xref: /openbmc/linux/arch/mips/mm/c-r4k.c (revision d23015c1)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1996 David S. Miller (davem@davemloft.net)
7  * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
8  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9  */
10 #include <linux/cpu_pm.h>
11 #include <linux/hardirq.h>
12 #include <linux/init.h>
13 #include <linux/highmem.h>
14 #include <linux/kernel.h>
15 #include <linux/linkage.h>
16 #include <linux/preempt.h>
17 #include <linux/sched.h>
18 #include <linux/smp.h>
19 #include <linux/mm.h>
20 #include <linux/export.h>
21 #include <linux/bitops.h>
22 
23 #include <asm/bcache.h>
24 #include <asm/bootinfo.h>
25 #include <asm/cache.h>
26 #include <asm/cacheops.h>
27 #include <asm/cpu.h>
28 #include <asm/cpu-features.h>
29 #include <asm/cpu-type.h>
30 #include <asm/io.h>
31 #include <asm/page.h>
32 #include <asm/pgtable.h>
33 #include <asm/r4kcache.h>
34 #include <asm/sections.h>
35 #include <asm/mmu_context.h>
36 #include <asm/war.h>
37 #include <asm/cacheflush.h> /* for run_uncached() */
38 #include <asm/traps.h>
39 #include <asm/dma-coherence.h>
40 #include <asm/mips-cps.h>
41 
42 /*
43  * Bits describing what cache ops an SMP callback function may perform.
44  *
45  * R4K_HIT   -	Virtual user or kernel address based cache operations. The
46  *		active_mm must be checked before using user addresses, falling
47  *		back to kmap.
48  * R4K_INDEX -	Index based cache operations.
49  */
50 
51 #define R4K_HIT		BIT(0)
52 #define R4K_INDEX	BIT(1)
53 
54 /**
55  * r4k_op_needs_ipi() - Decide if a cache op needs to be done on every core.
56  * @type:	Type of cache operations (R4K_HIT or R4K_INDEX).
57  *
58  * Decides whether a cache op needs to be performed on every core in the system.
59  * This may change depending on the @type of cache operation, as well as the set
60  * of online CPUs, so preemption should be disabled by the caller to prevent CPU
61  * hotplug from changing the result.
62  *
63  * Returns:	1 if the cache operation @type should be done on every core in
64  *		the system.
65  *		0 if the cache operation @type is globalized and only needs to
66  *		be performed on a simple CPU.
67  */
68 static inline bool r4k_op_needs_ipi(unsigned int type)
69 {
70 	/* The MIPS Coherence Manager (CM) globalizes address-based cache ops */
71 	if (type == R4K_HIT && mips_cm_present())
72 		return false;
73 
74 	/*
75 	 * Hardware doesn't globalize the required cache ops, so SMP calls may
76 	 * be needed, but only if there are foreign CPUs (non-siblings with
77 	 * separate caches).
78 	 */
79 	/* cpu_foreign_map[] undeclared when !CONFIG_SMP */
80 #ifdef CONFIG_SMP
81 	return !cpumask_empty(&cpu_foreign_map[0]);
82 #else
83 	return false;
84 #endif
85 }
86 
87 /*
88  * Special Variant of smp_call_function for use by cache functions:
89  *
90  *  o No return value
91  *  o collapses to normal function call on UP kernels
92  *  o collapses to normal function call on systems with a single shared
93  *    primary cache.
94  *  o doesn't disable interrupts on the local CPU
95  */
96 static inline void r4k_on_each_cpu(unsigned int type,
97 				   void (*func)(void *info), void *info)
98 {
99 	preempt_disable();
100 	if (r4k_op_needs_ipi(type))
101 		smp_call_function_many(&cpu_foreign_map[smp_processor_id()],
102 				       func, info, 1);
103 	func(info);
104 	preempt_enable();
105 }
106 
107 /*
108  * Must die.
109  */
110 static unsigned long icache_size __read_mostly;
111 static unsigned long dcache_size __read_mostly;
112 static unsigned long vcache_size __read_mostly;
113 static unsigned long scache_size __read_mostly;
114 
115 /*
116  * Dummy cache handling routines for machines without boardcaches
117  */
118 static void cache_noop(void) {}
119 
120 static struct bcache_ops no_sc_ops = {
121 	.bc_enable = (void *)cache_noop,
122 	.bc_disable = (void *)cache_noop,
123 	.bc_wback_inv = (void *)cache_noop,
124 	.bc_inv = (void *)cache_noop
125 };
126 
127 struct bcache_ops *bcops = &no_sc_ops;
128 
129 #define cpu_is_r4600_v1_x()	((read_c0_prid() & 0xfffffff0) == 0x00002010)
130 #define cpu_is_r4600_v2_x()	((read_c0_prid() & 0xfffffff0) == 0x00002020)
131 
132 #define R4600_HIT_CACHEOP_WAR_IMPL					\
133 do {									\
134 	if (R4600_V2_HIT_CACHEOP_WAR && cpu_is_r4600_v2_x())		\
135 		*(volatile unsigned long *)CKSEG1;			\
136 	if (R4600_V1_HIT_CACHEOP_WAR)					\
137 		__asm__ __volatile__("nop;nop;nop;nop");		\
138 } while (0)
139 
140 static void (*r4k_blast_dcache_page)(unsigned long addr);
141 
142 static inline void r4k_blast_dcache_page_dc32(unsigned long addr)
143 {
144 	R4600_HIT_CACHEOP_WAR_IMPL;
145 	blast_dcache32_page(addr);
146 }
147 
148 static inline void r4k_blast_dcache_page_dc64(unsigned long addr)
149 {
150 	blast_dcache64_page(addr);
151 }
152 
153 static inline void r4k_blast_dcache_page_dc128(unsigned long addr)
154 {
155 	blast_dcache128_page(addr);
156 }
157 
158 static void r4k_blast_dcache_page_setup(void)
159 {
160 	unsigned long  dc_lsize = cpu_dcache_line_size();
161 
162 	switch (dc_lsize) {
163 	case 0:
164 		r4k_blast_dcache_page = (void *)cache_noop;
165 		break;
166 	case 16:
167 		r4k_blast_dcache_page = blast_dcache16_page;
168 		break;
169 	case 32:
170 		r4k_blast_dcache_page = r4k_blast_dcache_page_dc32;
171 		break;
172 	case 64:
173 		r4k_blast_dcache_page = r4k_blast_dcache_page_dc64;
174 		break;
175 	case 128:
176 		r4k_blast_dcache_page = r4k_blast_dcache_page_dc128;
177 		break;
178 	default:
179 		break;
180 	}
181 }
182 
183 #ifndef CONFIG_EVA
184 #define r4k_blast_dcache_user_page  r4k_blast_dcache_page
185 #else
186 
187 static void (*r4k_blast_dcache_user_page)(unsigned long addr);
188 
189 static void r4k_blast_dcache_user_page_setup(void)
190 {
191 	unsigned long  dc_lsize = cpu_dcache_line_size();
192 
193 	if (dc_lsize == 0)
194 		r4k_blast_dcache_user_page = (void *)cache_noop;
195 	else if (dc_lsize == 16)
196 		r4k_blast_dcache_user_page = blast_dcache16_user_page;
197 	else if (dc_lsize == 32)
198 		r4k_blast_dcache_user_page = blast_dcache32_user_page;
199 	else if (dc_lsize == 64)
200 		r4k_blast_dcache_user_page = blast_dcache64_user_page;
201 }
202 
203 #endif
204 
205 static void (* r4k_blast_dcache_page_indexed)(unsigned long addr);
206 
207 static void r4k_blast_dcache_page_indexed_setup(void)
208 {
209 	unsigned long dc_lsize = cpu_dcache_line_size();
210 
211 	if (dc_lsize == 0)
212 		r4k_blast_dcache_page_indexed = (void *)cache_noop;
213 	else if (dc_lsize == 16)
214 		r4k_blast_dcache_page_indexed = blast_dcache16_page_indexed;
215 	else if (dc_lsize == 32)
216 		r4k_blast_dcache_page_indexed = blast_dcache32_page_indexed;
217 	else if (dc_lsize == 64)
218 		r4k_blast_dcache_page_indexed = blast_dcache64_page_indexed;
219 	else if (dc_lsize == 128)
220 		r4k_blast_dcache_page_indexed = blast_dcache128_page_indexed;
221 }
222 
223 void (* r4k_blast_dcache)(void);
224 EXPORT_SYMBOL(r4k_blast_dcache);
225 
226 static void r4k_blast_dcache_setup(void)
227 {
228 	unsigned long dc_lsize = cpu_dcache_line_size();
229 
230 	if (dc_lsize == 0)
231 		r4k_blast_dcache = (void *)cache_noop;
232 	else if (dc_lsize == 16)
233 		r4k_blast_dcache = blast_dcache16;
234 	else if (dc_lsize == 32)
235 		r4k_blast_dcache = blast_dcache32;
236 	else if (dc_lsize == 64)
237 		r4k_blast_dcache = blast_dcache64;
238 	else if (dc_lsize == 128)
239 		r4k_blast_dcache = blast_dcache128;
240 }
241 
242 /* force code alignment (used for TX49XX_ICACHE_INDEX_INV_WAR) */
243 #define JUMP_TO_ALIGN(order) \
244 	__asm__ __volatile__( \
245 		"b\t1f\n\t" \
246 		".align\t" #order "\n\t" \
247 		"1:\n\t" \
248 		)
249 #define CACHE32_UNROLL32_ALIGN	JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
250 #define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11)
251 
252 static inline void blast_r4600_v1_icache32(void)
253 {
254 	unsigned long flags;
255 
256 	local_irq_save(flags);
257 	blast_icache32();
258 	local_irq_restore(flags);
259 }
260 
261 static inline void tx49_blast_icache32(void)
262 {
263 	unsigned long start = INDEX_BASE;
264 	unsigned long end = start + current_cpu_data.icache.waysize;
