1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1994 - 2000 Ralf Baechle 7 * Copyright (C) 1999, 2000 Silicon Graphics, Inc. 8 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com 9 * Copyright (C) 2000 MIPS Technologies, Inc. All rights reserved. 10 */ 11 #include <linux/bug.h> 12 #include <linux/init.h> 13 #include <linux/export.h> 14 #include <linux/signal.h> 15 #include <linux/sched.h> 16 #include <linux/smp.h> 17 #include <linux/kernel.h> 18 #include <linux/errno.h> 19 #include <linux/string.h> 20 #include <linux/types.h> 21 #include <linux/pagemap.h> 22 #include <linux/ptrace.h> 23 #include <linux/mman.h> 24 #include <linux/mm.h> 25 #include <linux/memblock.h> 26 #include <linux/highmem.h> 27 #include <linux/swap.h> 28 #include <linux/proc_fs.h> 29 #include <linux/pfn.h> 30 #include <linux/hardirq.h> 31 #include <linux/gfp.h> 32 #include <linux/kcore.h> 33 #include <linux/initrd.h> 34 35 #include <asm/bootinfo.h> 36 #include <asm/cachectl.h> 37 #include <asm/cpu.h> 38 #include <asm/dma.h> 39 #include <asm/maar.h> 40 #include <asm/mmu_context.h> 41 #include <asm/sections.h> 42 #include <asm/pgalloc.h> 43 #include <asm/tlb.h> 44 #include <asm/fixmap.h> 45 46 /* 47 * We have up to 8 empty zeroed pages so we can map one of the right colour 48 * when needed. This is necessary only on R4000 / R4400 SC and MC versions 49 * where we have to avoid VCED / VECI exceptions for good performance at 50 * any price. Since page is never written to after the initialization we 51 * don't have to care about aliases on other CPUs. 52 */ 53 unsigned long empty_zero_page, zero_page_mask; 54 EXPORT_SYMBOL_GPL(empty_zero_page); 55 EXPORT_SYMBOL(zero_page_mask); 56 57 /* 58 * Not static inline because used by IP27 special magic initialization code 59 */ 60 void setup_zero_pages(void) 61 { 62 unsigned int order, i; 63 struct page *page; 64 65 if (cpu_has_vce) 66 order = 3; 67 else 68 order = 0; 69 70 empty_zero_page = __get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 71 if (!empty_zero_page) 72 panic("Oh boy, that early out of memory?"); 73 74 page = virt_to_page((void *)empty_zero_page); 75 split_page(page, order); 76 for (i = 0; i < (1 << order); i++, page++) 77 mark_page_reserved(page); 78 79 zero_page_mask = ((PAGE_SIZE << order) - 1) & PAGE_MASK; 80 } 81 82 static void *__kmap_pgprot(struct page *page, unsigned long addr, pgprot_t prot) 83 { 84 enum fixed_addresses idx; 85 unsigned int old_mmid; 86 unsigned long vaddr, flags, entrylo; 87 unsigned long old_ctx; 88 pte_t pte; 89 int tlbidx; 90 91 BUG_ON(Page_dcache_dirty(page)); 92 93 preempt_disable(); 94 pagefault_disable(); 95 idx = (addr >> PAGE_SHIFT) & (FIX_N_COLOURS - 1); 96 idx += in_interrupt() ? FIX_N_COLOURS : 0; 97 vaddr = __fix_to_virt(FIX_CMAP_END - idx); 98 pte = mk_pte(page, prot); 99 #if defined(CONFIG_XPA) 100 entrylo = pte_to_entrylo(pte.pte_high); 101 #elif defined(CONFIG_PHYS_ADDR_T_64BIT) && defined(CONFIG_CPU_MIPS32) 102 entrylo = pte.pte_high; 103 #else 104 entrylo = pte_to_entrylo(pte_val(pte)); 105 #endif 106 107 local_irq_save(flags); 108 old_ctx = read_c0_entryhi(); 109 write_c0_entryhi(vaddr & (PAGE_MASK << 1)); 110 write_c0_entrylo0(entrylo); 111 write_c0_entrylo1(entrylo); 112 