xref: /openbmc/linux/arch/mips/math-emu/cp1emu.c (revision f59a3ee6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * cp1emu.c: a MIPS coprocessor 1 (FPU) instruction emulator
4  *
5  * MIPS floating point support
6  * Copyright (C) 1994-2000 Algorithmics Ltd.
7  *
8  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
9  * Copyright (C) 2000  MIPS Technologies, Inc.
10  *
11  * A complete emulator for MIPS coprocessor 1 instructions.  This is
12  * required for #float(switch) or #float(trap), where it catches all
13  * COP1 instructions via the "CoProcessor Unusable" exception.
14  *
15  * More surprisingly it is also required for #float(ieee), to help out
16  * the hardware FPU at the boundaries of the IEEE-754 representation
17  * (denormalised values, infinities, underflow, etc).  It is made
18  * quite nasty because emulation of some non-COP1 instructions is
19  * required, e.g. in branch delay slots.
20  *
21  * Note if you know that you won't have an FPU, then you'll get much
22  * better performance by compiling with -msoft-float!
23  */
24 #include <linux/sched.h>
25 #include <linux/debugfs.h>
26 #include <linux/percpu-defs.h>
27 #include <linux/perf_event.h>
28 
29 #include <asm/branch.h>
30 #include <asm/inst.h>
31 #include <asm/ptrace.h>
32 #include <asm/signal.h>
33 #include <linux/uaccess.h>
34 
35 #include <asm/cpu-info.h>
36 #include <asm/processor.h>
37 #include <asm/fpu_emulator.h>
38 #include <asm/fpu.h>
39 #include <asm/mips-r2-to-r6-emul.h>
40 
41 #include "ieee754.h"
42 
43 /* Function which emulates a floating point instruction. */
44 
45 static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *,
46 	mips_instruction);
47 
48 static int fpux_emu(struct pt_regs *,
49 	struct mips_fpu_struct *, mips_instruction, void __user **);
50 
51 /* Control registers */
52 
53 #define FPCREG_RID	0	/* $0  = revision id */
54 #define FPCREG_FCCR	25	/* $25 = fccr */
55 #define FPCREG_FEXR	26	/* $26 = fexr */
56 #define FPCREG_FENR	28	/* $28 = fenr */
57 #define FPCREG_CSR	31	/* $31 = csr */
58 
59 /* convert condition code register number to csr bit */
60 const unsigned int fpucondbit[8] = {
61 	FPU_CSR_COND,
62 	FPU_CSR_COND1,
63 	FPU_CSR_COND2,
64 	FPU_CSR_COND3,
65 	FPU_CSR_COND4,
66 	FPU_CSR_COND5,
67 	FPU_CSR_COND6,
68 	FPU_CSR_COND7
69 };
70 
71 /* (microMIPS) Convert certain microMIPS instructions to MIPS32 format. */
72 static const int sd_format[] = {16, 17, 0, 0, 0, 0, 0, 0};
73 static const int sdps_format[] = {16, 17, 22, 0, 0, 0, 0, 0};
74 static const int dwl_format[] = {17, 20, 21, 0, 0, 0, 0, 0};
75 static const int swl_format[] = {16, 20, 21, 0, 0, 0, 0, 0};
76 
77 /*
78  * This functions translates a 32-bit microMIPS instruction
79  * into a 32-bit MIPS32 instruction. Returns 0 on success
80  * and SIGILL otherwise.
81  */
82 static int microMIPS32_to_MIPS32(union mips_instruction *insn_ptr)
83 {
84 	union mips_instruction insn = *insn_ptr;
85 	union mips_instruction mips32_insn = insn;
86 	int func, fmt, op;
87 
88 	switch (insn.mm_i_format.opcode) {
89 	case mm_ldc132_op:
90 		mips32_insn.mm_i_format.opcode = ldc1_op;
91 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
92 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
93 		break;
94 	case mm_lwc132_op:
95 		mips32_insn.mm_i_format.opcode = lwc1_op;
96 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
97 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
98 		break;
99 	case mm_sdc132_op:
100 		mips32_insn.mm_i_format.opcode = sdc1_op;
101 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
102 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
103 		break;
104 	case mm_swc132_op:
105 		mips32_insn.mm_i_format.opcode = swc1_op;
106 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
107 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
108 		break;
109 	case mm_pool32i_op:
110 		/* NOTE: offset is << by 1 if in microMIPS mode. */
111 		if ((insn.mm_i_format.rt == mm_bc1f_op) ||
112 		    (insn.mm_i_format.rt == mm_bc1t_op)) {
113 			mips32_insn.fb_format.opcode = cop1_op;
114 			mips32_insn.fb_format.bc = bc_op;
115 			mips32_insn.fb_format.flag =
116 				(insn.mm_i_format.rt == mm_bc1t_op) ? 1 : 0;
117 		} else
118 			return SIGILL;
119 		break;
120 	case mm_pool32f_op:
121 		switch (insn.mm_fp0_format.func) {
122 		case mm_32f_01_op:
123 		case mm_32f_11_op:
124 		case mm_32f_02_op:
125 		case mm_32f_12_op:
126 		case mm_32f_41_op:
127 		case mm_32f_51_op:
128 		case mm_32f_42_op:
129 		case mm_32f_52_op:
130 			op = insn.mm_fp0_format.func;
131 			if (op == mm_32f_01_op)
132 				func = madd_s_op;
133 			else if (op == mm_32f_11_op)
134 				func = madd_d_op;
135 			else if (op == mm_32f_02_op)
136 				func = nmadd_s_op;
137 			else if (op == mm_32f_12_op)
138 				func = nmadd_d_op;
139 			else if (op == mm_32f_41_op)
140 				func = msub_s_op;
141 			else if (op == mm_32f_51_op)
142 				func = msub_d_op;
143 			else if (op == mm_32f_42_op)
144 				func = nmsub_s_op;
145 			else
146 				func = nmsub_d_op;
147 			mips32_insn.fp6_format.opcode = cop1x_op;
148 			mips32_insn.fp6_format.fr = insn.mm_fp6_format.fr;
149 			mips32_insn.fp6_format.ft = insn.mm_fp6_format.ft;
150 			mips32_insn.fp6_format.fs = insn.mm_fp6_format.fs;
151 			mips32_insn.fp6_format.fd = insn.mm_fp6_format.fd;
152 			mips32_insn.fp6_format.func = func;
153 			break;
154 		case mm_32f_10_op:
155 			func = -1;	/* Invalid */
156 			op = insn.mm_fp5_format.op & 0x7;
157 			if (op == mm_ldxc1_op)
158 				func = ldxc1_op;
159 			else if (op == mm_sdxc1_op)
160 				func = sdxc1_op;
161 			else if (op == mm_lwxc1_op)
162 				func = lwxc1_op;
163 			else if (op == mm_swxc1_op)
164 				func = swxc1_op;
165 
166 			if (func != -1) {
167 				mips32_insn.r_format.opcode = cop1x_op;
168 				mips32_insn.r_format.rs =
169 					insn.mm_fp5_format.base;
170 				mips32_insn.r_format.rt =
171 					insn.mm_fp5_format.index;
172 				mips32_insn.r_format.rd = 0;
173 				mips32_insn.r_format.re = insn.mm_fp5_format.fd;
174 				mips32_insn.r_format.func = func;
175 			} else
176 				return SIGILL;
177 			break;
178 		case mm_32f_40_op:
179 			op = -1;	/* Invalid */
180 			if (insn.mm_fp2_format.op == mm_fmovt_op)
181 				op = 1;
182 			else if (insn.mm_fp2_format.op == mm_fmovf_op)
183 				op = 0;
184 			if (op != -1) {
185 				mips32_insn.fp0_format.opcode = cop1_op;
186 				mips32_insn.fp0_format.fmt =
187 					sdps_format[insn.mm_fp2_format.fmt];
188 				mips32_insn.fp0_format.ft =
189 					(insn.mm_fp2_format.cc<<2) + op;
190 				mips32_insn.fp0_format.fs =
191 					insn.mm_fp2_format.fs;
192 				mips32_insn.fp0_format.fd =
193 					insn.mm_fp2_format.fd;
194 				mips32_insn.fp0_format.func = fmovc_op;
195 			} else
196 				return SIGILL;
197 			break;
198 		case mm_32f_60_op:
199 			func = -1;	/* Invalid */
200 			if (insn.mm_fp0_format.op == mm_fadd_op)
201 				func = fadd_op;
202 			else if (insn.mm_fp0_format.op == mm_fsub_op)
203 				func = fsub_op;
204 			else if (insn.mm_fp0_format.op == mm_fmul_op)
205 				func = fmul_op;
206 			else if (insn.mm_fp0_format.op == mm_fdiv_op)
207 				func = fdiv_op;
208 			if (func != -1) {
209 				mips32_insn.fp0_format.opcode = cop1_op;
210 				mips32_insn.fp0_format.fmt =
211 					sdps_format[insn.mm_fp0_format.fmt];
212 				mips32_insn.fp0_format.ft =
213 					insn.mm_fp0_format.ft;
214 				mips32_insn.fp0_format.fs =
215 					insn.mm_fp0_format.fs;
216 				mips32_insn.fp0_format.fd =
217 					insn.mm_fp0_format.fd;
218 				mips32_insn.fp0_format.func = func;
219 			} else
220 				return SIGILL;
221 			break;
222 		case mm_32f_70_op:
223 			func = -1;	/* Invalid */
224 			if (insn.mm_fp0_format.op == mm_fmovn_op)
225 				func = fmovn_op;
226 			else if (insn.mm_fp0_format.op == mm_fmovz_op)
227 				func = fmovz_op;
228 			if (func != -1) {
229 				mips32_insn.fp0_format.opcode = cop1_op;
230 				mips32_insn.fp0_format.fmt =
231 					sdps_format[insn.mm_fp0_format.fmt];
232 				mips32_insn.fp0_format.ft =
233 					insn.mm_fp0_format.ft;
234 				mips32_insn.fp0_format.fs =
235 					insn.mm_fp0_format.fs;
236 				mips32_insn.fp0_format.fd =
237 					insn.mm_fp0_format.fd;
238 				mips32_insn.fp0_format.func = func;
239 			} else
240 				return SIGILL;
241 			break;
242 		case mm_32f_73_op:    /* POOL32FXF */
243 			switch (insn.mm_fp1_format.op) {
244 			case mm_movf0_op:
245 			case mm_movf1_op:
246 			case mm_movt0_op:
247 			case mm_movt1_op:
248 				if ((insn.mm_fp1_format.op & 0x7f) ==
249 				    mm_movf0_op)
250 					op = 0;
251 				else
252 					op = 1;
253 				mips32_insn.r_format.opcode = spec_op;
254 				mips32_insn.r_format.rs = insn.mm_fp4_format.fs;
255 				mips32_insn.r_format.rt =
256 					(insn.mm_fp4_format.cc << 2) + op;
257 				mips32_insn.r_format.rd = insn.mm_fp4_format.rt;
258 				mips32_insn.r_format.re = 0;
259 				mips32_insn.r_format.func = movc_op;
