xref: /openbmc/linux/arch/mips/mm/dma-noncoherent.c (revision 5b394b2d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2000  Ani Joshi <ajoshi@unixbox.com>
4  * Copyright (C) 2000, 2001, 06	 Ralf Baechle <ralf@linux-mips.org>
5  * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
6  */
7 #include <linux/dma-direct.h>
8 #include <linux/dma-noncoherent.h>
9 #include <linux/dma-contiguous.h>
10 #include <linux/highmem.h>
11 
12 #include <asm/cache.h>
13 #include <asm/cpu-type.h>
14 #include <asm/dma-coherence.h>
15 #include <asm/io.h>
16 
17 #ifdef CONFIG_DMA_PERDEV_COHERENT
18 static inline int dev_is_coherent(struct device *dev)
19 {
20 	return dev->archdata.dma_coherent;
21 }
22 #else
23 static inline int dev_is_coherent(struct device *dev)
24 {
25 	switch (coherentio) {
26 	default:
27 	case IO_COHERENCE_DEFAULT:
28 		return hw_coherentio;
29 	case IO_COHERENCE_ENABLED:
30 		return 1;
31 	case IO_COHERENCE_DISABLED:
32 		return 0;
33 	}
34 }
35 #endif /* CONFIG_DMA_PERDEV_COHERENT */
36 
37 /*
38  * The affected CPUs below in 'cpu_needs_post_dma_flush()' can speculatively
39  * fill random cachelines with stale data at any time, requiring an extra
40  * flush post-DMA.
41  *
42  * Warning on the terminology - Linux calls an uncached area coherent;  MIPS
43  * terminology calls memory areas with hardware maintained coherency coherent.
44  *
45  * Note that the R14000 and R16000 should also be checked for in this condition.
46  * However this function is only called on non-I/O-coherent systems and only the
47  * R10000 and R12000 are used in such systems, the SGI IP28 Indigo² rsp.
48  * SGI IP32 aka O2.
49  */
50 static inline bool cpu_needs_post_dma_flush(struct device *dev)
51 {
52 	if (dev_is_coherent(dev))
53 		return false;
54 
55 	switch (boot_cpu_type()) {
56 	case CPU_R10000:
57 	case CPU_R12000:
58 	case CPU_BMIPS5000:
59 		return true;
60 	default:
61 		/*
62 		 * Presence of MAARs suggests that the CPU supports
63 		 * speculatively prefetching data, and therefore requires
64 		 * the post-DMA flush/invalidate.
65 		 */
66 		return cpu_has_maar;
67 	}
68 }
69 
70 void *arch_dma_alloc(struct device *dev, size_t size,
71 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
72 {
73 	void *ret;
74 
75 	ret = dma_direct_alloc(dev, size, dma_handle, gfp, attrs);
76 	if (!ret)
77 		return NULL;
78 
79 	if (!dev_is_coherent(dev) && !(attrs & DMA_ATTR_NON_CONSISTENT)) {
80 		dma_cache_wback_inv((unsigned long) ret, size);
81 		ret = (void *)UNCAC_ADDR(ret);
82 	}
83 
84 	return ret;
85 }
86 
87 void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
88 		dma_addr_t dma_addr, unsigned long attrs)
89 {
90 	if (!(attrs & DMA_ATTR_NON_CONSISTENT) && !dev_is_coherent(dev))
91 		cpu_addr = (void *)CAC_ADDR((unsigned long)cpu_addr);
92 	dma_direct_free(dev, size, cpu_addr, dma_addr, attrs);
93 }
94 
95 int arch_dma_mmap(struct device *dev, struct vm_area_struct *vma,
96 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
97 		unsigned long attrs)
98 {
99 	unsigned long user_count = vma_pages(vma);
100 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
101 	unsigned long addr = (unsigned long)cpu_addr;
102 	unsigned long off = vma->vm_pgoff;
103 	unsigned long pfn;
104 	int ret = -ENXIO;
105 
106 	if (!dev_is_coherent(dev))
107 		addr = CAC_ADDR(addr);
108 
109 	pfn = page_to_pfn(virt_to_page((void *)addr));
110 
111 	if (attrs & DMA_ATTR_WRITE_COMBINE)
112 		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
113 	else
114 		vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
115 
116 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
117 		return ret;
118 
119 	if (off < count && user_count <= (count - off)) {
120 		ret = remap_pfn_range(vma, vma->vm_start,
121 				      pfn + off,
122 				      user_count << PAGE_SHIFT,
123 				      vma->vm_page_prot);
124 	}
125 
126 	return ret;
127 }
128 
129 static inline void dma_sync_virt(void *addr, size_t size,
130 		enum dma_data_direction dir)
131 {
132 	switch (dir) {
133 	case DMA_TO_DEVICE:
134 		dma_cache_wback((unsigned long)addr, size);
135 		break;
136 
137 	case DMA_FROM_DEVICE:
138 		dma_cache_inv((unsigned long)addr, size);
139 		break;
140 
141 	case DMA_BIDIRECTIONAL:
142 		dma_cache_wback_inv((unsigned long)addr, size);
143 		break;
144 
145 	default:
146 		BUG();
147 	}
148 }
149 
150 /*
151  * A single sg entry may refer to multiple physically contiguous pages.  But
152  * we still need to process highmem pages individually.  If highmem is not
153  * configured then the bulk of this loop gets optimized out.
154  */
155 static inline void dma_sync_phys(phys_addr_t paddr, size_t size,
156 		enum dma_data_direction dir)
157 {
158 	struct page *page = pfn_to_page(paddr >> PAGE_SHIFT);
159 	unsigned long offset = paddr & ~PAGE_MASK;
160 	size_t left = size;
161 
162 	do {
163 		size_t len = left;
164 
165 		if (PageHighMem(page)) {
166 			void *addr;
167 
168 			if (offset + len > PAGE_SIZE) {
169 				if (offset >= PAGE_SIZE) {
170 					page += offset >> PAGE_SHIFT;
171 					offset &= ~PAGE_MASK;
172 				}
173 				len = PAGE_SIZE - offset;
174 			}
175 
176 			addr = kmap_atomic(page);
177 			dma_sync_virt(addr + offset, len, dir);
178 			kunmap_atomic(addr);
179 		} else
180 			dma_sync_virt(page_address(page) + offset, size, dir);
181 		offset = 0;
182 		page++;
183 		left -= len;
184 	} while (left);
185 }
186 
187 void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr,
188 		size_t size, enum dma_data_direction dir)
189 {
190 	if (!dev_is_coherent(dev))
191 		dma_sync_phys(paddr, size, dir);
192 }
193 
194 void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr,
195 		size_t size, enum dma_data_direction dir)
196 {
197 	if (cpu_needs_post_dma_flush(dev))
198 		dma_sync_phys(paddr, size, dir);
199 }
200 
201 void arch_dma_cache_sync(struct device *dev, void *vaddr, size_t size,
202 		enum dma_data_direction direction)
203 {
204 	BUG_ON(direction == DMA_NONE);
205 
206 	if (!dev_is_coherent(dev))
207 		dma_sync_virt(vaddr, size, direction);
208 }
209