265 	unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
266 	unsigned long ws_end = current_cpu_data.icache.ways <<
267 			       current_cpu_data.icache.waybit;
268 	unsigned long ws, addr;
269 
270 	CACHE32_UNROLL32_ALIGN2;
271 	/* I'm in even chunk.  blast odd chunks */
272 	for (ws = 0; ws < ws_end; ws += ws_inc)
273 		for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
274 			cache_unroll(32, kernel_cache, Index_Invalidate_I,
275 				     addr | ws, 32);
276 	CACHE32_UNROLL32_ALIGN;
277 	/* I'm in odd chunk.  blast even chunks */
278 	for (ws = 0; ws < ws_end; ws += ws_inc)
279 		for (addr = start; addr < end; addr += 0x400 * 2)
280 			cache_unroll(32, kernel_cache, Index_Invalidate_I,
281 				     addr | ws, 32);
282 }
283 
284 static inline void blast_icache32_r4600_v1_page_indexed(unsigned long page)
285 {
286 	unsigned long flags;
287 
288 	local_irq_save(flags);
289 	blast_icache32_page_indexed(page);
290 	local_irq_restore(flags);
291 }
292 
293 static inline void tx49_blast_icache32_page_indexed(unsigned long page)
294 {
295 	unsigned long indexmask = current_cpu_data.icache.waysize - 1;
296 	unsigned long start = INDEX_BASE + (page & indexmask);
297 	unsigned long end = start + PAGE_SIZE;
298 	unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
299 	unsigned long ws_end = current_cpu_data.icache.ways <<
300 			       current_cpu_data.icache.waybit;
301 	unsigned long ws, addr;
302 
303 	CACHE32_UNROLL32_ALIGN2;
304 	/* I'm in even chunk.  blast odd chunks */
305 	for (ws = 0; ws < ws_end; ws += ws_inc)
306 		for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
307 			cache_unroll(32, kernel_cache, Index_Invalidate_I,
308 				     addr | ws, 32);
309 	CACHE32_UNROLL32_ALIGN;
310 	/* I'm in odd chunk.  blast even chunks */
311 	for (ws = 0; ws < ws_end; ws += ws_inc)
312 		for (addr = start; addr < end; addr += 0x400 * 2)
313 			cache_unroll(32, kernel_cache, Index_Invalidate_I,
314 				     addr | ws, 32);
315 }
316 
317 static void (* r4k_blast_icache_page)(unsigned long addr);
318 
319 static void r4k_blast_icache_page_setup(void)
320 {
321 	unsigned long ic_lsize = cpu_icache_line_size();
322 
323 	if (ic_lsize == 0)
324 		r4k_blast_icache_page = (void *)cache_noop;
325 	else if (ic_lsize == 16)
326 		r4k_blast_icache_page = blast_icache16_page;
327 	else if (ic_lsize == 32 && current_cpu_type() == CPU_LOONGSON2EF)
328 		r4k_blast_icache_page = loongson2_blast_icache32_page;
329 	else if (ic_lsize == 32)
330 		r4k_blast_icache_page = blast_icache32_page;
331 	else if (ic_lsize == 64)
332 		r4k_blast_icache_page = blast_icache64_page;
333 	else if (ic_lsize == 128)
334 		r4k_blast_icache_page = blast_icache128_page;
335 }
336 
337 #ifndef CONFIG_EVA
338 #define r4k_blast_icache_user_page  r4k_blast_icache_page
339 #else
340 
341 static void (*r4k_blast_icache_user_page)(unsigned long addr);
342 
343 static void r4k_blast_icache_user_page_setup(void)
344 {
345 	unsigned long ic_lsize = cpu_icache_line_size();
346 
347 	if (ic_lsize == 0)
348 		r4k_blast_icache_user_page = (void *)cache_noop;
349 	else if (ic_lsize == 16)
350 		r4k_blast_icache_user_page = blast_icache16_user_page;
351 	else if (ic_lsize == 32)
352 		r4k_blast_icache_user_page = blast_icache32_user_page;
353 	else if (ic_lsize == 64)
354 		r4k_blast_icache_user_page = blast_icache64_user_page;
355 }
356 
357 #endif
358 
359 static void (* r4k_blast_icache_page_indexed)(unsigned long addr);
360 
361 static void r4k_blast_icache_page_indexed_setup(void)
362 {
363 	unsigned long ic_lsize = cpu_icache_line_size();
364 
365 	if (ic_lsize == 0)
366 		r4k_blast_icache_page_indexed = (void *)cache_noop;
367 	else if (ic_lsize == 16)
368 		r4k_blast_icache_page_indexed = blast_icache16_page_indexed;
369 	else if (ic_lsize == 32) {
370 		if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
371 			r4k_blast_icache_page_indexed =
372 				blast_icache32_r4600_v1_page_indexed;
373 		else if (TX49XX_ICACHE_INDEX_INV_WAR)
374 			r4k_blast_icache_page_indexed =
375 				tx49_blast_icache32_page_indexed;
376 		else if (current_cpu_type() == CPU_LOONGSON2EF)
377 			r4k_blast_icache_page_indexed =
378 				loongson2_blast_icache32_page_indexed;
379 		else
380 			r4k_blast_icache_page_indexed =
381 				blast_icache32_page_indexed;
382 	} else if (ic_lsize == 64)
383 		r4k_blast_icache_page_indexed = blast_icache64_page_indexed;
384 }
385 
386 void (* r4k_blast_icache)(void);
387 EXPORT_SYMBOL(r4k_blast_icache);
388 
389 static void r4k_blast_icache_setup(void)
390 {
391 	unsigned long ic_lsize = cpu_icache_line_size();
392 
393 	if (ic_lsize == 0)
394 		r4k_blast_icache = (void *)cache_noop;
395 	else if (ic_lsize == 16)
396 		r4k_blast_icache = blast_icache16;
397 	else if (ic_lsize == 32) {
398 		if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
399 			r4k_blast_icache = blast_r4600_v1_icache32;
400 		else if (TX49XX_ICACHE_INDEX_INV_WAR)
401 			r4k_blast_icache = tx49_blast_icache32;
402 		else if (current_cpu_type() == CPU_LOONGSON2EF)
403 			r4k_blast_icache = loongson2_blast_icache32;
404 		else
405 			r4k_blast_icache = blast_icache32;
406 	} else if (ic_lsize == 64)
407 		r4k_blast_icache = blast_icache64;
408 	else if (ic_lsize == 128)
409 		r4k_blast_icache = blast_icache128;
410 }
411 
412 static void (* r4k_blast_scache_page)(unsigned long addr);
413 
414 static void r4k_blast_scache_page_setup(void)
415 {
416 	unsigned long sc_lsize = cpu_scache_line_size();
417 
418 	if (scache_size == 0)
419 		r4k_blast_scache_page = (void *)cache_noop;
420 	else if (sc_lsize == 16)
421 		r4k_blast_scache_page = blast_scache16_page;
422 	else if (sc_lsize == 32)
423 		r4k_blast_scache_page = blast_scache32_page;
424 	else if (sc_lsize == 64)
425 		r4k_blast_scache_page = blast_scache64_page;
426 	else if (sc_lsize == 128)
427 		r4k_blast_scache_page = blast_scache128_page;
428 }
429 
430 static void (* r4k_blast_scache_page_indexed)(unsigned long addr);
431 
432 static void r4k_blast_scache_page_indexed_setup(void)
433 {
434 	unsigned long sc_lsize = cpu_scache_line_size();
435 
436 	if (scache_size == 0)
437 		r4k_blast_scache_page_indexed = (void *)cache_noop;
438 	else if (sc_lsize == 16)
439 		r4k_blast_scache_page_indexed = blast_scache16_page_indexed;
440 	else if (sc_lsize == 32)
441 		r4k_blast_scache_page_indexed = blast_scache32_page_indexed;
442 	else if (sc_lsize == 64)
443 		r4k_blast_scache_page_indexed = blast_scache64_page_indexed;
444 	else if (sc_lsize == 128)
445 		r4k_blast_scache_page_indexed = blast_scache128_page_indexed;
446 }
447 
448 static void (* r4k_blast_scache)(void);
449 
450 static void r4k_blast_scache_setup(void)
451 {
452 	unsigned long sc_lsize = cpu_scache_line_size();
453 
454 	if (scache_size == 0)
455 		r4k_blast_scache = (void *)cache_noop;
456 	else if (sc_lsize == 16)
457 		r4k_blast_scache = blast_scache16;
458 	else if (sc_lsize == 32)
459 		r4k_blast_scache = blast_scache32;
460 	else if (sc_lsize == 64)
461 		r4k_blast_scache = blast_scache64;
462 	else if (sc_lsize == 128)
463 		r4k_blast_scache = blast_scache128;
464 }
465 
466 static void (*r4k_blast_scache_node)(long node);
467 
468 static void r4k_blast_scache_node_setup(void)
469 {
470 	unsigned long sc_lsize = cpu_scache_line_size();
471 
472 	if (current_cpu_type() != CPU_LOONGSON64)
473 		r4k_blast_scache_node = (void *)cache_noop;
474 	else if (sc_lsize == 16)
475 		r4k_blast_scache_node = blast_scache16_node;
476 	else if (sc_lsize == 32)
477 		r4k_blast_scache_node = blast_scache32_node;
478 	else if (sc_lsize == 64)
479 		r4k_blast_scache_node = blast_scache64_node;
480 	else if (sc_lsize == 128)
481 		r4k_blast_scache_node = blast_scache128_node;
482 }
483 
484 static inline void local_r4k___flush_cache_all(void * args)
485 {
486 	switch (current_cpu_type()) {
487 	case CPU_LOONGSON2EF:
488 	case CPU_R4000SC:
489 	case CPU_R4000MC:
490 	case CPU_R4400SC:
491 	case CPU_R4400MC:
492 	case CPU_R10000:
493 	case CPU_R12000:
494 	case CPU_R14000:
495 	case CPU_R16000:
496 		/*
497 		 * These caches are inclusive caches, that is, if something
498 		 * is not cached in the S-cache, we know it also won't be
499 		 * in one of the primary caches.