260 				break;
261 			case mm_fcvtd0_op:
262 			case mm_fcvtd1_op:
263 			case mm_fcvts0_op:
264 			case mm_fcvts1_op:
265 				if ((insn.mm_fp1_format.op & 0x7f) ==
266 				    mm_fcvtd0_op) {
267 					func = fcvtd_op;
268 					fmt = swl_format[insn.mm_fp3_format.fmt];
269 				} else {
270 					func = fcvts_op;
271 					fmt = dwl_format[insn.mm_fp3_format.fmt];
272 				}
273 				mips32_insn.fp0_format.opcode = cop1_op;
274 				mips32_insn.fp0_format.fmt = fmt;
275 				mips32_insn.fp0_format.ft = 0;
276 				mips32_insn.fp0_format.fs =
277 					insn.mm_fp3_format.fs;
278 				mips32_insn.fp0_format.fd =
279 					insn.mm_fp3_format.rt;
280 				mips32_insn.fp0_format.func = func;
281 				break;
282 			case mm_fmov0_op:
283 			case mm_fmov1_op:
284 			case mm_fabs0_op:
285 			case mm_fabs1_op:
286 			case mm_fneg0_op:
287 			case mm_fneg1_op:
288 				if ((insn.mm_fp1_format.op & 0x7f) ==
289 				    mm_fmov0_op)
290 					func = fmov_op;
291 				else if ((insn.mm_fp1_format.op & 0x7f) ==
292 					 mm_fabs0_op)
293 					func = fabs_op;
294 				else
295 					func = fneg_op;
296 				mips32_insn.fp0_format.opcode = cop1_op;
297 				mips32_insn.fp0_format.fmt =
298 					sdps_format[insn.mm_fp3_format.fmt];
299 				mips32_insn.fp0_format.ft = 0;
300 				mips32_insn.fp0_format.fs =
301 					insn.mm_fp3_format.fs;
302 				mips32_insn.fp0_format.fd =
303 					insn.mm_fp3_format.rt;
304 				mips32_insn.fp0_format.func = func;
305 				break;
306 			case mm_ffloorl_op:
307 			case mm_ffloorw_op:
308 			case mm_fceill_op:
309 			case mm_fceilw_op:
310 			case mm_ftruncl_op:
311 			case mm_ftruncw_op:
312 			case mm_froundl_op:
313 			case mm_froundw_op:
314 			case mm_fcvtl_op:
315 			case mm_fcvtw_op:
316 				if (insn.mm_fp1_format.op == mm_ffloorl_op)
317 					func = ffloorl_op;
318 				else if (insn.mm_fp1_format.op == mm_ffloorw_op)
319 					func = ffloor_op;
320 				else if (insn.mm_fp1_format.op == mm_fceill_op)
321 					func = fceill_op;
322 				else if (insn.mm_fp1_format.op == mm_fceilw_op)
323 					func = fceil_op;
324 				else if (insn.mm_fp1_format.op == mm_ftruncl_op)
325 					func = ftruncl_op;
326 				else if (insn.mm_fp1_format.op == mm_ftruncw_op)
327 					func = ftrunc_op;
328 				else if (insn.mm_fp1_format.op == mm_froundl_op)
329 					func = froundl_op;
330 				else if (insn.mm_fp1_format.op == mm_froundw_op)
331 					func = fround_op;
332 				else if (insn.mm_fp1_format.op == mm_fcvtl_op)
333 					func = fcvtl_op;
334 				else
335 					func = fcvtw_op;
336 				mips32_insn.fp0_format.opcode = cop1_op;
337 				mips32_insn.fp0_format.fmt =
338 					sd_format[insn.mm_fp1_format.fmt];
339 				mips32_insn.fp0_format.ft = 0;
340 				mips32_insn.fp0_format.fs =
341 					insn.mm_fp1_format.fs;
342 				mips32_insn.fp0_format.fd =
343 					insn.mm_fp1_format.rt;
344 				mips32_insn.fp0_format.func = func;
345 				break;
346 			case mm_frsqrt_op:
347 			case mm_fsqrt_op:
348 			case mm_frecip_op:
349 				if (insn.mm_fp1_format.op == mm_frsqrt_op)
350 					func = frsqrt_op;
351 				else if (insn.mm_fp1_format.op == mm_fsqrt_op)
352 					func = fsqrt_op;
353 				else
354 					func = frecip_op;
355 				mips32_insn.fp0_format.opcode = cop1_op;
356 				mips32_insn.fp0_format.fmt =
357 					sdps_format[insn.mm_fp1_format.fmt];
358 				mips32_insn.fp0_format.ft = 0;
359 				mips32_insn.fp0_format.fs =
360 					insn.mm_fp1_format.fs;
361 				mips32_insn.fp0_format.fd =
362 					insn.mm_fp1_format.rt;
363 				mips32_insn.fp0_format.func = func;
364 				break;
365 			case mm_mfc1_op:
366 			case mm_mtc1_op:
367 			case mm_cfc1_op:
368 			case mm_ctc1_op:
369 			case mm_mfhc1_op:
370 			case mm_mthc1_op:
371 				if (insn.mm_fp1_format.op == mm_mfc1_op)
372 					op = mfc_op;
373 				else if (insn.mm_fp1_format.op == mm_mtc1_op)
374 					op = mtc_op;
375 				else if (insn.mm_fp1_format.op == mm_cfc1_op)
376 					op = cfc_op;
377 				else if (insn.mm_fp1_format.op == mm_ctc1_op)
378 					op = ctc_op;
379 				else if (insn.mm_fp1_format.op == mm_mfhc1_op)
380 					op = mfhc_op;
381 				else
382 					op = mthc_op;
383 				mips32_insn.fp1_format.opcode = cop1_op;
384 				mips32_insn.fp1_format.op = op;
385 				mips32_insn.fp1_format.rt =
386 					insn.mm_fp1_format.rt;
387 				mips32_insn.fp1_format.fs =
388 					insn.mm_fp1_format.fs;
389 				mips32_insn.fp1_format.fd = 0;
390 				mips32_insn.fp1_format.func = 0;
391 				break;
392 			default:
393 				return SIGILL;
394 			}
395 			break;
396 		case mm_32f_74_op:	/* c.cond.fmt */
397 			mips32_insn.fp0_format.opcode = cop1_op;
398 			mips32_insn.fp0_format.fmt =
399 				sdps_format[insn.mm_fp4_format.fmt];
400 			mips32_insn.fp0_format.ft = insn.mm_fp4_format.rt;
401 			mips32_insn.fp0_format.fs = insn.mm_fp4_format.fs;
402 			mips32_insn.fp0_format.fd = insn.mm_fp4_format.cc << 2;
403 			mips32_insn.fp0_format.func =
404 				insn.mm_fp4_format.cond | MM_MIPS32_COND_FC;
405 			break;
406 		default:
407 			return SIGILL;
408 		}
409 		break;
410 	default:
411 		return SIGILL;
412 	}
413 
414 	*insn_ptr = mips32_insn;
415 	return 0;
416 }
417 
418 /*
419  * Redundant with logic already in kernel/branch.c,
420  * embedded in compute_return_epc.  At some point,
421  * a single subroutine should be used across both
422  * modules.
423  */
424 int isBranchInstr(struct pt_regs *regs, struct mm_decoded_insn dec_insn,
425 		  unsigned long *contpc)
426 {
427 	union mips_instruction insn = (union mips_instruction)dec_insn.insn;
428 	unsigned int fcr31;
429 	unsigned int bit = 0;
430 	unsigned int bit0;
431 	union fpureg *fpr;
432 
433 	switch (insn.i_format.opcode) {
434 	case spec_op:
435 		switch (insn.r_format.func) {
436 		case jalr_op:
437 			if (insn.r_format.rd != 0) {
438 				regs->regs[insn.r_format.rd] =
439 					regs->cp0_epc + dec_insn.pc_inc +
440 					dec_insn.next_pc_inc;
441 			}
442 			fallthrough;
443 		case jr_op:
444 			/* For R6, JR already emulated in jalr_op */
445 			if (NO_R6EMU && insn.r_format.func == jr_op)
446 				break;
447 			*contpc = regs->regs[insn.r_format.rs];
448 			return 1;
449 		}
450 		break;
451 	case bcond_op:
452 		switch (insn.i_format.rt) {
453 		case bltzal_op:
454 		case bltzall_op:
455 			if (NO_R6EMU && (insn.i_format.rs ||
456 			    insn.i_format.rt == bltzall_op))
457 				break;
458 
459 			regs->regs[31] = regs->cp0_epc +
460 				dec_insn.pc_inc +
461 				dec_insn.next_pc_inc;
462 			fallthrough;
463 		case bltzl_op:
464 			if (NO_R6EMU)
465 				break;
466 			fallthrough;
467 		case bltz_op:
468 			if ((long)regs->regs[insn.i_format.rs] < 0)
469 				*contpc = regs->cp0_epc +
470 					dec_insn.pc_inc +
471 					(insn.i_format.simmediate << 2);
472 			else
473 				*contpc = regs->cp0_epc +
474 					dec_insn.pc_inc +
475 					dec_insn.next_pc_inc;
476 			return 1;
477 		case bgezal_op:
478 		case bgezall_op:
479 			if (NO_R6EMU && (insn.i_format.rs ||
480 			    insn.i_format.rt == bgezall_op))
481 				break;
482 
483 			regs->regs[31] = regs->cp0_epc +
484 				dec_insn.pc_inc +
485 				dec_insn.next_pc_inc;
486 			fallthrough;
487 		case bgezl_op:
488 			if (NO_R6EMU)
489 				break;
490 			fallthrough;
491 		case bgez_op:
492 			if ((long)regs->regs[insn.i_format.rs] >= 0)
493 				*contpc = regs->cp0_epc +
494 					dec_insn.pc_inc +
495 					(insn.i_format.simmediate << 2);
496 			else
497 				*contpc = regs->cp0_epc +
498 					dec_insn.pc_inc +
499 					dec_insn.next_pc_inc;
500 			return 1;
501 		}
502 		break;
503 	case jalx_op:
504 		set_isa16_mode(bit);
505 		fallthrough;
506 	case jal_op:
507 		regs->regs[31] = regs->cp0_epc +
508 			dec_insn.pc_inc +
509 			dec_insn.next_pc_inc;
510 		fallthrough;
511 	case j_op:
512 		*contpc = regs->cp0_epc + dec_insn.pc_inc;
513 		*contpc >>= 28;
514 		*contpc <<= 28;
515 		*contpc |= (insn.j_format.target << 2);
516 		/* Set microMIPS mode bit: XOR for jalx. */
517 		*contpc ^= bit;
518 		return 1;
519 	case beql_op:
520 		if (NO_R6EMU)
521 			break;
522 		fallthrough;
523 	case beq_op:
524 		if (regs->regs[insn.i_format.rs] ==
525 		    regs->regs[insn.i_format.rt])
526 			*contpc = regs->cp0_epc +
527 				dec_insn.pc_inc +
528 				(insn.i_format.simmediate << 2);
529 		else
530 			*contpc = regs->cp0_epc +
531 				dec_insn.pc_inc +
532 				dec_insn.next_pc_inc;
533 		return 1;
534 	case bnel_op:
535 		if (NO_R6EMU)
536 			break;
537 		fallthrough;
538 	case bne_op:
539 		if (regs->regs[insn.i_format.rs] !=
540 		    regs->regs[insn.i_format.rt])
541 			*contpc = regs->cp0_epc +
542 				dec_insn.pc_inc +
543 				(insn.i_format.simmediate << 2);
544 		else
545 			*contpc = regs->cp0_epc +
546 				dec_insn.pc_inc +
547 				dec_insn.next_pc_inc;
548 		return 1;
549 	case blezl_op:
550 		if (!insn.i_format.rt && NO_R6EMU)
551 			break;
552 		fallthrough;
553 	case blez_op:
554 
555 		/*
556 		 * Compact branches for R6 for the
557 		 * blez and blezl opcodes.
