xref: /openbmc/linux/arch/mips/math-emu/ieee754sp.c (revision b802fb99ae964681d1754428f67970911e0476e9)
1 /* IEEE754 floating point arithmetic
2  * single precision
3  */
4 /*
5  * MIPS floating point support
6  * Copyright (C) 1994-2000 Algorithmics Ltd.
7  *
8  *  This program is free software; you can distribute it and/or modify it
9  *  under the terms of the GNU General Public License (Version 2) as
10  *  published by the Free Software Foundation.
11  *
12  *  This program is distributed in the hope it will be useful, but WITHOUT
13  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15  *  for more details.
16  *
17  *  You should have received a copy of the GNU General Public License along
18  *  with this program; if not, write to the Free Software Foundation, Inc.,
19  *  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA.
20  */
21 
22 #include <linux/compiler.h>
23 
24 #include "ieee754sp.h"
25 
26 int ieee754sp_class(union ieee754sp x)
27 {
28 	COMPXSP;
29 	EXPLODEXSP;
30 	return xc;
31 }
32 
33 static inline int ieee754sp_isnan(union ieee754sp x)
34 {
35 	return ieee754_class_nan(ieee754sp_class(x));
36 }
37 
38 static inline int ieee754sp_issnan(union ieee754sp x)
39 {
40 	int qbit;
41 
42 	assert(ieee754sp_isnan(x));
43 	qbit = (SPMANT(x) & SP_MBIT(SP_FBITS - 1)) == SP_MBIT(SP_FBITS - 1);
44 	return ieee754_csr.nan2008 ^ qbit;
45 }
46 
47 
48 /*
49  * Raise the Invalid Operation IEEE 754 exception
50  * and convert the signaling NaN supplied to a quiet NaN.
51  */
52 union ieee754sp __cold ieee754sp_nanxcpt(union ieee754sp r)
53 {
54 	assert(ieee754sp_issnan(r));
55 
56 	ieee754_setcx(IEEE754_INVALID_OPERATION);
57 	if (ieee754_csr.nan2008)
58 		SPMANT(r) |= SP_MBIT(SP_FBITS - 1);
59 	else
60 		r = ieee754sp_indef();
61 
62 	return r;
63 }
64 
65 static unsigned ieee754sp_get_rounding(int sn, unsigned xm)
66 {
67 	/* inexact must round of 3 bits
68 	 */
69 	if (xm & (SP_MBIT(3) - 1)) {
70 		switch (ieee754_csr.rm) {
71 		case FPU_CSR_RZ:
72 			break;
73 		case FPU_CSR_RN:
74 			xm += 0x3 + ((xm >> 3) & 1);
75 			/* xm += (xm&0x8)?0x4:0x3 */
76 			break;
77 		case FPU_CSR_RU:	/* toward +Infinity */
78 			if (!sn)	/* ?? */
79 				xm += 0x8;
80 			break;
81 		case FPU_CSR_RD:	/* toward -Infinity */
82 			if (sn) /* ?? */
83 				xm += 0x8;
84 			break;
85 		}
86 	}
87 	return xm;
88 }
89 
90 
91 /* generate a normal/denormal number with over,under handling
92  * sn is sign
93  * xe is an unbiased exponent
94  * xm is 3bit extended precision value.