500 		 */
501 		r4k_blast_scache();
502 		break;
503 
504 	case CPU_LOONGSON64:
505 		/* Use get_ebase_cpunum() for both NUMA=y/n */
506 		r4k_blast_scache_node(get_ebase_cpunum() >> 2);
507 		break;
508 
509 	case CPU_BMIPS5000:
510 		r4k_blast_scache();
511 		__sync();
512 		break;
513 
514 	default:
515 		r4k_blast_dcache();
516 		r4k_blast_icache();
517 		break;
518 	}
519 }
520 
521 static void r4k___flush_cache_all(void)
522 {
523 	r4k_on_each_cpu(R4K_INDEX, local_r4k___flush_cache_all, NULL);
524 }
525 
526 /**
527  * has_valid_asid() - Determine if an mm already has an ASID.
528  * @mm:		Memory map.
529  * @type:	R4K_HIT or R4K_INDEX, type of cache op.
530  *
531  * Determines whether @mm already has an ASID on any of the CPUs which cache ops
532  * of type @type within an r4k_on_each_cpu() call will affect. If
533  * r4k_on_each_cpu() does an SMP call to a single VPE in each core, then the
534  * scope of the operation is confined to sibling CPUs, otherwise all online CPUs
535  * will need to be checked.
536  *
537  * Must be called in non-preemptive context.
538  *
539  * Returns:	1 if the CPUs affected by @type cache ops have an ASID for @mm.
540  *		0 otherwise.
541  */
542 static inline int has_valid_asid(const struct mm_struct *mm, unsigned int type)
543 {
544 	unsigned int i;
545 	const cpumask_t *mask = cpu_present_mask;
546 
547 	if (cpu_has_mmid)
548 		return cpu_context(0, mm) != 0;
549 
550 	/* cpu_sibling_map[] undeclared when !CONFIG_SMP */
551 #ifdef CONFIG_SMP
552 	/*
553 	 * If r4k_on_each_cpu does SMP calls, it does them to a single VPE in
554 	 * each foreign core, so we only need to worry about siblings.
555 	 * Otherwise we need to worry about all present CPUs.
556 	 */
557 	if (r4k_op_needs_ipi(type))
558 		mask = &cpu_sibling_map[smp_processor_id()];
559 #endif
560 	for_each_cpu(i, mask)
561 		if (cpu_context(i, mm))
562 			return 1;
563 	return 0;
564 }
565 
566 static void r4k__flush_cache_vmap(void)
567 {
568 	r4k_blast_dcache();
569 }
570 
571 static void r4k__flush_cache_vunmap(void)
572 {
573 	r4k_blast_dcache();
574 }
575 
576 /*
577  * Note: flush_tlb_range() assumes flush_cache_range() sufficiently flushes
578  * whole caches when vma is executable.
579  */
580 static inline void local_r4k_flush_cache_range(void * args)
581 {
582 	struct vm_area_struct *vma = args;
583 	int exec = vma->vm_flags & VM_EXEC;
584 
585 	if (!has_valid_asid(vma->vm_mm, R4K_INDEX))
586 		return;
587 
588 	/*
589 	 * If dcache can alias, we must blast it since mapping is changing.
590 	 * If executable, we must ensure any dirty lines are written back far
591 	 * enough to be visible to icache.
592 	 */
593 	if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc))
594 		r4k_blast_dcache();
595 	/* If executable, blast stale lines from icache */
596 	if (exec)
597 		r4k_blast_icache();
598 }
599 
600 static void r4k_flush_cache_range(struct vm_area_struct *vma,
601 	unsigned long start, unsigned long end)
602 {
603 	int exec = vma->vm_flags & VM_EXEC;
604 
605 	if (cpu_has_dc_aliases || exec)
606 		r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_range, vma);
607 }
608 
609 static inline void local_r4k_flush_cache_mm(void * args)
610 {
611 	struct mm_struct *mm = args;
612 
613 	if (!has_valid_asid(mm, R4K_INDEX))
614 		return;
615 
616 	/*
617 	 * Kludge alert.  For obscure reasons R4000SC and R4400SC go nuts if we
618 	 * only flush the primary caches but R1x000 behave sane ...
619 	 * R4000SC and R4400SC indexed S-cache ops also invalidate primary
620 	 * caches, so we can bail out early.
621 	 */
622 	if (current_cpu_type() == CPU_R4000SC ||
623 	    current_cpu_type() == CPU_R4000MC ||
624 	    current_cpu_type() == CPU_R4400SC ||
625 	    current_cpu_type() == CPU_R4400MC) {
626 		r4k_blast_scache();
627 		return;
628 	}
629 
630 	r4k_blast_dcache();
631 }
632 
633 static void r4k_flush_cache_mm(struct mm_struct *mm)
634 {
635 	if (!cpu_has_dc_aliases)
636 		return;
637 
638 	r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_mm, mm);
639 }
640 
641 struct flush_cache_page_args {
642 	struct vm_area_struct *vma;
643 	unsigned long addr;
644 	unsigned long pfn;
645 };
646 
647 static inline void local_r4k_flush_cache_page(void *args)
648 {
649 	struct flush_cache_page_args *fcp_args = args;
650 	struct vm_area_struct *vma = fcp_args->vma;
651 	unsigned long addr = fcp_args->addr;
652 	struct page *page = pfn_to_page(fcp_args->pfn);
653 	int exec = vma->vm_flags & VM_EXEC;
654 	struct mm_struct *mm = vma->vm_mm;
655 	int map_coherent = 0;
656 	pgd_t *pgdp;
657 	p4d_t *p4dp;
658 	pud_t *pudp;
659 	pmd_t *pmdp;
660 	pte_t *ptep;
661 	void *vaddr;
662 
663 	/*
664 	 * If owns no valid ASID yet, cannot possibly have gotten
665 	 * this page into the cache.
666 	 */
667 	if (!has_valid_asid(mm, R4K_HIT))
668 		return;
669 
670 	addr &= PAGE_MASK;
671 	pgdp = pgd_offset(mm, addr);
672 	p4dp = p4d_offset(pgdp, addr);
673 	pudp = pud_offset(p4dp, addr);
674 	pmdp = pmd_offset(pudp, addr);
675 	ptep = pte_offset(pmdp, addr);
676 
677 	/*
678 	 * If the page isn't marked valid, the page cannot possibly be
679 	 * in the cache.
680 	 */
681 	if (!(pte_present(*ptep)))
682 		return;
683 
684 	if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID))
685 		vaddr = NULL;
686 	else {
687 		/*
688 		 * Use kmap_coherent or kmap_atomic to do flushes for
689 		 * another ASID than the current one.