558 		 * BLEZ  | rs = 0 | rt != 0  == BLEZALC
559 		 * BLEZ  | rs = rt != 0      == BGEZALC
560 		 * BLEZ  | rs != 0 | rt != 0 == BGEUC
561 		 * BLEZL | rs = 0 | rt != 0  == BLEZC
562 		 * BLEZL | rs = rt != 0      == BGEZC
563 		 * BLEZL | rs != 0 | rt != 0 == BGEC
564 		 *
565 		 * For real BLEZ{,L}, rt is always 0.
566 		 */
567 		if (cpu_has_mips_r6 && insn.i_format.rt) {
568 			if ((insn.i_format.opcode == blez_op) &&
569 			    ((!insn.i_format.rs && insn.i_format.rt) ||
570 			     (insn.i_format.rs == insn.i_format.rt)))
571 				regs->regs[31] = regs->cp0_epc +
572 					dec_insn.pc_inc;
573 			*contpc = regs->cp0_epc + dec_insn.pc_inc +
574 				dec_insn.next_pc_inc;
575 
576 			return 1;
577 		}
578 		if ((long)regs->regs[insn.i_format.rs] <= 0)
579 			*contpc = regs->cp0_epc +
580 				dec_insn.pc_inc +
581 				(insn.i_format.simmediate << 2);
582 		else
583 			*contpc = regs->cp0_epc +
584 				dec_insn.pc_inc +
585 				dec_insn.next_pc_inc;
586 		return 1;
587 	case bgtzl_op:
588 		if (!insn.i_format.rt && NO_R6EMU)
589 			break;
590 		fallthrough;
591 	case bgtz_op:
592 		/*
593 		 * Compact branches for R6 for the
594 		 * bgtz and bgtzl opcodes.
595 		 * BGTZ  | rs = 0 | rt != 0  == BGTZALC
596 		 * BGTZ  | rs = rt != 0      == BLTZALC
597 		 * BGTZ  | rs != 0 | rt != 0 == BLTUC
598 		 * BGTZL | rs = 0 | rt != 0  == BGTZC
599 		 * BGTZL | rs = rt != 0      == BLTZC
600 		 * BGTZL | rs != 0 | rt != 0 == BLTC
601 		 *
602 		 * *ZALC varint for BGTZ &&& rt != 0
603 		 * For real GTZ{,L}, rt is always 0.
604 		 */
605 		if (cpu_has_mips_r6 && insn.i_format.rt) {
606 			if ((insn.i_format.opcode == blez_op) &&
607 			    ((!insn.i_format.rs && insn.i_format.rt) ||
608 			     (insn.i_format.rs == insn.i_format.rt)))
609 				regs->regs[31] = regs->cp0_epc +
610 					dec_insn.pc_inc;
611 			*contpc = regs->cp0_epc + dec_insn.pc_inc +
612 				dec_insn.next_pc_inc;
613 
614 			return 1;
615 		}
616 
617 		if ((long)regs->regs[insn.i_format.rs] > 0)
618 			*contpc = regs->cp0_epc +
619 				dec_insn.pc_inc +
620 				(insn.i_format.simmediate << 2);
621 		else
622 			*contpc = regs->cp0_epc +
623 				dec_insn.pc_inc +
624 				dec_insn.next_pc_inc;
625 		return 1;
626 	case pop10_op:
627 	case pop30_op:
628 		if (!cpu_has_mips_r6)
629 			break;
630 		if (insn.i_format.rt && !insn.i_format.rs)
631 			regs->regs[31] = regs->cp0_epc + 4;
632 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
633 			dec_insn.next_pc_inc;
634 
635 		return 1;
636 #ifdef CONFIG_CPU_CAVIUM_OCTEON
637 	case lwc2_op: /* This is bbit0 on Octeon */
638 		if ((regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt)) == 0)
639 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
640 		else
641 			*contpc = regs->cp0_epc + 8;
642 		return 1;
643 	case ldc2_op: /* This is bbit032 on Octeon */
644 		if ((regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32))) == 0)
645 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
646 		else
647 			*contpc = regs->cp0_epc + 8;
648 		return 1;
649 	case swc2_op: /* This is bbit1 on Octeon */
650 		if (regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt))
651 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
652 		else
653 			*contpc = regs->cp0_epc + 8;
654 		return 1;
655 	case sdc2_op: /* This is bbit132 on Octeon */
656 		if (regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32)))
657 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
658 		else
659 			*contpc = regs->cp0_epc + 8;
660 		return 1;
661 #else
662 	case bc6_op:
663 		/*
664 		 * Only valid for MIPS R6 but we can still end up
665 		 * here from a broken userland so just tell emulator
666 		 * this is not a branch and let it break later on.
667 		 */
668 		if  (!cpu_has_mips_r6)
669 			break;
670 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
671 			dec_insn.next_pc_inc;
672 
673 		return 1;
674 	case balc6_op:
675 		if (!cpu_has_mips_r6)
676 			break;
677 		regs->regs[31] = regs->cp0_epc + 4;
678 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
679 			dec_insn.next_pc_inc;
680 
681 		return 1;
682 	case pop66_op:
683 		if (!cpu_has_mips_r6)
684 			break;
685 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
686 			dec_insn.next_pc_inc;
687 
688 		return 1;
689 	case pop76_op:
690 		if (!cpu_has_mips_r6)
691 			break;
692 		if (!insn.i_format.rs)
693 			regs->regs[31] = regs->cp0_epc + 4;
694 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
695 			dec_insn.next_pc_inc;
696 
697 		return 1;
698 #endif
699 	case cop0_op:
700 	case cop1_op:
701 		/* Need to check for R6 bc1nez and bc1eqz branches */
702 		if (cpu_has_mips_r6 &&
703 		    ((insn.i_format.rs == bc1eqz_op) ||
704 		     (insn.i_format.rs == bc1nez_op))) {
705 			bit = 0;
706 			fpr = &current->thread.fpu.fpr[insn.i_format.rt];
707 			bit0 = get_fpr32(fpr, 0) & 0x1;
708 			switch (insn.i_format.rs) {
709 			case bc1eqz_op:
710 				bit = bit0 == 0;
711 				break;
712 			case bc1nez_op:
713 				bit = bit0 != 0;
714 				break;
715 			}
716 			if (bit)
717 				*contpc = regs->cp0_epc +
718 					dec_insn.pc_inc +
719 					(insn.i_format.simmediate << 2);
720 			else
721 				*contpc = regs->cp0_epc +
722 					dec_insn.pc_inc +
723 					dec_insn.next_pc_inc;
724 
725 			return 1;
726 		}
727 		/* R2/R6 compatible cop1 instruction */
728 		fallthrough;
729 	case cop2_op:
730 	case cop1x_op:
731 		if (insn.i_format.rs == bc_op) {
732 			preempt_disable();
733 			if (is_fpu_owner())
734 			        fcr31 = read_32bit_cp1_register(CP1_STATUS);
735 			else
736 				fcr31 = current->thread.fpu.fcr31;
737 			preempt_enable();
738 
739 			bit = (insn.i_format.rt >> 2);
740 			bit += (bit != 0);
741 			bit += 23;
742 			switch (insn.i_format.rt & 3) {
743 			case 0:	/* bc1f */
744 			case 2:	/* bc1fl */
745 				if (~fcr31 & (1 << bit))
746 					*contpc = regs->cp0_epc +
747 						dec_insn.pc_inc +
748 						(insn.i_format.simmediate << 2);
749 				else
750 					*contpc = regs->cp0_epc +
751 						dec_insn.pc_inc +
752 						dec_insn.next_pc_inc;
753 				return 1;
754 			case 1:	/* bc1t */
755 			case 3:	/* bc1tl */
756 				if (fcr31 & (1 << bit))
757 					*contpc = regs->cp0_epc +
758 						dec_insn.pc_inc +
759 						(insn.i_format.simmediate << 2);
760 				else
761 					*contpc = regs->cp0_epc +
762 						dec_insn.pc_inc +
763 						dec_insn.next_pc_inc;
764 				return 1;
765 			}
766 		}
767 		break;
768 	}
769 	return 0;
770 }
771 
772 /*
773  * In the Linux kernel, we support selection of FPR format on the
774  * basis of the Status.FR bit.	If an FPU is not present, the FR bit
775  * is hardwired to zero, which would imply a 32-bit FPU even for
776  * 64-bit CPUs so we rather look at TIF_32BIT_FPREGS.
777  * FPU emu is slow and bulky and optimizing this function offers fairly
778  * sizeable benefits so we try to be clever and make this function return
779  * a constant whenever possible, that is on 64-bit kernels without O32
780  * compatibility enabled and on 32-bit without 64-bit FPU support.
