1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1994 - 2000 Ralf Baechle 7 * Copyright (C) 1999, 2000 Silicon Graphics, Inc. 8 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com 9 * Copyright (C) 2000 MIPS Technologies, Inc. All rights reserved. 10 */ 11 #include <linux/bug.h> 12 #include <linux/init.h> 13 #include <linux/export.h> 14 #include <linux/signal.h> 15 #include <linux/sched.h> 16 #include <linux/smp.h> 17 #include <linux/kernel.h> 18 #include <linux/errno.h> 19 #include <linux/string.h> 20 #include <linux/types.h> 21 #include <linux/pagemap.h> 22 #include <linux/ptrace.h> 23 #include <linux/mman.h> 24 #include <linux/mm.h> 25 #include <linux/memblock.h> 26 #include <linux/highmem.h> 27 #include <linux/swap.h> 28 #include <linux/proc_fs.h> 29 #include <linux/pfn.h> 30 #include <linux/hardirq.h> 31 #include <linux/gfp.h> 32 #include <linux/kcore.h> 33 #include <linux/initrd.h> 34 35 #include <asm/bootinfo.h> 36 #include <asm/cachectl.h> 37 #include <asm/cpu.h> 38 #include <asm/dma.h> 39 #include <asm/kmap_types.h> 40 #include <asm/maar.h> 41 #include <asm/mmu_context.h> 42 #include <asm/sections.h> 43 #include <asm/pgtable.h> 44 #include <asm/pgalloc.h> 45 #include <asm/tlb.h> 46 #include <asm/fixmap.h> 47 48 /* 49 * We have up to 8 empty zeroed pages so we can map one of the right colour 50 * when needed. This is necessary only on R4000 / R4400 SC and MC versions 51 * where we have to avoid VCED / VECI exceptions for good performance at 52 * any price. Since page is never written to after the initialization we 53 * don't have to care about aliases on other CPUs. 54 */ 55 unsigned long empty_zero_page, zero_page_mask; 56 EXPORT_SYMBOL_GPL(empty_zero_page); 57 EXPORT_SYMBOL(zero_page_mask); 58 59 /* 60 * Not static inline because used by IP27 special magic initialization code 61 */ 62 void setup_zero_pages(void) 63 { 64 unsigned int order, i; 65 struct page *page; 66 67 if (cpu_has_vce) 68 order = 3; 69 else 70 order = 0; 71 72 empty_zero_page = __get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 73 if (!empty_zero_page) 74 panic("Oh boy, that early out of memory?"); 75 76 page = virt_to_page((void *)empty_zero_page); 77 split_page(page, order); 78 for (i = 0; i < (1 << order); i++, page++) 79 mark_page_reserved(page); 80 81 zero_page_mask = ((PAGE_SIZE << order) - 1) & PAGE_MASK; 82 } 83 84 static void *__kmap_pgprot(struct page *page, unsigned long addr, pgprot_t prot) 85 { 86 enum fixed_addresses idx; 87 unsigned int uninitialized_var(old_mmid); 88 unsigned long vaddr, flags, entrylo; 89 unsigned long old_ctx; 90 pte_t pte; 91 int tlbidx; 92 93 BUG_ON(Page_dcache_dirty(page)); 94 95 preempt_disable(); 96 pagefault_disable(); 97 idx = (addr >> PAGE_SHIFT) & (FIX_N_COLOURS - 1); 98 idx += in_interrupt() ? FIX_N_COLOURS : 0; 99 vaddr = __fix_to_virt(FIX_CMAP_END - idx); 100 pte = mk_pte(page, prot); 101 #if defined(CONFIG_XPA) 102 entrylo = pte_to_entrylo(pte.pte_high); 103 #elif defined(CONFIG_PHYS_ADDR_T_64BIT) && defined(CONFIG_CPU_MIPS32) 