xref: /openbmc/linux/arch/mips/mm/init.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 2000 Ralf Baechle
7  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
8  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
9  * Copyright (C) 2000 MIPS Technologies, Inc.  All rights reserved.
10  */
11 #include <linux/bug.h>
12 #include <linux/init.h>
13 #include <linux/export.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/smp.h>
17 #include <linux/kernel.h>
18 #include <linux/errno.h>
19 #include <linux/string.h>
20 #include <linux/types.h>
21 #include <linux/pagemap.h>
22 #include <linux/ptrace.h>
23 #include <linux/mman.h>
24 #include <linux/mm.h>
25 #include <linux/memblock.h>
26 #include <linux/highmem.h>
27 #include <linux/swap.h>
28 #include <linux/proc_fs.h>
29 #include <linux/pfn.h>
30 #include <linux/hardirq.h>
31 #include <linux/gfp.h>
32 #include <linux/kcore.h>
33 #include <linux/initrd.h>
34 
35 #include <asm/bootinfo.h>
36 #include <asm/cachectl.h>
37 #include <asm/cpu.h>
38 #include <asm/dma.h>
39 #include <asm/kmap_types.h>
40 #include <asm/maar.h>
41 #include <asm/mmu_context.h>
42 #include <asm/sections.h>
43 #include <asm/pgalloc.h>
44 #include <asm/tlb.h>
45 #include <asm/fixmap.h>
46 
47 /*
48  * We have up to 8 empty zeroed pages so we can map one of the right colour
49  * when needed.	 This is necessary only on R4000 / R4400 SC and MC versions
50  * where we have to avoid VCED / VECI exceptions for good performance at
51  * any price.  Since page is never written to after the initialization we
52  * don't have to care about aliases on other CPUs.
53  */
54 unsigned long empty_zero_page, zero_page_mask;
55 EXPORT_SYMBOL_GPL(empty_zero_page);
56 EXPORT_SYMBOL(zero_page_mask);
57 
58 /*
59  * Not static inline because used by IP27 special magic initialization code
60  */
61 void setup_zero_pages(void)
62 {
63 	unsigned int order, i;
64 	struct page *page;
65 
66 	if (cpu_has_vce)
67 		order = 3;
68 	else
69 		order = 0;
70 
71 	empty_zero_page = __get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
72 	if (!empty_zero_page)
73 		panic("Oh boy, that early out of memory?");
74 
75 	page = virt_to_page((void *)empty_zero_page);
76 	split_page(page, order);
77 	for (i = 0; i < (1 << order); i++, page++)
78 		mark_page_reserved(page);
79 
80 	zero_page_mask = ((PAGE_SIZE << order) - 1) & PAGE_MASK;
81 }
82 
83 static void *__kmap_pgprot(struct page *page, unsigned long addr, pgprot_t prot)
84 {
85 	enum fixed_addresses idx;
86 	unsigned int old_mmid;
87 	unsigned long vaddr, flags, entrylo;
88 	unsigned long old_ctx;
89 	pte_t pte;
90 	int tlbidx;
91 
92 	BUG_ON(Page_dcache_dirty(page));
93 
94 	preempt_disable();
95 	pagefault_disable();
96 	idx = (addr >> PAGE_SHIFT) & (FIX_N_COLOURS - 1);
97 	idx += in_interrupt() ? FIX_N_COLOURS : 0;
98 	vaddr = __fix_to_virt(FIX_CMAP_END - idx);
99 	pte = mk_pte(page, prot);
100 #if defined(CONFIG_XPA)
101 	entrylo = pte_to_entrylo(pte.pte_high);
102 #elif defined(CONFIG_PHYS_ADDR_T_64BIT) && defined(CONFIG_CPU_MIPS32)
103 	entrylo = pte.pte_high;
104 #else
105 	entrylo = pte_to_entrylo(pte_val(pte));
106 #endif
107 
108 	local_irq_save(flags);
109 	old_ctx = read_c0_entryhi();