690 		 */
691 		map_coherent = (cpu_has_dc_aliases &&
692 				page_mapcount(page) &&
693 				!Page_dcache_dirty(page));
694 		if (map_coherent)
695 			vaddr = kmap_coherent(page, addr);
696 		else
697 			vaddr = kmap_atomic(page);
698 		addr = (unsigned long)vaddr;
699 	}
700 
701 	if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
702 		vaddr ? r4k_blast_dcache_page(addr) :
703 			r4k_blast_dcache_user_page(addr);
704 		if (exec && !cpu_icache_snoops_remote_store)
705 			r4k_blast_scache_page(addr);
706 	}
707 	if (exec) {
708 		if (vaddr && cpu_has_vtag_icache && mm == current->active_mm) {
709 			drop_mmu_context(mm);
710 		} else
711 			vaddr ? r4k_blast_icache_page(addr) :
712 				r4k_blast_icache_user_page(addr);
713 	}
714 
715 	if (vaddr) {
716 		if (map_coherent)
717 			kunmap_coherent();
718 		else
719 			kunmap_atomic(vaddr);
720 	}
721 }
722 
723 static void r4k_flush_cache_page(struct vm_area_struct *vma,
724 	unsigned long addr, unsigned long pfn)
725 {
726 	struct flush_cache_page_args args;
727 
728 	args.vma = vma;
729 	args.addr = addr;
730 	args.pfn = pfn;
731 
732 	r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_page, &args);
733 }
734 
735 static inline void local_r4k_flush_data_cache_page(void * addr)
736 {
737 	r4k_blast_dcache_page((unsigned long) addr);
738 }
739 
740 static void r4k_flush_data_cache_page(unsigned long addr)
741 {
742 	if (in_atomic())
743 		local_r4k_flush_data_cache_page((void *)addr);
744 	else
745 		r4k_on_each_cpu(R4K_HIT, local_r4k_flush_data_cache_page,
746 				(void *) addr);
747 }
748 
749 struct flush_icache_range_args {
750 	unsigned long start;
751 	unsigned long end;
752 	unsigned int type;
753 	bool user;
754 };
755 
756 static inline void __local_r4k_flush_icache_range(unsigned long start,
757 						  unsigned long end,
758 						  unsigned int type,
759 						  bool user)
760 {
761 	if (!cpu_has_ic_fills_f_dc) {
762 		if (type == R4K_INDEX ||
763 		    (type & R4K_INDEX && end - start >= dcache_size)) {
764 			r4k_blast_dcache();
765 		} else {
766 			R4600_HIT_CACHEOP_WAR_IMPL;
767 			if (user)
768 				protected_blast_dcache_range(start, end);
769 			else
770 				blast_dcache_range(start, end);
771 		}
772 	}
773 
774 	if (type == R4K_INDEX ||
775 	    (type & R4K_INDEX && end - start > icache_size))
776 		r4k_blast_icache();
777 	else {
778 		switch (boot_cpu_type()) {
779 		case CPU_LOONGSON2EF:
780 			protected_loongson2_blast_icache_range(start, end);
781 			break;
782 
783 		default:
784 			if (user)
785 				protected_blast_icache_range(start, end);
786 			else
787 				blast_icache_range(start, end);
788 			break;
789 		}
790 	}
791 }
792 
793 static inline void local_r4k_flush_icache_range(unsigned long start,
794 						unsigned long end)
795 {
796 	__local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, false);
797 }
798 
799 static inline void local_r4k_flush_icache_user_range(unsigned long start,
800 						     unsigned long end)
801 {
802 	__local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, true);
803 }
804 
805 static inline void local_r4k_flush_icache_range_ipi(void *args)
806 {
807 	struct flush_icache_range_args *fir_args = args;
808 	unsigned long start = fir_args->start;
809 	unsigned long end = fir_args->end;
810 	unsigned int type = fir_args->type;
811 	bool user = fir_args->user;
812 
813 	__local_r4k_flush_icache_range(start, end, type, user);
814 }
815 
816 static void __r4k_flush_icache_range(unsigned long start, unsigned long end,
817 				     bool user)
818 {
819 	struct flush_icache_range_args args;
820 	unsigned long size, cache_size;
821 
822 	args.start = start;
823 	args.end = end;
824 	args.type = R4K_HIT | R4K_INDEX;
825 	args.user = user;
826 
827 	/*
828 	 * Indexed cache ops require an SMP call.
829 	 * Consider if that can or should be avoided.
830 	 */
831 	preempt_disable();
832 	if (r4k_op_needs_ipi(R4K_INDEX) && !r4k_op_needs_ipi(R4K_HIT)) {
833 		/*
834 		 * If address-based cache ops don't require an SMP call, then
835 		 * use them exclusively for small flushes.
836 		 */
837 		size = end - start;
838 		cache_size = icache_size;
839 		if (!cpu_has_ic_fills_f_dc) {
840 			size *= 2;
841 			cache_size += dcache_size;
842 		}
843 		if (size <= cache_size)
844 			args.type &= ~R4K_INDEX;
845 	}
846 	r4k_on_each_cpu(args.type, local_r4k_flush_icache_range_ipi, &args);
847 	preempt_enable();
848 	instruction_hazard();
849 }
850 
851 static void r4k_flush_icache_range(unsigned long start, unsigned long end)
852 {
853 	return __r4k_flush_icache_range(start, end, false);
854 }
855 
856 static void r4k_flush_icache_user_range(unsigned long start, unsigned long end)
857 {
858 	return __r4k_flush_icache_range(start, end, true);
859 }
860 
861 #ifdef CONFIG_DMA_NONCOHERENT
862 
863 static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size)
864 {
865 	/* Catch bad driver code */
866 	if (WARN_ON(size == 0))
867 		return;
868 
869 	preempt_disable();
870 	if (cpu_has_inclusive_pcaches) {
871 		if (size >= scache_size) {
872 			if (current_cpu_type() != CPU_LOONGSON64)
873 				r4k_blast_scache();
874 			else
875 				r4k_blast_scache_node(pa_to_nid(addr));
876 		} else {
877 			blast_scache_range(addr, addr + size);
878 		}
879 		preempt_enable();
880 		__sync();
881 		return;
882 	}
883 
884 	/*
885 	 * Either no secondary cache or the available caches don't have the
886 	 * subset property so we have to flush the primary caches
887 	 * explicitly.
888 	 * If we would need IPI to perform an INDEX-type operation, then
889 	 * we have to use the HIT-type alternative as IPI cannot be used
890 	 * here due to interrupts possibly being disabled.
891 	 */
892 	if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
893 		r4k_blast_dcache();
894 	} else {
895 		R4600_HIT_CACHEOP_WAR_IMPL;
896 		blast_dcache_range(addr, addr + size);
897 	}
898 	preempt_enable();
899 
900 	bc_wback_inv(addr, size);
901 	__sync();
902 }
903 
904 static void r4k_dma_cache_inv(unsigned long addr, unsigned long size)
905 {
906 	/* Catch bad driver code */
907 	if (WARN_ON(size == 0))
908 		return;
909 
910 	preempt_disable();
911 	if (cpu_has_inclusive_pcaches) {
912 		if (size >= scache_size) {
913 			if (current_cpu_type() != CPU_LOONGSON64)
914 				r4k_blast_scache();
915 			else
916 				r4k_blast_scache_node(pa_to_nid(addr));
917 		} else {
918 			/*
919 			 * There is no clearly documented alignment requirement
920 			 * for the cache instruction on MIPS processors and
921 			 * some processors, among them the RM5200 and RM7000
922 			 * QED processors will throw an address error for cache
923 			 * hit ops with insufficient alignment.	 Solved by
924 			 * aligning the address to cache line size.
925 			 */
926 			blast_inv_scache_range(addr, addr + size);
927 		}
928 		preempt_enable();
929 		__sync();
930 		return;
931 	}
932 
933 	if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
934 		r4k_blast_dcache();
935 	} else {
936 		R4600_HIT_CACHEOP_WAR_IMPL;
937 		blast_inv_dcache_range(addr, addr + size);
938 	}
939 	preempt_enable();
940 
941 	bc_inv(addr, size);
942 	__sync();
943 }
944 #endif /* CONFIG_DMA_NONCOHERENT */
945 
946 static void r4k_flush_icache_all(void)
947 {
948 	if (cpu_has_vtag_icache)
949 		r4k_blast_icache();
950 }
951 
952 struct flush_kernel_vmap_range_args {
953 	unsigned long	vaddr;
954 	int		size;
955 };
956 
957 static inline void local_r4k_flush_kernel_vmap_range_index(void *args)
958 {
959 	/*
960 	 * Aliases only affect the primary caches so don't bother with
961 	 * S-caches or T-caches.
962 	 */
963 	r4k_blast_dcache();
964 }
965 
966 static inline void local_r4k_flush_kernel_vmap_range(void *args)
967 {
968 	struct flush_kernel_vmap_range_args *vmra = args;
969 	unsigned long vaddr = vmra->vaddr;
970 	int size = vmra->size;
971 
972 	/*
973 	 * Aliases only affect the primary caches so don't bother with
974 	 * S-caches or T-caches.
975 	 */
976 	R4600_HIT_CACHEOP_WAR_IMPL;
977 	blast_dcache_range(vaddr, vaddr + size);
978 }
979 
980 static void r4k_flush_kernel_vmap_range(unsigned long vaddr, int size)
981 {
982 	struct flush_kernel_vmap_range_args args;
983 
984 	args.vaddr = (unsigned long) vaddr;
985 	args.size = size;
986 
987 	if (size >= dcache_size)
988 		r4k_on_each_cpu(R4K_INDEX,
989 				local_r4k_flush_kernel_vmap_range_index, NULL);
990 	else
991 		r4k_on_each_cpu(R4K_HIT, local_r4k_flush_kernel_vmap_range,
992 				&args);
993 }
994 
995 static inline void rm7k_erratum31(void)
996 {
997 	const unsigned long ic_lsize = 32;
998 	unsigned long addr;
999 
1000 	/* RM7000 erratum #31. The icache is screwed at startup. */
1001 	write_c0_taglo(0);
1002 	write_c0_taghi(0);
1003 
1004 	for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) {
1005 		__asm__ __volatile__ (
1006 			".set push\n\t"
1007 			".set noreorder\n\t"
1008 			".set mips3\n\t"
1009 			"cache\t%1, 0(%0)\n\t"
1010 			"cache\t%1, 0x1000(%0)\n\t"
1011 			"cache\t%1, 0x2000(%0)\n\t"
1012 			"cache\t%1, 0x3000(%0)\n\t"
1013 			"cache\t%2, 0(%0)\n\t"
1014 			"cache\t%2, 0x1000(%0)\n\t"
1015 			"cache\t%2, 0x2000(%0)\n\t"
1016 			"cache\t%2, 0x3000(%0)\n\t"
1017 			"cache\t%1, 0(%0)\n\t"
1018 			"cache\t%1, 0x1000(%0)\n\t"
1019 			"cache\t%1, 0x2000(%0)\n\t"
1020 			"cache\t%1, 0x3000(%0)\n\t"
1021 			".set pop\n"
1022 			:
1023 			: "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill));
1024 	}
1025 }
1026 
1027 static inline int alias_74k_erratum(struct cpuinfo_mips *c)
1028 {
1029 	unsigned int imp = c->processor_id & PRID_IMP_MASK;
1030 	unsigned int rev = c->processor_id & PRID_REV_MASK;
1031 	int present = 0;
1032 
1033 	/*
1034 	 * Early versions of the 74K do not update the cache tags on a
1035 	 * vtag miss/ptag hit which can occur in the case of KSEG0/KUSEG
1036 	 * aliases.  In this case it is better to treat the cache as always
1037 	 * having aliases.  Also disable the synonym tag update feature
1038 	 * where available.  In this case no opportunistic tag update will
1039 	 * happen where a load causes a virtual address miss but a physical
1040 	 * address hit during a D-cache look-up.
