xref: /openbmc/linux/arch/mips/mm/dma-noncoherent.c (revision 15e3ae36)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2000  Ani Joshi <ajoshi@unixbox.com>
4  * Copyright (C) 2000, 2001, 06	 Ralf Baechle <ralf@linux-mips.org>
5  * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
6  */
7 #include <linux/dma-direct.h>
8 #include <linux/dma-noncoherent.h>
9 #include <linux/dma-contiguous.h>
10 #include <linux/highmem.h>
11 
12 #include <asm/cache.h>
13 #include <asm/cpu-type.h>
14 #include <asm/dma-coherence.h>
15 #include <asm/io.h>
16 
17 /*
18  * The affected CPUs below in 'cpu_needs_post_dma_flush()' can speculatively
19  * fill random cachelines with stale data at any time, requiring an extra
20  * flush post-DMA.
21  *
22  * Warning on the terminology - Linux calls an uncached area coherent;  MIPS
23  * terminology calls memory areas with hardware maintained coherency coherent.
24  *
25  * Note that the R14000 and R16000 should also be checked for in this condition.
26  * However this function is only called on non-I/O-coherent systems and only the
27  * R10000 and R12000 are used in such systems, the SGI IP28 Indigo² rsp.
28  * SGI IP32 aka O2.
29  */
30 static inline bool cpu_needs_post_dma_flush(void)
31 {
32 	switch (boot_cpu_type()) {
33 	case CPU_R10000:
34 	case CPU_R12000:
35 	case CPU_BMIPS5000:
36 		return true;
37 	default:
38 		/*
39 		 * Presence of MAARs suggests that the CPU supports
40 		 * speculatively prefetching data, and therefore requires
41 		 * the post-DMA flush/invalidate.
42 		 */
43 		return cpu_has_maar;
44 	}
45 }
46 
47 void arch_dma_prep_coherent(struct page *page, size_t size)
48 {
49 	dma_cache_wback_inv((unsigned long)page_address(page), size);
50 }
51 
52 void *arch_dma_set_uncached(void *addr, size_t size)
53 {
54 	return (void *)(__pa(addr) + UNCAC_BASE);
55 }
56 
57 static inline void dma_sync_virt(void *addr, size_t size,
58 		enum dma_data_direction dir)
59 {
60 	switch (dir) {
61 	case DMA_TO_DEVICE:
62 		dma_cache_wback((unsigned long)addr, size);
63 		break;
64 
65 	case DMA_FROM_DEVICE:
66 		dma_cache_inv((unsigned long)addr, size);
67 		break;
68 
69 	case DMA_BIDIRECTIONAL:
70 		dma_cache_wback_inv((unsigned long)addr, size);
71 		break;
72 
73 	default:
74 		BUG();
75 	}
76 }
77 
78 /*
79  * A single sg entry may refer to multiple physically contiguous pages.  But
80  * we still need to process highmem pages individually.  If highmem is not
81  * configured then the bulk of this loop gets optimized out.
82  */
83 static inline void dma_sync_phys(phys_addr_t paddr, size_t size,
84 		enum dma_data_direction dir)
85 {
86 	struct page *page = pfn_to_page(paddr >> PAGE_SHIFT);
87 	unsigned long offset = paddr & ~PAGE_MASK;
88 	size_t left = size;
89 
90 	do {
91 		size_t len = left;
92 
93 		if (PageHighMem(page)) {
94 			void *addr;
95 
96 			if (offset + len > PAGE_SIZE)
97 				len = PAGE_SIZE - offset;
98 
99 			addr = kmap_atomic(page);
100 			dma_sync_virt(addr + offset, len, dir);
101 			kunmap_atomic(addr);
102 		} else
103 			dma_sync_virt(page_address(page) + offset, size, dir);
104 		offset = 0;
105 		page++;
106 		left -= len;
107 	} while (left);
108 }
109 
110 void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
111 		enum dma_data_direction dir)
112 {
113 	dma_sync_phys(paddr, size, dir);
114 }
115 
116 #ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU
117 void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
118 		enum dma_data_direction dir)
119 {
120 	if (cpu_needs_post_dma_flush())
121 		dma_sync_phys(paddr, size, dir);
122 }
123 #endif
124 
125 void arch_dma_cache_sync(struct device *dev, void *vaddr, size_t size,
126 		enum dma_data_direction direction)
127 {
128 	BUG_ON(direction == DMA_NONE);
129 
130 	dma_sync_virt(vaddr, size, direction);
131 }
132 
133 #ifdef CONFIG_DMA_PERDEV_COHERENT
134 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
135 		const struct iommu_ops *iommu, bool coherent)
136 {
137 	dev->dma_coherent = coherent;
138 }
139 #endif
140