110 	write_c0_entryhi(vaddr & (PAGE_MASK << 1));
111 	write_c0_entrylo0(entrylo);
112 	write_c0_entrylo1(entrylo);
113 	if (cpu_has_mmid) {
114 		old_mmid = read_c0_memorymapid();
115 		write_c0_memorymapid(MMID_KERNEL_WIRED);
116 	}
117 #ifdef CONFIG_XPA
118 	if (cpu_has_xpa) {
119 		entrylo = (pte.pte_low & _PFNX_MASK);
120 		writex_c0_entrylo0(entrylo);
121 		writex_c0_entrylo1(entrylo);
122 	}
123 #endif
124 	tlbidx = num_wired_entries();
125 	write_c0_wired(tlbidx + 1);
126 	write_c0_index(tlbidx);
127 	mtc0_tlbw_hazard();
128 	tlb_write_indexed();
129 	tlbw_use_hazard();
130 	write_c0_entryhi(old_ctx);
131 	if (cpu_has_mmid)
132 		write_c0_memorymapid(old_mmid);
133 	local_irq_restore(flags);
134 
135 	return (void*) vaddr;
136 }
137 
138 void *kmap_coherent(struct page *page, unsigned long addr)
139 {
140 	return __kmap_pgprot(page, addr, PAGE_KERNEL);
141 }
142 
143 void *kmap_noncoherent(struct page *page, unsigned long addr)
144 {
145 	return __kmap_pgprot(page, addr, PAGE_KERNEL_NC);
146 }
147 
148 void kunmap_coherent(void)
149 {
150 	unsigned int wired;
151 	unsigned long flags, old_ctx;
152 
153 	local_irq_save(flags);
154 	old_ctx = read_c0_entryhi();
155 	wired = num_wired_entries() - 1;
156 	write_c0_wired(wired);
157 	write_c0_index(wired);
158 	write_c0_entryhi(UNIQUE_ENTRYHI(wired));
159 	write_c0_entrylo0(0);
160 	write_c0_entrylo1(0);
161 	mtc0_tlbw_hazard();
162 	tlb_write_indexed();
163 	tlbw_use_hazard();
164 	write_c0_entryhi(old_ctx);
165 	local_irq_restore(flags);
166 	pagefault_enable();
167 	preempt_enable();
168 }
169 
170 void copy_user_highpage(struct page *to, struct page *from,
171 	unsigned long vaddr, struct vm_area_struct *vma)
172 {
173 	void *vfrom, *vto;
174 
175 	vto = kmap_atomic(to);
176 	if (cpu_has_dc_aliases &&
177 	    page_mapcount(from) && !Page_dcache_dirty(from)) {
178 		vfrom = kmap_coherent(from, vaddr);
179 		copy_page(vto, vfrom);
180 		kunmap_coherent();
181 	} else {
182 		vfrom = kmap_atomic(from);
183 		copy_page(vto, vfrom);
184 		kunmap_atomic(vfrom);
185 	}
186 	if ((!cpu_has_ic_fills_f_dc) ||
187 	    pages_do_alias((unsigned long)vto, vaddr & PAGE_MASK))
188 		flush_data_cache_page((unsigned long)vto);
189 	kunmap_atomic(vto);
190 	/* Make sure this page is cleared on other CPU's too before using it */
191 	smp_wmb();
192 }
193 
194 void copy_to_user_page(struct vm_area_struct *vma,
195 	struct page *page, unsigned long vaddr, void *dst, const void *src,
196 	unsigned long len)
197 {
198 	if (cpu_has_dc_aliases &&
199 	    page_mapcount(page) && !Page_dcache_dirty(page)) {
200 		void *vto = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
201 		memcpy(vto, src, len);
202 		kunmap_coherent();
203 	} else {
204 		memcpy(dst, src, len);
205 		if (cpu_has_dc_aliases)
206 			SetPageDcacheDirty(page);
207 	}
208 	if (vma->vm_flags & VM_EXEC)
209 		flush_cache_page(vma, vaddr, page_to_pfn(page));
210 }
211 
212 void copy_from_user_page(struct vm_area_struct *vma,
213 	struct page *page, unsigned long vaddr, void *dst, const void *src,
214 	unsigned long len)
215 {
216 	if (cpu_has_dc_aliases &&
217 	    page_mapcount(page) && !Page_dcache_dirty(page)) {
218 		void *vfrom = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
