1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1996 David S. Miller (davem@davemloft.net) 7 * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org) 8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc. 9 */ 10 #include <linux/cpu_pm.h> 11 #include <linux/hardirq.h> 12 #include <linux/init.h> 13 #include <linux/highmem.h> 14 #include <linux/kernel.h> 15 #include <linux/linkage.h> 16 #include <linux/preempt.h> 17 #include <linux/sched.h> 18 #include <linux/smp.h> 19 #include <linux/mm.h> 20 #include <linux/export.h> 21 #include <linux/bitops.h> 22 23 #include <asm/bcache.h> 24 #include <asm/bootinfo.h> 25 #include <asm/cache.h> 26 #include <asm/cacheops.h> 27 #include <asm/cpu.h> 28 #include <asm/cpu-features.h> 29 #include <asm/cpu-type.h> 30 #include <asm/io.h> 31 #include <asm/page.h> 32 #include <asm/r4kcache.h> 33 #include <asm/sections.h> 34 #include <asm/mmu_context.h> 35 #include <asm/war.h> 36 #include <asm/cacheflush.h> /* for run_uncached() */ 37 #include <asm/traps.h> 38 #include <asm/dma-coherence.h> 39 #include <asm/mips-cps.h> 40 41 /* 42 * Bits describing what cache ops an SMP callback function may perform. 43 * 44 * R4K_HIT - Virtual user or kernel address based cache operations. The 45 * active_mm must be checked before using user addresses, falling 46 * back to kmap. 47 * R4K_INDEX - Index based cache operations. 48 */ 49 50 #define R4K_HIT BIT(0) 51 #define R4K_INDEX BIT(1) 52 53 /** 54 * r4k_op_needs_ipi() - Decide if a cache op needs to be done on every core. 55 * @type: Type of cache operations (R4K_HIT or R4K_INDEX). 56 * 57 * Decides whether a cache op needs to be performed on every core in the system. 58 * This may change depending on the @type of cache operation, as well as the set 59 * of online CPUs, so preemption should be disabled by the caller to prevent CPU 60 * hotplug from changing the result. 61 * 62 * Returns: 1 if the cache operation @type should be done on every core in 63 * the system. 64 * 0 if the cache operation @type is globalized and only needs to 65 * be performed on a simple CPU. 66 */ 67 static inline bool r4k_op_needs_ipi(unsigned int type) 68 { 69 /* The MIPS Coherence Manager (CM) globalizes address-based cache ops */ 70 if (type == R4K_HIT && mips_cm_present()) 71 return false; 72 73 /* 74 * Hardware doesn't globalize the required cache ops, so SMP calls may 75 * be needed, but only if there are foreign CPUs (non-siblings with 76 * separate caches). 77 */ 78 /* cpu_foreign_map[] undeclared when !CONFIG_SMP */ 79 #ifdef CONFIG_SMP 80 return !cpumask_empty(&cpu_foreign_map[0]); 81 #else 82 return false; 83 #endif 84 } 85 86 /* 87 * Special Variant of smp_call_function for use by cache functions: 88 * 89 * o No return value 90 * o collapses to normal function call on UP kernels 91 * o collapses to normal function call on systems with a single shared 92 * primary cache. 93 * o doesn't disable interrupts on the local CPU 94 */ 95 static inline void r4k_on_each_cpu(unsigned int type, 96 void (*func)(void *info), void *info) 97 { 98 preempt_disable(); 99 if (r4k_op_needs_ipi(type)) 100 smp_call_function_many(&cpu_foreign_map[smp_processor_id()], 101 func, info, 1); 102 func(info); 103 preempt_enable(); 104 } 105 106 /* 107 * Must die. 108 */ 109 static unsigned long icache_size __read_mostly; 110 static unsigned long dcache_size __read_mostly; 111 static unsigned long vcache_size __read_mostly; 112 static unsigned long scache_size __read_mostly; 113 114 /* 115 * Dummy cache handling routines for machines without boardcaches 116 */ 117 static void cache_noop(void) {} 118 119 static struct bcache_ops no_sc_ops = { 120 .bc_enable = (void *)cache_noop, 121 .bc_disable = (void *)cache_noop, 122 .bc_wback_inv = (void *)cache_noop, 123 .bc_inv = (void *)cache_noop 124 }; 125 126 struct bcache_ops *bcops = &no_sc_ops; 127 128 #define cpu_is_r4600_v1_x() ((read_c0_prid() & 0xfffffff0) == 0x00002010) 129 #define cpu_is_r4600_v2_x() ((read_c0_prid() & 0xfffffff0) == 0x00002020) 130 131 #define R4600_HIT_CACHEOP_WAR_IMPL \ 132 do { \ 133 if (R4600_V2_HIT_CACHEOP_WAR && cpu_is_r4600_v2_x()) \ 134 *(volatile unsigned long *)CKSEG1; \ 135 if (R4600_V1_HIT_CACHEOP_WAR) \ 136 __asm__ __volatile__("nop;nop;nop;nop"); \ 137 } while (0) 138 139 static void (*r4k_blast_dcache_page)(unsigned long addr); 140 141 static inline void r4k_blast_dcache_page_dc32(unsigned long addr) 142 { 143 R4600_HIT_CACHEOP_WAR_IMPL; 144 blast_dcache32_page(addr); 145 } 146 147 static inline void r4k_blast_dcache_page_dc64(unsigned long addr) 148 { 149 blast_dcache64_page(addr); 150 } 151 152 static inline void r4k_blast_dcache_page_dc128(unsigned long addr) 153 { 154 blast_dcache128_page(addr); 155 } 156 157 static void r4k_blast_dcache_page_setup(void) 158 { 159 unsigned long dc_lsize = cpu_dcache_line_size(); 160 161 switch (dc_lsize) { 162 case 0: 163 r4k_blast_dcache_page = (void *)cache_noop; 164 break; 165 case 16: 166 r4k_blast_dcache_page = blast_dcache16_page; 167 break; 168 case 32: 169 r4k_blast_dcache_page = r4k_blast_dcache_page_dc32; 170 break; 171 case 64: 172 r4k_blast_dcache_page = r4k_blast_dcache_page_dc64; 173 break; 174 case 128: 175 r4k_blast_dcache_page = r4k_blast_dcache_page_dc128; 176 break; 177 default: 178 break; 179 } 180 } 181 182 #ifndef CONFIG_EVA 183 #define r4k_blast_dcache_user_page r4k_blast_dcache_page 184 #else 185 186 static void (*r4k_blast_dcache_user_page)(unsigned long addr); 187 188 static void r4k_blast_dcache_user_page_setup(void) 189 { 190 unsigned long dc_lsize = cpu_dcache_line_size(); 191 192 if (dc_lsize == 0) 193 r4k_blast_dcache_user_page = (void *)cache_noop; 194 else if (dc_lsize == 16) 195 r4k_blast_dcache_user_page = blast_dcache16_user_page; 196 else if (dc_lsize == 32) 197 r4k_blast_dcache_user_page = blast_dcache32_user_page; 198 else if (dc_lsize == 64) 199 r4k_blast_dcache_user_page = blast_dcache64_user_page; 200 } 201 202 #endif 203 204 static void (* r4k_blast_dcache_page_indexed)(unsigned long addr); 205 206 static void r4k_blast_dcache_page_indexed_setup(void) 207 { 208 unsigned long dc_lsize = cpu_dcache_line_size(); 209 210 if (dc_lsize == 0) 211 r4k_blast_dcache_page_indexed = (void *)cache_noop; 212 else if (dc_lsize == 16) 213 r4k_blast_dcache_page_indexed = blast_dcache16_page_indexed; 214 else if (dc_lsize == 32) 215 r4k_blast_dcache_page_indexed = blast_dcache32_page_indexed; 216 else if (dc_lsize == 64) 217 r4k_blast_dcache_page_indexed = blast_dcache64_page_indexed; 218 else if (dc_lsize == 128) 219 r4k_blast_dcache_page_indexed = blast_dcache128_page_indexed; 220 } 221 222 void (* r4k_blast_dcache)(void); 223 EXPORT_SYMBOL(r4k_blast_dcache); 224 225 static void r4k_blast_dcache_setup(void) 226 { 227 unsigned long dc_lsize = cpu_dcache_line_size(); 228 229 if (dc_lsize == 0) 230 r4k_blast_dcache = (void *)cache_noop; 231 else if (dc_lsize == 16) 232 r4k_blast_dcache = blast_dcache16; 233 else if (dc_lsize == 32) 234 r4k_blast_dcache = blast_dcache32; 235 else if (dc_lsize == 64) 236 r4k_blast_dcache = blast_dcache64; 237 else if (dc_lsize == 128) 238 r4k_blast_dcache = blast_dcache128; 239 } 240 241 /* force code alignment (used for TX49XX_ICACHE_INDEX_INV_WAR) */ 242 #define JUMP_TO_ALIGN(order) \ 243 __asm__ __volatile__( \ 244 "b\t1f\n\t" \ 245 ".align\t" #order "\n\t" \ 246 "1:\n\t" \ 247 ) 248 #define CACHE32_UNROLL32_ALIGN JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */ 249 #define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11) 