781  */
782 static inline int cop1_64bit(struct pt_regs *xcp)
783 {
784 	if (IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_MIPS32_O32))
785 		return 1;
786 	else if (IS_ENABLED(CONFIG_32BIT) &&
787 		 !IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
788 		return 0;
789 
790 	return !test_thread_flag(TIF_32BIT_FPREGS);
791 }
792 
793 static inline bool hybrid_fprs(void)
794 {
795 	return test_thread_flag(TIF_HYBRID_FPREGS);
796 }
797 
798 #define SIFROMREG(si, x)						\
799 do {									\
800 	if (cop1_64bit(xcp) && !hybrid_fprs())				\
801 		(si) = (int)get_fpr32(&ctx->fpr[x], 0);			\
802 	else								\
803 		(si) = (int)get_fpr32(&ctx->fpr[(x) & ~1], (x) & 1);	\
804 } while (0)
805 
806 #define SITOREG(si, x)							\
807 do {									\
808 	if (cop1_64bit(xcp) && !hybrid_fprs()) {			\
809 		unsigned int i;						\
810 		set_fpr32(&ctx->fpr[x], 0, si);				\
811 		for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val32); i++)	\
812 			set_fpr32(&ctx->fpr[x], i, 0);			\
813 	} else {							\
814 		set_fpr32(&ctx->fpr[(x) & ~1], (x) & 1, si);		\
815 	}								\
816 } while (0)
817 
818 #define SIFROMHREG(si, x)	((si) = (int)get_fpr32(&ctx->fpr[x], 1))
819 
820 #define SITOHREG(si, x)							\
821 do {									\
822 	unsigned int i;							\
823 	set_fpr32(&ctx->fpr[x], 1, si);					\
824 	for (i = 2; i < ARRAY_SIZE(ctx->fpr[x].val32); i++)		\
825 		set_fpr32(&ctx->fpr[x], i, 0);				\
826 } while (0)
827 
828 #define DIFROMREG(di, x)						\
829 	((di) = get_fpr64(&ctx->fpr[(x) & ~(cop1_64bit(xcp) ^ 1)], 0))
830 
831 #define DITOREG(di, x)							\
832 do {									\
833 	unsigned int fpr, i;						\
834 	fpr = (x) & ~(cop1_64bit(xcp) ^ 1);				\
835 	set_fpr64(&ctx->fpr[fpr], 0, di);				\
836 	for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val64); i++)		\
837 		set_fpr64(&ctx->fpr[fpr], i, 0);			\
838 } while (0)
839 
840 #define SPFROMREG(sp, x) SIFROMREG((sp).bits, x)
841 #define SPTOREG(sp, x)	SITOREG((sp).bits, x)
842 #define DPFROMREG(dp, x)	DIFROMREG((dp).bits, x)
843 #define DPTOREG(dp, x)	DITOREG((dp).bits, x)
844 
845 /*
846  * Emulate a CFC1 instruction.
847  */
848 static inline void cop1_cfc(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
849 			    mips_instruction ir)
850 {
851 	u32 fcr31 = ctx->fcr31;
852 	u32 value = 0;
853 
854 	switch (MIPSInst_RD(ir)) {
855 	case FPCREG_CSR:
856 		value = fcr31;
857 		pr_debug("%p gpr[%d]<-csr=%08x\n",
858 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
859 		break;
860 
861 	case FPCREG_FENR:
862 		if (!cpu_has_mips_r)
863 			break;
864 		value = (fcr31 >> (FPU_CSR_FS_S - MIPS_FENR_FS_S)) &
865 			MIPS_FENR_FS;
866 		value |= fcr31 & (FPU_CSR_ALL_E | FPU_CSR_RM);
867 		pr_debug("%p gpr[%d]<-enr=%08x\n",
868 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
869 		break;
870 
871 	case FPCREG_FEXR:
872 		if (!cpu_has_mips_r)
873 			break;
874 		value = fcr31 & (FPU_CSR_ALL_X | FPU_CSR_ALL_S);
875 		pr_debug("%p gpr[%d]<-exr=%08x\n",
876 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
877 		break;
878 
879 	case FPCREG_FCCR:
880 		if (!cpu_has_mips_r)
881 			break;
882 		value = (fcr31 >> (FPU_CSR_COND_S - MIPS_FCCR_COND0_S)) &
883 			MIPS_FCCR_COND0;
884 		value |= (fcr31 >> (FPU_CSR_COND1_S - MIPS_FCCR_COND1_S)) &
885 			 (MIPS_FCCR_CONDX & ~MIPS_FCCR_COND0);
886 		pr_debug("%p gpr[%d]<-ccr=%08x\n",
887 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
888 		break;
889 
890 	case FPCREG_RID:
891 		value = boot_cpu_data.fpu_id;
892 		break;
893 
894 	default:
895 		break;
896 	}
897 
898 	if (MIPSInst_RT(ir))
899 		xcp->regs[MIPSInst_RT(ir)] = value;
900 }
901 
902 /*
903  * Emulate a CTC1 instruction.
904  */
905 static inline void cop1_ctc(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
906 			    mips_instruction ir)
907 {
908 	u32 fcr31 = ctx->fcr31;
909 	u32 value;
910 	u32 mask;
911 
912 	if (MIPSInst_RT(ir) == 0)
913 		value = 0;
914 	else
915 		value = xcp->regs[MIPSInst_RT(ir)];
916 
917 	switch (MIPSInst_RD(ir)) {
918 	case FPCREG_CSR:
919 		pr_debug("%p gpr[%d]->csr=%08x\n",
920 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
921 
922 		/* Preserve read-only bits.  */
923 		mask = boot_cpu_data.fpu_msk31;
924 		fcr31 = (value & ~mask) | (fcr31 & mask);
925 		break;
926 
927 	case FPCREG_FENR:
928 		if (!cpu_has_mips_r)
929 			break;
930 		pr_debug("%p gpr[%d]->enr=%08x\n",
931 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
932 		fcr31 &= ~(FPU_CSR_FS | FPU_CSR_ALL_E | FPU_CSR_RM);
933 		fcr31 |= (value << (FPU_CSR_FS_S - MIPS_FENR_FS_S)) &
934 			 FPU_CSR_FS;
935 		fcr31 |= value & (FPU_CSR_ALL_E | FPU_CSR_RM);
936 		break;
937 
938 	case FPCREG_FEXR:
939 		if (!cpu_has_mips_r)
940 			break;
941 		pr_debug("%p gpr[%d]->exr=%08x\n",
942 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
943 		fcr31 &= ~(FPU_CSR_ALL_X | FPU_CSR_ALL_S);
944 		fcr31 |= value & (FPU_CSR_ALL_X | FPU_CSR_ALL_S);
945 		break;
946 
947 	case FPCREG_FCCR:
948 		if (!cpu_has_mips_r)
949 			break;
950 		pr_debug("%p gpr[%d]->ccr=%08x\n",
951 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
952 		fcr31 &= ~(FPU_CSR_CONDX | FPU_CSR_COND);
953 		fcr31 |= (value << (FPU_CSR_COND_S - MIPS_FCCR_COND0_S)) &
954 			 FPU_CSR_COND;
955 		fcr31 |= (value << (FPU_CSR_COND1_S - MIPS_FCCR_COND1_S)) &
956 			 FPU_CSR_CONDX;
957 		break;
958 
959 	default:
960 		break;
961 	}
962 
963 	ctx->fcr31 = fcr31;
964 }
965 
966 /*
967  * Emulate the single floating point instruction pointed at by EPC.
968  * Two instructions if the instruction is in a branch delay slot.
969  */
970 
971 static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
972 		struct mm_decoded_insn dec_insn, void __user **fault_addr)
973 {
974 	unsigned long contpc = xcp->cp0_epc + dec_insn.pc_inc;
975 	unsigned int cond, cbit, bit0;
976 	mips_instruction ir;
977 	int likely, pc_inc;
978 	union fpureg *fpr;
979 	u32 __user *wva;
980 	u64 __user *dva;
981 	u32 wval;
982 	u64 dval;
983 	int sig;
984 
985 	/*
986 	 * These are giving gcc a gentle hint about what to expect in
987 	 * dec_inst in order to do better optimization.
988 	 */
989 	if (!cpu_has_mmips && dec_insn.micro_mips_mode)
990 		unreachable();
991 
992 	/* XXX NEC Vr54xx bug workaround */
993 	if (delay_slot(xcp)) {
994 		if (dec_insn.micro_mips_mode) {
995 			if (!mm_isBranchInstr(xcp, dec_insn, &contpc))
996 				clear_delay_slot(xcp);
997 		} else {
998 			if (!isBranchInstr(xcp, dec_insn, &contpc))
999 				clear_delay_slot(xcp);
1000 		}
1001 	}
1002 
1003 	if (delay_slot(xcp)) {
1004 		/*
1005 		 * The instruction to be emulated is in a branch delay slot
1006 		 * which means that we have to	emulate the branch instruction
1007 		 * BEFORE we do the cop1 instruction.
1008 		 *
1009 		 * This branch could be a COP1 branch, but in that case we
1010 		 * would have had a trap for that instruction, and would not
1011 		 * come through this route.
1012 		 *
1013 		 * Linux MIPS branch emulator operates on context, updating the
1014 		 * cp0_epc.
1015 		 */
1016 		ir = dec_insn.next_insn;  /* process delay slot instr */
1017 		pc_inc = dec_insn.next_pc_inc;
1018 	} else {
1019 		ir = dec_insn.insn;       /* process current instr */
1020 		pc_inc = dec_insn.pc_inc;
1021 	}
1022 
1023 	/*
1024 	 * Since microMIPS FPU instructios are a subset of MIPS32 FPU
1025 	 * instructions, we want to convert microMIPS FPU instructions
1026 	 * into MIPS32 instructions so that we could reuse all of the
1027 	 * FPU emulation code.
1028 	 *
1029 	 * NOTE: We cannot do this for branch instructions since they
1030 	 *       are not a subset. Example: Cannot emulate a 16-bit
1031 	 *       aligned target address with a MIPS32 instruction.
1032 	 */
1033 	if (dec_insn.micro_mips_mode) {
1034 		/*
1035 		 * If next instruction is a 16-bit instruction, then
1036 		 * it cannot be a FPU instruction. This could happen
1037 		 * since we can be called for non-FPU instructions.