219 		memcpy(dst, vfrom, len);
220 		kunmap_coherent();
221 	} else {
222 		memcpy(dst, src, len);
223 		if (cpu_has_dc_aliases)
224 			SetPageDcacheDirty(page);
225 	}
226 }
227 EXPORT_SYMBOL_GPL(copy_from_user_page);
228 
229 void __init fixrange_init(unsigned long start, unsigned long end,
230 	pgd_t *pgd_base)
231 {
232 #ifdef CONFIG_HIGHMEM
233 	pgd_t *pgd;
234 	pud_t *pud;
235 	pmd_t *pmd;
236 	pte_t *pte;
237 	int i, j, k;
238 	unsigned long vaddr;
239 
240 	vaddr = start;
241 	i = pgd_index(vaddr);
242 	j = pud_index(vaddr);
243 	k = pmd_index(vaddr);
244 	pgd = pgd_base + i;
245 
246 	for ( ; (i < PTRS_PER_PGD) && (vaddr < end); pgd++, i++) {
247 		pud = (pud_t *)pgd;
248 		for ( ; (j < PTRS_PER_PUD) && (vaddr < end); pud++, j++) {
249 			pmd = (pmd_t *)pud;
250 			for (; (k < PTRS_PER_PMD) && (vaddr < end); pmd++, k++) {
251 				if (pmd_none(*pmd)) {
252 					pte = (pte_t *) memblock_alloc_low(PAGE_SIZE,
253 									   PAGE_SIZE);
254 					if (!pte)
255 						panic("%s: Failed to allocate %lu bytes align=%lx\n",
256 						      __func__, PAGE_SIZE,
257 						      PAGE_SIZE);
258 
259 					set_pmd(pmd, __pmd((unsigned long)pte));
260 					BUG_ON(pte != pte_offset_kernel(pmd, 0));
261 				}
262 				vaddr += PMD_SIZE;
263 			}
264 			k = 0;
265 		}
266 		j = 0;
267 	}
268 #endif
269 }
270 
271 struct maar_walk_info {
272 	struct maar_config cfg[16];
273 	unsigned int num_cfg;
274 };
275 
276 static int maar_res_walk(unsigned long start_pfn, unsigned long nr_pages,
277 			 void *data)
278 {
279 	struct maar_walk_info *wi = data;
280 	struct maar_config *cfg = &wi->cfg[wi->num_cfg];
281 	unsigned int maar_align;
282 
283 	/* MAAR registers hold physical addresses right shifted by 4 bits */
284 	maar_align = BIT(MIPS_MAAR_ADDR_SHIFT + 4);
285 
286 	/* Fill in the MAAR config entry */
287 	cfg->lower = ALIGN(PFN_PHYS(start_pfn), maar_align);
288 	cfg->upper = ALIGN_DOWN(PFN_PHYS(start_pfn + nr_pages), maar_align) - 1;
289 	cfg->attrs = MIPS_MAAR_S;
290 
291 	/* Ensure we don't overflow the cfg array */
292 	if (!WARN_ON(wi->num_cfg >= ARRAY_SIZE(wi->cfg)))
293 		wi->num_cfg++;
294 
295 	return 0;
296 }
297 
298 
299 unsigned __weak platform_maar_init(unsigned num_pairs)
300 {
301 	unsigned int num_configured;
302 	struct maar_walk_info wi;
303 
304 	wi.num_cfg = 0;
305 	walk_system_ram_range(0, max_pfn, &wi, maar_res_walk);
306 
307 	num_configured = maar_config(wi.cfg, wi.num_cfg, num_pairs);
308 	if (num_configured < wi.num_cfg)
309 		pr_warn("Not enough MAAR pairs (%u) for all memory regions (%u)\n",
310 			num_pairs, wi.num_cfg);
311 
312 	return num_configured;
313 }
314 
315 void maar_init(void)
316 {
317 	unsigned num_maars, used, i;
318 	phys_addr_t lower, upper, attr;
319 	static struct {
320 		struct maar_config cfgs[3];
321 		unsigned used;
322 	} recorded = { { { 0 } }, 0 };
323 
324 	if (!cpu_has_maar)
325 		return;
326 
327 	/* Detect the number of MAARs */
328 	write_c0_maari(~0);
329 	back_to_back_c0_hazard();
330 	num_maars = read_c0_maari() + 1;
331 
332 	/* MAARs should be in pairs */
333 	WARN_ON(num_maars % 2);
334 
335 	/* Set MAARs using values we recorded already */
336 	if (recorded.used) {
337 		used = maar_config(recorded.cfgs, recorded.used, num_maars / 2);