if (cpu_has_mmid) { 113 old_mmid = read_c0_memorymapid(); 114 write_c0_memorymapid(MMID_KERNEL_WIRED); 115 } 116 #ifdef CONFIG_XPA 117 if (cpu_has_xpa) { 118 entrylo = (pte.pte_low & _PFNX_MASK); 119 writex_c0_entrylo0(entrylo); 120 writex_c0_entrylo1(entrylo); 121 } 122 #endif 123 tlbidx = num_wired_entries(); 124 write_c0_wired(tlbidx + 1); 125 write_c0_index(tlbidx); 126 mtc0_tlbw_hazard(); 127 tlb_write_indexed(); 128 tlbw_use_hazard(); 129 write_c0_entryhi(old_ctx); 130 if (cpu_has_mmid) 131 write_c0_memorymapid(old_mmid); 132 local_irq_restore(flags); 133 134 return (void*) vaddr; 135 } 136 137 void *kmap_coherent(struct page *page, unsigned long addr) 138 { 139 return __kmap_pgprot(page, addr, PAGE_KERNEL); 140 } 141 142 void *kmap_noncoherent(struct page *page, unsigned long addr) 143 { 144 return __kmap_pgprot(page, addr, PAGE_KERNEL_NC); 145 } 146 147 void kunmap_coherent(void) 148 { 149 unsigned int wired; 150 unsigned long flags, old_ctx; 151 152 local_irq_save(flags); 153 old_ctx = read_c0_entryhi(); 154 wired = num_wired_entries() - 1; 155 write_c0_wired(wired); 156 write_c0_index(wired); 157 write_c0_entryhi(UNIQUE_ENTRYHI(wired)); 158 write_c0_entrylo0(0); 159 write_c0_entrylo1(0); 160 mtc0_tlbw_hazard(); 161 tlb_write_indexed(); 162 tlbw_use_hazard(); 163 write_c0_entryhi(old_ctx); 164 local_irq_restore(flags); 165 pagefault_enable(); 166 preempt_enable(); 167 } 168 169 void copy_user_highpage(struct page *to, struct page *from, 170 unsigned long vaddr, struct vm_area_struct *vma) 171 { 172 void *vfrom, *vto; 173 174 vto = kmap_atomic(to); 175 if (cpu_has_dc_aliases && 176 page_mapcount(from) && !Page_dcache_dirty(from)) { 177 vfrom = kmap_coherent(from, vaddr); 178 copy_page(vto, vfrom); 179 kunmap_coherent(); 180 } else { 181 vfrom = kmap_atomic(from); 182 copy_page(vto, vfrom); 183 kunmap_atomic(vfrom); 184 } 185 if ((!cpu_has_ic_fills_f_dc) || 186 pages_do_alias((unsigned long)vto, vaddr & PAGE_MASK)) 187 flush_data_cache_page((unsigned long)vto); 188 kunmap_atomic(vto); 189 /* Make sure this page is cleared on other CPU's too before using it */ 190 smp_wmb(); 191 } 192 193 void copy_to_user_page(struct vm_area_struct *vma, 194 struct page *page, unsigned long vaddr, void *dst, const void *src, 195 unsigned long len) 196 { 197 if (cpu_has_dc_aliases && 198 page_mapcount(page) && !Page_dcache_dirty(page)) { 199 void *vto = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK); 200 memcpy(vto, src, len); 201 kunmap_coherent(); 202 } else { 203 memcpy(dst, src, len); 204 if (cpu_has_dc_aliases) 205 SetPageDcacheDirty(page); 206 } 207 if (vma->vm_flags & VM_EXEC) 208 flush_cache_page(vma, vaddr, page_to_pfn(page)); 209 } 210 211 void copy_from_user_page(struct vm_area_struct *vma, 212 struct page *page, unsigned long vaddr, void *dst, const void *src, 213 unsigned long len) 214 { 215 if (cpu_has_dc_aliases && 216 page_mapcount(page) && !Page_dcache_dirty(page)) { 217 void *vfrom = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK); 218 memcpy(dst, vfrom, len); 219 kunmap_coherent(); 220 } else { 221 memcpy(dst, src, len); 222 if (cpu_has_dc_aliases) 223 SetPageDcacheDirty(page); 224 } 225 } 226 EXPORT_SYMBOL_GPL(copy_from_user_page); 227 