104 entrylo = pte.pte_high; 105 #else 106 entrylo = pte_to_entrylo(pte_val(pte)); 107 #endif 108 109 local_irq_save(flags); 110 old_ctx = read_c0_entryhi(); 111 write_c0_entryhi(vaddr & (PAGE_MASK << 1)); 112 write_c0_entrylo0(entrylo); 113 write_c0_entrylo1(entrylo); 114 if (cpu_has_mmid) { 115 old_mmid = read_c0_memorymapid(); 116 write_c0_memorymapid(MMID_KERNEL_WIRED); 117 } 118 #ifdef CONFIG_XPA 119 if (cpu_has_xpa) { 120 entrylo = (pte.pte_low & _PFNX_MASK); 121 writex_c0_entrylo0(entrylo); 122 writex_c0_entrylo1(entrylo); 123 } 124 #endif 125 tlbidx = num_wired_entries(); 126 write_c0_wired(tlbidx + 1); 127 write_c0_index(tlbidx); 128 mtc0_tlbw_hazard(); 129 tlb_write_indexed(); 130 tlbw_use_hazard(); 131 write_c0_entryhi(old_ctx); 132 if (cpu_has_mmid) 133 write_c0_memorymapid(old_mmid); 134 local_irq_restore(flags); 135 136 return (void*) vaddr; 137 } 138 139 void *kmap_coherent(struct page *page, unsigned long addr) 140 { 141 return __kmap_pgprot(page, addr, PAGE_KERNEL); 142 } 143 144 void *kmap_noncoherent(struct page *page, unsigned long addr) 145 { 146 return __kmap_pgprot(page, addr, PAGE_KERNEL_NC); 147 } 148 149 void kunmap_coherent(void) 150 { 151 unsigned int wired; 152 unsigned long flags, old_ctx; 153 154 local_irq_save(flags); 155 old_ctx = read_c0_entryhi(); 156 wired = num_wired_entries() - 1; 157 write_c0_wired(wired); 158 write_c0_index(wired); 159 write_c0_entryhi(UNIQUE_ENTRYHI(wired)); 160 write_c0_entrylo0(0); 161 write_c0_entrylo1(0); 162 mtc0_tlbw_hazard(); 163 tlb_write_indexed(); 164 tlbw_use_hazard(); 165 write_c0_entryhi(old_ctx); 166 local_irq_restore(flags); 167 pagefault_enable(); 168 preempt_enable(); 169 } 170 171 void copy_user_highpage(struct page *to, struct page *from, 172 unsigned long vaddr, struct vm_area_struct *vma) 173 { 174 void *vfrom, *vto; 175 176 vto = kmap_atomic(to); 177 if (cpu_has_dc_aliases && 178 page_mapcount(from) && !Page_dcache_dirty(from)) { 179 vfrom = kmap_coherent(from, vaddr); 180 copy_page(vto, vfrom); 181 kunmap_coherent(); 182 } else { 183 vfrom = kmap_atomic(from); 184 copy_page(vto, vfrom); 185 kunmap_atomic(vfrom); 186 } 187 if ((!cpu_has_ic_fills_f_dc) || 188 pages_do_alias((unsigned long)vto, vaddr & PAGE_MASK)) 189 flush_data_cache_page((unsigned long)vto); 190 kunmap_atomic(vto); 191 /* Make sure this page is cleared on other CPU's too before using it */ 192 smp_wmb(); 193 } 194 195 void copy_to_user_page(struct vm_area_struct *vma, 196 struct page *page, unsigned long vaddr, void *dst, const void *src, 197 unsigned long len) 198 { 199 if (cpu_has_dc_aliases && 200 page_mapcount(page) && !Page_dcache_dirty(page)) { 201 void *vto = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK); 202 memcpy(vto, src, len); 203 kunmap_coherent(); 204 } else { 205 memcpy(dst, src, len); 206 if (cpu_has_dc_aliases) 207 SetPageDcacheDirty(page); 208 } 209 if (vma->vm_flags & VM_EXEC) 210 flush_cache_page(vma, vaddr, page_to_pfn(page)); 211 } 212 213 void