1041 	 */
1042 	switch (imp) {
1043 	case PRID_IMP_74K:
1044 		if (rev <= PRID_REV_ENCODE_332(2, 4, 0))
1045 			present = 1;
1046 		if (rev == PRID_REV_ENCODE_332(2, 4, 0))
1047 			write_c0_config6(read_c0_config6() | MIPS_CONF6_SYND);
1048 		break;
1049 	case PRID_IMP_1074K:
1050 		if (rev <= PRID_REV_ENCODE_332(1, 1, 0)) {
1051 			present = 1;
1052 			write_c0_config6(read_c0_config6() | MIPS_CONF6_SYND);
1053 		}
1054 		break;
1055 	default:
1056 		BUG();
1057 	}
1058 
1059 	return present;
1060 }
1061 
1062 static void b5k_instruction_hazard(void)
1063 {
1064 	__sync();
1065 	__sync();
1066 	__asm__ __volatile__(
1067 	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1068 	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1069 	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1070 	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1071 	: : : "memory");
1072 }
1073 
1074 static char *way_string[] = { NULL, "direct mapped", "2-way",
1075 	"3-way", "4-way", "5-way", "6-way", "7-way", "8-way",
1076 	"9-way", "10-way", "11-way", "12-way",
1077 	"13-way", "14-way", "15-way", "16-way",
1078 };
1079 
1080 static void probe_pcache(void)
1081 {
1082 	struct cpuinfo_mips *c = &current_cpu_data;
1083 	unsigned int config = read_c0_config();
1084 	unsigned int prid = read_c0_prid();
1085 	int has_74k_erratum = 0;
1086 	unsigned long config1;
1087 	unsigned int lsize;
1088 
1089 	switch (current_cpu_type()) {
1090 	case CPU_R4600:			/* QED style two way caches? */
1091 	case CPU_R4700:
1092 	case CPU_R5000:
1093 	case CPU_NEVADA:
1094 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1095 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1096 		c->icache.ways = 2;
1097 		c->icache.waybit = __ffs(icache_size/2);
1098 
1099 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1100 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1101 		c->dcache.ways = 2;
1102 		c->dcache.waybit= __ffs(dcache_size/2);
1103 
1104 		c->options |= MIPS_CPU_CACHE_CDEX_P;
1105 		break;
1106 
1107 	case CPU_R5500:
1108 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1109 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1110 		c->icache.ways = 2;
1111 		c->icache.waybit= 0;
1112 
1113 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1114 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1115 		c->dcache.ways = 2;
1116 		c->dcache.waybit = 0;
1117 
1118 		c->options |= MIPS_CPU_CACHE_CDEX_P | MIPS_CPU_PREFETCH;
1119 		break;
1120 
1121 	case CPU_TX49XX:
1122 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1123 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1124 		c->icache.ways = 4;
1125 		c->icache.waybit= 0;
1126 
1127 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1128 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1129 		c->dcache.ways = 4;
1130 		c->dcache.waybit = 0;
1131 
1132 		c->options |= MIPS_CPU_CACHE_CDEX_P;
1133 		c->options |= MIPS_CPU_PREFETCH;
1134 		break;
1135 
1136 	case CPU_R4000PC:
1137 	case CPU_R4000SC:
1138 	case CPU_R4000MC:
1139 	case CPU_R4400PC:
1140 	case CPU_R4400SC:
1141 	case CPU_R4400MC:
1142 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1143 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1144 		c->icache.ways = 1;
1145 		c->icache.waybit = 0;	/* doesn't matter */
1146 
1147 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1148 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1149 		c->dcache.ways = 1;
1150 		c->dcache.waybit = 0;	/* does not matter */
1151 
1152 		c->options |= MIPS_CPU_CACHE_CDEX_P;
1153 		break;
1154 
1155 	case CPU_R10000:
1156 	case CPU_R12000:
1157 	case CPU_R14000:
1158 	case CPU_R16000:
1159 		icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29));
1160 		c->icache.linesz = 64;
1161 		c->icache.ways = 2;
1162 		c->icache.waybit = 0;
1163 
1164 		dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26));
1165 		c->dcache.linesz = 32;
1166 		c->dcache.ways = 2;
1167 		c->dcache.waybit = 0;
1168 
1169 		c->options |= MIPS_CPU_PREFETCH;
1170 		break;
1171 
1172 	case CPU_VR4133:
1173 		write_c0_config(config & ~VR41_CONF_P4K);
1174 		/* fall through */
1175 	case CPU_VR4131:
1176 		/* Workaround for cache instruction bug of VR4131 */
1177 		if (c->processor_id == 0x0c80U || c->processor_id == 0x0c81U ||
1178 		    c->processor_id == 0x0c82U) {
1179 			config |= 0x00400000U;
1180 			if (c->processor_id == 0x0c80U)
1181 				config |= VR41_CONF_BP;
1182 			write_c0_config(config);
1183 		} else
1184 			c->options |= MIPS_CPU_CACHE_CDEX_P;
1185 
1186 		icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
1187 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1188 		c->icache.ways = 2;
1189 		c->icache.waybit = __ffs(icache_size/2);
1190 
1191 		dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
1192 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1193 		c->dcache.ways = 2;
1194 		c->dcache.waybit = __ffs(dcache_size/2);
1195 		break;
1196 
1197 	case CPU_VR41XX:
1198 	case CPU_VR4111:
1199 	case CPU_VR4121:
1200 	case CPU_VR4122:
1201 	case CPU_VR4181:
1202 	case CPU_VR4181A:
1203 		icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
1204 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1205 		c->icache.ways = 1;
1206 		c->icache.waybit = 0;	/* doesn't matter */
1207 
1208 		dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
1209 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1210 		c->dcache.ways = 1;
1211 		c->dcache.waybit = 0;	/* does not matter */
1212 
1213 		c->options |= MIPS_CPU_CACHE_CDEX_P;
1214 		break;
1215 
1216 	case CPU_RM7000:
1217 		rm7k_erratum31();
1218 
1219 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1220 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1221 		c->icache.ways = 4;
1222 		c->icache.waybit = __ffs(icache_size / c->icache.ways);
1223 
1224 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1225 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1226 		c->dcache.ways = 4;
1227 		c->dcache.waybit = __ffs(dcache_size / c->dcache.ways);
1228 
1229 		c->options |= MIPS_CPU_CACHE_CDEX_P;
1230 		c->options |= MIPS_CPU_PREFETCH;
1231 		break;
1232 
1233 	case CPU_LOONGSON2EF:
1234 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1235 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1236 		if (prid & 0x3)
1237 			c->icache.ways = 4;
1238 		else
1239 			c->icache.ways = 2;
1240 		c->icache.waybit = 0;
1241 
1242 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1243 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1244 		if (prid & 0x3)
1245 			c->dcache.ways = 4;
1246 		else
1247 			c->dcache.ways = 2;
1248 		c->dcache.waybit = 0;
1249 		break;
1250 
1251 	case CPU_LOONGSON64:
1252 		config1 = read_c0_config1();
1253 		lsize = (config1 >> 19) & 7;
1254 		if (lsize)
1255 			c->icache.linesz = 2 << lsize;
1256 		else
1257 			c->icache.linesz = 0;
1258 		c->icache.sets = 64 << ((config1 >> 22) & 7);
1259 		c->icache.ways = 1 + ((config1 >> 16) & 7);
1260 		icache_size = c->icache.sets *
1261 					  c->icache.ways *
1262 					  c->icache.linesz;
1263 		c->icache.waybit = 0;
1264 
1265 		lsize = (config1 >> 10) & 7;
1266 		if (lsize)
1267 			c->dcache.linesz = 2 << lsize;
1268 		else
1269 			c->dcache.linesz = 0;
1270 		c->dcache.sets = 64 << ((config1 >> 13) & 7);
1271 		c->dcache.ways = 1 + ((config1 >> 7) & 7);
1272 		dcache_size = c->dcache.sets *
1273 					  c->dcache.ways *
1274 					  c->dcache.linesz;
1275 		c->dcache.waybit = 0;
1276 		if ((c->processor_id & (PRID_IMP_MASK | PRID_REV_MASK)) >=
1277 				(PRID_IMP_LOONGSON_64C | PRID_REV_LOONGSON3A_R2_0))
1278 			c->options |= MIPS_CPU_PREFETCH;
1279 		break;
1280 
1281 	case CPU_CAVIUM_OCTEON3:
1282 		/* For now lie about the number of ways. */
1283 		c->icache.linesz = 128;
1284 		c->icache.sets = 16;
1285 		c->icache.ways = 8;
1286 		c->icache.flags |= MIPS_CACHE_VTAG;
1287 		icache_size = c->icache.sets * c->icache.ways * c->icache.linesz;
1288 
1289 		c->dcache.linesz = 128;
1290 		c->dcache.ways = 8;
1291 		c->dcache.sets = 8;
1292 		dcache_size = c->dcache.sets * c->dcache.ways * c->dcache.linesz;
1293 		c->options |= MIPS_CPU_PREFETCH;
1294 		break;
1295 
1296 	default:
1297 		if (!(config & MIPS_CONF_M))
1298 			panic("Don't know how to probe P-caches on this cpu.");
1299 
1300 		/*
1301 		 * So we seem to be a MIPS32 or MIPS64 CPU
1302 		 * So let's probe the I-cache ...
