1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1994 - 2000 Ralf Baechle 7 * Copyright (C) 1999, 2000 Silicon Graphics, Inc. 8 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com 9 * Copyright (C) 2000 MIPS Technologies, Inc. All rights reserved. 10 */ 11 #include <linux/bug.h> 12 #include <linux/init.h> 13 #include <linux/export.h> 14 #include <linux/signal.h> 15 #include <linux/sched.h> 16 #include <linux/smp.h> 17 #include <linux/kernel.h> 18 #include <linux/errno.h> 19 #include <linux/string.h> 20 #include <linux/types.h> 21 #include <linux/pagemap.h> 22 #include <linux/ptrace.h> 23 #include <linux/mman.h> 24 #include <linux/mm.h> 25 #include <linux/memblock.h> 26 #include <linux/highmem.h> 27 #include <linux/swap.h> 28 #include <linux/proc_fs.h> 29 #include <linux/pfn.h> 30 #include <linux/hardirq.h> 31 #include <linux/gfp.h> 32 #include <linux/kcore.h> 33 #include <linux/initrd.h> 34 35 #include <asm/bootinfo.h> 36 #include <asm/cachectl.h> 37 #include <asm/cpu.h> 38 #include <asm/dma.h> 39 #include <asm/maar.h> 40 #include <asm/mmu_context.h> 41 #include <asm/sections.h> 42 #include <asm/pgalloc.h> 43 #include <asm/tlb.h> 44 #include <asm/fixmap.h> 45 46 /* 47 * We have up to 8 empty zeroed pages so we can map one of the right colour 48 * when needed. This is necessary only on R4000 / R4400 SC and MC versions 49 * where we have to avoid VCED / VECI exceptions for good performance at 50 * any price. Since page is never written to after the initialization we 51 * don't have to care about aliases on other CPUs. 52 */ 53 unsigned long empty_zero_page, zero_page_mask; 54 EXPORT_SYMBOL_GPL(empty_zero_page); 55 EXPORT_SYMBOL(zero_page_mask); 56 57 /* 58 * Not static inline because used by IP27 special magic initialization code 59 */ 60 void setup_zero_pages(void) 61 { 62 unsigned int order, i; 63 struct page *page; 64 65 if (cpu_has_vce) 66 order = 3; 67 else 68 order = 0; 69 70 empty_zero_page = __get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 71 if (!empty_zero_page) 72 panic("Oh boy, that early out of memory?"); 73 74 page = virt_to_page((void *)empty_zero_page); 75 split_page(page, order); 76 for (i = 0; i < (1 << order); i++, page++) 77 mark_page_reserved(page); 78 79 zero_page_mask = ((PAGE_SIZE << order) - 1) & PAGE_MASK; 80 } 81 82 static void *__kmap_pgprot(struct page *page, unsigned long addr, pgprot_t prot) 83 { 84 enum fixed_addresses idx; 85 unsigned int old_mmid; 86 unsigned long vaddr, flags, entrylo; 87 unsigned long old_ctx; 88 pte_t pte; 89 int tlbidx; 90 91 BUG_ON(folio_test_dcache_dirty(page_folio(page))); 92 93 preempt_disable(); 94 pagefault_disable(); 95 idx = (addr >> PAGE_SHIFT) & (FIX_N_COLOURS - 1); 96 idx += in_interrupt() ? FIX_N_COLOURS : 0; 97 vaddr = __fix_to_virt(FIX_CMAP_END - idx); 98 pte = mk_pte(page, prot); 99 #if defined(CONFIG_XPA) 100 entrylo = pte_to_entrylo(pte.pte_high); 101 #elif defined(CONFIG_PHYS_ADDR_T_64BIT) && defined(CONFIG_CPU_MIPS32) 102 entrylo = pte.pte_high; 103 #else 104 entrylo = pte_to_entrylo(pte_val(pte)); 105 #endif 106 107 local_irq_save(flags); 108 old_ctx = read_c0_entryhi(); 109 write_c0_entryhi(vaddr & (PAGE_MASK << 1)); 110 write_c0_entrylo0(entrylo); 111 