338 		BUG_ON(used != recorded.used);
339 	} else {
340 		/* Configure the required MAARs */
341 		used = platform_maar_init(num_maars / 2);
342 	}
343 
344 	/* Disable any further MAARs */
345 	for (i = (used * 2); i < num_maars; i++) {
346 		write_c0_maari(i);
347 		back_to_back_c0_hazard();
348 		write_c0_maar(0);
349 		back_to_back_c0_hazard();
350 	}
351 
352 	if (recorded.used)
353 		return;
354 
355 	pr_info("MAAR configuration:\n");
356 	for (i = 0; i < num_maars; i += 2) {
357 		write_c0_maari(i);
358 		back_to_back_c0_hazard();
359 		upper = read_c0_maar();
360 #ifdef CONFIG_XPA
361 		upper |= (phys_addr_t)readx_c0_maar() << MIPS_MAARX_ADDR_SHIFT;
362 #endif
363 
364 		write_c0_maari(i + 1);
365 		back_to_back_c0_hazard();
366 		lower = read_c0_maar();
367 #ifdef CONFIG_XPA
368 		lower |= (phys_addr_t)readx_c0_maar() << MIPS_MAARX_ADDR_SHIFT;
369 #endif
370 
371 		attr = lower & upper;
372 		lower = (lower & MIPS_MAAR_ADDR) << 4;
373 		upper = ((upper & MIPS_MAAR_ADDR) << 4) | 0xffff;
374 
375 		pr_info("  [%d]: ", i / 2);
376 		if ((attr & MIPS_MAAR_V) != MIPS_MAAR_V) {
377 			pr_cont("disabled\n");
378 			continue;
379 		}
380 
381 		pr_cont("%pa-%pa", &lower, &upper);
382 
383 		if (attr & MIPS_MAAR_S)
384 			pr_cont(" speculate");
385 
386 		pr_cont("\n");
387 
388 		/* Record the setup for use on secondary CPUs */
389 		if (used <= ARRAY_SIZE(recorded.cfgs)) {
390 			recorded.cfgs[recorded.used].lower = lower;
391 			recorded.cfgs[recorded.used].upper = upper;
392 			recorded.cfgs[recorded.used].attrs = attr;
393 			recorded.used++;
394 		}
395 	}
396 }
397 
398 #ifndef CONFIG_NEED_MULTIPLE_NODES
399 void __init paging_init(void)
400 {
401 	unsigned long max_zone_pfns[MAX_NR_ZONES];
402 
403 	pagetable_init();
404 
405 #ifdef CONFIG_HIGHMEM
406 	kmap_init();
407 #endif
408 #ifdef CONFIG_ZONE_DMA
409 	max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
410 #endif
411 #ifdef CONFIG_ZONE_DMA32
412 	max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
413 #endif
414 	max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
415 #ifdef CONFIG_HIGHMEM
416 	max_zone_pfns[ZONE_HIGHMEM] = highend_pfn;
417 
418 	if (cpu_has_dc_aliases && max_low_pfn != highend_pfn) {
419 		printk(KERN_WARNING "This processor doesn't support highmem."
420 		       " %ldk highmem ignored\n",
421 		       (highend_pfn - max_low_pfn) << (PAGE_SHIFT - 10));
422 		max_zone_pfns[ZONE_HIGHMEM] = max_low_pfn;
423 	}
424 #endif
425 
426 	free_area_init(max_zone_pfns);
427 }
428 
429 #ifdef CONFIG_64BIT
430 static struct kcore_list kcore_kseg0;
431 #endif
432 
433 static inline void __init mem_init_free_highmem(void)
434 {
435 #ifdef CONFIG_HIGHMEM
436 	unsigned long tmp;
437 
438 	if (cpu_has_dc_aliases)
439 		return;
440 
441 	for (tmp = highstart_pfn; tmp < highend_pfn; tmp++) {
442 		struct page *page = pfn_to_page(tmp);
443 
444 		if (!memblock_is_memory(PFN_PHYS(tmp)))
445 			SetPageReserved(page);
446 		else
447 			free_highmem_page(page);
448 	}
449 #endif
450 }
451 
452 void __init mem_init(void)
453 {
454 	/*
455 	 * When _PFN_SHIFT is greater than PAGE_SHIFT we won't have enough PTE
456 	 * bits to hold a full 32b physical address on MIPS32 systems.