1303 		 */
1304 		config1 = read_c0_config1();
1305 
1306 		lsize = (config1 >> 19) & 7;
1307 
1308 		/* IL == 7 is reserved */
1309 		if (lsize == 7)
1310 			panic("Invalid icache line size");
1311 
1312 		c->icache.linesz = lsize ? 2 << lsize : 0;
1313 
1314 		c->icache.sets = 32 << (((config1 >> 22) + 1) & 7);
1315 		c->icache.ways = 1 + ((config1 >> 16) & 7);
1316 
1317 		icache_size = c->icache.sets *
1318 			      c->icache.ways *
1319 			      c->icache.linesz;
1320 		c->icache.waybit = __ffs(icache_size/c->icache.ways);
1321 
1322 		if (config & MIPS_CONF_VI)
1323 			c->icache.flags |= MIPS_CACHE_VTAG;
1324 
1325 		/*
1326 		 * Now probe the MIPS32 / MIPS64 data cache.
1327 		 */
1328 		c->dcache.flags = 0;
1329 
1330 		lsize = (config1 >> 10) & 7;
1331 
1332 		/* DL == 7 is reserved */
1333 		if (lsize == 7)
1334 			panic("Invalid dcache line size");
1335 
1336 		c->dcache.linesz = lsize ? 2 << lsize : 0;
1337 
1338 		c->dcache.sets = 32 << (((config1 >> 13) + 1) & 7);
1339 		c->dcache.ways = 1 + ((config1 >> 7) & 7);
1340 
1341 		dcache_size = c->dcache.sets *
1342 			      c->dcache.ways *
1343 			      c->dcache.linesz;
1344 		c->dcache.waybit = __ffs(dcache_size/c->dcache.ways);
1345 
1346 		c->options |= MIPS_CPU_PREFETCH;
1347 		break;
1348 	}
1349 
1350 	/*
1351 	 * Processor configuration sanity check for the R4000SC erratum
1352 	 * #5.	With page sizes larger than 32kB there is no possibility
1353 	 * to get a VCE exception anymore so we don't care about this
1354 	 * misconfiguration.  The case is rather theoretical anyway;
1355 	 * presumably no vendor is shipping his hardware in the "bad"
1356 	 * configuration.
1357 	 */
1358 	if ((prid & PRID_IMP_MASK) == PRID_IMP_R4000 &&
1359 	    (prid & PRID_REV_MASK) < PRID_REV_R4400 &&
1360 	    !(config & CONF_SC) && c->icache.linesz != 16 &&
1361 	    PAGE_SIZE <= 0x8000)
1362 		panic("Improper R4000SC processor configuration detected");
1363 
1364 	/* compute a couple of other cache variables */
1365 	c->icache.waysize = icache_size / c->icache.ways;
1366 	c->dcache.waysize = dcache_size / c->dcache.ways;
1367 
1368 	c->icache.sets = c->icache.linesz ?
1369 		icache_size / (c->icache.linesz * c->icache.ways) : 0;
1370 	c->dcache.sets = c->dcache.linesz ?
1371 		dcache_size / (c->dcache.linesz * c->dcache.ways) : 0;
1372 
1373 	/*
1374 	 * R1x000 P-caches are odd in a positive way.  They're 32kB 2-way
1375 	 * virtually indexed so normally would suffer from aliases.  So
1376 	 * normally they'd suffer from aliases but magic in the hardware deals
1377 	 * with that for us so we don't need to take care ourselves.
1378 	 */
1379 	switch (current_cpu_type()) {
1380 	case CPU_20KC:
1381 	case CPU_25KF:
1382 	case CPU_I6400:
1383 	case CPU_I6500:
1384 	case CPU_SB1:
1385 	case CPU_SB1A:
1386 	case CPU_XLR:
1387 		c->dcache.flags |= MIPS_CACHE_PINDEX;
1388 		break;
1389 
1390 	case CPU_R10000:
1391 	case CPU_R12000:
1392 	case CPU_R14000:
1393 	case CPU_R16000:
1394 		break;
1395 
1396 	case CPU_74K:
1397 	case CPU_1074K:
1398 		has_74k_erratum = alias_74k_erratum(c);
1399 		/* Fall through. */
1400 	case CPU_M14KC:
1401 	case CPU_M14KEC:
1402 	case CPU_24K:
1403 	case CPU_34K:
1404 	case CPU_1004K:
1405 	case CPU_INTERAPTIV:
1406 	case CPU_P5600:
1407 	case CPU_PROAPTIV:
1408 	case CPU_M5150:
1409 	case CPU_QEMU_GENERIC:
1410 	case CPU_P6600:
1411 	case CPU_M6250:
1412 		if (!(read_c0_config7() & MIPS_CONF7_IAR) &&
1413 		    (c->icache.waysize > PAGE_SIZE))
1414 			c->icache.flags |= MIPS_CACHE_ALIASES;
1415 		if (!has_74k_erratum && (read_c0_config7() & MIPS_CONF7_AR)) {
1416 			/*
1417 			 * Effectively physically indexed dcache,
1418 			 * thus no virtual aliases.
1419 			*/
1420 			c->dcache.flags |= MIPS_CACHE_PINDEX;
1421 			break;
1422 		}
1423 		/* fall through */
1424 	default:
1425 		if (has_74k_erratum || c->dcache.waysize > PAGE_SIZE)
1426 			c->dcache.flags |= MIPS_CACHE_ALIASES;
1427 	}
1428 
1429 	/* Physically indexed caches don't suffer from virtual aliasing */
1430 	if (c->dcache.flags & MIPS_CACHE_PINDEX)
1431 		c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1432 
1433 	/*
1434 	 * In systems with CM the icache fills from L2 or closer caches, and
1435 	 * thus sees remote stores without needing to write them back any
1436 	 * further than that.
1437 	 */
1438 	if (mips_cm_present())
1439 		c->icache.flags |= MIPS_IC_SNOOPS_REMOTE;
1440 
1441 	switch (current_cpu_type()) {
1442 	case CPU_20KC:
1443 		/*
1444 		 * Some older 20Kc chips doesn't have the 'VI' bit in
1445 		 * the config register.
1446 		 */
1447 		c->icache.flags |= MIPS_CACHE_VTAG;
1448 		break;
1449 
1450 	case CPU_ALCHEMY:
1451 	case CPU_I6400:
1452 	case CPU_I6500:
1453 		c->icache.flags |= MIPS_CACHE_IC_F_DC;
1454 		break;
1455 
1456 	case CPU_BMIPS5000:
1457 		c->icache.flags |= MIPS_CACHE_IC_F_DC;
1458 		/* Cache aliases are handled in hardware; allow HIGHMEM */
1459 		c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1460 		break;
1461 
1462 	case CPU_LOONGSON2EF:
1463 		/*
1464 		 * LOONGSON2 has 4 way icache, but when using indexed cache op,
1465 		 * one op will act on all 4 ways
1466 		 */
1467 		c->icache.ways = 1;
1468 	}
1469 
1470 	printk("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
1471 	       icache_size >> 10,
1472 	       c->icache.flags & MIPS_CACHE_VTAG ? "VIVT" : "VIPT",
1473 	       way_string[c->icache.ways], c->icache.linesz);
1474 
1475 	printk("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n",
1476 	       dcache_size >> 10, way_string[c->dcache.ways],
1477 	       (c->dcache.flags & MIPS_CACHE_PINDEX) ? "PIPT" : "VIPT",
1478 	       (c->dcache.flags & MIPS_CACHE_ALIASES) ?
1479 			"cache aliases" : "no aliases",
1480 	       c->dcache.linesz);
1481 }
1482 
1483 static void probe_vcache(void)
1484 {
1485 	struct cpuinfo_mips *c = &current_cpu_data;
1486 	unsigned int config2, lsize;
1487 
1488 	if (current_cpu_type() != CPU_LOONGSON64)
1489 		return;
1490 
1491 	config2 = read_c0_config2();
1492 	if ((lsize = ((config2 >> 20) & 15)))
1493 		c->vcache.linesz = 2 << lsize;
1494 	else
1495 		c->vcache.linesz = lsize;
1496 
1497 	c->vcache.sets = 64 << ((config2 >> 24) & 15);
1498 	c->vcache.ways = 1 + ((config2 >> 16) & 15);
1499 
1500 	vcache_size = c->vcache.sets * c->vcache.ways * c->vcache.linesz;
1501 
1502 	c->vcache.waybit = 0;
1503 	c->vcache.waysize = vcache_size / c->vcache.ways;
1504 
1505 	pr_info("Unified victim cache %ldkB %s, linesize %d bytes.\n",
1506 		vcache_size >> 10, way_string[c->vcache.ways], c->vcache.linesz);
1507 }
1508 
1509 /*
1510  * If you even _breathe_ on this function, look at the gcc output and make sure
1511  * it does not pop things on and off the stack for the cache sizing loop that
1512  * executes in KSEG1 space or else you will crash and burn badly.  You have
1513  * been warned.