write_c0_entrylo1(entrylo); 112 if (cpu_has_mmid) { 113 old_mmid = read_c0_memorymapid(); 114 write_c0_memorymapid(MMID_KERNEL_WIRED); 115 } 116 #ifdef CONFIG_XPA 117 if (cpu_has_xpa) { 118 entrylo = (pte.pte_low & _PFNX_MASK); 119 writex_c0_entrylo0(entrylo); 120 writex_c0_entrylo1(entrylo); 121 } 122 #endif 123 tlbidx = num_wired_entries(); 124 write_c0_wired(tlbidx + 1); 125 write_c0_index(tlbidx); 126 mtc0_tlbw_hazard(); 127 tlb_write_indexed(); 128 tlbw_use_hazard(); 129 write_c0_entryhi(old_ctx); 130 if (cpu_has_mmid) 131 write_c0_memorymapid(old_mmid); 132 local_irq_restore(flags); 133 134 return (void*) vaddr; 135 } 136 137 void *kmap_coherent(struct page *page, unsigned long addr) 138 { 139 return __kmap_pgprot(page, addr, PAGE_KERNEL); 140 } 141 142 void *kmap_noncoherent(struct page *page, unsigned long addr) 143 { 144 return __kmap_pgprot(page, addr, PAGE_KERNEL_NC); 145 } 146 147 void kunmap_coherent(void) 148 { 149 unsigned int wired; 150 unsigned long flags, old_ctx; 151 152 local_irq_save(flags); 153 old_ctx = read_c0_entryhi(); 154 wired = num_wired_entries() - 1; 155 write_c0_wired(wired); 156 write_c0_index(wired); 157 write_c0_entryhi(UNIQUE_ENTRYHI(wired)); 158 write_c0_entrylo0(0); 159 write_c0_entrylo1(0); 160 mtc0_tlbw_hazard(); 161 tlb_write_indexed(); 162 tlbw_use_hazard(); 163 write_c0_entryhi(old_ctx); 164 local_irq_restore(flags); 165 pagefault_enable(); 166 preempt_enable(); 167 } 168 169 void copy_user_highpage(struct page *to, struct page *from, 170 unsigned long vaddr, struct vm_area_struct *vma) 171 { 172 struct folio *src = page_folio(from); 173 void *vfrom, *vto; 174 175 vto = kmap_atomic(to); 176 if (cpu_has_dc_aliases && 177 folio_mapped(src) && !folio_test_dcache_dirty(src)) { 178 vfrom = kmap_coherent(from, vaddr); 179 copy_page(vto, vfrom); 180 kunmap_coherent(); 181 } else { 182 vfrom = kmap_atomic(from); 183 copy_page(vto, vfrom); 184 kunmap_atomic(vfrom); 185 } 186 if ((!cpu_has_ic_fills_f_dc) || 187 pages_do_alias((unsigned long)vto, vaddr & PAGE_MASK)) 188 flush_data_cache_page((unsigned long)vto); 189 kunmap_atomic(vto); 190 /* Make sure this page is cleared on other CPU's too before using it */ 191 smp_wmb(); 192 } 193 194 void copy_to_user_page(struct vm_area_struct *vma, 195 struct page *page, unsigned long vaddr, void *dst, const void *src, 196 unsigned long len) 197 { 198 struct folio *folio = page_folio(page); 199 200 if (cpu_has_dc_aliases && 201 folio_mapped(folio) && !folio_test_dcache_dirty(folio)) { 202 void *vto = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK); 203 memcpy(vto, src, len); 204 kunmap_coherent(); 205 } else { 206 memcpy(dst, src, len); 207 if (cpu_has_dc_aliases) 208 folio_set_dcache_dirty(folio); 209 } 210 if (vma->vm_flags & VM_EXEC) 211 flush_cache_page(vma, vaddr, page_to_pfn(page)); 212 } 213 214 void copy_from_user_page(struct vm_area_struct *vma, 215 struct page *page, unsigned long vaddr, void *dst, const void *src, 216 unsigned long len) 217 { 218 struct folio *folio = page_folio(page); 219 220 if (cpu_has_dc_aliases && 221 folio_mapped(folio) && !folio_test_dcache_dirty(folio)) { 222 void *vfrom = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK); 223 