xref: /openbmc/linux/arch/mips/math-emu/ieee754sp.c (revision df3305156f989339529b3d6744b898d498fb1f7b)
1 /* IEEE754 floating point arithmetic
2  * single precision
3  */
4 /*
5  * MIPS floating point support
6  * Copyright (C) 1994-2000 Algorithmics Ltd.
7  *
8  *  This program is free software; you can distribute it and/or modify it
9  *  under the terms of the GNU General Public License (Version 2) as
10  *  published by the Free Software Foundation.
11  *
12  *  This program is distributed in the hope it will be useful, but WITHOUT
13  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15  *  for more details.
16  *
17  *  You should have received a copy of the GNU General Public License along
18  *  with this program; if not, write to the Free Software Foundation, Inc.,
19  *  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA.
20  */
21 
22 #include <linux/compiler.h>
23 
24 #include "ieee754sp.h"
25 
26 int ieee754sp_class(union ieee754sp x)
27 {
28 	COMPXSP;
29 	EXPLODEXSP;
30 	return xc;
31 }
32 
33 int ieee754sp_isnan(union ieee754sp x)
34 {
35 	return ieee754sp_class(x) >= IEEE754_CLASS_SNAN;
36 }
37 
38 static inline int ieee754sp_issnan(union ieee754sp x)
39 {
40 	assert(ieee754sp_isnan(x));
41 	return SPMANT(x) & SP_MBIT(SP_FBITS - 1);
42 }
43 
44 
45 union ieee754sp __cold ieee754sp_nanxcpt(union ieee754sp r)
46 {
47 	assert(ieee754sp_isnan(r));
48 
49 	if (!ieee754sp_issnan(r))	/* QNAN does not cause invalid op !! */
50 		return r;
51 
52 	if (!ieee754_setandtestcx(IEEE754_INVALID_OPERATION)) {
53 		/* not enabled convert to a quiet NaN */
54 		SPMANT(r) &= (~SP_MBIT(SP_FBITS-1));
55 		if (ieee754sp_isnan(r))
56 			return r;
57 		else
58 			return ieee754sp_indef();
59 	}
60 
61 	return r;
62 }
63 
64 static unsigned ieee754sp_get_rounding(int sn, unsigned xm)
65 {
66 	/* inexact must round of 3 bits
67 	 */
68 	if (xm & (SP_MBIT(3) - 1)) {
69 		switch (ieee754_csr.rm) {
70 		case FPU_CSR_RZ:
71 			break;
72 		case FPU_CSR_RN:
73 			xm += 0x3 + ((xm >> 3) & 1);
74 			/* xm += (xm&0x8)?0x4:0x3 */
75 			break;
76 		case FPU_CSR_RU:	/* toward +Infinity */
77 			if (!sn)	/* ?? */
78 				xm += 0x8;
79 			break;
80 		case FPU_CSR_RD:	/* toward -Infinity */
81 			if (sn) /* ?? */
82 				xm += 0x8;
83 			break;
84 		}
85 	}
86 	return xm;
87 }
88 
89 
90 /* generate a normal/denormal number with over,under handling
91  * sn is sign
92  * xe is an unbiased exponent
93  * xm is 3bit extended precision value.