250 251 static inline void blast_r4600_v1_icache32(void) 252 { 253 unsigned long flags; 254 255 local_irq_save(flags); 256 blast_icache32(); 257 local_irq_restore(flags); 258 } 259 260 static inline void tx49_blast_icache32(void) 261 { 262 unsigned long start = INDEX_BASE; 263 unsigned long end = start + current_cpu_data.icache.waysize; 264 unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit; 265 unsigned long ws_end = current_cpu_data.icache.ways << 266 current_cpu_data.icache.waybit; 267 unsigned long ws, addr; 268 269 CACHE32_UNROLL32_ALIGN2; 270 /* I'm in even chunk. blast odd chunks */ 271 for (ws = 0; ws < ws_end; ws += ws_inc) 272 for (addr = start + 0x400; addr < end; addr += 0x400 * 2) 273 cache_unroll(32, kernel_cache, Index_Invalidate_I, 274 addr | ws, 32); 275 CACHE32_UNROLL32_ALIGN; 276 /* I'm in odd chunk. blast even chunks */ 277 for (ws = 0; ws < ws_end; ws += ws_inc) 278 for (addr = start; addr < end; addr += 0x400 * 2) 279 cache_unroll(32, kernel_cache, Index_Invalidate_I, 280 addr | ws, 32); 281 } 282 283 static inline void blast_icache32_r4600_v1_page_indexed(unsigned long page) 284 { 285 unsigned long flags; 286 287 local_irq_save(flags); 288 blast_icache32_page_indexed(page); 289 local_irq_restore(flags); 290 } 291 292 static inline void tx49_blast_icache32_page_indexed(unsigned long page) 293 { 294 unsigned long indexmask = current_cpu_data.icache.waysize - 1; 295 unsigned long start = INDEX_BASE + (page & indexmask); 296 unsigned long end = start + PAGE_SIZE; 297 unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit; 298 unsigned long ws_end = current_cpu_data.icache.ways << 299 current_cpu_data.icache.waybit; 300 unsigned long ws, addr; 301 302 CACHE32_UNROLL32_ALIGN2; 303 /* I'm in even chunk. blast odd chunks */ 304 for (ws = 0; ws < ws_end; ws += ws_inc) 305 for (addr = start + 0x400; addr < end; addr += 0x400 * 2) 306 cache_unroll(32, kernel_cache, Index_Invalidate_I, 307 addr | ws, 32); 308 CACHE32_UNROLL32_ALIGN; 309 /* I'm in odd chunk. blast even chunks */ 310 for (ws = 0; ws < ws_end; ws += ws_inc) 311 for (addr = start; addr < end; addr += 0x400 * 2) 312 cache_unroll(32, kernel_cache, Index_Invalidate_I, 313 addr | ws, 32); 314 } 315 316 static void (* r4k_blast_icache_page)(unsigned long addr); 317 318 static void r4k_blast_icache_page_setup(void) 319 { 320 unsigned long ic_lsize = cpu_icache_line_size(); 321 322 if (ic_lsize == 0) 323 r4k_blast_icache_page = (void *)cache_noop; 324 else if (ic_lsize == 16) 325 r4k_blast_icache_page = blast_icache16_page; 326 else if (ic_lsize == 32 && current_cpu_type() == CPU_LOONGSON2EF) 327 r4k_blast_icache_page = loongson2_blast_icache32_page; 328 else if (ic_lsize == 32) 329 r4k_blast_icache_page = blast_icache32_page; 330 else if (ic_lsize == 64) 331 r4k_blast_icache_page = blast_icache64_page; 332 else if (ic_lsize == 128) 333 r4k_blast_icache_page = blast_icache128_page; 334 } 335 336 #ifndef CONFIG_EVA 337 #define r4k_blast_icache_user_page r4k_blast_icache_page 338 #else 339 340 static void (*r4k_blast_icache_user_page)(unsigned long addr); 341 342 static void r4k_blast_icache_user_page_setup(void) 343 { 344 unsigned long ic_lsize = cpu_icache_line_size(); 345 346 if (ic_lsize == 0) 347 r4k_blast_icache_user_page = (void *)cache_noop; 348 else if (ic_lsize == 16) 349 r4k_blast_icache_user_page = blast_icache16_user_page; 350 else if (ic_lsize == 32) 351 r4k_blast_icache_user_page = blast_icache32_user_page; 352 else if (ic_lsize == 64) 353 r4k_blast_icache_user_page = blast_icache64_user_page; 354 } 355 356 #endif 357 358 static void (* r4k_blast_icache_page_indexed)(unsigned long addr); 359 360 static void r4k_blast_icache_page_indexed_setup(void) 361 { 362 unsigned long ic_lsize = cpu_icache_line_size(); 363 364 if (ic_lsize == 0) 365 r4k_blast_icache_page_indexed = (void *)cache_noop; 366 else if (ic_lsize == 16) 367 r4k_blast_icache_page_indexed = blast_icache16_page_indexed; 368 else if (ic_lsize == 32) { 369 if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x()) 370 r4k_blast_icache_page_indexed = 371 blast_icache32_r4600_v1_page_indexed; 372 else if (TX49XX_ICACHE_INDEX_INV_WAR) 373 r4k_blast_icache_page_indexed = 374 tx49_blast_icache32_page_indexed; 375 else if (current_cpu_type() == CPU_LOONGSON2EF) 376 r4k_blast_icache_page_indexed = 377 loongson2_blast_icache32_page_indexed; 378 else 379 r4k_blast_icache_page_indexed = 380 blast_icache32_page_indexed; 381 } else if (ic_lsize == 64) 382 r4k_blast_icache_page_indexed = blast_icache64_page_indexed; 383 } 384 385 void (* r4k_blast_icache)(void); 386 EXPORT_SYMBOL(r4k_blast_icache); 387 388 static void r4k_blast_icache_setup(void) 389 { 390 unsigned long ic_lsize = cpu_icache_line_size(); 391 392 if (ic_lsize == 0) 393 r4k_blast_icache = (void *)cache_noop; 394 else if (ic_lsize == 16) 395 r4k_blast_icache = blast_icache16; 396 else if (ic_lsize == 32) { 397 if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x()) 398 r4k_blast_icache = blast_r4600_v1_icache32; 399 else if (TX49XX_ICACHE_INDEX_INV_WAR) 400 r4k_blast_icache = tx49_blast_icache32; 401 else if (current_cpu_type() == CPU_LOONGSON2EF) 402 r4k_blast_icache = loongson2_blast_icache32; 403 else 404 r4k_blast_icache = blast_icache32; 405 } else if (ic_lsize == 64) 406 r4k_blast_icache = blast_icache64; 407 else if (ic_lsize == 128) 408 r4k_blast_icache = blast_icache128; 409 } 410 411 static void (* r4k_blast_scache_page)(unsigned long addr); 412 413 static void r4k_blast_scache_page_setup(void) 414 { 415 unsigned long sc_lsize = cpu_scache_line_size(); 416 417 if (scache_size == 0) 418 r4k_blast_scache_page = (void *)cache_noop; 419 else if (sc_lsize == 16) 420 r4k_blast_scache_page = blast_scache16_page; 421 else if (sc_lsize == 32) 422 r4k_blast_scache_page = blast_scache32_page; 423 else if (sc_lsize == 64) 424 r4k_blast_scache_page = blast_scache64_page; 425 else if (sc_lsize == 128) 426 r4k_blast_scache_page = blast_scache128_page; 427 } 428 429 static void (* r4k_blast_scache_page_indexed)(unsigned long addr); 430 431 static void r4k_blast_scache_page_indexed_setup(void) 432 { 433 unsigned long sc_lsize = cpu_scache_line_size(); 434 435 if (scache_size == 0) 436 r4k_blast_scache_page_indexed = (void *)cache_noop; 437 else if (sc_lsize == 16) 438 r4k_blast_scache_page_indexed = blast_scache16_page_indexed; 439 else if (sc_lsize == 32) 440 r4k_blast_scache_page_indexed = blast_scache32_page_indexed; 441 else if (sc_lsize == 64) 442 r4k_blast_scache_page_indexed = blast_scache64_page_indexed; 443 else if (sc_lsize == 128) 444 r4k_blast_scache_page_indexed = blast_scache128_page_indexed; 445 } 446 447 static void (* r4k_blast_scache)(void); 448 449 static void r4k_blast_scache_setup(void) 450 { 451 unsigned long sc_lsize = cpu_scache_line_size(); 452 453 if (scache_size == 0) 454 r4k_blast_scache = (void *)cache_noop; 455 else if (sc_lsize == 16) 456 r4k_blast_scache = blast_scache16; 457 else if (sc_lsize == 32) 458 r4k_blast_scache = blast_scache32; 459 else if (sc_lsize == 64) 460 r4k_blast_scache = blast_scache64; 461 else if (sc_lsize == 128) 462 r4k_blast_scache = blast_scache128; 463 } 464 465 static void (*r4k_blast_scache_node)(long node); 466 467 static void r4k_blast_scache_node_setup(void) 468 { 469 unsigned long sc_lsize = cpu_scache_line_size(); 470 471 if (current_cpu_type() != CPU_LOONGSON64) 472 r4k_blast_scache_node = (void *)cache_noop; 473 else if (sc_lsize == 16) 474 r4k_blast_scache_node = blast_scache16_node; 475 else if (sc_lsize == 32) 476 r4k_blast_scache_node = blast_scache32_node; 477 else if (sc_lsize == 64) 478 r4k_blast_scache_node = blast_scache64_node; 479 else if (sc_lsize == 128) 480 r4k_blast_scache_node = blast_scache128_node; 481 } 482 483 static inline void local_r4k___flush_cache_all(void * args) 484 { 485 switch (current_cpu_type()) { 486 case CPU_LOONGSON2EF: 487 case CPU_R4000SC: 488 case CPU_R4000MC: 489 case CPU_R4400SC: 490 case CPU_R4400MC: 491 case CPU_R10000: 492 case CPU_R12000: 493 case CPU_R14000: 494 case CPU_R16000: 495 /* 496 * These caches are inclusive caches, that is, if something 497 * is not cached in the S-cache, we know it also won't be 498 * in one of the primary caches. 