA currently require CPUs with RIXI"); 2529 2530 output_pgtable_bits_defines(); 2531 check_pabits(); 2532 2533 #ifdef CONFIG_64BIT 2534 check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3); 2535 #endif 2536 2537 switch (current_cpu_type()) { 2538 case CPU_R2000: 2539 case CPU_R3000: 2540 case CPU_R3000A: 2541 case CPU_R3081E: 2542 case CPU_TX3912: 2543 case CPU_TX3922: 2544 case CPU_TX3927: 2545 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT 2546 if (cpu_has_local_ebase) 2547 build_r3000_tlb_refill_handler(); 2548 if (!run_once) { 2549 if (!cpu_has_local_ebase) 2550 build_r3000_tlb_refill_handler(); 2551 build_setup_pgd(); 2552 build_r3000_tlb_load_handler(); 2553 build_r3000_tlb_store_handler(); 2554 build_r3000_tlb_modify_handler(); 2555 flush_tlb_handlers(); 2556 run_once++; 2557 } 2558 #else 2559 panic("No R3000 TLB refill handler"); 2560 #endif 2561 break; 2562 2563 case CPU_R6000: 2564 case CPU_R6000A: 2565 panic("No R6000 TLB refill handler yet"); 2566 break; 2567 2568 case CPU_R8000: 2569 panic("No R8000 TLB refill handler yet"); 2570 break; 2571 2572 default: 2573 if (cpu_has_ldpte) 2574 setup_pw(); 2575 2576 if (!run_once) { 2577 scratch_reg = allocate_kscratch(); 2578 build_setup_pgd(); 2579 build_r4000_tlb_load_handler(); 2580 build_r4000_tlb_store_handler(); 2581 build_r4000_tlb_modify_handler(); 2582 if (cpu_has_ldpte) 2583 build_loongson3_tlb_refill_handler(); 2584 else if (!cpu_has_local_ebase) 2585 build_r4000_tlb_refill_handler(); 2586 flush_tlb_handlers(); 2587 run_once++; 2588 } 2589 if (cpu_has_local_ebase) 2590 build_r4000_tlb_refill_handler(); 2591 if (cpu_has_xpa) 2592 config_xpa_params(); 2593 if (cpu_has_htw) 2594 config_htw_params(); 2595 } 2596 } 2597