copy_from_user_page(struct vm_area_struct *vma, 214 struct page *page, unsigned long vaddr, void *dst, const void *src, 215 unsigned long len) 216 { 217 if (cpu_has_dc_aliases && 218 page_mapcount(page) && !Page_dcache_dirty(page)) { 219 void *vfrom = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK); 220 memcpy(dst, vfrom, len); 221 kunmap_coherent(); 222 } else { 223 memcpy(dst, src, len); 224 if (cpu_has_dc_aliases) 225 SetPageDcacheDirty(page); 226 } 227 } 228 EXPORT_SYMBOL_GPL(copy_from_user_page); 229 230 void __init fixrange_init(unsigned long start, unsigned long end, 231 pgd_t *pgd_base) 232 { 233 #ifdef CONFIG_HIGHMEM 234 pgd_t *pgd; 235 pud_t *pud; 236 pmd_t *pmd; 237 pte_t *pte; 238 int i, j, k; 239 unsigned long vaddr; 240 241 vaddr = start; 242 i = __pgd_offset(vaddr); 243 j = __pud_offset(vaddr); 244 k = __pmd_offset(vaddr); 245 pgd = pgd_base + i; 246 247 for ( ; (i < PTRS_PER_PGD) && (vaddr < end); pgd++, i++) { 248 pud = (pud_t *)pgd; 249 for ( ; (j < PTRS_PER_PUD) && (vaddr < end); pud++, j++) { 250 pmd = (pmd_t *)pud; 251 for (; (k < PTRS_PER_PMD) && (vaddr < end); pmd++, k++) { 252 if (pmd_none(*pmd)) { 253 pte = (pte_t *) memblock_alloc_low(PAGE_SIZE, 254 PAGE_SIZE); 255 if (!pte) 256 panic("%s: Failed to allocate %lu bytes align=%lx\n", 257 __func__, PAGE_SIZE, 258 PAGE_SIZE); 259 260 set_pmd(pmd, __pmd((unsigned long)pte)); 261 BUG_ON(pte != pte_offset_kernel(pmd, 0)); 262 } 263 vaddr += PMD_SIZE; 264 } 265 k = 0; 266 } 267 j = 0; 268 } 269 #endif 270 } 271 272 unsigned __weak platform_maar_init(unsigned num_pairs) 273 { 274 struct maar_config cfg[BOOT_MEM_MAP_MAX]; 275 unsigned i, num_configured, num_cfg = 0; 276 277 for (i = 0; i < boot_mem_map.nr_map; i++) { 278 switch (boot_mem_map.map[i].type) { 279 case BOOT_MEM_RAM: 280 case BOOT_MEM_INIT_RAM: 281 break; 282 default: 283 continue; 284 } 285 286 /* Round lower up */ 287 cfg[num_cfg].lower = boot_mem_map.map[i].addr; 288 cfg[num_cfg].lower = (cfg[num_cfg].lower + 0xffff) & ~0xffff; 289 290 /* Round upper down */ 291 cfg[num_cfg].upper = boot_mem_map.map[i].addr + 292 boot_mem_map.map[i].size; 293 cfg[num_cfg].upper = (cfg[num_cfg].upper & ~0xffff) - 1; 294 295 cfg[num_cfg].attrs = MIPS_MAAR_S; 296 num_cfg++; 297 } 298 299 num_configured = maar_config(cfg, num_cfg, num_pairs); 300 if (num_configured < num_cfg) 301 pr_warn("Not enough MAAR pairs (%u) for all bootmem regions (%u)\n", 302 num_pairs, num_cfg); 303 304 return num_configured; 305 } 306 307 void maar_init(void) 308 { 309 unsigned num_maars, used, i; 310 phys_addr_t lower, upper, attr; 311 static struct { 312 struct maar_config cfgs[3]; 313 unsigned used; 314 } recorded = { { { 0 } }, 0 }; 315 316 if (!cpu_has_maar) 317 return; 318 319 /* Detect the number of MAARs */ 320 write_c0_maari(~0); 321 back_to_back_c0_hazard(); 322 num_maars = read_c0_maari() + 1; 323 324 /* MAARs should be in pairs */ 325 WARN_ON(num_maars % 2); 326 327 /* Set MAARs using values we recorded already */ 328 if (recorded.used) { 329 used = maar_config(recorded.cfgs, recorded.used, num_maars / 2); 330 BUG_ON(used != recorded.used); 331 } else { 332 /* Configure the required MAARs */ 333 used = platform_maar_init(num_maars / 2); 334 } 335 336 /* Disable any further MAARs */ 337 for (i = (used * 2); i < num_maars; i++) { 338 write_c0_maari(i); 339 back_to_back_c0_hazard(); 340 write_c0_maar(0); 341 back_to_back_c0_hazard(); 342 } 343 344 if (recorded.used) 345 return; 346 347 pr_info("MAAR configuration:\n"); 348 for (i = 0; i < num_maars; i += 2) { 349 write_c0_maari(i); 350 back_to_back_c0_hazard(); 351 upper = read_c0_maar(); 352 353 write_c0_maari(i + 1); 354 back_to_back_c0_hazard(); 355 lower = read_c0_maar(); 356 357 attr = lower & upper; 358 lower = (lower & MIPS_MAAR_ADDR) << 4; 359 upper = ((upper & MIPS_MAAR_ADDR) << 4) | 0xffff; 360 361 pr_info(" [%d]: ", i / 2); 362 if (!(attr & MIPS_MAAR_VL)) { 363 pr_cont("disabled\n"); 364 continue; 365 } 366 367 pr_cont("%pa-%pa", &lower, &upper); 368 369 if (attr & MIPS_MAAR_S) 370 pr_cont(" speculate"); 371 372 pr_cont("\n"); 373 374 /* Record the setup for use on secondary CPUs */ 375 if (used <= ARRAY_SIZE(recorded.cfgs)) { 376 recorded.cfgs[recorded.used].lower = lower; 377 recorded.cfgs[recorded.used].upper = upper; 378 recorded.cfgs[recorded.used].attrs = attr; 379 recorded.used++; 380 } 381 } 382 } 383 384 #ifndef CONFIG_NEED_MULTIPLE_NODES 385 int page_is_ram(unsigned long pagenr) 386 { 387 int i; 388 389 for (i = 0; i < boot_mem_map.nr_map; i++) { 390 unsigned long addr, end; 391 392 switch (boot_mem_map.map[i].type) { 393 case BOOT_MEM_RAM: 394 case BOOT_MEM_INIT_RAM: 395 break; 396 default: 397 /* not usable memory */ 398 continue; 399 } 400 401 addr = PFN_UP(boot_mem_map.map[i].addr); 402 end = PFN_DOWN(boot_mem_map.map[i].addr + 403 boot_mem_map.map[i].size); 404 405 if (pagenr >= addr && pagenr < end) 406 return 1; 407 } 408 409 return 0; 410 } 411 412 void __init paging_init(void) 413 { 414 unsigned long max_zone_pfns[MAX_NR_ZONES]; 415 416 pagetable_init(); 417 418 #ifdef CONFIG_HIGHMEM 419 kmap_init(); 420 #endif 421 #ifdef CONFIG_ZONE_DMA 422 max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN; 423 #endif 424 #ifdef CONFIG_ZONE_DMA32 425 max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN; 426 #endif 427 max_zone_pfns[ZONE_NORMAL] = max_low_pfn; 428 #ifdef CONFIG_HIGHMEM 429 max_zone_pfns[ZONE_HIGHMEM] = highend_pfn; 430 431 if (cpu_has_dc_aliases && max_low_pfn != highend_pfn) { 432 printk(KERN_WARNING "This processor doesn't support highmem." 433 " %ldk highmem ignored\n", 434 (highend_pfn - max_low_pfn) << (PAGE_SHIFT - 10)); 435 max_zone_pfns[ZONE_HIGHMEM] = max_low_pfn; 436 } 437 #endif 438 439 free_area_init_nodes(max_zone_pfns); 440 } 441 442 #ifdef CONFIG_64BIT 443 static struct kcore_list kcore_kseg0; 444 #endif 445 446 static inline void mem_init_free_highmem(void) 447 { 448 #ifdef CONFIG_HIGHMEM 449 unsigned long tmp; 450 451 if (cpu_has_dc_aliases) 452 return; 453 454 for (tmp = highstart_pfn; tmp < highend_pfn; tmp++) { 455 struct page *page = pfn_to_page(tmp); 456 457 if (!page_is_ram(tmp)) 458 SetPageReserved(page); 459 else 460 free_highmem_page(page); 461 } 462 #endif 463 } 464 465 void __init mem_init(void) 466 { 467 #ifdef CONFIG_HIGHMEM 468 #ifdef CONFIG_DISCONTIGMEM 469 #error "CONFIG_HIGHMEM and CONFIG_DISCONTIGMEM dont work together yet" 470 #endif 471 max_mapnr = highend_pfn ? highend_pfn : max_low_pfn; 472 #else 473 max_mapnr = max_low_pfn; 474 #endif 475 high_memory = (void *) __va(max_low_pfn << PAGE_SHIFT); 476 477 maar_init(); 478 memblock_free_all(); 479 setup_zero_pages(); /* Setup zeroed pages. */ 480 mem_init_free_highmem(); 481 mem_init_print_info(NULL); 482 483 #ifdef CONFIG_64BIT 484 if ((unsigned long) &_text > (unsigned long) CKSEG0) 485 /* The -4 is a hack so that user tools don't have to handle 486 the overflow. */ 487 kclist_add(&kcore_kseg0, (void *) CKSEG0, 488 0x80000000 - 4, KCORE_TEXT); 489 #endif 490 } 491 #endif /* !CONFIG_NEED_MULTIPLE_NODES */ 492 493 void free_init_pages(const char *what, unsigned long begin, unsigned long end) 494 { 495 unsigned long pfn; 496 497 for (pfn = PFN_UP(begin); pfn < PFN_DOWN(end); pfn++) { 498 struct page *page = pfn_to_page(pfn); 499 void *addr = phys_to_virt(PFN_PHYS(pfn)); 500 501 memset(addr, POISON_FREE_INITMEM, PAGE_SIZE); 502 free_reserved_page(page); 503 } 504 printk(KERN_INFO "Freeing %s: %ldk freed\n", what, (end - begin) >> 10); 505 } 506 507 #ifdef CONFIG_BLK_DEV_INITRD 508 void free_initrd_mem(unsigned long start, unsigned long end) 509 { 510 free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM, 511 "initrd"); 512 } 513 #endif 514 515 void (*free_init_pages_eva)(void *begin, void *end) = NULL; 516 517 void __ref free_initmem(void) 518 { 519 prom_free_prom_memory(); 520 /* 521 * Let the platform define a specific function to free the 522 * init section since EVA may have used any possible mapping 523 * between virtual and physical addresses. 524 */ 525 if (free_init_pages_eva) 526 free_init_pages_eva((void *)&__init_begin, (void *)&__init_end); 527 else 528 free_initmem_default(POISON_FREE_INITMEM); 529 } 530 531 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT 532 unsigned long pgd_current[NR_CPUS]; 533 #endif 534 535 /* 536 * Align swapper_pg_dir in to 64K, allows its address to be loaded 537 * with a single LUI instruction in the TLB handlers. If we used 538 * __aligned(64K), its size would get rounded up to the alignment 539 * size, and waste space. So we place it in its own section and align 540 * it in the linker script. 541 */ 542 pgd_t swapper_pg_dir[PTRS_PER_PGD] __section(.bss..swapper_pg_dir); 543 #ifndef __PAGETABLE_PUD_FOLDED 544 pud_t invalid_pud_table[PTRS_PER_PUD] __page_aligned_bss; 545 #endif 546 #ifndef __PAGETABLE_PMD_FOLDED 547 pmd_t invalid_pmd_table[PTRS_PER_PMD] __page_aligned_bss; 548 EXPORT_SYMBOL_GPL(invalid_pmd_table); 549 #endif 550 pte_t invalid_pte_table[PTRS_PER_PTE] __page_aligned_bss; 551 EXPORT_SYMBOL(invalid_pte_table); 552