1038 		 */
1039 		if ((pc_inc == 2) ||
1040 			(microMIPS32_to_MIPS32((union mips_instruction *)&ir)
1041 			 == SIGILL))
1042 			return SIGILL;
1043 	}
1044 
1045 emul:
1046 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, xcp, 0);
1047 	MIPS_FPU_EMU_INC_STATS(emulated);
1048 	switch (MIPSInst_OPCODE(ir)) {
1049 	case ldc1_op:
1050 		dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1051 				     MIPSInst_SIMM(ir));
1052 		MIPS_FPU_EMU_INC_STATS(loads);
1053 
1054 		if (!access_ok(dva, sizeof(u64))) {
1055 			MIPS_FPU_EMU_INC_STATS(errors);
1056 			*fault_addr = dva;
1057 			return SIGBUS;
1058 		}
1059 		if (__get_user(dval, dva)) {
1060 			MIPS_FPU_EMU_INC_STATS(errors);
1061 			*fault_addr = dva;
1062 			return SIGSEGV;
1063 		}
1064 		DITOREG(dval, MIPSInst_RT(ir));
1065 		break;
1066 
1067 	case sdc1_op:
1068 		dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1069 				      MIPSInst_SIMM(ir));
1070 		MIPS_FPU_EMU_INC_STATS(stores);
1071 		DIFROMREG(dval, MIPSInst_RT(ir));
1072 		if (!access_ok(dva, sizeof(u64))) {
1073 			MIPS_FPU_EMU_INC_STATS(errors);
1074 			*fault_addr = dva;
1075 			return SIGBUS;
1076 		}
1077 		if (__put_user(dval, dva)) {
1078 			MIPS_FPU_EMU_INC_STATS(errors);
1079 			*fault_addr = dva;
1080 			return SIGSEGV;
1081 		}
1082 		break;
1083 
1084 	case lwc1_op:
1085 		wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1086 				      MIPSInst_SIMM(ir));
1087 		MIPS_FPU_EMU_INC_STATS(loads);
1088 		if (!access_ok(wva, sizeof(u32))) {
1089 			MIPS_FPU_EMU_INC_STATS(errors);
1090 			*fault_addr = wva;
1091 			return SIGBUS;
1092 		}
1093 		if (__get_user(wval, wva)) {
1094 			MIPS_FPU_EMU_INC_STATS(errors);
1095 			*fault_addr = wva;
1096 			return SIGSEGV;
1097 		}
1098 		SITOREG(wval, MIPSInst_RT(ir));
1099 		break;
1100 
1101 	case swc1_op:
1102 		wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1103 				      MIPSInst_SIMM(ir));
1104 		MIPS_FPU_EMU_INC_STATS(stores);
1105 		SIFROMREG(wval, MIPSInst_RT(ir));
1106 		if (!access_ok(wva, sizeof(u32))) {
1107 			MIPS_FPU_EMU_INC_STATS(errors);
1108 			*fault_addr = wva;
1109 			return SIGBUS;
1110 		}
1111 		if (__put_user(wval, wva)) {
1112 			MIPS_FPU_EMU_INC_STATS(errors);
1113 			*fault_addr = wva;
1114 			return SIGSEGV;
1115 		}
1116 		break;
1117 
1118 	case cop1_op:
1119 		switch (MIPSInst_RS(ir)) {
1120 		case dmfc_op:
1121 			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1122 				return SIGILL;
1123 
1124 			/* copregister fs -> gpr[rt] */
1125 			if (MIPSInst_RT(ir) != 0) {
1126 				DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
1127 					MIPSInst_RD(ir));
1128 			}
1129 			break;
1130 
1131 		case dmtc_op:
1132 			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1133 				return SIGILL;
1134 
1135 			/* copregister fs <- rt */
1136 			DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1137 			break;
1138 
1139 		case mfhc_op:
1140 			if (!cpu_has_mips_r2_r6)
1141 				return SIGILL;
1142 
1143 			/* copregister rd -> gpr[rt] */
1144 			if (MIPSInst_RT(ir) != 0) {
1145 				SIFROMHREG(xcp->regs[MIPSInst_RT(ir)],
1146 					MIPSInst_RD(ir));
1147 			}
1148 			break;
1149 
1150 		case mthc_op:
1151 			if (!cpu_has_mips_r2_r6)
1152 				return SIGILL;
1153 
1154 			/* copregister rd <- gpr[rt] */
1155 			SITOHREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1156 			break;
1157 
1158 		case mfc_op:
1159 			/* copregister rd -> gpr[rt] */
1160 			if (MIPSInst_RT(ir) != 0) {
1161 				SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
1162 					MIPSInst_RD(ir));
1163 			}
1164 			break;
1165 
1166 		case mtc_op:
1167 			/* copregister rd <- rt */
1168 			SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1169 			break;
1170 
1171 		case cfc_op:
1172 			/* cop control register rd -> gpr[rt] */
1173 			cop1_cfc(xcp, ctx, ir);
1174 			break;
1175 
1176 		case ctc_op:
1177 			/* copregister rd <- rt */
1178 			cop1_ctc(xcp, ctx, ir);
1179 			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1180 				return SIGFPE;
1181 			}
1182 			break;
1183 
1184 		case bc1eqz_op:
1185 		case bc1nez_op:
1186 			if (!cpu_has_mips_r6 || delay_slot(xcp))
1187 				return SIGILL;
1188 
1189 			likely = 0;
1190 			cond = 0;
1191 			fpr = &current->thread.fpu.fpr[MIPSInst_RT(ir)];
1192 			bit0 = get_fpr32(fpr, 0) & 0x1;
1193 			switch (MIPSInst_RS(ir)) {
1194 			case bc1eqz_op:
1195 				MIPS_FPU_EMU_INC_STATS(bc1eqz);
1196 				cond = bit0 == 0;
1197 				break;
1198 			case bc1nez_op:
1199 				MIPS_FPU_EMU_INC_STATS(bc1nez);
1200 				cond = bit0 != 0;
1201 				break;
1202 			}
1203 			goto branch_common;
1204 
1205 		case bc_op:
1206 			if (delay_slot(xcp))
1207 				return SIGILL;
1208 
1209 			if (cpu_has_mips_4_5_r)
1210 				cbit = fpucondbit[MIPSInst_RT(ir) >> 2];
1211 			else
1212 				cbit = FPU_CSR_COND;
1213 			cond = ctx->fcr31 & cbit;
1214 
1215 			likely = 0;
1216 			switch (MIPSInst_RT(ir) & 3) {
1217 			case bcfl_op:
1218 				if (cpu_has_mips_2_3_4_5_r)
1219 					likely = 1;
1220 				fallthrough;
1221 			case bcf_op:
1222 				cond = !cond;
1223 				break;
1224 			case bctl_op:
1225 				if (cpu_has_mips_2_3_4_5_r)
1226 					likely = 1;
1227 				fallthrough;
1228 			case bct_op:
1229 				break;
1230 			}
1231 branch_common:
1232 			MIPS_FPU_EMU_INC_STATS(branches);
1233 			set_delay_slot(xcp);
1234 			if (cond) {
1235 				/*
1236 				 * Branch taken: emulate dslot instruction
1237 				 */
1238 				unsigned long bcpc;
1239 
1240 				/*
1241 				 * Remember EPC at the branch to point back
1242 				 * at so that any delay-slot instruction
1243 				 * signal is not silently ignored.
1244 				 */
1245 				bcpc = xcp->cp0_epc;
1246 				xcp->cp0_epc += dec_insn.pc_inc;
1247 
1248 				contpc = MIPSInst_SIMM(ir);
1249 				ir = dec_insn.next_insn;
1250 				if (dec_insn.micro_mips_mode) {
1251 					contpc = (xcp->cp0_epc + (contpc << 1));
1252 
1253 					/* If 16-bit instruction, not FPU. */
1254 					if ((dec_insn.next_pc_inc == 2) ||
1255 						(microMIPS32_to_MIPS32((union mips_instruction *)&ir) == SIGILL)) {
1256 
1257 						/*
1258 						 * Since this instruction will
1259 						 * be put on the stack with
1260 						 * 32-bit words, get around
1261 						 * this problem by putting a
1262 						 * NOP16 as the second one.
1263 						 */
1264 						if (dec_insn.next_pc_inc == 2)
1265 							ir = (ir & (~0xffff)) | MM_NOP16;
1266 
1267 						/*
1268 						 * Single step the non-CP1
1269 						 * instruction in the dslot.
1270 						 */
1271 						sig = mips_dsemul(xcp, ir,
1272 								  bcpc, contpc);
1273 						if (sig < 0)
1274 							break;
1275 						if (sig)
1276 							xcp->cp0_epc = bcpc;
1277 						/*
1278 						 * SIGILL forces out of
1279 						 * the emulation loop.