memcpy(dst, vfrom, len); 224 kunmap_coherent(); 225 } else { 226 memcpy(dst, src, len); 227 if (cpu_has_dc_aliases) 228 folio_set_dcache_dirty(folio); 229 } 230 } 231 EXPORT_SYMBOL_GPL(copy_from_user_page); 232 233 void __init fixrange_init(unsigned long start, unsigned long end, 234 pgd_t *pgd_base) 235 { 236 #ifdef CONFIG_HIGHMEM 237 pgd_t *pgd; 238 pud_t *pud; 239 pmd_t *pmd; 240 pte_t *pte; 241 int i, j, k; 242 unsigned long vaddr; 243 244 vaddr = start; 245 i = pgd_index(vaddr); 246 j = pud_index(vaddr); 247 k = pmd_index(vaddr); 248 pgd = pgd_base + i; 249 250 for ( ; (i < PTRS_PER_PGD) && (vaddr < end); pgd++, i++) { 251 pud = (pud_t *)pgd; 252 for ( ; (j < PTRS_PER_PUD) && (vaddr < end); pud++, j++) { 253 pmd = (pmd_t *)pud; 254 for (; (k < PTRS_PER_PMD) && (vaddr < end); pmd++, k++) { 255 if (pmd_none(*pmd)) { 256 pte = (pte_t *) memblock_alloc_low(PAGE_SIZE, 257 PAGE_SIZE); 258 if (!pte) 259 panic("%s: Failed to allocate %lu bytes align=%lx\n", 260 __func__, PAGE_SIZE, 261 PAGE_SIZE); 262 263 set_pmd(pmd, __pmd((unsigned long)pte)); 264 BUG_ON(pte != pte_offset_kernel(pmd, 0)); 265 } 266 vaddr += PMD_SIZE; 267 } 268 k = 0; 269 } 270 j = 0; 271 } 272 #endif 273 } 274 275 struct maar_walk_info { 276 struct maar_config cfg[16]; 277 unsigned int num_cfg; 278 }; 279 280 static int maar_res_walk(unsigned long start_pfn, unsigned long nr_pages, 281 void *data) 282 { 283 struct maar_walk_info *wi = data; 284 struct maar_config *cfg = &wi->cfg[wi->num_cfg]; 285 unsigned int maar_align; 286 287 /* MAAR registers hold physical addresses right shifted by 4 bits */ 288 maar_align = BIT(MIPS_MAAR_ADDR_SHIFT + 4); 289 290 /* Fill in the MAAR config entry */ 291 cfg->lower = ALIGN(PFN_PHYS(start_pfn), maar_align); 292 cfg->upper = ALIGN_DOWN(PFN_PHYS(start_pfn + nr_pages), maar_align) - 1; 293 cfg->attrs = MIPS_MAAR_S; 294 295 /* Ensure we don't overflow the cfg array */ 296 if (!WARN_ON(wi->num_cfg >= ARRAY_SIZE(wi->cfg))) 297 wi->num_cfg++; 298 299 return 0; 300 } 301 302 303 unsigned __weak platform_maar_init(unsigned num_pairs) 304 { 305 unsigned int num_configured; 306 struct maar_walk_info wi; 307 308 wi.num_cfg = 0; 309 walk_system_ram_range(0, max_pfn, &wi, maar_res_walk); 310 311 num_configured = maar_config(wi.cfg, wi.num_cfg, num_pairs); 312 if (num_configured < wi.num_cfg) 313 pr_warn("Not enough MAAR pairs (%u) for all memory regions (%u)\n", 314 num_pairs, wi.num_cfg); 315 316 return num_configured; 317 } 318 319 void maar_init(void) 320 { 321 unsigned num_maars, used, i; 322 phys_addr_t lower, upper, attr; 323 static struct { 324 struct maar_config cfgs[3]; 325 unsigned used; 326 } recorded = { { { 0 } }, 0 }; 327 328 if (!cpu_has_maar) 329 return; 330 331 /* Detect the number of MAARs */ 332 write_c0_maari(~0); 333 back_to_back_c0_hazard(); 334 num_maars = read_c0_maari() + 1; 335 336 /* MAARs should be in pairs */ 337 WARN_ON(num_maars % 2); 338 339 /* Set MAARs using values we recorded already */ 340 if (recorded.used) { 341 used = maar_config(recorded.cfgs, recorded.used, num_maars / 2); 342 BUG_ON(used != recorded.used); 343 } else { 344 /* Configure the required MAARs */ 345 used = platform_maar_init(num_maars / 2); 346 } 347 348 /* Disable any further MAARs */ 349 for (i = (used * 2); i < num_maars; i++) { 350 write_c0_maari(i); 351 back_to_back_c0_hazard(); 352 write_c0_maar(0); 353 back_to_back_c0_hazard(); 354 } 355 356 if (recorded.used) 357 return; 358 359 pr_info("MAAR configuration:\n"); 360 for (i = 0; i < num_maars; i += 2) { 361 write_c0_maari(i); 362 back_to_back_c0_hazard(); 363 upper = read_c0_maar(); 364 #ifdef CONFIG_XPA 365 upper |= (phys_addr_t)readx_c0_maar() << MIPS_MAARX_ADDR_SHIFT; 366 #endif 367 368 write_c0_maari(i + 1); 369 back_to_back_c0_hazard(); 370 lower = read_c0_maar(); 371 #ifdef CONFIG_XPA 372 lower |= (phys_addr_t)readx_c0_maar() << MIPS_MAARX_ADDR_SHIFT; 373 #endif 374 375 attr = lower & upper; 376 lower = (lower & MIPS_MAAR_ADDR) << 4; 377 upper = ((upper & MIPS_MAAR_ADDR) << 4) | 0xffff; 378 379 pr_info(" [%d]: ", i / 2); 380 if ((attr & MIPS_MAAR_V) != MIPS_MAAR_V) { 381 pr_cont("disabled\n"); 382 continue; 383 } 384 385 pr_cont("%pa-%pa", &lower, &upper); 386 387 if (attr & MIPS_MAAR_S) 388 pr_cont(" speculate"); 389 390 pr_cont("\n"); 391 392 /* Record the setup for use on secondary CPUs */ 393 if (used <= ARRAY_SIZE(recorded.cfgs)) { 394 recorded.cfgs[recorded.used].lower = lower; 395 recorded.cfgs[recorded.used].upper = upper; 396 recorded.cfgs[recorded.used].attrs = attr; 397 recorded.used++; 398 } 399 } 400 } 401 402 #ifndef CONFIG_NUMA 403 void __init paging_init(void) 404 { 405 unsigned long max_zone_pfns[MAX_NR_ZONES]; 406 407 pagetable_init(); 408 409 #ifdef CONFIG_ZONE_DMA 410 max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN; 411 #endif 412 #ifdef CONFIG_ZONE_DMA32 413 max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN; 414 #endif 415 max_zone_pfns[ZONE_NORMAL] = max_low_pfn; 416 #ifdef CONFIG_HIGHMEM 417 max_zone_pfns[ZONE_HIGHMEM] = highend_pfn; 418 419 if (cpu_has_dc_aliases && max_low_pfn != highend_pfn) { 420 printk(KERN_WARNING "This processor doesn't support highmem." 421 " %ldk highmem ignored\n", 422 (highend_pfn - max_low_pfn) << (PAGE_SHIFT - 10)); 423 max_zone_pfns[ZONE_HIGHMEM] = max_low_pfn; 424 } 425 #endif 426 427 free_area_init(max_zone_pfns); 428 } 429 430 #ifdef CONFIG_64BIT 431 static struct kcore_list kcore_kseg0; 432 #endif 433 434 static inline void __init mem_init_free_highmem(void) 435 { 436 #ifdef CONFIG_HIGHMEM 437 unsigned long tmp; 438 439 if (cpu_has_dc_aliases) 440 return; 441 442 for (tmp = highstart_pfn; tmp < highend_pfn; tmp++) { 443 struct page *page = pfn_to_page(tmp); 444 445 if (!memblock_is_memory(PFN_PHYS(tmp))) 446 SetPageReserved(page); 447 else 448 free_highmem_page(page); 449 } 450 #endif 451 } 452 453 void __init mem_init(void) 454 { 455 /* 456 * When PFN_PTE_SHIFT is greater than PAGE_SHIFT we won't have enough PTE 457 * bits to hold a full 32b physical address on MIPS32 systems. 