499 */ 500 r4k_blast_scache(); 501 break; 502 503 case CPU_LOONGSON64: 504 /* Use get_ebase_cpunum() for both NUMA=y/n */ 505 r4k_blast_scache_node(get_ebase_cpunum() >> 2); 506 break; 507 508 case CPU_BMIPS5000: 509 r4k_blast_scache(); 510 __sync(); 511 break; 512 513 default: 514 r4k_blast_dcache(); 515 r4k_blast_icache(); 516 break; 517 } 518 } 519 520 static void r4k___flush_cache_all(void) 521 { 522 r4k_on_each_cpu(R4K_INDEX, local_r4k___flush_cache_all, NULL); 523 } 524 525 /** 526 * has_valid_asid() - Determine if an mm already has an ASID. 527 * @mm: Memory map. 528 * @type: R4K_HIT or R4K_INDEX, type of cache op. 529 * 530 * Determines whether @mm already has an ASID on any of the CPUs which cache ops 531 * of type @type within an r4k_on_each_cpu() call will affect. If 532 * r4k_on_each_cpu() does an SMP call to a single VPE in each core, then the 533 * scope of the operation is confined to sibling CPUs, otherwise all online CPUs 534 * will need to be checked. 535 * 536 * Must be called in non-preemptive context. 537 * 538 * Returns: 1 if the CPUs affected by @type cache ops have an ASID for @mm. 539 * 0 otherwise. 540 */ 541 static inline int has_valid_asid(const struct mm_struct *mm, unsigned int type) 542 { 543 unsigned int i; 544 const cpumask_t *mask = cpu_present_mask; 545 546 if (cpu_has_mmid) 547 return cpu_context(0, mm) != 0; 548 549 /* cpu_sibling_map[] undeclared when !CONFIG_SMP */ 550 #ifdef CONFIG_SMP 551 /* 552 * If r4k_on_each_cpu does SMP calls, it does them to a single VPE in 553 * each foreign core, so we only need to worry about siblings. 554 * Otherwise we need to worry about all present CPUs. 555 */ 556 if (r4k_op_needs_ipi(type)) 557 mask = &cpu_sibling_map[smp_processor_id()]; 558 #endif 559 for_each_cpu(i, mask) 560 if (cpu_context(i, mm)) 561 return 1; 562 return 0; 563 } 564 565 static void r4k__flush_cache_vmap(void) 566 { 567 r4k_blast_dcache(); 568 } 569 570 static void r4k__flush_cache_vunmap(void) 571 { 572 r4k_blast_dcache(); 573 } 574 575 /* 576 * Note: flush_tlb_range() assumes flush_cache_range() sufficiently flushes 577 * whole caches when vma is executable. 578 */ 579 static inline void local_r4k_flush_cache_range(void * args) 580 { 581 struct vm_area_struct *vma = args; 582 int exec = vma->vm_flags & VM_EXEC; 583 584 if (!has_valid_asid(vma->vm_mm, R4K_INDEX)) 585 return; 586 587 /* 588 * If dcache can alias, we must blast it since mapping is changing. 589 * If executable, we must ensure any dirty lines are written back far 590 * enough to be visible to icache. 591 */ 592 if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) 593 r4k_blast_dcache(); 594 /* If executable, blast stale lines from icache */ 595 if (exec) 596 r4k_blast_icache(); 597 } 598 599 static void r4k_flush_cache_range(struct vm_area_struct *vma, 600 unsigned long start, unsigned long end) 601 { 602 int exec = vma->vm_flags & VM_EXEC; 603 604 if (cpu_has_dc_aliases || exec) 605 r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_range, vma); 606 } 607 608 static inline void local_r4k_flush_cache_mm(void * args) 609 { 610 struct mm_struct *mm = args; 611 612 if (!has_valid_asid(mm, R4K_INDEX)) 613 return; 614 615 /* 616 * Kludge alert. For obscure reasons R4000SC and R4400SC go nuts if we 617 * only flush the primary caches but R1x000 behave sane ... 618 * R4000SC and R4400SC indexed S-cache ops also invalidate primary 619 * caches, so we can bail out early. 620 */ 621 if (current_cpu_type() == CPU_R4000SC || 622 current_cpu_type() == CPU_R4000MC || 623 current_cpu_type() == CPU_R4400SC || 624 current_cpu_type() == CPU_R4400MC) { 625 r4k_blast_scache(); 626 return; 627 } 628 629 r4k_blast_dcache(); 630 } 631 632 static void r4k_flush_cache_mm(struct mm_struct *mm) 633 { 634 if (!cpu_has_dc_aliases) 635 return; 636 637 r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_mm, mm); 638 } 639 640 struct flush_cache_page_args { 641 struct vm_area_struct *vma; 642 unsigned long addr; 643 unsigned long pfn; 644 }; 645 646 static inline void local_r4k_flush_cache_page(void *args) 647 { 648 struct flush_cache_page_args *fcp_args = args; 649 struct vm_area_struct *vma = fcp_args->vma; 650 unsigned long addr = fcp_args->addr; 651 struct page *page = pfn_to_page(fcp_args->pfn); 652 int exec = vma->vm_flags & VM_EXEC; 653 struct mm_struct *mm = vma->vm_mm; 654 int map_coherent = 0; 655 pmd_t *pmdp; 656 pte_t *ptep; 657 void *vaddr; 658 659 /* 660 * If owns no valid ASID yet, cannot possibly have gotten 661 * this page into the cache. 662 */ 663 if (!has_valid_asid(mm, R4K_HIT)) 664 return; 665 666 addr &= PAGE_MASK; 667 pmdp = pmd_off(mm, addr); 668 ptep = pte_offset_kernel(pmdp, addr); 669 670 /* 671 * If the page isn't marked valid, the page cannot possibly be 672 * in the cache. 673 */ 674 if (!(pte_present(*ptep))) 675 return; 676 677 if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID)) 678 vaddr = NULL; 679 else { 680 /* 681 * Use kmap_coherent or kmap_atomic to do flushes for 682 * another ASID than the current one. 683 */ 684 map_coherent = (cpu_has_dc_aliases && 685 page_mapcount(page) && 686 !Page_dcache_dirty(page)); 687 if (map_coherent) 688 vaddr = kmap_coherent(page, addr); 689 else 690 vaddr = kmap_atomic(page); 691 addr = (unsigned long)vaddr; 692 } 693 694 if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) { 695 vaddr ? r4k_blast_dcache_page(addr) : 696 r4k_blast_dcache_user_page(addr); 697 if (exec && !cpu_icache_snoops_remote_store) 698 r4k_blast_scache_page(addr); 699 } 700 if (exec) { 701 if (vaddr && cpu_has_vtag_icache && mm == current->active_mm) { 702 drop_mmu_context(mm); 703 } else 704 vaddr ? r4k_blast_icache_page(addr) : 705 r4k_blast_icache_user_page(addr); 706 } 707 708 if (vaddr) { 709 if (map_coherent) 710 kunmap_coherent(); 711 else 712 kunmap_atomic(vaddr); 713 } 714 } 715 716 static void r4k_flush_cache_page(struct vm_area_struct *vma, 717 unsigned long addr, unsigned long pfn) 718 { 719 struct flush_cache_page_args args; 720 721 args.vma = vma; 722 args.addr = addr; 723 args.pfn = pfn; 724 725 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_page, &args); 726 } 727 728 static inline void local_r4k_flush_data_cache_page(void * addr) 729 { 730 r4k_blast_dcache_page((unsigned long) addr); 731 } 732 733 static void r4k_flush_data_cache_page(unsigned long addr) 734 { 735 if (in_atomic()) 736 local_r4k_flush_data_cache_page((void *)addr); 737 else 738 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_data_cache_page, 739 (void *) addr); 740 } 741 742 struct flush_icache_range_args { 743 unsigned long start; 744 unsigned long end; 745 unsigned int type; 746 bool user; 747 }; 748 749 static inline