457 	 */
458 	BUILD_BUG_ON(IS_ENABLED(CONFIG_32BIT) && (_PFN_SHIFT > PAGE_SHIFT));
459 
460 #ifdef CONFIG_HIGHMEM
461 #ifdef CONFIG_DISCONTIGMEM
462 #error "CONFIG_HIGHMEM and CONFIG_DISCONTIGMEM dont work together yet"
463 #endif
464 	max_mapnr = highend_pfn ? highend_pfn : max_low_pfn;
465 #else
466 	max_mapnr = max_low_pfn;
467 #endif
468 	high_memory = (void *) __va(max_low_pfn << PAGE_SHIFT);
469 
470 	maar_init();
471 	memblock_free_all();
472 	setup_zero_pages();	/* Setup zeroed pages.  */
473 	mem_init_free_highmem();
474 	mem_init_print_info(NULL);
475 
476 #ifdef CONFIG_64BIT
477 	if ((unsigned long) &_text > (unsigned long) CKSEG0)
478 		/* The -4 is a hack so that user tools don't have to handle
479 		   the overflow.  */
480 		kclist_add(&kcore_kseg0, (void *) CKSEG0,
481 				0x80000000 - 4, KCORE_TEXT);
482 #endif
483 }
484 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
485 
486 void free_init_pages(const char *what, unsigned long begin, unsigned long end)
487 {
488 	unsigned long pfn;
489 
490 	for (pfn = PFN_UP(begin); pfn < PFN_DOWN(end); pfn++) {
491 		struct page *page = pfn_to_page(pfn);
492 		void *addr = phys_to_virt(PFN_PHYS(pfn));
493 
494 		memset(addr, POISON_FREE_INITMEM, PAGE_SIZE);
495 		free_reserved_page(page);
496 	}
497 	printk(KERN_INFO "Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
498 }
499 
500 void (*free_init_pages_eva)(void *begin, void *end) = NULL;
501 
502 void __ref free_initmem(void)
503 {
504 	prom_free_prom_memory();
505 	/*
506 	 * Let the platform define a specific function to free the
507 	 * init section since EVA may have used any possible mapping
508 	 * between virtual and physical addresses.
509 	 */
510 	if (free_init_pages_eva)
511 		free_init_pages_eva((void *)&__init_begin, (void *)&__init_end);
512 	else
513 		free_initmem_default(POISON_FREE_INITMEM);
514 }
515 
516 #ifdef CONFIG_HAVE_SETUP_PER_CPU_AREA
517 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
518 EXPORT_SYMBOL(__per_cpu_offset);
519 
520 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
521 {
522 	return node_distance(cpu_to_node(from), cpu_to_node(to));
523 }
524 
525 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size,
526 				       size_t align)
527 {
528 	return memblock_alloc_try_nid(size, align, __pa(MAX_DMA_ADDRESS),
529 				      MEMBLOCK_ALLOC_ACCESSIBLE,
530 				      cpu_to_node(cpu));
531 }
532 
533 static void __init pcpu_fc_free(void *ptr, size_t size)
534 {
535 	memblock_free_early(__pa(ptr), size);
536 }
537 
538 void __init setup_per_cpu_areas(void)
539 {
540 	unsigned long delta;
541 	unsigned int cpu;
542 	int rc;
543 
544 	/*
545 	 * Always reserve area for module percpu variables.  That's
546 	 * what the legacy allocator did.
547 	 */
548 	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
549 				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE,
550 				    pcpu_cpu_distance,
551 				    pcpu_fc_alloc, pcpu_fc_free);
552 	if (rc < 0)
553 		panic("Failed to initialize percpu areas.");
554 
555 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
556 	for_each_possible_cpu(cpu)
557 		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
558 }
559 #endif
560 
561 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
562 unsigned long pgd_current[NR_CPUS];
563 #endif
564 
565 /*
566  * Align swapper_pg_dir in to 64K, allows its address to be loaded
567  * with a single LUI instruction in the TLB handlers.  If we used
568  * __aligned(64K), its size would get rounded up to the alignment
569  * size, and waste space.  So we place it in its own section and align
570  * it in the linker script.
571  */
572 pgd_t swapper_pg_dir[PTRS_PER_PGD] __section(.bss..swapper_pg_dir);
573 #ifndef __PAGETABLE_PUD_FOLDED
574 pud_t invalid_pud_table[PTRS_PER_PUD] __page_aligned_bss;
575 #endif
576 #ifndef __PAGETABLE_PMD_FOLDED
577 pmd_t invalid_pmd_table[PTRS_PER_PMD] __page_aligned_bss;
578 EXPORT_SYMBOL_GPL(invalid_pmd_table);
579 #endif
580 pte_t invalid_pte_table[PTRS_PER_PTE] __page_aligned_bss;
581 EXPORT_SYMBOL(invalid_pte_table);
582