1280 						 */
1281 						return sig ? sig : SIGILL;
1282 					}
1283 				} else
1284 					contpc = (xcp->cp0_epc + (contpc << 2));
1285 
1286 				switch (MIPSInst_OPCODE(ir)) {
1287 				case lwc1_op:
1288 				case swc1_op:
1289 					goto emul;
1290 
1291 				case ldc1_op:
1292 				case sdc1_op:
1293 					if (cpu_has_mips_2_3_4_5_r)
1294 						goto emul;
1295 
1296 					goto bc_sigill;
1297 
1298 				case cop1_op:
1299 					goto emul;
1300 
1301 				case cop1x_op:
1302 					if (cpu_has_mips_4_5_64_r2_r6)
1303 						/* its one of ours */
1304 						goto emul;
1305 
1306 					goto bc_sigill;
1307 
1308 				case spec_op:
1309 					switch (MIPSInst_FUNC(ir)) {
1310 					case movc_op:
1311 						if (cpu_has_mips_4_5_r)
1312 							goto emul;
1313 
1314 						goto bc_sigill;
1315 					}
1316 					break;
1317 
1318 				bc_sigill:
1319 					xcp->cp0_epc = bcpc;
1320 					return SIGILL;
1321 				}
1322 
1323 				/*
1324 				 * Single step the non-cp1
1325 				 * instruction in the dslot
1326 				 */
1327 				sig = mips_dsemul(xcp, ir, bcpc, contpc);
1328 				if (sig < 0)
1329 					break;
1330 				if (sig)
1331 					xcp->cp0_epc = bcpc;
1332 				/* SIGILL forces out of the emulation loop.  */
1333 				return sig ? sig : SIGILL;
1334 			} else if (likely) {	/* branch not taken */
1335 				/*
1336 				 * branch likely nullifies
1337 				 * dslot if not taken
1338 				 */
1339 				xcp->cp0_epc += dec_insn.pc_inc;
1340 				contpc += dec_insn.pc_inc;
1341 				/*
1342 				 * else continue & execute
1343 				 * dslot as normal insn
1344 				 */
1345 			}
1346 			break;
1347 
1348 		default:
1349 			if (!(MIPSInst_RS(ir) & 0x10))
1350 				return SIGILL;
1351 
1352 			/* a real fpu computation instruction */
1353 			sig = fpu_emu(xcp, ctx, ir);
1354 			if (sig)
1355 				return sig;
1356 		}
1357 		break;
1358 
1359 	case cop1x_op:
1360 		if (!cpu_has_mips_4_5_64_r2_r6)
1361 			return SIGILL;
1362 
1363 		sig = fpux_emu(xcp, ctx, ir, fault_addr);
1364 		if (sig)
1365 			return sig;
1366 		break;
1367 
1368 	case spec_op:
1369 		if (!cpu_has_mips_4_5_r)
1370 			return SIGILL;
1371 
1372 		if (MIPSInst_FUNC(ir) != movc_op)
1373 			return SIGILL;
1374 		cond = fpucondbit[MIPSInst_RT(ir) >> 2];
1375 		if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
1376 			xcp->regs[MIPSInst_RD(ir)] =
1377 				xcp->regs[MIPSInst_RS(ir)];
1378 		break;
1379 	default:
1380 		return SIGILL;
1381 	}
1382 
1383 	/* we did it !! */
1384 	xcp->cp0_epc = contpc;
1385 	clear_delay_slot(xcp);
1386 
1387 	return 0;
1388 }
1389 
1390 /*
1391  * Conversion table from MIPS compare ops 48-63
1392  * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
1393  */
1394 static const unsigned char cmptab[8] = {
1395 	0,			/* cmp_0 (sig) cmp_sf */
1396 	IEEE754_CUN,		/* cmp_un (sig) cmp_ngle */
1397 	IEEE754_CEQ,		/* cmp_eq (sig) cmp_seq */
1398 	IEEE754_CEQ | IEEE754_CUN,	/* cmp_ueq (sig) cmp_ngl  */
1399 	IEEE754_CLT,		/* cmp_olt (sig) cmp_lt */
1400 	IEEE754_CLT | IEEE754_CUN,	/* cmp_ult (sig) cmp_nge */
1401 	IEEE754_CLT | IEEE754_CEQ,	/* cmp_ole (sig) cmp_le */
1402 	IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN,	/* cmp_ule (sig) cmp_ngt */
1403 };
1404 
1405 static const unsigned char negative_cmptab[8] = {
1406 	0, /* Reserved */
1407 	IEEE754_CLT | IEEE754_CGT | IEEE754_CEQ,
1408 	IEEE754_CLT | IEEE754_CGT | IEEE754_CUN,
1409 	IEEE754_CLT | IEEE754_CGT,
1410 	/* Reserved */
1411 };
1412 
1413 
1414 /*
1415  * Additional MIPS4 instructions
1416  */
1417 
1418 #define DEF3OP(name, p, f1, f2, f3)					\
1419 static union ieee754##p fpemu_##p##_##name(union ieee754##p r,		\
1420 	union ieee754##p s, union ieee754##p t)				\
1421 {									\
1422 	struct _ieee754_csr ieee754_csr_save;				\
1423 	s = f1(s, t);							\
1424 	ieee754_csr_save = ieee754_csr;					\
1425 	s = f2(s, r);							\
1426 	ieee754_csr_save.cx |= ieee754_csr.cx;				\
1427 	ieee754_csr_save.sx |= ieee754_csr.sx;				\
1428 	s = f3(s);							\
1429 	ieee754_csr.cx |= ieee754_csr_save.cx;				\
1430 	ieee754_csr.sx |= ieee754_csr_save.sx;				\
1431 	return s;							\
1432 }
1433 
1434 static union ieee754dp fpemu_dp_recip(union ieee754dp d)
1435 {
1436 	return ieee754dp_div(ieee754dp_one(0), d);
1437 }
1438 
1439 static union ieee754dp fpemu_dp_rsqrt(union ieee754dp d)
1440 {
1441 	return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d));
1442 }
1443 
1444 static union ieee754sp fpemu_sp_recip(union ieee754sp s)
1445 {
1446 	return ieee754sp_div(ieee754sp_one(0), s);
1447 }
1448 
1449 static union ieee754sp fpemu_sp_rsqrt(union ieee754sp s)
1450 {
1451 	return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s));
1452 }
1453 
1454 DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add, );
1455 DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub, );
1456 DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg);
1457 DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg);
1458 DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add, );
1459 DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub, );
1460 DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg);
1461 DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg);
1462 
1463 static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1464 	mips_instruction ir, void __user **fault_addr)
1465 {
1466 	unsigned int rcsr = 0;	/* resulting csr */
1467 
1468 	MIPS_FPU_EMU_INC_STATS(cp1xops);
1469 
1470 	switch (MIPSInst_FMA_FFMT(ir)) {
1471 	case s_fmt:{		/* 0 */
1472 
1473 		union ieee754sp(*handler) (union ieee754sp, union ieee754sp, union ieee754sp);
1474 		union ieee754sp fd, fr, fs, ft;
1475 		u32 __user *va;
1476 		u32 val;
1477 
1478 		switch (MIPSInst_FUNC(ir)) {
1479 		case lwxc1_op:
1480 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1481 				xcp->regs[MIPSInst_FT(ir)]);
1482 
1483 			MIPS_FPU_EMU_INC_STATS(loads);
1484 			if (!access_ok(va, sizeof(u32))) {
1485 				MIPS_FPU_EMU_INC_STATS(errors);
1486 				*fault_addr = va;
1487 				return SIGBUS;
1488 			}
1489 			if (__get_user(val, va)) {
1490 				MIPS_FPU_EMU_INC_STATS(errors);
1491 				*fault_addr = va;
1492 				return SIGSEGV;
1493 			}
1494 			SITOREG(val, MIPSInst_FD(ir));
1495 			break;
1496 
1497 		case swxc1_op:
1498 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1499 				xcp->regs[MIPSInst_FT(ir)]);
1500 
1501 			MIPS_FPU_EMU_INC_STATS(stores);
1502 
1503 			SIFROMREG(val, MIPSInst_FS(ir));
1504 			if (!access_ok(va, sizeof(u32))) {
1505 				MIPS_FPU_EMU_INC_STATS(errors);
1506 				*fault_addr = va;
1507 				return SIGBUS;
1508 			}
1509 			if (put_user(val, va)) {
1510 				MIPS_FPU_EMU_INC_STATS(errors);
1511 				*fault_addr = va;
1512 				return SIGSEGV;
1513 			}
1514 			break;
1515 
1516 		case madd_s_op:
1517 			if (cpu_has_mac2008_only)
1518 				handler = ieee754sp_madd;
1519 			else
1520 				handler = fpemu_sp_madd;
1521 			goto scoptop;
1522 		case msub_s_op:
1523 			if (cpu_has_mac2008_only)
1524 				handler = ieee754sp_msub;
1525 			else
1526 				handler = fpemu_sp_msub;
1527 			goto scoptop;
1528 		case nmadd_s_op:
1529 			if (cpu_has_mac2008_only)
1530 				handler = ieee754sp_nmadd;
1531 			else
1532 				handler = fpemu_sp_nmadd;
1533 			goto scoptop;
1534 		case nmsub_s_op:
1535 			if (cpu_has_mac2008_only)
1536 				handler = ieee754sp_nmsub;
1537 			else
1538 				handler = fpemu_sp_nmsub;
1539 			goto scoptop;
1540 
1541 		      scoptop:
1542 			SPFROMREG(fr, MIPSInst_FR(ir));
1543 			SPFROMREG(fs, MIPSInst_FS(ir));
1544 			SPFROMREG(ft, MIPSInst_FT(ir));
1545 			fd = (*handler) (fr, fs, ft);
1546 			SPTOREG(fd, MIPSInst_FD(ir));
1547 
1548 		      copcsr:
1549 			if (ieee754_cxtest(IEEE754_INEXACT)) {
1550 				MIPS_FPU_EMU_INC_STATS(ieee754_inexact);
1551 				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1552 			}
1553 			if (ieee754_cxtest(IEEE754_UNDERFLOW)) {
1554 				MIPS_FPU_EMU_INC_STATS(ieee754_underflow);
1555 				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1556 			}
1557 			if (ieee754_cxtest(IEEE754_OVERFLOW)) {
1558 				MIPS_FPU_EMU_INC_STATS(ieee754_overflow);
1559 				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1560 			}
1561 			if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) {
1562 				MIPS_FPU_EMU_INC_STATS(ieee754_invalidop);
1563 				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1564 			}
1565 
1566 			ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1567 			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1568 				/*printk ("SIGFPE: FPU csr = %08x\n",
1569 				   ctx->fcr31); */
1570 				return SIGFPE;
1571 			}
1572 
1573 			break;
1574 
1575 		default:
1576 			return SIGILL;
1577 		}
1578 		break;
1579 	}
1580 
1581 	case d_fmt:{		/* 1 */
1582 		union ieee754dp(*handler) (union ieee754dp, union ieee754dp, union ieee754dp);
1583 		union ieee754dp fd, fr, fs, ft;
1584 		u64 __user *va;
1585 		u64 val;
1586 
1587 		switch (MIPSInst_FUNC(ir)) {
1588 		case ldxc1_op:
1589 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1590 				xcp->regs[MIPSInst_FT(ir)]);
1591 
1592 			MIPS_FPU_EMU_INC_STATS(loads);
1593 			if (!access_ok(va, sizeof(u64))) {
1594 				MIPS_FPU_EMU_INC_STATS(errors);
1595 				*fault_addr = va;
1596 				return SIGBUS;
1597 			}
1598 			if (__get_user(val, va)) {
1599 				MIPS_FPU_EMU_INC_STATS(errors);
1600 				*fault_addr = va;
1601 				return SIGSEGV;
1602 			}
1603 			DITOREG(val, MIPSInst_FD(ir));
1604 			break;
1605 
1606 		case sdxc1_op:
1607 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1608 				xcp->regs[MIPSInst_FT(ir)]);
1609 
1610 			MIPS_FPU_EMU_INC_STATS(stores);
1611 			DIFROMREG(val, MIPSInst_FS(ir));
1612 			if (!access_ok(va, sizeof(u64))) {
1613 				MIPS_FPU_EMU_INC_STATS(errors);
1614 				*fault_addr = va;
1615 				return SIGBUS;
1616 			}
1617 			if (__put_user(val, va)) {
1618 				MIPS_FPU_EMU_INC_STATS(errors);
1619 				*fault_addr = va;
1620 				return SIGSEGV;
1621 			}
1622 			break;
1623 
1624 		case madd_d_op:
1625 			if (cpu_has_mac2008_only)
1626 				handler = ieee754dp_madd;
1627 			else
1628 				handler = fpemu_dp_madd;
1629 			goto dcoptop;
1630 		case msub_d_op:
1631 			if (cpu_has_mac2008_only)
1632 				handler = ieee754dp_msub;
1633 			else
1634 				handler = fpemu_dp_msub;
1635 			goto dcoptop;
1636 		case nmadd_d_op:
1637 			if (cpu_has_mac2008_only)
1638 				handler = ieee754dp_nmadd;
1639 			else
1640 				handler = fpemu_dp_nmadd;
1641 			goto dcoptop;
1642 		case nmsub_d_op:
1643 			if (cpu_has_mac2008_only)
1644 				handler = ieee754dp_nmsub;
1645 			else
1646 			handler = fpemu_dp_nmsub;
1647 			goto dcoptop;
1648 
1649 		      dcoptop:
1650 			DPFROMREG(fr, MIPSInst_FR(ir));
1651 			DPFROMREG(fs, MIPSInst_FS(ir));
1652 			DPFROMREG(ft, MIPSInst_FT(ir));
1653 			fd = (*handler) (fr, fs, ft);
1654 			DPTOREG(fd, MIPSInst_FD(ir));
1655 			goto copcsr;
1656 
1657 		default:
1658 			return SIGILL;
1659 		}
1660 		break;
1661 	}
1662 
1663 	case 0x3:
1664 		if (MIPSInst_FUNC(ir) != pfetch_op)
1665 			return SIGILL;
1666 
1667 		/* ignore prefx operation */
1668 		break;
1669 
1670 	default:
1671 		return SIGILL;
1672 	}
1673 
1674 	return 0;
1675 }
1676 
1677 
1678 
1679 /*
1680  * Emulate a single COP1 arithmetic instruction.