void __local_r4k_flush_icache_range(unsigned long start, 750 unsigned long end, 751 unsigned int type, 752 bool user) 753 { 754 if (!cpu_has_ic_fills_f_dc) { 755 if (type == R4K_INDEX || 756 (type & R4K_INDEX && end - start >= dcache_size)) { 757 r4k_blast_dcache(); 758 } else { 759 R4600_HIT_CACHEOP_WAR_IMPL; 760 if (user) 761 protected_blast_dcache_range(start, end); 762 else 763 blast_dcache_range(start, end); 764 } 765 } 766 767 if (type == R4K_INDEX || 768 (type & R4K_INDEX && end - start > icache_size)) 769 r4k_blast_icache(); 770 else { 771 switch (boot_cpu_type()) { 772 case CPU_LOONGSON2EF: 773 protected_loongson2_blast_icache_range(start, end); 774 break; 775 776 default: 777 if (user) 778 protected_blast_icache_range(start, end); 779 else 780 blast_icache_range(start, end); 781 break; 782 } 783 } 784 } 785 786 static inline void local_r4k_flush_icache_range(unsigned long start, 787 unsigned long end) 788 { 789 __local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, false); 790 } 791 792 static inline void local_r4k_flush_icache_user_range(unsigned long start, 793 unsigned long end) 794 { 795 __local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, true); 796 } 797 798 static inline void local_r4k_flush_icache_range_ipi(void *args) 799 { 800 struct flush_icache_range_args *fir_args = args; 801 unsigned long start = fir_args->start; 802 unsigned long end = fir_args->end; 803 unsigned int type = fir_args->type; 804 bool user = fir_args->user; 805 806 __local_r4k_flush_icache_range(start, end, type, user); 807 } 808 809 static void __r4k_flush_icache_range(unsigned long start, unsigned long end, 810 bool user) 811 { 812 struct flush_icache_range_args args; 813 unsigned long size, cache_size; 814 815 args.start = start; 816 args.end = end; 817 args.type = R4K_HIT | R4K_INDEX; 818 args.user = user; 819 820 /* 821 * Indexed cache ops require an SMP call. 822 * Consider if that can or should be avoided. 823 */ 824 preempt_disable(); 825 if (r4k_op_needs_ipi(R4K_INDEX) && !r4k_op_needs_ipi(R4K_HIT)) { 826 /* 827 * If address-based cache ops don't require an SMP call, then 828 * use them exclusively for small flushes. 829 */ 830 size = end - start; 831 cache_size = icache_size; 832 if (!cpu_has_ic_fills_f_dc) { 833 size *= 2; 834 cache_size += dcache_size; 835 } 836 if (size <= cache_size) 837 args.type &= ~R4K_INDEX; 838 } 839 r4k_on_each_cpu(args.type, local_r4k_flush_icache_range_ipi, &args); 840 preempt_enable(); 841 instruction_hazard(); 842 } 843 844 static void r4k_flush_icache_range(unsigned long start, unsigned long end) 845 { 846 return __r4k_flush_icache_range(start, end, false); 847 } 848 849 static void r4k_flush_icache_user_range(unsigned long start, unsigned long end) 850 { 851 return __r4k_flush_icache_range(start, end, true); 852 } 853 854 #ifdef CONFIG_DMA_NONCOHERENT 855 856 static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size) 857 { 858 /* Catch bad driver code */ 859 if (WARN_ON(size == 0)) 860 return; 861 862 preempt_disable(); 863 if (cpu_has_inclusive_pcaches) { 864 if (size >= scache_size) { 865 if (current_cpu_type() != CPU_LOONGSON64) 866 r4k_blast_scache(); 867 else 868 r4k_blast_scache_node(pa_to_nid(addr)); 869 } else { 870 blast_scache_range(addr, addr + size); 871 } 872 preempt_enable(); 873 __sync(); 874 return; 875 } 876 877 /* 878 * Either no secondary cache or the available caches don't have the 879 * subset property so we have to flush the primary caches 880 * explicitly. 881 * If we would need IPI to perform an INDEX-type operation, then 882 * we have to use the HIT-type alternative as IPI cannot be used 883 * here due to interrupts possibly being disabled. 884 */ 885 if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) { 886 r4k_blast_dcache(); 887 } else { 888 R4600_HIT_CACHEOP_WAR_IMPL; 889 blast_dcache_range(addr, addr + size); 890 } 891 preempt_enable(); 892 893 bc_wback_inv(addr, size); 894 __sync(); 895 } 896 897 static void prefetch_cache_inv(unsigned long addr, unsigned long size) 898 { 899 unsigned int linesz = cpu_scache_line_size(); 900 unsigned long addr0 = addr, addr1; 901 902 addr0 &= ~(linesz - 1); 903 addr1 = (addr0 + size - 1) & ~(linesz - 1); 904 905 protected_writeback_scache_line(addr0); 906 if (likely(addr1 != addr0)) 907 protected_writeback_scache_line(addr1); 908 else 909 return; 910 911 addr0 += linesz; 912 if (likely(addr1 != addr0)) 913 protected_writeback_scache_line(addr0); 914 else 915 return; 916 917 addr1 -= linesz; 918 if (likely(addr1 > addr0)) 919 protected_writeback_scache_line(addr0); 920 } 921 922 static void r4k_dma_cache_inv(unsigned long addr, unsigned long size) 923 { 924 /* Catch bad driver code */ 925 if (WARN_ON(size == 0)) 926 return; 927 928 preempt_disable(); 929 930 if (current_cpu_type() == CPU_BMIPS5000) 931 prefetch_cache_inv(addr, size); 932 933 if (cpu_has_inclusive_pcaches) { 934 if (size >= scache_size) { 935 if (current_cpu_type() != CPU_LOONGSON64) 936 r4k_blast_scache(); 937 else 938 r4k_blast_scache_node(pa_to_nid(addr)); 939 } else { 940 /* 941 * There is no clearly documented alignment requirement 942 * for the cache instruction on MIPS processors and 943 * some processors, among them the RM5200 and RM7000 944 * QED processors will throw an address error for cache 945 * hit ops with insufficient alignment. Solved by 946 * aligning the address to cache line size. 947 */ 948 blast_inv_scache_range(addr, addr + size); 949 } 950 preempt_enable(); 951 __sync(); 952 return; 953 } 954 955 if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) { 956 r4k_blast_dcache(); 957 } else { 958 R4600_HIT_CACHEOP_WAR_IMPL; 959 blast_inv_dcache_range(addr, addr + size); 960 } 961 preempt_enable(); 962 963 bc_inv(addr, size); 964 __sync(); 965 } 966 #endif /* CONFIG_DMA_NONCOHERENT */ 967 968 static void r4k_flush_icache_all(void) 969 { 970 if (cpu_has_vtag_icache) 971 r4k_blast_icache(); 972 } 973 974 struct flush_kernel_vmap_range_args { 975 unsigned long vaddr; 976 int size; 977 }; 978 979 static inline void local_r4k_flush_kernel_vmap_range_index(void *args) 980 { 981 /* 982 * Aliases only affect the primary caches so don't bother with 983 * S-caches or T-caches. 984 */ 985 r4k_blast_dcache(); 986 } 987 988 static inline void local_r4k_flush_kernel_vmap_range(void *args) 989 { 990 struct flush_kernel_vmap_range_args *vmra = args; 991 unsigned long vaddr = vmra->vaddr; 992 int size = vmra->size; 993 994 /* 995 * Aliases only affect the primary caches so don't bother with 996 * S-caches or T-caches. 