458 */ 459 BUILD_BUG_ON(IS_ENABLED(CONFIG_32BIT) && (PFN_PTE_SHIFT > PAGE_SHIFT)); 460 461 #ifdef CONFIG_HIGHMEM 462 max_mapnr = highend_pfn ? highend_pfn : max_low_pfn; 463 #else 464 max_mapnr = max_low_pfn; 465 #endif 466 high_memory = (void *) __va(max_low_pfn << PAGE_SHIFT); 467 468 maar_init(); 469 memblock_free_all(); 470 setup_zero_pages(); /* Setup zeroed pages. */ 471 mem_init_free_highmem(); 472 473 #ifdef CONFIG_64BIT 474 if ((unsigned long) &_text > (unsigned long) CKSEG0) 475 /* The -4 is a hack so that user tools don't have to handle 476 the overflow. */ 477 kclist_add(&kcore_kseg0, (void *) CKSEG0, 478 0x80000000 - 4, KCORE_TEXT); 479 #endif 480 } 481 #endif /* !CONFIG_NUMA */ 482 483 void free_init_pages(const char *what, unsigned long begin, unsigned long end) 484 { 485 unsigned long pfn; 486 487 for (pfn = PFN_UP(begin); pfn < PFN_DOWN(end); pfn++) { 488 struct page *page = pfn_to_page(pfn); 489 void *addr = phys_to_virt(PFN_PHYS(pfn)); 490 491 memset(addr, POISON_FREE_INITMEM, PAGE_SIZE); 492 free_reserved_page(page); 493 } 494 printk(KERN_INFO "Freeing %s: %ldk freed\n", what, (end - begin) >> 10); 495 } 496 497 void (*free_init_pages_eva)(void *begin, void *end) = NULL; 498 499 void __weak __init prom_free_prom_memory(void) 500 { 501 /* nothing to do */ 502 } 503 504 void __ref free_initmem(void) 505 { 506 prom_free_prom_memory(); 507 /* 508 * Let the platform define a specific function to free the 509 * init section since EVA may have used any possible mapping 510 * between virtual and physical addresses. 511 */ 512 if (free_init_pages_eva) 513 free_init_pages_eva((void *)&__init_begin, (void *)&__init_end); 514 else 515 free_initmem_default(POISON_FREE_INITMEM); 516 } 517 518 #ifdef CONFIG_HAVE_SETUP_PER_CPU_AREA 519 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 520 EXPORT_SYMBOL(__per_cpu_offset); 521 522 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to) 523 { 524 return node_distance(cpu_to_node(from), cpu_to_node(to)); 525 } 526 527 static int __init pcpu_cpu_to_node(int cpu) 528 { 529 return cpu_to_node(cpu); 530 } 531 532 void __init setup_per_cpu_areas(void) 533 { 534 unsigned long delta; 535 unsigned int cpu; 536 int rc; 537 538 /* 539 * Always reserve area for module percpu variables. That's 540 * what the legacy allocator did. 541 */ 542 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, 543 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, 544 pcpu_cpu_distance, 545 pcpu_cpu_to_node); 546 if (rc < 0) 547 panic("Failed to initialize percpu areas."); 548 549 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 550 for_each_possible_cpu(cpu) 551 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 552 } 553 #endif 554 555 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT 556 unsigned long pgd_current[NR_CPUS]; 557 #endif 558 559 /* 560 * Align swapper_pg_dir in to 64K, allows its address to be loaded 561 * with a single LUI instruction in the TLB handlers. If we used 562 * __aligned(64K), its size would get rounded up to the alignment 563 * size, and waste space. So we place it in its own section and align 564 * it in the linker script. 565 */ 566 pgd_t swapper_pg_dir[PTRS_PER_PGD] __section(".bss..swapper_pg_dir"); 567 #ifndef __PAGETABLE_PUD_FOLDED 568 pud_t invalid_pud_table[PTRS_PER_PUD] __page_aligned_bss; 569 #endif 570 #ifndef __PAGETABLE_PMD_FOLDED 571 pmd_t invalid_pmd_table[PTRS_PER_PMD] __page_aligned_bss; 572 EXPORT_SYMBOL_GPL(invalid_pmd_table); 573 #endif 574 pte_t invalid_pte_table[PTRS_PER_PTE] __page_aligned_bss; 575 EXPORT_SYMBOL(invalid_pte_table); 576