1681  */
1682 static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1683 	mips_instruction ir)
1684 {
1685 	int rfmt;		/* resulting format */
1686 	unsigned int rcsr = 0;	/* resulting csr */
1687 	unsigned int oldrm;
1688 	unsigned int cbit;
1689 	unsigned int cond;
1690 	union {
1691 		union ieee754dp d;
1692 		union ieee754sp s;
1693 		int w;
1694 		s64 l;
1695 	} rv;			/* resulting value */
1696 	u64 bits;
1697 
1698 	MIPS_FPU_EMU_INC_STATS(cp1ops);
1699 	switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) {
1700 	case s_fmt: {		/* 0 */
1701 		union {
1702 			union ieee754sp(*b) (union ieee754sp, union ieee754sp);
1703 			union ieee754sp(*u) (union ieee754sp);
1704 		} handler;
1705 		union ieee754sp fd, fs, ft;
1706 
1707 		switch (MIPSInst_FUNC(ir)) {
1708 			/* binary ops */
1709 		case fadd_op:
1710 			MIPS_FPU_EMU_INC_STATS(add_s);
1711 			handler.b = ieee754sp_add;
1712 			goto scopbop;
1713 		case fsub_op:
1714 			MIPS_FPU_EMU_INC_STATS(sub_s);
1715 			handler.b = ieee754sp_sub;
1716 			goto scopbop;
1717 		case fmul_op:
1718 			MIPS_FPU_EMU_INC_STATS(mul_s);
1719 			handler.b = ieee754sp_mul;
1720 			goto scopbop;
1721 		case fdiv_op:
1722 			MIPS_FPU_EMU_INC_STATS(div_s);
1723 			handler.b = ieee754sp_div;
1724 			goto scopbop;
1725 
1726 			/* unary  ops */
1727 		case fsqrt_op:
1728 			if (!cpu_has_mips_2_3_4_5_r)
1729 				return SIGILL;
1730 
1731 			MIPS_FPU_EMU_INC_STATS(sqrt_s);
1732 			handler.u = ieee754sp_sqrt;
1733 			goto scopuop;
1734 
1735 		/*
1736 		 * Note that on some MIPS IV implementations such as the
1737 		 * R5000 and R8000 the FSQRT and FRECIP instructions do not
1738 		 * achieve full IEEE-754 accuracy - however this emulator does.
1739 		 */
1740 		case frsqrt_op:
1741 			if (!cpu_has_mips_4_5_64_r2_r6)
1742 				return SIGILL;
1743 
1744 			MIPS_FPU_EMU_INC_STATS(rsqrt_s);
1745 			handler.u = fpemu_sp_rsqrt;
1746 			goto scopuop;
1747 
1748 		case frecip_op:
1749 			if (!cpu_has_mips_4_5_64_r2_r6)
1750 				return SIGILL;
1751 
1752 			MIPS_FPU_EMU_INC_STATS(recip_s);
1753 			handler.u = fpemu_sp_recip;
1754 			goto scopuop;
1755 
1756 		case fmovc_op:
1757 			if (!cpu_has_mips_4_5_r)
1758 				return SIGILL;
1759 
1760 			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1761 			if (((ctx->fcr31 & cond) != 0) !=
1762 				((MIPSInst_FT(ir) & 1) != 0))
1763 				return 0;
1764 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1765 			break;
1766 
1767 		case fmovz_op:
1768 			if (!cpu_has_mips_4_5_r)
1769 				return SIGILL;
1770 
1771 			if (xcp->regs[MIPSInst_FT(ir)] != 0)
1772 				return 0;
1773 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1774 			break;
1775 
1776 		case fmovn_op:
1777 			if (!cpu_has_mips_4_5_r)
1778 				return SIGILL;
1779 
1780 			if (xcp->regs[MIPSInst_FT(ir)] == 0)
1781 				return 0;
1782 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1783 			break;
1784 
1785 		case fseleqz_op:
1786 			if (!cpu_has_mips_r6)
1787 				return SIGILL;
1788 
1789 			MIPS_FPU_EMU_INC_STATS(seleqz_s);
1790 			SPFROMREG(rv.s, MIPSInst_FT(ir));
1791 			if (rv.w & 0x1)
1792 				rv.w = 0;
1793 			else
1794 				SPFROMREG(rv.s, MIPSInst_FS(ir));
1795 			break;
1796 
1797 		case fselnez_op:
1798 			if (!cpu_has_mips_r6)
1799 				return SIGILL;
1800 
1801 			MIPS_FPU_EMU_INC_STATS(selnez_s);
1802 			SPFROMREG(rv.s, MIPSInst_FT(ir));
1803 			if (rv.w & 0x1)
1804 				SPFROMREG(rv.s, MIPSInst_FS(ir));
1805 			else
1806 				rv.w = 0;
1807 			break;
1808 
1809 		case fmaddf_op: {
1810 			union ieee754sp ft, fs, fd;
1811 
1812 			if (!cpu_has_mips_r6)
1813 				return SIGILL;
1814 
1815 			MIPS_FPU_EMU_INC_STATS(maddf_s);
1816 			SPFROMREG(ft, MIPSInst_FT(ir));
1817 			SPFROMREG(fs, MIPSInst_FS(ir));
1818 			SPFROMREG(fd, MIPSInst_FD(ir));
1819 			rv.s = ieee754sp_maddf(fd, fs, ft);
1820 			goto copcsr;
1821 		}
1822 
1823 		case fmsubf_op: {
1824 			union ieee754sp ft, fs, fd;
1825 
1826 			if (!cpu_has_mips_r6)
1827 				return SIGILL;
1828 
1829 			MIPS_FPU_EMU_INC_STATS(msubf_s);
1830 			SPFROMREG(ft, MIPSInst_FT(ir));
1831 			SPFROMREG(fs, MIPSInst_FS(ir));
1832 			SPFROMREG(fd, MIPSInst_FD(ir));
1833 			rv.s = ieee754sp_msubf(fd, fs, ft);
1834 			goto copcsr;
1835 		}
1836 
1837 		case frint_op: {
1838 			union ieee754sp fs;
1839 
1840 			if (!cpu_has_mips_r6)
1841 				return SIGILL;
1842 
1843 			MIPS_FPU_EMU_INC_STATS(rint_s);
1844 			SPFROMREG(fs, MIPSInst_FS(ir));
1845 			rv.s = ieee754sp_rint(fs);
1846 			goto copcsr;
1847 		}
1848 
1849 		case fclass_op: {
1850 			union ieee754sp fs;
1851 
1852 			if (!cpu_has_mips_r6)
1853 				return SIGILL;
1854 
1855 			MIPS_FPU_EMU_INC_STATS(class_s);
1856 			SPFROMREG(fs, MIPSInst_FS(ir));
1857 			rv.w = ieee754sp_2008class(fs);
1858 			rfmt = w_fmt;
1859 			goto copcsr;
1860 		}
1861 
1862 		case fmin_op: {
1863 			union ieee754sp fs, ft;
1864 
1865 			if (!cpu_has_mips_r6)
1866 				return SIGILL;
1867 
1868 			MIPS_FPU_EMU_INC_STATS(min_s);
1869 			SPFROMREG(ft, MIPSInst_FT(ir));
1870 			SPFROMREG(fs, MIPSInst_FS(ir));
1871 			rv.s = ieee754sp_fmin(fs, ft);
1872 			goto copcsr;
1873 		}
1874 
1875 		case fmina_op: {
1876 			union ieee754sp fs, ft;
1877 
1878 			if (!cpu_has_mips_r6)
1879 				return SIGILL;
1880 
1881 			MIPS_FPU_EMU_INC_STATS(mina_s);
1882 			SPFROMREG(ft, MIPSInst_FT(ir));
1883 			SPFROMREG(fs, MIPSInst_FS(ir));
1884 			rv.s = ieee754sp_fmina(fs, ft);
1885 			goto copcsr;
1886 		}
1887 
1888 		case fmax_op: {
1889 			union ieee754sp fs, ft;
1890 
1891 			if (!cpu_has_mips_r6)
1892 				return SIGILL;
1893 
1894 			MIPS_FPU_EMU_INC_STATS(max_s);
1895 			SPFROMREG(ft, MIPSInst_FT(ir));
1896 			SPFROMREG(fs, MIPSInst_FS(ir));
1897 			rv.s = ieee754sp_fmax(fs, ft);
1898 			goto copcsr;
1899 		}
1900 
1901 		case fmaxa_op: {
1902 			union ieee754sp fs, ft;
1903 
1904 			if (!cpu_has_mips_r6)
1905 				return SIGILL;
1906 
1907 			MIPS_FPU_EMU_INC_STATS(maxa_s);
1908 			SPFROMREG(ft, MIPSInst_FT(ir));
1909 			SPFROMREG(fs, MIPSInst_FS(ir));
1910 			rv.s = ieee754sp_fmaxa(fs, ft);
1911 			goto copcsr;
1912 		}
1913 
1914 		case fabs_op:
1915 			MIPS_FPU_EMU_INC_STATS(abs_s);
1916 			handler.u = ieee754sp_abs;
1917 			goto scopuop;
1918 
1919 		case fneg_op:
1920 			MIPS_FPU_EMU_INC_STATS(neg_s);
1921 			handler.u = ieee754sp_neg;
1922 			goto scopuop;
1923 
1924 		case fmov_op:
1925 			/* an easy one */
1926 			MIPS_FPU_EMU_INC_STATS(mov_s);
1927 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1928 			goto copcsr;
1929 
1930 			/* binary op on handler */
1931 scopbop:
1932 			SPFROMREG(fs, MIPSInst_FS(ir));
1933 			SPFROMREG(ft, MIPSInst_FT(ir));
1934 