997 */ 998 R4600_HIT_CACHEOP_WAR_IMPL; 999 blast_dcache_range(vaddr, vaddr + size); 1000 } 1001 1002 static void r4k_flush_kernel_vmap_range(unsigned long vaddr, int size) 1003 { 1004 struct flush_kernel_vmap_range_args args; 1005 1006 args.vaddr = (unsigned long) vaddr; 1007 args.size = size; 1008 1009 if (size >= dcache_size) 1010 r4k_on_each_cpu(R4K_INDEX, 1011 local_r4k_flush_kernel_vmap_range_index, NULL); 1012 else 1013 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_kernel_vmap_range, 1014 &args); 1015 } 1016 1017 static inline void rm7k_erratum31(void) 1018 { 1019 const unsigned long ic_lsize = 32; 1020 unsigned long addr; 1021 1022 /* RM7000 erratum #31. The icache is screwed at startup. */ 1023 write_c0_taglo(0); 1024 write_c0_taghi(0); 1025 1026 for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) { 1027 __asm__ __volatile__ ( 1028 ".set push\n\t" 1029 ".set noreorder\n\t" 1030 ".set mips3\n\t" 1031 "cache\t%1, 0(%0)\n\t" 1032 "cache\t%1, 0x1000(%0)\n\t" 1033 "cache\t%1, 0x2000(%0)\n\t" 1034 "cache\t%1, 0x3000(%0)\n\t" 1035 "cache\t%2, 0(%0)\n\t" 1036 "cache\t%2, 0x1000(%0)\n\t" 1037 "cache\t%2, 0x2000(%0)\n\t" 1038 "cache\t%2, 0x3000(%0)\n\t" 1039 "cache\t%1, 0(%0)\n\t" 1040 "cache\t%1, 0x1000(%0)\n\t" 1041 "cache\t%1, 0x2000(%0)\n\t" 1042 "cache\t%1, 0x3000(%0)\n\t" 1043 ".set pop\n" 1044 : 1045 : "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill_I)); 1046 } 1047 } 1048 1049 static inline int alias_74k_erratum(struct cpuinfo_mips *c) 1050 { 1051 unsigned int imp = c->processor_id & PRID_IMP_MASK; 1052 unsigned int rev = c->processor_id & PRID_REV_MASK; 1053 int present = 0; 1054 1055 /* 1056 * Early versions of the 74K do not update the cache tags on a 1057 * vtag miss/ptag hit which can occur in the case of KSEG0/KUSEG 1058 * aliases. In this case it is better to treat the cache as always 1059 * having aliases. Also disable the synonym tag update feature 1060 * where available. In this case no opportunistic tag update will 1061 * happen where a load causes a virtual address miss but a physical 1062 * address hit during a D-cache look-up. 1063 */ 1064 switch (imp) { 1065 case PRID_IMP_74K: 1066 if (rev <= PRID_REV_ENCODE_332(2, 4, 0)) 1067 present = 1; 1068 if (rev == PRID_REV_ENCODE_332(2, 4, 0)) 1069 write_c0_config6(read_c0_config6() | MTI_CONF6_SYND); 1070 break; 1071 case PRID_IMP_1074K: 1072 if (rev <= PRID_REV_ENCODE_332(1, 1, 0)) { 1073 present = 1; 1074 write_c0_config6(read_c0_config6() | MTI_CONF6_SYND); 1075 } 1076 break; 1077 default: 1078 BUG(); 1079 } 1080 1081 return present; 1082 } 1083 1084 static void b5k_instruction_hazard(void) 1085 { 1086 __sync(); 1087 __sync(); 1088 __asm__ __volatile__( 1089 " nop; nop; nop; nop; nop; nop; nop; nop\n" 1090 " nop; nop; nop; nop; nop; nop; nop; nop\n" 1091 " nop; nop; nop; nop; nop; nop; nop; nop\n" 1092 " nop; nop; nop; nop; nop; nop; nop; nop\n" 1093 : : : "memory"); 1094 } 1095 1096 static char *way_string[] = { NULL, "direct mapped", "2-way", 1097 "3-way", "4-way", "5-way", "6-way", "7-way", "8-way", 1098 "9-way", "10-way", "11-way", "12-way", 1099 "13-way", "14-way", "15-way", "16-way", 1100 }; 1101 1102 static void probe_pcache(void) 1103 { 1104 struct cpuinfo_mips *c = ¤t_cpu_data; 1105 unsigned int config = read_c0_config(); 1106 unsigned int prid = read_c0_prid(); 1107 int has_74k_erratum = 0; 1108 unsigned long config1; 1109 unsigned int lsize; 1110 1111 switch (current_cpu_type()) { 1112 case CPU_R4600: /* QED style two way caches? */ 1113 case CPU_R4700: 1114 case CPU_R5000: 1115 case CPU_NEVADA: 1116 icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); 1117 c->icache.linesz = 16 << ((config & CONF_IB) >> 5); 1118 c->icache.ways = 2; 1119 c->icache.waybit = __ffs(icache_size/2); 1120 1121 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); 1122 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); 1123 c->dcache.ways = 2; 1124 c->dcache.waybit= __ffs(dcache_size/2); 1125 1126 c->options |= MIPS_CPU_CACHE_CDEX_P; 1127 break; 1128 1129 case CPU_R5500: 1130 icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); 1131 c->icache.linesz = 16 << ((config & CONF_IB) >> 5); 1132 c->icache.ways = 2; 1133 c->icache.waybit= 0; 1134 1135 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); 1136 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); 1137 c->dcache.ways = 2; 1138 c->dcache.waybit = 0; 1139 1140 c->options |= MIPS_CPU_CACHE_CDEX_P | MIPS_CPU_PREFETCH; 1141 break; 1142 1143 case CPU_TX49XX: 1144 icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); 1145 c->icache.linesz = 16 << ((config & CONF_IB) >> 5); 1146 c->icache.ways = 4; 1147 c->icache.waybit= 0; 1148 1149 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); 1150 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); 1151 c->dcache.ways = 4; 1152 c->dcache.waybit = 0; 1153 1154 c->options |= MIPS_CPU_CACHE_CDEX_P; 1155 c->options |= MIPS_CPU_PREFETCH; 1156 break; 1157 1158 case CPU_R4000PC: 1159 case CPU_R4000SC: 1160 case CPU_R4000MC: 1161 case CPU_R4400PC: 1162 case CPU_R4400SC: 1163 case CPU_R4400MC: 1164 icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); 1165 c->icache.linesz = 16 << ((config & CONF_IB) >> 5); 1166 c->icache.ways = 1; 1167 c->icache.waybit = 0; /* doesn't matter */ 1168 1169 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); 1170 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); 1171 c->dcache.ways = 1; 1172 c->dcache.waybit = 0; /* does not matter */ 1173 1174 c->options |= MIPS_CPU_CACHE_CDEX_P; 1175 break; 1176 1177 case CPU_R10000: 1178 case CPU_R12000: 1179 case CPU_R14000: 1180 case CPU_R16000: 1181 icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29)); 1182 c->icache.linesz = 64; 1183 c->icache.ways = 2; 1184 c->icache.waybit = 0; 1185 1186 dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26)); 1187 c->dcache.linesz = 32; 1188 c->dcache.ways = 2; 1189 c->dcache.waybit = 0; 1190 1191 c->options |= MIPS_CPU_PREFETCH; 1192 break; 1193 1194 case CPU_VR4133: 1195 write_c0_config(config & ~VR41_CONF_P4K); 1196 fallthrough; 1197 case CPU_VR4131: 1198 /* Workaround for cache instruction bug of VR4131 */ 1199 if (c->processor_id == 0x0c80U || c->processor_id == 0x0c81U || 1200 c->processor_id == 0x0c82U) { 1201 config |= 0x00400000U; 1202 if (c->processor_id == 0x0c80U) 1203 config |= VR41_CONF_BP; 1204 write_c0_config(config); 1205 } else 1206 c->options |= MIPS_CPU_CACHE_CDEX_P; 1207 1208 icache_size = 1 << (10 + ((config & CONF_IC) >> 9)); 1209 c->icache.linesz = 16 << ((config & CONF_IB) >> 5); 1210 c->icache.ways = 2; 1211 c->icache.waybit = __ffs(icache_size/2); 1212 1213 dcache_size = 1 << (10 + ((config & CONF_DC) >> 6)); 1214 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); 1215 c->dcache.ways = 2; 1216 c->dcache.waybit = __ffs(dcache_size/2); 1217 break; 1218 1219 case CPU_VR41XX: 1220 case CPU_VR4111: 1221 case CPU_VR4121: 1222 case CPU_VR4122: 1223 case CPU_VR4181: 1224 case CPU_VR4181A: 1225 icache_size = 1 << (10 + ((config & CONF_IC) >> 9)); 1226 c->icache.linesz = 16 << ((config & CONF_IB) >> 5); 1227 c->icache.ways = 1; 1228 c->icache.waybit = 0; /* doesn't matter */ 1229 1230 dcache_size = 1 << (10 + ((config & CONF_DC) >> 6)); 1231 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); 1232 c->dcache.ways = 1; 1233 c->dcache.waybit = 0; /* does not matter */ 1234 1235 c->options |= MIPS_CPU_CACHE_CDEX_P; 1236 break; 1237 1238 case CPU_RM7000: 1239 rm7k_erratum31(); 1240 1241 icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); 1242 c->icache.linesz = 16 << ((config & CONF_IB) >> 5); 1243 c->icache.ways = 4; 1244 c->icache.waybit = __ffs(icache_size / c->icache.ways); 1245 1246 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); 1247 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); 1248 c->dcache.ways = 4; 1249 c->dcache.waybit = __ffs(dcache_size / c->dcache.ways); 1250 1251 c->options |= MIPS_CPU_CACHE_CDEX_P; 1252 c->options |= MIPS_CPU_PREFETCH; 1253 break; 1254 1255 case CPU_LOONGSON2EF: 1256 icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); 1257 c->icache.linesz = 16 << ((config & CONF_IB) >> 5); 1258 if (prid & 0x3) 1259 c->icache.ways = 4; 1260 else 1261 c->icache.ways = 2; 1262 c->icache.waybit = 0; 1263 1264 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); 1265 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); 1266 if (prid & 0x3) 1267 c->dcache.ways = 4; 1268 else 1269 c->dcache.ways = 2; 1270 c->dcache.waybit = 0; 1271 break; 1272 1273 case CPU_LOONGSON64: 1274 config1 = read_c0_config1(); 1275 lsize = (config1 >> 19) & 7; 1276 if (lsize) 1277 c->icache.linesz = 2 << lsize; 1278 else 1279 c->icache.linesz = 0; 1280 c->icache.sets = 64 << ((config1 >> 22) & 7); 1281 c->icache.ways = 1 + ((config1 >> 16) & 7); 1282 icache_size = c->icache.sets * 1283 c->icache.ways * 1284 c->icache.linesz; 1285 c->icache.waybit = 0; 1286 1287 lsize = (config1 >> 10) & 7; 1288 if (lsize) 1289 c->dcache.linesz = 2 << lsize; 1290 else 1291 c->dcache.linesz = 0; 1292 c->dcache.sets = 64 << ((config1 >> 13) & 7); 1293 c->dcache.ways = 1 + ((config1 >> 7) & 7); 1294 dcache_size = c->dcache.sets * 1295 c->dcache.ways * 1296 c->dcache.linesz; 1297 c->dcache.waybit = 0; 1298 if ((c->processor_id & (PRID_IMP_MASK | PRID_REV_MASK)) >= 1299 (PRID_IMP_LOONGSON_64C | PRID_REV_LOONGSON3A_R2_0) || 1300 (c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R) 1301 c->options |= MIPS_CPU_PREFETCH; 1302 break; 1303 1304 case CPU_CAVIUM_OCTEON3: 1305 /* For now lie about the number of ways. */ 1306 c->icache.linesz = 128; 1307 c->icache.sets = 16; 1308 c->icache.ways = 8; 1309 c->icache.flags |= MIPS_CACHE_VTAG; 1310 icache_size = c->icache.sets * c->icache.ways * c->icache.linesz; 1311 1312 c->dcache.linesz = 128; 1313 c->dcache.ways = 8; 1314 c->dcache.sets = 8; 1315 dcache_size = c->dcache.sets * c->dcache.ways * c->dcache.linesz; 1316 c->options |= MIPS_CPU_PREFETCH; 1317 break; 1318 1319 default: 1320 if (!(config & MIPS_CONF_M)) 1321 panic("Don't know how to probe P-caches on this cpu."); 1322 1323 /* 1324 * So we seem to be a MIPS32 or MIPS64 CPU 1325 * So let's probe the I-cache ... 1326 */ 1327 config1 = read_c0_config1(); 1328 1329 lsize = (config1 >> 19) & 7; 1330 1331 /* IL == 7 is reserved */ 1332 if (lsize == 7) 1333 panic("Invalid icache line size"); 1334 1335 c->icache.linesz = lsize ? 2 << lsize : 0; 1336 1337 c->icache.sets = 32 << (((config1 >> 22) + 1) & 7); 1338 c->icache.ways = 1 + ((config1 >> 16) & 7); 1339 1340 icache_size = c->icache.sets * 1341 c->icache.ways * 1342 c->icache.linesz; 1343 c->icache.waybit = __ffs(icache_size/c->icache.ways); 1344 1345 if (config & MIPS_CONF_VI) 1346 c->icache.flags |= MIPS_CACHE_VTAG; 1347 1348 /* 1349 * Now probe the MIPS32 / MIPS64 data cache. 1350 */ 1351 c->dcache.flags = 0; 1352 1353 lsize = (config1 >> 10) & 7; 1354 1355 /* DL == 7 is reserved */ 1356 if (lsize == 7) 1357 panic("Invalid dcache line size"); 1358 1359 c->dcache.linesz = lsize ? 2 << lsize : 0; 1360 1361 c->dcache.sets = 32 << (((config1 >> 13) + 1) & 7); 1362 c->dcache.ways = 1 + ((config1 >> 7) & 7); 1363 1364 dcache_size = c->dcache.sets * 1365 c->dcache.ways * 1366 c->dcache.linesz; 1367 c->dcache.waybit = __ffs(dcache_size/c->dcache.ways); 1368 1369 c->options |= MIPS_CPU_PREFETCH; 1370 break; 1371 } 1372 1373 /* 1374 * Processor configuration sanity check for the R4000SC erratum 1375 * #5. With page sizes larger than 32kB there is no possibility 1376 * to get a VCE exception anymore so we don't care about this 1377 * misconfiguration. The case is rather theoretical anyway; 1378 * presumably no vendor is shipping his hardware in the "bad" 1379 * configuration. 1380 */ 1381 if ((prid & PRID_IMP_MASK) == PRID_IMP_R4000 && 1382 (prid & PRID_REV_MASK) < PRID_REV_R4400 && 1383 !(config & CONF_SC) && c->icache.linesz != 16 && 1384 PAGE_SIZE <= 0x8000) 1385 panic("Improper R4000SC processor configuration detected"); 1386 1387 /* compute a couple of other cache variables */ 1388 c->icache.waysize = icache_size / c->icache.ways; 1389 c->dcache.waysize = dcache_size / c->dcache.ways; 1390 1391 c->icache.sets = c->icache.linesz ? 1392 icache_size / (c->icache.linesz * c->icache.ways) : 0; 1393 c->dcache.sets = c->dcache.linesz ? 1394 dcache_size / (c->dcache.linesz * c->dcache.ways) : 0; 1395 1396 /* 1397 * R1x000 P-caches are odd in a positive way. They're 32kB 2-way 1398 * virtually indexed so normally would suffer from aliases. So 1399 * normally they'd suffer from aliases but magic in the hardware deals 1400 * with that for us so we don't need to take care ourselves. 1401 */ 1402 switch (current_cpu_type()) { 1403 case CPU_20KC: 1404 case CPU_25KF: 1405 case CPU_I6400: 1406 case CPU_I6500: 1407 case CPU_SB1: 1408 case CPU_SB1A: 1409 case CPU_XLR: 1410 c->dcache.flags |= MIPS_CACHE_PINDEX; 1411 break; 1412 1413 case CPU_R10000: 1414 case CPU_R12000: 1415 case CPU_R14000: 1416 case CPU_R16000: 1417 break; 1418 1419 case CPU_74K: 1420 case CPU_1074K: 1421 has_74k_erratum = alias_74k_erratum(c); 1422 fallthrough; 1423 case CPU_M14KC: 1424 case CPU_M14KEC: 1425 case CPU_24K: 1426 case CPU_34K: 1427 case CPU_1004K: 1428 case CPU_INTERAPTIV: 1429 case CPU_P5600: 1430 case CPU_PROAPTIV: 1431 case CPU_M5150: 1432 case CPU_QEMU_GENERIC: 1433 case CPU_P6600: 1434 case CPU_M6250: 1435 if (!(read_c0_config7() & MIPS_CONF7_IAR) && 1436 (c->icache.waysize > PAGE_SIZE)) 1437 c->icache.flags |= MIPS_CACHE_ALIASES; 1438 if (!has_74k_erratum && (read_c0_config7() & MIPS_CONF7_AR)) { 1439 /* 1440 * Effectively physically indexed dcache, 1441 * thus no virtual aliases. 1442 */ 1443 c->dcache.flags |= MIPS_CACHE_PINDEX; 1444 break; 1445 } 1446 fallthrough; 1447 default: 1448 if (has_74k_erratum || c->dcache.waysize > PAGE_SIZE) 1449 c->dcache.flags |= MIPS_CACHE_ALIASES; 1450 } 1451 1452 /* Physically indexed caches don't suffer from virtual aliasing */ 1453 if (c->dcache.flags & MIPS_CACHE_PINDEX) 1454 c->dcache.flags &= ~MIPS_CACHE_ALIASES; 1455 1456 /* 1457 * In systems with CM the icache fills from L2 or closer caches, and 1458 * thus sees remote stores without needing to write them back any 1459 * further than that. 1460 */ 1461 if (mips_cm_present()) 1462 c->icache.flags |= MIPS_IC_SNOOPS_REMOTE; 1463 1464 switch (current_cpu_type()) { 1465 case CPU_20KC: 1466 /* 1467 * Some older 20Kc chips doesn't have the 'VI' bit in 1468 * the config register. 1469 */ 1470 c->icache.flags |= MIPS_CACHE_VTAG; 1471 break; 1472 1473 case CPU_ALCHEMY: 1474 case CPU_I6400: 1475 case CPU_I6500: 1476 c->icache.flags |= MIPS_CACHE_IC_F_DC; 1477 break; 1478 1479 case CPU_BMIPS5000: 1480 c->icache.flags |= MIPS_CACHE_IC_F_DC; 1481 /* Cache aliases are handled in hardware; allow HIGHMEM */ 1482 c->dcache.flags &= ~MIPS_CACHE_ALIASES; 1483 break; 1484 1485 case CPU_LOONGSON2EF: 1486 /* 1487 * LOONGSON2 has 4 way icache, but when using indexed cache op, 1488 * one op will act on all 4 ways 1489 */ 1490 c->icache.ways = 1; 1491 } 1492 1493 pr_info("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n", 1494 icache_size >> 10, 1495 c->icache.flags & MIPS_CACHE_VTAG ? "VIVT" : "VIPT", 1496 way_string[c->icache.ways], c->icache.linesz); 1497 1498 pr_info("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n", 1499 dcache_size >> 10, way_string[c->dcache.ways], 1500 (c->dcache.flags & MIPS_CACHE_PINDEX) ? "PIPT" : "VIPT", 1501 (c->dcache.flags & MIPS_CACHE_ALIASES) ? 1502 "cache aliases" : "no aliases", 1503 c->dcache.linesz); 1504 } 1505 1506 static void probe_vcache(void) 1507 { 1508 struct cpuinfo_mips *c = ¤t_cpu_data; 1509 unsigned int config2, lsize; 1510 1511 if (current_cpu_type() != CPU_LOONGSON64) 1512 return; 1513 1514 config2 = read_c0_config2(); 1515 if ((lsize = ((config2 >> 20) & 15))) 1516 c->vcache.linesz = 2 << lsize; 1517 else 1518 c->vcache.linesz = lsize; 1519 1520 c->vcache.sets = 64 << ((config2 >> 24) & 15); 1521 c->vcache.ways = 1 + ((config2 >> 16) & 15); 1522 1523 vcache_size = c->vcache.sets * c->vcache.ways * c->vcache.linesz; 1524 1525 c->vcache.waybit = 0; 1526 c->vcache.waysize = vcache_size / c->vcache.ways; 1527 1528 pr_info("Unified victim cache %ldkB %s, linesize %d bytes.