228 void __init fixrange_init(unsigned long start, unsigned long end, 229 pgd_t *pgd_base) 230 { 231 #ifdef CONFIG_HIGHMEM 232 pgd_t *pgd; 233 pud_t *pud; 234 pmd_t *pmd; 235 pte_t *pte; 236 int i, j, k; 237 unsigned long vaddr; 238 239 vaddr = start; 240 i = pgd_index(vaddr); 241 j = pud_index(vaddr); 242 k = pmd_index(vaddr); 243 pgd = pgd_base + i; 244 245 for ( ; (i < PTRS_PER_PGD) && (vaddr < end); pgd++, i++) { 246 pud = (pud_t *)pgd; 247 for ( ; (j < PTRS_PER_PUD) && (vaddr < end); pud++, j++) { 248 pmd = (pmd_t *)pud; 249 for (; (k < PTRS_PER_PMD) && (vaddr < end); pmd++, k++) { 250 if (pmd_none(*pmd)) { 251 pte = (pte_t *) memblock_alloc_low(PAGE_SIZE, 252 PAGE_SIZE); 253 if (!pte) 254 panic("%s: Failed to allocate %lu bytes align=%lx\n", 255 __func__, PAGE_SIZE, 256 PAGE_SIZE); 257 258 set_pmd(pmd, __pmd((unsigned long)pte)); 259 BUG_ON(pte != pte_offset_kernel(pmd, 0)); 260 } 261 vaddr += PMD_SIZE; 262 } 263 k = 0; 264 } 265 j = 0; 266 } 267 #endif 268 } 269 270 struct maar_walk_info { 271 struct maar_config cfg[16]; 272 unsigned int num_cfg; 273 }; 274 275 static int maar_res_walk(unsigned long start_pfn, unsigned long nr_pages, 276 void *data) 277 { 278 struct maar_walk_info *wi = data; 279 struct maar_config *cfg = &wi->cfg[wi->num_cfg]; 280 unsigned int maar_align; 281 282 /* MAAR registers hold physical addresses right shifted by 4 bits */ 283 maar_align = BIT(MIPS_MAAR_ADDR_SHIFT + 4); 284 285 /* Fill in the MAAR config entry */ 286 cfg->lower = ALIGN(PFN_PHYS(start_pfn), maar_align); 287 cfg->upper = ALIGN_DOWN(PFN_PHYS(start_pfn + nr_pages), maar_align) - 1; 288 cfg->attrs = MIPS_MAAR_S; 289 290 /* Ensure we don't overflow the cfg array */ 291 if (!WARN_ON(wi->num_cfg >= ARRAY_SIZE(wi->cfg))) 292 wi->num_cfg++; 293 294 return 0; 295 } 296 297 298 unsigned __weak platform_maar_init(unsigned num_pairs) 299 { 300 unsigned int num_configured; 301 struct maar_walk_info wi; 302 303 wi.num_cfg = 0; 304 walk_system_ram_range(0, max_pfn, &wi, maar_res_walk); 305 306 num_configured = maar_config(wi.cfg, wi.num_cfg, num_pairs); 307 if (num_configured < wi.num_cfg) 308 pr_warn("Not enough MAAR pairs (%u) for all memory regions (%u)\n", 309 num_pairs, wi.num_cfg); 310 311 return num_configured; 312 } 313 314 void maar_init(void) 315 { 316 unsigned num_maars, used, i; 317 phys_addr_t lower, upper, attr; 318 static struct { 319 struct maar_config cfgs[3]; 320 unsigned used; 321 } recorded = { { { 0 } }, 0 }; 322 323 if (!cpu_has_maar) 324 return; 325 326 /* Detect the number of MAARs */ 327 write_c0_maari(~0); 328 back_to_back_c0_hazard(); 329 num_maars = read_c0_maari() + 1; 330 331 /* MAARs should be in pairs */ 332 WARN_ON(num_maars % 2); 333 334 /* Set MAARs using values we recorded already */ 335 if (recorded.used) { 336 used = maar_config(recorded.cfgs, recorded.used, num_maars / 2); 337 BUG_ON(used != recorded.used); 338 } else { 339 /* Configure the required MAARs */ 340 used = platform_maar_init(num_maars / 2); 341 } 342 343 /* Disable any further MAARs */ 344 for (i = (used * 2); i < num_maars; i++) { 345 write_c0_maari(i); 346 back_to_back_c0_hazard(); 347 write_c0_maar(0); 348 back_to_back_c0_hazard(); 349 } 350 351 if (recorded.used) 352 