1514  */
1515 static int probe_scache(void)
1516 {
1517 	unsigned long flags, addr, begin, end, pow2;
1518 	unsigned int config = read_c0_config();
1519 	struct cpuinfo_mips *c = &current_cpu_data;
1520 
1521 	if (config & CONF_SC)
1522 		return 0;
1523 
1524 	begin = (unsigned long) &_stext;
1525 	begin &= ~((4 * 1024 * 1024) - 1);
1526 	end = begin + (4 * 1024 * 1024);
1527 
1528 	/*
1529 	 * This is such a bitch, you'd think they would make it easy to do
1530 	 * this.  Away you daemons of stupidity!
1531 	 */
1532 	local_irq_save(flags);
1533 
1534 	/* Fill each size-multiple cache line with a valid tag. */
1535 	pow2 = (64 * 1024);
1536 	for (addr = begin; addr < end; addr = (begin + pow2)) {
1537 		unsigned long *p = (unsigned long *) addr;
1538 		__asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
1539 		pow2 <<= 1;
1540 	}
1541 
1542 	/* Load first line with zero (therefore invalid) tag. */
1543 	write_c0_taglo(0);
1544 	write_c0_taghi(0);
1545 	__asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
1546 	cache_op(Index_Store_Tag_I, begin);
1547 	cache_op(Index_Store_Tag_D, begin);
1548 	cache_op(Index_Store_Tag_SD, begin);
1549 
1550 	/* Now search for the wrap around point. */
1551 	pow2 = (128 * 1024);
1552 	for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) {
1553 		cache_op(Index_Load_Tag_SD, addr);
1554 		__asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
1555 		if (!read_c0_taglo())
1556 			break;
1557 		pow2 <<= 1;
1558 	}
1559 	local_irq_restore(flags);
1560 	addr -= begin;
1561 
1562 	scache_size = addr;
1563 	c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22);
1564 	c->scache.ways = 1;
1565 	c->scache.waybit = 0;		/* does not matter */
1566 
1567 	return 1;
1568 }
1569 
1570 static void __init loongson2_sc_init(void)
1571 {
1572 	struct cpuinfo_mips *c = &current_cpu_data;
1573 
1574 	scache_size = 512*1024;
1575 	c->scache.linesz = 32;
1576 	c->scache.ways = 4;
1577 	c->scache.waybit = 0;
1578 	c->scache.waysize = scache_size / (c->scache.ways);
1579 	c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1580 	pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1581 	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1582 
1583 	c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1584 }
1585 
1586 static void __init loongson3_sc_init(void)
1587 {
1588 	struct cpuinfo_mips *c = &current_cpu_data;
1589 	unsigned int config2, lsize;
1590 
1591 	config2 = read_c0_config2();
1592 	lsize = (config2 >> 4) & 15;
1593 	if (lsize)
1594 		c->scache.linesz = 2 << lsize;
1595 	else
1596 		c->scache.linesz = 0;
1597 	c->scache.sets = 64 << ((config2 >> 8) & 15);
1598 	c->scache.ways = 1 + (config2 & 15);
1599 
1600 	scache_size = c->scache.sets *
1601 				  c->scache.ways *
1602 				  c->scache.linesz;
1603 	/* Loongson-3 has 4 cores, 1MB scache for each. scaches are shared */
1604 	scache_size *= 4;
1605 	c->scache.waybit = 0;
1606 	c->scache.waysize = scache_size / c->scache.ways;
1607 	pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1608 	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1609 	if (scache_size)
1610 		c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1611 	return;
1612 }
1613 
1614 extern int r5k_sc_init(void);
1615 extern int rm7k_sc_init(void);
1616 extern int mips_sc_init(void);
1617 
1618 static void setup_scache(void)
1619 {
1620 	struct cpuinfo_mips *c = &current_cpu_data;
1621 	unsigned int config = read_c0_config();
1622 	int sc_present = 0;
1623 
1624 	/*
1625 	 * Do the probing thing on R4000SC and R4400SC processors.  Other
1626 	 * processors don't have a S-cache that would be relevant to the
1627 	 * Linux memory management.
1628 	 */
1629 	switch (current_cpu_type()) {
1630 	case CPU_R4000SC:
1631 	case CPU_R4000MC:
1632 	case CPU_R4400SC:
1633 	case CPU_R4400MC:
1634 		sc_present = run_uncached(probe_scache);
1635 		if (sc_present)
1636 			c->options |= MIPS_CPU_CACHE_CDEX_S;
1637 		break;
1638 
1639 	case CPU_R10000:
1640 	case CPU_R12000:
1641 	case CPU_R14000:
1642 	case CPU_R16000:
1643 		scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16);
1644 		c->scache.linesz = 64 << ((config >> 13) & 1);
1645 		c->scache.ways = 2;
1646 		c->scache.waybit= 0;
1647 		sc_present = 1;
1648 		break;
1649 
1650 	case CPU_R5000:
1651 	case CPU_NEVADA:
1652 #ifdef CONFIG_R5000_CPU_SCACHE
1653 		r5k_sc_init();
1654 #endif
1655 		return;
1656 
1657 	case CPU_RM7000:
1658 #ifdef CONFIG_RM7000_CPU_SCACHE
1659 		rm7k_sc_init();
1660 #endif
1661 		return;
1662 
1663 	case CPU_LOONGSON2EF:
1664 		loongson2_sc_init();
1665 		return;
1666 
1667 	case CPU_LOONGSON64:
1668 		loongson3_sc_init();
1669 		return;
1670 
1671 	case CPU_CAVIUM_OCTEON3:
1672 	case CPU_XLP:
1673 		/* don't need to worry about L2, fully coherent */
1674 		return;
1675 
1676 	default:
1677 		if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M32R2 |
1678 				    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R1 |
1679 				    MIPS_CPU_ISA_M64R2 | MIPS_CPU_ISA_M64R6)) {
1680 #ifdef CONFIG_MIPS_CPU_SCACHE
1681 			if (mips_sc_init ()) {
1682 				scache_size = c->scache.ways * c->scache.sets * c->scache.linesz;
1683 				printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n",
1684 				       scache_size >> 10,
1685 				       way_string[c->scache.ways], c->scache.linesz);
1686 			}
1687 #else
1688 			if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT))
1689 				panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
1690 #endif
1691 			return;
1692 		}
1693 		sc_present = 0;
1694 	}
1695 
1696 	if (!sc_present)
1697 		return;
1698 
1699 	/* compute a couple of other cache variables */
1700 	c->scache.waysize = scache_size / c->scache.ways;
1701 
1702 	c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1703 
1704 	printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1705 	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1706 
1707 	c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1708 }
1709 
1710 void au1x00_fixup_config_od(void)
1711 {
1712 	/*
1713 	 * c0_config.od (bit 19) was write only (and read as 0)
1714 	 * on the early revisions of Alchemy SOCs.  It disables the bus
1715 	 * transaction overlapping and needs to be set to fix various errata.
1716 	 */
1717 	switch (read_c0_prid()) {
1718 	case 0x00030100: /* Au1000 DA */
1719 	case 0x00030201: /* Au1000 HA */
1720 	case 0x00030202: /* Au1000 HB */
1721 	case 0x01030200: /* Au1500 AB */
1722 	/*
1723 	 * Au1100 errata actually keeps silence about this bit, so we set it
1724 	 * just in case for those revisions that require it to be set according
1725 	 * to the (now gone) cpu table.
1726 	 */
1727 	case 0x02030200: /* Au1100 AB */
1728 	case 0x02030201: /* Au1100 BA */
1729 	case 0x02030202: /* Au1100 BC */
1730 		set_c0_config(1 << 19);
1731 		break;
1732 	}
1733 }
1734 
1735 /* CP0 hazard avoidance. */
1736 #define NXP_BARRIER()							\
1737 	 __asm__ __volatile__(						\
1738 	".set noreorder\n\t"						\
1739 	"nop; nop; nop; nop; nop; nop;\n\t"				\
1740 	".set reorder\n\t")
1741 
1742 static void nxp_pr4450_fixup_config(void)
1743 {
1744 	unsigned long config0;
1745 
1746 	config0 = read_c0_config();
1747 
1748 	/* clear all three cache coherency fields */
1749 	config0 &= ~(0x7 | (7 << 25) | (7 << 28));
1750 	config0 |= (((_page_cachable_default >> _CACHE_SHIFT) <<  0) |
1751 		    ((_page_cachable_default >> _CACHE_SHIFT) << 25) |
1752 		    ((_page_cachable_default >> _CACHE_SHIFT) << 28));
1753 	write_c0_config(config0);
1754 	NXP_BARRIER();
1755 }
1756 
1757 static int cca = -1;
1758 
1759 static int __init cca_setup(char *str)
1760 {
1761 	get_option(&str, &cca);
1762 
1763 	return 0;
1764 }
1765 
1766 early_param("cca", cca_setup);
1767 
1768 static void coherency_setup(void)
1769 {
1770 	if (cca < 0 || cca > 7)
1771 		cca = read_c0_config() & CONF_CM_CMASK;
1772 	_page_cachable_default = cca << _CACHE_SHIFT;
1773 
1774 	pr_debug("Using cache attribute %d\n", cca);
1775 	change_c0_config(CONF_CM_CMASK, cca);
1776 
1777 	/*
1778 	 * c0_status.cu=0 specifies that updates by the sc instruction use
1779 	 * the coherency mode specified by the TLB; 1 means cachable
1780 	 * coherent update on write will be used.  Not all processors have
1781 	 * this bit and; some wire it to zero, others like Toshiba had the
1782 	 * silly idea of putting something else there ...