94  */
95 union ieee754sp ieee754sp_format(int sn, int xe, unsigned xm)
96 {
97 	assert(xm);		/* we don't gen exact zeros (probably should) */
98 
99 	assert((xm >> (SP_FBITS + 1 + 3)) == 0);	/* no execess */
100 	assert(xm & (SP_HIDDEN_BIT << 3));
101 
102 	if (xe < SP_EMIN) {
103 		/* strip lower bits */
104 		int es = SP_EMIN - xe;
105 
106 		if (ieee754_csr.nod) {
107 			ieee754_setcx(IEEE754_UNDERFLOW);
108 			ieee754_setcx(IEEE754_INEXACT);
109 
110 			switch(ieee754_csr.rm) {
111 			case FPU_CSR_RN:
112 			case FPU_CSR_RZ:
113 				return ieee754sp_zero(sn);
114 			case FPU_CSR_RU:      /* toward +Infinity */
115 				if (sn == 0)
116 					return ieee754sp_min(0);
117 				else
118 					return ieee754sp_zero(1);
119 			case FPU_CSR_RD:      /* toward -Infinity */
120 				if (sn == 0)
121 					return ieee754sp_zero(0);
122 				else
123 					return ieee754sp_min(1);
124 			}
125 		}
126 
127 		if (xe == SP_EMIN - 1 &&
128 		    ieee754sp_get_rounding(sn, xm) >> (SP_FBITS + 1 + 3))
129 		{
130 			/* Not tiny after rounding */
131 			ieee754_setcx(IEEE754_INEXACT);
132 			xm = ieee754sp_get_rounding(sn, xm);
133 			xm >>= 1;
134 			/* Clear grs bits */
135 			xm &= ~(SP_MBIT(3) - 1);
136 			xe++;
137 		} else {
138 			/* sticky right shift es bits
139 			 */
140 			SPXSRSXn(es);
141 			assert((xm & (SP_HIDDEN_BIT << 3)) == 0);
142 			assert(xe == SP_EMIN);
143 		}
144 	}
145 	if (xm & (SP_MBIT(3) - 1)) {
146 		ieee754_setcx(IEEE754_INEXACT);
147 		if ((xm & (SP_HIDDEN_BIT << 3)) == 0) {
148 			ieee754_setcx(IEEE754_UNDERFLOW);
149 		}
150 
151 		/* inexact must round of 3 bits
152 		 */
153 		xm = ieee754sp_get_rounding(sn, xm);
154 		/* adjust exponent for rounding add overflowing
155 		 */
156 		if (xm >> (SP_FBITS + 1 + 3)) {
157 			/* add causes mantissa overflow */
158 			xm >>= 1;
159 			xe++;
160 		}
161 	}
162 	/* strip grs bits */
163 	xm >>= 3;
164 
165 	assert((xm >> (SP_FBITS + 1)) == 0);	/* no execess */
166 	assert(xe >= SP_EMIN);
167 
168 	if (xe > SP_EMAX) {
169 		ieee754_setcx(IEEE754_OVERFLOW);
170 		ieee754_setcx(IEEE754_INEXACT);
171 		/* -O can be table indexed by (rm,sn) */
172 		switch (ieee754_csr.rm) {
173 		case FPU_CSR_RN:
174 			return ieee754sp_inf(sn);
175 		case FPU_CSR_RZ:
176 			return ieee754sp_max(sn);
177 		case FPU_CSR_RU:	/* toward +Infinity */
178 			if (sn == 0)
179 				return ieee754sp_inf(0);
180 			else
181 				return ieee754sp_max(1);
182 		case FPU_CSR_RD:	/* toward -Infinity */
183 			if (sn == 0)
184 				return ieee754sp_max(0);
185 			else
186 				return ieee754sp_inf(1);
187 		}
188 	}
189 	/* gen norm/denorm/zero */
190 
191 	if ((xm & SP_HIDDEN_BIT) == 0) {
192 		/* we underflow (tiny/zero) */
193 		assert(xe == SP_EMIN);
194 		if (ieee754_csr.mx & IEEE754_UNDERFLOW)
195 			ieee754_setcx(IEEE754_UNDERFLOW);
196 		return buildsp(sn, SP_EMIN - 1 + SP_EBIAS, xm);
197 	} else {
198 		assert((xm >> (SP_FBITS + 1)) == 0);	/* no execess */
199 		assert(xm & SP_HIDDEN_BIT);
200 
201 		return buildsp(sn, xe + SP_EBIAS, xm & ~SP_HIDDEN_BIT);
202 	}
203 }
204