95  */
96 union ieee754sp ieee754sp_format(int sn, int xe, unsigned xm)
97 {
98 	assert(xm);		/* we don't gen exact zeros (probably should) */
99 
100 	assert((xm >> (SP_FBITS + 1 + 3)) == 0);	/* no execess */
101 	assert(xm & (SP_HIDDEN_BIT << 3));
102 
103 	if (xe < SP_EMIN) {
104 		/* strip lower bits */
105 		int es = SP_EMIN - xe;
106 
107 		if (ieee754_csr.nod) {
108 			ieee754_setcx(IEEE754_UNDERFLOW);
109 			ieee754_setcx(IEEE754_INEXACT);
110 
111 			switch(ieee754_csr.rm) {
112 			case FPU_CSR_RN:
113 			case FPU_CSR_RZ:
114 				return ieee754sp_zero(sn);
115 			case FPU_CSR_RU:      /* toward +Infinity */
116 				if (sn == 0)
117 					return ieee754sp_min(0);
118 				else
119 					return ieee754sp_zero(1);
120 			case FPU_CSR_RD:      /* toward -Infinity */
121 				if (sn == 0)
122 					return ieee754sp_zero(0);
123 				else
124 					return ieee754sp_min(1);
125 			}
126 		}
127 
128 		if (xe == SP_EMIN - 1 &&
129 		    ieee754sp_get_rounding(sn, xm) >> (SP_FBITS + 1 + 3))
130 		{
131 			/* Not tiny after rounding */
132 			ieee754_setcx(IEEE754_INEXACT);
133 			xm = ieee754sp_get_rounding(sn, xm);
134 			xm >>= 1;
135 			/* Clear grs bits */
136 			xm &= ~(SP_MBIT(3) - 1);
137 			xe++;
138 		} else {
139 			/* sticky right shift es bits
140 			 */
141 			SPXSRSXn(es);
142 			assert((xm & (SP_HIDDEN_BIT << 3)) == 0);
143 			assert(xe == SP_EMIN);
144 		}
145 	}
146 	if (xm & (SP_MBIT(3) - 1)) {
147 		ieee754_setcx(IEEE754_INEXACT);
148 		if ((xm & (SP_HIDDEN_BIT << 3)) == 0) {
149 			ieee754_setcx(IEEE754_UNDERFLOW);
150 		}
151 
152 		/* inexact must round of 3 bits
153 		 */
154 		xm = ieee754sp_get_rounding(sn, xm);
155 		/* adjust exponent for rounding add overflowing
156 		 */
157 		if (xm >> (SP_FBITS + 1 + 3)) {
158 			/* add causes mantissa overflow */
159 			xm >>= 1;
160 			xe++;
161 		}
162 	}
163 	/* strip grs bits */
164 	xm >>= 3;
165 
166 	assert((xm >> (SP_FBITS + 1)) == 0);	/* no execess */
167 	assert(xe >= SP_EMIN);
168 
169 	if (xe > SP_EMAX) {
170 		ieee754_setcx(IEEE754_OVERFLOW);
171 		ieee754_setcx(IEEE754_INEXACT);
172 		/* -O can be table indexed by (rm,sn) */
173 		switch (ieee754_csr.rm) {
174 		case FPU_CSR_RN:
175 			return ieee754sp_inf(sn);
176 		case FPU_CSR_RZ:
177 			return ieee754sp_max(sn);
178 		case FPU_CSR_RU:	/* toward +Infinity */
179 			if (sn == 0)
180 				return ieee754sp_inf(0);
181 			else
182 				return ieee754sp_max(1);
183 		case FPU_CSR_RD:	/* toward -Infinity */
184 			if (sn == 0)
185 				return ieee754sp_max(0);
186 			else
187 				return ieee754sp_inf(1);
188 		}
189 	}
190 	/* gen norm/denorm/zero */
191 
192 	if ((xm & SP_HIDDEN_BIT) == 0) {
193 		/* we underflow (tiny/zero) */
194 		assert(xe == SP_EMIN);
195 		if (ieee754_csr.mx & IEEE754_UNDERFLOW)
196 			ieee754_setcx(IEEE754_UNDERFLOW);
197 		return buildsp(sn, SP_EMIN - 1 + SP_EBIAS, xm);
198 	} else {
199 		assert((xm >> (SP_FBITS + 1)) == 0);	/* no execess */
200 		assert(xm & SP_HIDDEN_BIT);
201 
202 		return buildsp(sn, xe + SP_EBIAS, xm & ~SP_HIDDEN_BIT);
203 	}
204 }
205