return; 353 354 pr_info("MAAR configuration:\n"); 355 for (i = 0; i < num_maars; i += 2) { 356 write_c0_maari(i); 357 back_to_back_c0_hazard(); 358 upper = read_c0_maar(); 359 #ifdef CONFIG_XPA 360 upper |= (phys_addr_t)readx_c0_maar() << MIPS_MAARX_ADDR_SHIFT; 361 #endif 362 363 write_c0_maari(i + 1); 364 back_to_back_c0_hazard(); 365 lower = read_c0_maar(); 366 #ifdef CONFIG_XPA 367 lower |= (phys_addr_t)readx_c0_maar() << MIPS_MAARX_ADDR_SHIFT; 368 #endif 369 370 attr = lower & upper; 371 lower = (lower & MIPS_MAAR_ADDR) << 4; 372 upper = ((upper & MIPS_MAAR_ADDR) << 4) | 0xffff; 373 374 pr_info(" [%d]: ", i / 2); 375 if ((attr & MIPS_MAAR_V) != MIPS_MAAR_V) { 376 pr_cont("disabled\n"); 377 continue; 378 } 379 380 pr_cont("%pa-%pa", &lower, &upper); 381 382 if (attr & MIPS_MAAR_S) 383 pr_cont(" speculate"); 384 385 pr_cont("\n"); 386 387 /* Record the setup for use on secondary CPUs */ 388 if (used <= ARRAY_SIZE(recorded.cfgs)) { 389 recorded.cfgs[recorded.used].lower = lower; 390 recorded.cfgs[recorded.used].upper = upper; 391 recorded.cfgs[recorded.used].attrs = attr; 392 recorded.used++; 393 } 394 } 395 } 396 397 #ifndef CONFIG_NUMA 398 void __init paging_init(void) 399 { 400 unsigned long max_zone_pfns[MAX_NR_ZONES]; 401 402 pagetable_init(); 403 404 #ifdef CONFIG_ZONE_DMA 405 max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN; 406 #endif 407 #ifdef CONFIG_ZONE_DMA32 408 max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN; 409 #endif 410 max_zone_pfns[ZONE_NORMAL] = max_low_pfn; 411 #ifdef CONFIG_HIGHMEM 412 max_zone_pfns[ZONE_HIGHMEM] = highend_pfn; 413 414 if (cpu_has_dc_aliases && max_low_pfn != highend_pfn) { 415 printk(KERN_WARNING "This processor doesn't support highmem." 416 " %ldk highmem ignored\n", 417 (highend_pfn - max_low_pfn) << (PAGE_SHIFT - 10)); 418 max_zone_pfns[ZONE_HIGHMEM] = max_low_pfn; 419 } 420 #endif 421 422 free_area_init(max_zone_pfns); 423 } 424 425 #ifdef CONFIG_64BIT 426 static struct kcore_list kcore_kseg0; 427 #endif 428 429 static inline void __init mem_init_free_highmem(void) 430 { 431 #ifdef CONFIG_HIGHMEM 432 unsigned long tmp; 433 434 if (cpu_has_dc_aliases) 435 return; 436 437 for (tmp = highstart_pfn; tmp < highend_pfn; tmp++) { 438 struct page *page = pfn_to_page(tmp); 439 440 if (!memblock_is_memory(PFN_PHYS(tmp))) 441 SetPageReserved(page); 442 else 443 free_highmem_page(page); 444 } 445 #endif 446 } 447 448 void __init mem_init(void) 449 { 450 /* 451 * When _PFN_SHIFT is greater than PAGE_SHIFT we won't have enough PTE 452 * bits to hold a full 32b physical address on MIPS32 systems. 453 */ 454 BUILD_BUG_ON(IS_ENABLED(CONFIG_32BIT) && (_PFN_SHIFT > PAGE_SHIFT)); 455 456 #ifdef CONFIG_HIGHMEM 457 max_mapnr = highend_pfn ? highend_pfn : max_low_pfn; 458 #else 459 max_mapnr = max_low_pfn; 460 #endif 461 high_memory = (void *) __va(max_low_pfn << PAGE_SHIFT); 462 463 maar_init(); 464 memblock_free_all(); 465 setup_zero_pages(); /* Setup zeroed pages. */ 466 mem_init_free_highmem(); 467 468 #ifdef CONFIG_64BIT 469 if ((unsigned long) &_text > (unsigned long) CKSEG0) 470 /* The -4 is a hack so that user tools don't have to handle 471 the overflow. */ 472 kclist_add(&kcore_kseg0, (void *) CKSEG0, 473 0x80000000 - 4, KCORE_TEXT); 474 #endif 475 } 476 #endif /* !CONFIG_NUMA */ 477 478 void free_init_pages(const char *what, unsigned long begin, unsigned long end) 479 { 480 unsigned long pfn; 481 482 for (pfn = PFN_UP(begin); pfn < PFN_DOWN(end); pfn++) { 483 struct page *page = pfn_to_page(pfn); 484 void *addr = phys_to_virt(PFN_PHYS(pfn)); 485 486 memset(addr, POISON_FREE_INITMEM, PAGE_SIZE); 487 free_reserved_page(page); 488 } 489 printk(KERN_INFO "Freeing %s: %ldk freed\n", what, (end - begin) >> 10); 490 } 491 492 void (*free_init_pages_eva)(void *begin, void *end) = NULL; 493 494 void __weak __init prom_free_prom_memory(void) 495 { 496 /* nothing to do */ 497 } 498 499 void __ref free_initmem(void) 500 { 501 prom_free_prom_memory(); 502 /* 503 * Let the platform define a specific function to free the 504 * init section since EVA may have used any possible mapping 505 * between virtual and physical addresses. 506 */ 507 if (free_init_pages_eva) 508 free_init_pages_eva((void *)&__init_begin, (void *)&__init_end); 509 else 510 free_initmem_default(POISON_FREE_INITMEM); 511 } 512 513 #ifdef CONFIG_HAVE_SETUP_PER_CPU_AREA 514 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 515 EXPORT_SYMBOL(__per_cpu_offset); 516 517 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to) 518 { 519 return node_distance(cpu_to_node(from), cpu_to_node(to)); 520 } 521 522 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, 523 size_t align) 524 { 525 return memblock_alloc_try_nid(size, align, __pa(MAX_DMA_ADDRESS), 526 MEMBLOCK_ALLOC_ACCESSIBLE, 527 cpu_to_node(cpu)); 528 } 529 530 static void __init pcpu_fc_free(void *ptr, size_t size) 531 { 532 memblock_free_early(__pa(ptr), size); 533 } 534 535 void __init setup_per_cpu_areas(void) 536 { 537 unsigned long delta; 538 unsigned int cpu; 539 int rc; 540 541 /* 542 * Always reserve area for module percpu variables. That's 543 * what the legacy allocator did. 544 */ 545 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, 546 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, 547 pcpu_cpu_distance, 548 pcpu_fc_alloc, pcpu_fc_free); 549 if (rc < 0) 550 panic("Failed to initialize percpu areas."); 551 552 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 553 for_each_possible_cpu(cpu) 554 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 555 } 556 #endif 557 558 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT 559 unsigned long pgd_current[NR_CPUS]; 560 #endif 561 562 /* 563 * Align swapper_pg_dir in to 64K, allows its address to be loaded 564 * with a single LUI instruction in the TLB handlers. If we used 565 * __aligned(64K), its size would get rounded up to the alignment 566 * size, and waste space. So we place it in its own section and align 567 * it in the linker script. 568 */ 569 pgd_t swapper_pg_dir[PTRS_PER_PGD] __section(".bss..swapper_pg_dir"); 570 #ifndef __PAGETABLE_PUD_FOLDED 571 pud_t invalid_pud_table[PTRS_PER_PUD] __page_aligned_bss; 572 #endif 573 #ifndef __PAGETABLE_PMD_FOLDED 574 pmd_t invalid_pmd_table[PTRS_PER_PMD] __page_aligned_bss; 575 EXPORT_SYMBOL_GPL(invalid_pmd_table); 576 #endif 577 pte_t invalid_pte_table[PTRS_PER_PTE] __page_aligned_bss; 578 EXPORT_SYMBOL(invalid_pte_table); 579