\n", 1529 vcache_size >> 10, way_string[c->vcache.ways], c->vcache.linesz); 1530 } 1531 1532 /* 1533 * If you even _breathe_ on this function, look at the gcc output and make sure 1534 * it does not pop things on and off the stack for the cache sizing loop that 1535 * executes in KSEG1 space or else you will crash and burn badly. You have 1536 * been warned. 1537 */ 1538 static int probe_scache(void) 1539 { 1540 unsigned long flags, addr, begin, end, pow2; 1541 unsigned int config = read_c0_config(); 1542 struct cpuinfo_mips *c = ¤t_cpu_data; 1543 1544 if (config & CONF_SC) 1545 return 0; 1546 1547 begin = (unsigned long) &_stext; 1548 begin &= ~((4 * 1024 * 1024) - 1); 1549 end = begin + (4 * 1024 * 1024); 1550 1551 /* 1552 * This is such a bitch, you'd think they would make it easy to do 1553 * this. Away you daemons of stupidity! 1554 */ 1555 local_irq_save(flags); 1556 1557 /* Fill each size-multiple cache line with a valid tag. */ 1558 pow2 = (64 * 1024); 1559 for (addr = begin; addr < end; addr = (begin + pow2)) { 1560 unsigned long *p = (unsigned long *) addr; 1561 __asm__ __volatile__("nop" : : "r" (*p)); /* whee... */ 1562 pow2 <<= 1; 1563 } 1564 1565 /* Load first line with zero (therefore invalid) tag. */ 1566 write_c0_taglo(0); 1567 write_c0_taghi(0); 1568 __asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */ 1569 cache_op(Index_Store_Tag_I, begin); 1570 cache_op(Index_Store_Tag_D, begin); 1571 cache_op(Index_Store_Tag_SD, begin); 1572 1573 /* Now search for the wrap around point. */ 1574 pow2 = (128 * 1024); 1575 for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) { 1576 cache_op(Index_Load_Tag_SD, addr); 1577 __asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */ 1578 if (!read_c0_taglo()) 1579 break; 1580 pow2 <<= 1; 1581 } 1582 local_irq_restore(flags); 1583 addr -= begin; 1584 1585 scache_size = addr; 1586 c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22); 1587 c->scache.ways = 1; 1588 c->scache.waybit = 0; /* does not matter */ 1589 1590 return 1; 1591 } 1592 1593 static void __init loongson2_sc_init(void) 1594 { 1595 struct cpuinfo_mips *c = ¤t_cpu_data; 1596 1597 scache_size = 512*1024; 1598 c->scache.linesz = 32; 1599 c->scache.ways = 4; 1600 c->scache.waybit = 0; 1601 c->scache.waysize = scache_size / (c->scache.ways); 1602 c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways); 1603 pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n", 1604 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz); 1605 1606 c->options |= MIPS_CPU_INCLUSIVE_CACHES; 1607 } 1608 1609 static void __init loongson3_sc_init(void) 1610 { 1611 struct cpuinfo_mips *c = ¤t_cpu_data; 1612 unsigned int config2, lsize; 1613 1614 config2 = read_c0_config2(); 1615 lsize = (config2 >> 4) & 15; 1616 if (lsize) 1617 c->scache.linesz = 2 << lsize; 1618 else 1619 c->scache.linesz = 0; 1620 c->scache.sets = 64 << ((config2 >> 8) & 15); 1621 c->scache.ways = 1 + (config2 & 15); 1622 1623 scache_size = c->scache.sets * 1624 c->scache.ways * 1625 c->scache.linesz; 1626 1627 /* Loongson-3 has 4-Scache banks, while Loongson-2K have only 2 banks */ 1628 if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R) 1629 scache_size *= 2; 1630 else 1631 scache_size *= 4; 1632 1633 c->scache.waybit = 0; 1634 c->scache.waysize = scache_size / c->scache.ways; 1635 pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n", 1636 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz); 1637 if (scache_size) 1638 c->options |= MIPS_CPU_INCLUSIVE_CACHES; 1639 return; 1640 } 1641 1642 extern int r5k_sc_init(void); 1643 extern int rm7k_sc_init(void); 1644 extern int mips_sc_init(void); 1645 1646 static void setup_scache(void) 1647 { 1648 struct cpuinfo_mips *c = ¤t_cpu_data; 1649 unsigned int config = read_c0_config(); 1650 int sc_present = 0; 1651 1652 /* 1653 * Do the probing thing on R4000SC and R4400SC processors. Other 1654 * processors don't have a S-cache that would be relevant to the 1655 * Linux memory management. 1656 */ 1657 switch (current_cpu_type()) { 1658 case CPU_R4000SC: 1659 case CPU_R4000MC: 1660 case CPU_R4400SC: 1661 case CPU_R4400MC: 1662 sc_present = run_uncached(probe_scache); 1663 if (sc_present) 1664 c->options |= MIPS_CPU_CACHE_CDEX_S; 1665 break; 1666 1667 case CPU_R10000: 1668 case CPU_R12000: 1669 case CPU_R14000: 1670 case CPU_R16000: 1671 scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16); 1672 c->scache.linesz = 64 << ((config >> 13) & 1); 1673 c->scache.ways = 2; 1674 c->scache.waybit= 0; 1675 sc_present = 1; 1676 break; 1677 1678 case CPU_R5000: 1679 case CPU_NEVADA: 1680 #ifdef CONFIG_R5000_CPU_SCACHE 1681 r5k_sc_init(); 1682 #endif 1683 return; 1684 1685 case CPU_RM7000: 1686 #ifdef CONFIG_RM7000_CPU_SCACHE 1687 rm7k_sc_init(); 1688 #endif 1689 return; 1690 1691 case CPU_LOONGSON2EF: 1692 loongson2_sc_init(); 1693 return; 1694 1695 case CPU_LOONGSON64: 1696 loongson3_sc_init(); 1697 return; 1698 1699 case CPU_CAVIUM_OCTEON3: 1700 case CPU_XLP: 1701 /* don't need to worry about L2, fully coherent */ 1702 return; 1703 1704 default: 1705 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 | 1706 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 | 1707 MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 | 1708 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) { 1709 #ifdef CONFIG_MIPS_CPU_SCACHE 1710 if (mips_sc_init ()) { 1711 scache_size = c->scache.ways * c->scache.sets * c->scache.linesz; 1712 printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n", 1713 scache_size >> 10, 1714 way_string[c->scache.ways], c->scache.linesz); 1715 1716 if (current_cpu_type() == CPU_BMIPS5000) 1717 c->options |= MIPS_CPU_INCLUSIVE_CACHES; 1718 } 1719 1720 #else 1721 if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT)) 1722 panic("Dunno how to handle MIPS32 / MIPS64 second level cache"); 1723 #endif 1724 return; 1725 } 1726 sc_present = 0; 1727 } 1728 1729 if (!sc_present) 1730 return; 1731 1732 /* compute a couple of other cache variables */ 1733 c->scache.waysize = scache_size / c->scache.ways; 1734 1735 c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways); 1736 1737 printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n", 1738 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz); 1739 1740 c->options |= MIPS_CPU_INCLUSIVE_CACHES; 1741 } 1742 1743 void au1x00_fixup_config_od(void) 1744 { 1745 /* 1746 * c0_config.od (bit 19) was write only (and read as 0) 1747 * on the early revisions of Alchemy SOCs. It disables the bus 1748 * transaction overlapping and needs to be set to fix various errata. 1749 */ 1750 switch (read_c0_prid()) { 1751 case 0x00030100: /* Au1000 DA */ 1752 case 0x00030201: /* Au1000 HA */ 1753 case 0x00030202: /* Au1000 HB */ 1754 case 0x01030200: /* Au1500 AB */ 1755 /* 1756 * Au1100 errata actually keeps silence about this bit, so we set it 1757 * just in case for those revisions that require it to be set according 1758 * to the (now gone) cpu table. 