1783 	 */
1784 	switch (current_cpu_type()) {
1785 	case CPU_R4000PC:
1786 	case CPU_R4000SC:
1787 	case CPU_R4000MC:
1788 	case CPU_R4400PC:
1789 	case CPU_R4400SC:
1790 	case CPU_R4400MC:
1791 		clear_c0_config(CONF_CU);
1792 		break;
1793 	/*
1794 	 * We need to catch the early Alchemy SOCs with
1795 	 * the write-only co_config.od bit and set it back to one on:
1796 	 * Au1000 rev DA, HA, HB;  Au1100 AB, BA, BC, Au1500 AB
1797 	 */
1798 	case CPU_ALCHEMY:
1799 		au1x00_fixup_config_od();
1800 		break;
1801 
1802 	case PRID_IMP_PR4450:
1803 		nxp_pr4450_fixup_config();
1804 		break;
1805 	}
1806 }
1807 
1808 static void r4k_cache_error_setup(void)
1809 {
1810 	extern char __weak except_vec2_generic;
1811 	extern char __weak except_vec2_sb1;
1812 
1813 	switch (current_cpu_type()) {
1814 	case CPU_SB1:
1815 	case CPU_SB1A:
1816 		set_uncached_handler(0x100, &except_vec2_sb1, 0x80);
1817 		break;
1818 
1819 	default:
1820 		set_uncached_handler(0x100, &except_vec2_generic, 0x80);
1821 		break;
1822 	}
1823 }
1824 
1825 void r4k_cache_init(void)
1826 {
1827 	extern void build_clear_page(void);
1828 	extern void build_copy_page(void);
1829 	struct cpuinfo_mips *c = &current_cpu_data;
1830 
1831 	probe_pcache();
1832 	probe_vcache();
1833 	setup_scache();
1834 
1835 	r4k_blast_dcache_page_setup();
1836 	r4k_blast_dcache_page_indexed_setup();
1837 	r4k_blast_dcache_setup();
1838 	r4k_blast_icache_page_setup();
1839 	r4k_blast_icache_page_indexed_setup();
1840 	r4k_blast_icache_setup();
1841 	r4k_blast_scache_page_setup();
1842 	r4k_blast_scache_page_indexed_setup();
1843 	r4k_blast_scache_setup();
1844 	r4k_blast_scache_node_setup();
1845 #ifdef CONFIG_EVA
1846 	r4k_blast_dcache_user_page_setup();
1847 	r4k_blast_icache_user_page_setup();
1848 #endif
1849 
1850 	/*
1851 	 * Some MIPS32 and MIPS64 processors have physically indexed caches.
1852 	 * This code supports virtually indexed processors and will be
1853 	 * unnecessarily inefficient on physically indexed processors.
1854 	 */
1855 	if (c->dcache.linesz && cpu_has_dc_aliases)
1856 		shm_align_mask = max_t( unsigned long,
1857 					c->dcache.sets * c->dcache.linesz - 1,
1858 					PAGE_SIZE - 1);
1859 	else
1860 		shm_align_mask = PAGE_SIZE-1;
1861 
1862 	__flush_cache_vmap	= r4k__flush_cache_vmap;
1863 	__flush_cache_vunmap	= r4k__flush_cache_vunmap;
1864 
1865 	flush_cache_all		= cache_noop;
1866 	__flush_cache_all	= r4k___flush_cache_all;
1867 	flush_cache_mm		= r4k_flush_cache_mm;
1868 	flush_cache_page	= r4k_flush_cache_page;
1869 	flush_cache_range	= r4k_flush_cache_range;
1870 
1871 	__flush_kernel_vmap_range = r4k_flush_kernel_vmap_range;
1872 
1873 	flush_icache_all	= r4k_flush_icache_all;
1874 	local_flush_data_cache_page	= local_r4k_flush_data_cache_page;
1875 	flush_data_cache_page	= r4k_flush_data_cache_page;
1876 	flush_icache_range	= r4k_flush_icache_range;
1877 	local_flush_icache_range	= local_r4k_flush_icache_range;
1878 	__flush_icache_user_range	= r4k_flush_icache_user_range;
1879 	__local_flush_icache_user_range	= local_r4k_flush_icache_user_range;
1880 
1881 #ifdef CONFIG_DMA_NONCOHERENT
1882 #ifdef CONFIG_DMA_MAYBE_COHERENT
1883 	if (coherentio == IO_COHERENCE_ENABLED ||
1884 	    (coherentio == IO_COHERENCE_DEFAULT && hw_coherentio)) {
1885 		_dma_cache_wback_inv	= (void *)cache_noop;
1886 		_dma_cache_wback	= (void *)cache_noop;
1887 		_dma_cache_inv		= (void *)cache_noop;
1888 	} else
1889 #endif /* CONFIG_DMA_MAYBE_COHERENT */
1890 	{
1891 		_dma_cache_wback_inv	= r4k_dma_cache_wback_inv;
1892 		_dma_cache_wback	= r4k_dma_cache_wback_inv;
1893 		_dma_cache_inv		= r4k_dma_cache_inv;
1894 	}
1895 #endif /* CONFIG_DMA_NONCOHERENT */
1896 
1897 	build_clear_page();
1898 	build_copy_page();
1899 
1900 	/*
1901 	 * We want to run CMP kernels on core with and without coherent
1902 	 * caches. Therefore, do not use CONFIG_MIPS_CMP to decide whether
1903 	 * or not to flush caches.
1904 	 */
1905 	local_r4k___flush_cache_all(NULL);
1906 
1907 	coherency_setup();
1908 	board_cache_error_setup = r4k_cache_error_setup;
1909 
1910 	/*
1911 	 * Per-CPU overrides
1912 	 */
1913 	switch (current_cpu_type()) {
1914 	case CPU_BMIPS4350:
1915 	case CPU_BMIPS4380:
1916 		/* No IPI is needed because all CPUs share the same D$ */
1917 		flush_data_cache_page = r4k_blast_dcache_page;
1918 		break;
1919 	case CPU_BMIPS5000:
1920 		/* We lose our superpowers if L2 is disabled */
1921 		if (c->scache.flags & MIPS_CACHE_NOT_PRESENT)
1922 			break;
1923 
1924 		/* I$ fills from D$ just by emptying the write buffers */
1925 		flush_cache_page = (void *)b5k_instruction_hazard;
1926 		flush_cache_range = (void *)b5k_instruction_hazard;
1927 		local_flush_data_cache_page = (void *)b5k_instruction_hazard;
1928 		flush_data_cache_page = (void *)b5k_instruction_hazard;
1929 		flush_icache_range = (void *)b5k_instruction_hazard;
1930 		local_flush_icache_range = (void *)b5k_instruction_hazard;
1931 
1932 
1933 		/* Optimization: an L2 flush implicitly flushes the L1 */
1934 		current_cpu_data.options |= MIPS_CPU_INCLUSIVE_CACHES;
1935 		break;
1936 	case CPU_LOONGSON64:
1937 		/* Loongson-3 maintains cache coherency by hardware */
1938 		__flush_cache_all	= cache_noop;
1939 		__flush_cache_vmap	= cache_noop;
1940 		__flush_cache_vunmap	= cache_noop;
1941 		__flush_kernel_vmap_range = (void *)cache_noop;
1942 		flush_cache_mm		= (void *)cache_noop;
1943 		flush_cache_page	= (void *)cache_noop;
1944 		flush_cache_range	= (void *)cache_noop;
1945 		flush_icache_all	= (void *)cache_noop;
1946 		flush_data_cache_page	= (void *)cache_noop;
1947 		local_flush_data_cache_page	= (void *)cache_noop;
1948 		break;
1949 	}
1950 }
1951 
1952 static int r4k_cache_pm_notifier(struct notifier_block *self, unsigned long cmd,
1953 			       void *v)
1954 {
1955 	switch (cmd) {
1956 	case CPU_PM_ENTER_FAILED:
1957 	case CPU_PM_EXIT:
1958 		coherency_setup();
1959 		break;
1960 	}
1961 
1962 	return NOTIFY_OK;
1963 }
1964 
1965 static struct notifier_block r4k_cache_pm_notifier_block = {
1966 	.notifier_call = r4k_cache_pm_notifier,
1967 };
1968 
1969 int __init r4k_cache_init_pm(void)
1970 {
1971 	return cpu_pm_register_notifier(&r4k_cache_pm_notifier_block);
1972 }
1973 arch_initcall(r4k_cache_init_pm);
1974