1759 */ 1760 case 0x02030200: /* Au1100 AB */ 1761 case 0x02030201: /* Au1100 BA */ 1762 case 0x02030202: /* Au1100 BC */ 1763 set_c0_config(1 << 19); 1764 break; 1765 } 1766 } 1767 1768 /* CP0 hazard avoidance. */ 1769 #define NXP_BARRIER() \ 1770 __asm__ __volatile__( \ 1771 ".set noreorder\n\t" \ 1772 "nop; nop; nop; nop; nop; nop;\n\t" \ 1773 ".set reorder\n\t") 1774 1775 static void nxp_pr4450_fixup_config(void) 1776 { 1777 unsigned long config0; 1778 1779 config0 = read_c0_config(); 1780 1781 /* clear all three cache coherency fields */ 1782 config0 &= ~(0x7 | (7 << 25) | (7 << 28)); 1783 config0 |= (((_page_cachable_default >> _CACHE_SHIFT) << 0) | 1784 ((_page_cachable_default >> _CACHE_SHIFT) << 25) | 1785 ((_page_cachable_default >> _CACHE_SHIFT) << 28)); 1786 write_c0_config(config0); 1787 NXP_BARRIER(); 1788 } 1789 1790 static int cca = -1; 1791 1792 static int __init cca_setup(char *str) 1793 { 1794 get_option(&str, &cca); 1795 1796 return 0; 1797 } 1798 1799 early_param("cca", cca_setup); 1800 1801 static void coherency_setup(void) 1802 { 1803 if (cca < 0 || cca > 7) 1804 cca = read_c0_config() & CONF_CM_CMASK; 1805 _page_cachable_default = cca << _CACHE_SHIFT; 1806 1807 pr_debug("Using cache attribute %d\n", cca); 1808 change_c0_config(CONF_CM_CMASK, cca); 1809 1810 /* 1811 * c0_status.cu=0 specifies that updates by the sc instruction use 1812 * the coherency mode specified by the TLB; 1 means cachable 1813 * coherent update on write will be used. Not all processors have 1814 * this bit and; some wire it to zero, others like Toshiba had the 1815 * silly idea of putting something else there ... 1816 */ 1817 switch (current_cpu_type()) { 1818 case CPU_R4000PC: 1819 case CPU_R4000SC: 1820 case CPU_R4000MC: 1821 case CPU_R4400PC: 1822 case CPU_R4400SC: 1823 case CPU_R4400MC: 1824 clear_c0_config(CONF_CU); 1825 break; 1826 /* 1827 * We need to catch the early Alchemy SOCs with 1828 * the write-only co_config.od bit and set it back to one on: 1829 * Au1000 rev DA, HA, HB; Au1100 AB, BA, BC, Au1500 AB 1830 */ 1831 case CPU_ALCHEMY: 1832 au1x00_fixup_config_od(); 1833 break; 1834 1835 case PRID_IMP_PR4450: 1836 nxp_pr4450_fixup_config(); 1837 break; 1838 } 1839 } 1840 1841 static void r4k_cache_error_setup(void) 1842 { 1843 extern char __weak except_vec2_generic; 1844 extern char __weak except_vec2_sb1; 1845 1846 switch (current_cpu_type()) { 1847 case CPU_SB1: 1848 case CPU_SB1A: 1849 set_uncached_handler(0x100, &except_vec2_sb1, 0x80); 1850 break; 1851 1852 default: 1853 set_uncached_handler(0x100, &except_vec2_generic, 0x80); 1854 break; 1855 } 1856 } 1857 1858 void r4k_cache_init(void) 1859 { 1860 extern void build_clear_page(void); 1861 extern void build_copy_page(void); 1862 struct cpuinfo_mips *c = ¤t_cpu_data; 1863 1864 probe_pcache(); 1865 probe_vcache(); 1866 setup_scache(); 1867 1868 r4k_blast_dcache_page_setup(); 1869 r4k_blast_dcache_page_indexed_setup(); 1870 r4k_blast_dcache_setup(); 1871 r4k_blast_icache_page_setup(); 1872 r4k_blast_icache_page_indexed_setup(); 1873 r4k_blast_icache_setup(); 1874 r4k_blast_scache_page_setup(); 1875 r4k_blast_scache_page_indexed_setup(); 1876 r4k_blast_scache_setup(); 1877 r4k_blast_scache_node_setup(); 1878 #ifdef CONFIG_EVA 1879 r4k_blast_dcache_user_page_setup(); 1880 r4k_blast_icache_user_page_setup(); 1881 #endif 1882 1883 /* 1884 * Some MIPS32 and MIPS64 processors have physically indexed caches. 1885 * This code supports virtually indexed processors and will be 1886 * unnecessarily inefficient on physically indexed processors. 1887 */ 1888 if (c->dcache.linesz && cpu_has_dc_aliases) 1889 shm_align_mask = max_t( unsigned long, 1890 c->dcache.sets * c->dcache.linesz - 1, 1891 PAGE_SIZE - 1); 1892 else 1893 shm_align_mask = PAGE_SIZE-1; 1894 1895 __flush_cache_vmap = r4k__flush_cache_vmap; 1896 __flush_cache_vunmap = r4k__flush_cache_vunmap; 1897 1898 flush_cache_all = cache_noop; 1899 __flush_cache_all = r4k___flush_cache_all; 1900 flush_cache_mm = r4k_flush_cache_mm; 1901 flush_cache_page = r4k_flush_cache_page; 1902 flush_cache_range = r4k_flush_cache_range; 1903 1904 __flush_kernel_vmap_range = r4k_flush_kernel_vmap_range; 1905 1906 flush_icache_all = r4k_flush_icache_all; 1907 local_flush_data_cache_page = local_r4k_flush_data_cache_page; 1908 flush_data_cache_page = r4k_flush_data_cache_page; 1909 flush_icache_range = r4k_flush_icache_range; 1910 local_flush_icache_range = local_r4k_flush_icache_range; 1911 __flush_icache_user_range = r4k_flush_icache_user_range; 1912 __local_flush_icache_user_range = local_r4k_flush_icache_user_range; 1913 1914 #ifdef CONFIG_DMA_NONCOHERENT 1915 #ifdef CONFIG_DMA_MAYBE_COHERENT 1916 if (coherentio == IO_COHERENCE_ENABLED || 1917 (coherentio == IO_COHERENCE_DEFAULT && hw_coherentio)) { 1918 _dma_cache_wback_inv = (void *)cache_noop; 1919 _dma_cache_wback = (void *)cache_noop; 1920 _dma_cache_inv = (void *)cache_noop; 1921 } else 1922 #endif /* CONFIG_DMA_MAYBE_COHERENT */ 1923 { 1924 _dma_cache_wback_inv = r4k_dma_cache_wback_inv; 1925 _dma_cache_wback = r4k_dma_cache_wback_inv; 1926 _dma_cache_inv = r4k_dma_cache_inv; 1927 } 1928 #endif /* CONFIG_DMA_NONCOHERENT */ 1929 1930 build_clear_page(); 1931 build_copy_page(); 1932 1933 /* 1934 * We want to run CMP kernels on core with and without coherent 1935 * caches. Therefore, do not use CONFIG_MIPS_CMP to decide whether 1936 * or not to flush caches. 1937 */ 1938 local_r4k___flush_cache_all(NULL); 1939 1940 coherency_setup(); 1941 board_cache_error_setup = r4k_cache_error_setup; 1942 1943 /* 1944 * Per-CPU overrides 1945 */ 1946 switch (current_cpu_type()) { 1947 case CPU_BMIPS4350: 1948 case CPU_BMIPS4380: 1949 /* No IPI is needed because all CPUs share the same D$ */ 1950 flush_data_cache_page = r4k_blast_dcache_page; 1951 break; 1952 case CPU_BMIPS5000: 1953 /* We lose our superpowers if L2 is disabled */ 1954 if (c->scache.flags & MIPS_CACHE_NOT_PRESENT) 1955 break; 1956 1957 /* I$ fills from D$ just by emptying the write buffers */ 1958 flush_cache_page = (void *)b5k_instruction_hazard; 1959 flush_cache_range = (void *)b5k_instruction_hazard; 1960 local_flush_data_cache_page = (void *)b5k_instruction_hazard; 1961 flush_data_cache_page = (void *)b5k_instruction_hazard; 1962 flush_icache_range = (void *)b5k_instruction_hazard; 1963 local_flush_icache_range = (void *)b5k_instruction_hazard; 1964 1965 1966 /* Optimization: an L2 flush implicitly flushes the L1 */ 1967 current_cpu_data.options |= MIPS_CPU_INCLUSIVE_CACHES; 1968 break; 1969 case CPU_LOONGSON64: 1970 /* Loongson-3 maintains cache coherency by hardware */ 1971 __flush_cache_all = cache_noop; 1972 __flush_cache_vmap = cache_noop; 1973 __flush_cache_vunmap = cache_noop; 1974 __flush_kernel_vmap_range = (void *)cache_noop; 1975 flush_cache_mm = (void *)cache_noop; 1976 flush_cache_page = (void *)cache_noop; 1977 flush_cache_range = (void *)cache_noop; 1978 flush_icache_all = (void *)cache_noop; 1979 flush_data_cache_page = (void *)cache_noop; 1980 local_flush_data_cache_page = (void *)cache_noop; 1981 break; 1982 } 1983 } 1984 1985 static int r4k_cache_pm_notifier(struct notifier_block *self, unsigned long cmd, 1986 void *v) 1987 { 1988 switch (cmd) { 1989 case CPU_PM_ENTER_FAILED: 1990 case CPU_PM_EXIT: 1991 coherency_setup(); 1992 break; 1993 } 1994 1995 return NOTIFY_OK; 1996 } 1997 1998 static struct notifier_block r4k_cache_pm_notifier_block = { 1999 .notifier_call = r4k_cache_pm_notifier, 2000 }; 2001 2002 int __init r4k_cache_init_pm(void) 2003 { 2004 return cpu_pm_register_notifier(&r4k_cache_pm_notifier_block); 2005 } 2006 arch_initcall(r4k_cache_init_pm); 2007