1935 			rv.s = (*handler.b) (fs, ft);
1936 			goto copcsr;
1937 scopuop:
1938 			SPFROMREG(fs, MIPSInst_FS(ir));
1939 			rv.s = (*handler.u) (fs);
1940 			goto copcsr;
1941 copcsr:
1942 			if (ieee754_cxtest(IEEE754_INEXACT)) {
1943 				MIPS_FPU_EMU_INC_STATS(ieee754_inexact);
1944 				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1945 			}
1946 			if (ieee754_cxtest(IEEE754_UNDERFLOW)) {
1947 				MIPS_FPU_EMU_INC_STATS(ieee754_underflow);
1948 				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1949 			}
1950 			if (ieee754_cxtest(IEEE754_OVERFLOW)) {
1951 				MIPS_FPU_EMU_INC_STATS(ieee754_overflow);
1952 				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1953 			}
1954 			if (ieee754_cxtest(IEEE754_ZERO_DIVIDE)) {
1955 				MIPS_FPU_EMU_INC_STATS(ieee754_zerodiv);
1956 				rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S;
1957 			}
1958 			if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) {
1959 				MIPS_FPU_EMU_INC_STATS(ieee754_invalidop);
1960 				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1961 			}
1962 			break;
1963 
1964 			/* unary conv ops */
1965 		case fcvts_op:
1966 			return SIGILL;	/* not defined */
1967 
1968 		case fcvtd_op:
1969 			MIPS_FPU_EMU_INC_STATS(cvt_d_s);
1970 			SPFROMREG(fs, MIPSInst_FS(ir));
1971 			rv.d = ieee754dp_fsp(fs);
1972 			rfmt = d_fmt;
1973 			goto copcsr;
1974 
1975 		case fcvtw_op:
1976 			MIPS_FPU_EMU_INC_STATS(cvt_w_s);
1977 			SPFROMREG(fs, MIPSInst_FS(ir));
1978 			rv.w = ieee754sp_tint(fs);
1979 			rfmt = w_fmt;
1980 			goto copcsr;
1981 
1982 		case fround_op:
1983 		case ftrunc_op:
1984 		case fceil_op:
1985 		case ffloor_op:
1986 			if (!cpu_has_mips_2_3_4_5_r)
1987 				return SIGILL;
1988 
1989 			if (MIPSInst_FUNC(ir) == fceil_op)
1990 				MIPS_FPU_EMU_INC_STATS(ceil_w_s);
1991 			if (MIPSInst_FUNC(ir) == ffloor_op)
1992 				MIPS_FPU_EMU_INC_STATS(floor_w_s);
1993 			if (MIPSInst_FUNC(ir) == fround_op)
1994 				MIPS_FPU_EMU_INC_STATS(round_w_s);
1995 			if (MIPSInst_FUNC(ir) == ftrunc_op)
1996 				MIPS_FPU_EMU_INC_STATS(trunc_w_s);
1997 
1998 			oldrm = ieee754_csr.rm;
1999 			SPFROMREG(fs, MIPSInst_FS(ir));
2000 			ieee754_csr.rm = MIPSInst_FUNC(ir);
2001 			rv.w = ieee754sp_tint(fs);
2002 			ieee754_csr.rm = oldrm;
2003 			rfmt = w_fmt;
2004 			goto copcsr;
2005 
2006 		case fsel_op:
2007 			if (!cpu_has_mips_r6)
2008 				return SIGILL;
2009 
2010 			MIPS_FPU_EMU_INC_STATS(sel_s);
2011 			SPFROMREG(fd, MIPSInst_FD(ir));
2012 			if (fd.bits & 0x1)
2013 				SPFROMREG(rv.s, MIPSInst_FT(ir));
2014 			else
2015 				SPFROMREG(rv.s, MIPSInst_FS(ir));
2016 			break;
2017 
2018 		case fcvtl_op:
2019 			if (!cpu_has_mips_3_4_5_64_r2_r6)
2020 				return SIGILL;
2021 
2022 			MIPS_FPU_EMU_INC_STATS(cvt_l_s);
2023 			SPFROMREG(fs, MIPSInst_FS(ir));
2024 			rv.l = ieee754sp_tlong(fs);
2025 			rfmt = l_fmt;
2026 			goto copcsr;
2027 
2028 		case froundl_op:
2029 		case ftruncl_op:
2030 		case fceill_op:
2031 		case ffloorl_op:
2032 			if (!cpu_has_mips_3_4_5_64_r2_r6)
2033 				return SIGILL;
2034 
2035 			if (MIPSInst_FUNC(ir) == fceill_op)
2036 				MIPS_FPU_EMU_INC_STATS(ceil_l_s);
2037 			if (MIPSInst_FUNC(ir) == ffloorl_op)
2038 				MIPS_FPU_EMU_INC_STATS(floor_l_s);
2039 			if (MIPSInst_FUNC(ir) == froundl_op)
2040 				MIPS_FPU_EMU_INC_STATS(round_l_s);
2041 			if (MIPSInst_FUNC(ir) == ftruncl_op)
2042 				MIPS_FPU_EMU_INC_STATS(trunc_l_s);
2043 
2044 			oldrm = ieee754_csr.rm;
2045 			SPFROMREG(fs, MIPSInst_FS(ir));
2046 			ieee754_csr.rm = MIPSInst_FUNC(ir);
2047 			rv.l = ieee754sp_tlong(fs);
2048 			ieee754_csr.rm = oldrm;
2049 			rfmt = l_fmt;
2050 			goto copcsr;
2051 
2052 		default:
2053 			if (!NO_R6EMU && MIPSInst_FUNC(ir) >= fcmp_op) {
2054 				unsigned int cmpop;
2055 				union ieee754sp fs, ft;
2056 
2057 				cmpop = MIPSInst_FUNC(ir) - fcmp_op;
2058 				SPFROMREG(fs, MIPSInst_FS(ir));
2059 				SPFROMREG(ft, MIPSInst_FT(ir));
2060 				rv.w = ieee754sp_cmp(fs, ft,
2061 					cmptab[cmpop & 0x7], cmpop & 0x8);
2062 				rfmt = -1;
2063 				if ((cmpop & 0x8) && ieee754_cxtest
2064 					(IEEE754_INVALID_OPERATION))
2065 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2066 				else
2067 					goto copcsr;
2068 
2069 			} else
2070 				return SIGILL;
2071 			break;
2072 		}
2073 		break;
2074 	}
2075 
2076 	case d_fmt: {
2077 		union ieee754dp fd, fs, ft;
2078 		union {
2079 			union ieee754dp(*b) (union ieee754dp, union ieee754dp);
2080 			union ieee754dp(*u) (union ieee754dp);
2081 		} handler;
2082 
2083 		switch (MIPSInst_FUNC(ir)) {
2084 			/* binary ops */
2085 		case fadd_op:
2086 			MIPS_FPU_EMU_INC_STATS(add_d);
2087 			handler.b = ieee754dp_add;
2088 			goto dcopbop;
2089 		case fsub_op:
2090 			MIPS_FPU_EMU_INC_STATS(sub_d);
2091 			handler.b = ieee754dp_sub;
2092 			goto dcopbop;
2093 		case fmul_op:
2094 			MIPS_FPU_EMU_INC_STATS(mul_d);
2095 			handler.b = ieee754dp_mul;
2096 			goto dcopbop;
2097 		case fdiv_op:
2098 			MIPS_FPU_EMU_INC_STATS(div_d);
2099 			handler.b = ieee754dp_div;
2100 			goto dcopbop;
2101 
2102 			/* unary  ops */
2103 		case fsqrt_op:
2104 			if (!cpu_has_mips_2_3_4_5_r)
2105 				return SIGILL;
2106 
2107 			MIPS_FPU_EMU_INC_STATS(sqrt_d);
2108 			handler.u = ieee754dp_sqrt;
2109 			goto dcopuop;
2110 		/*
2111 		 * Note that on some MIPS IV implementations such as the
2112 		 * R5000 and R8000 the FSQRT and FRECIP instructions do not
2113 		 * achieve full IEEE-754 accuracy - however this emulator does.
2114 		 */
2115 		case frsqrt_op:
2116 			if (!cpu_has_mips_4_5_64_r2_r6)
2117 				return SIGILL;
2118 
2119 			MIPS_FPU_EMU_INC_STATS(rsqrt_d);
2120 			handler.u = fpemu_dp_rsqrt;
2121 			goto dcopuop;
2122 		case frecip_op:
2123 			if (!cpu_has_mips_4_5_64_r2_r6)
2124 				return SIGILL;
2125 
2126 			MIPS_FPU_EMU_INC_STATS(recip_d);
2127 			handler.u = fpemu_dp_recip;
2128 			goto dcopuop;
2129 		case fmovc_op:
2130 			if (!cpu_has_mips_4_5_r)
2131 				return SIGILL;
2132 
2133 			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
2134 			if (((ctx->fcr31 & cond) != 0) !=
2135 				((MIPSInst_FT(ir) & 1) != 0))
2136 				return 0;
2137 			DPFROMREG(rv.d, MIPSInst_FS(ir));
2138 			break;
2139 		case fmovz_op:
2140 			if (!cpu_has_mips_4_5_r)
2141 				return SIGILL;
2142 
2143 			if (xcp->regs[MIPSInst_FT(ir)] != 0)
2144 				return 0;
2145 			DPFROMREG(rv.d, MIPSInst_FS(ir));
2146 			break;
2147 		case fmovn_op:
2148 			if (!cpu_has_mips_4_5_r)
2149 				return SIGILL;
2150 
2151 			if (xcp->regs[MIPSInst_FT(ir)] == 0)
2152 				return 0;
2153 			DPFROMREG(rv.d, MIPSInst_FS(ir));
2154 			break;
2155 
2156 		case fseleqz_op:
2157 			if (!cpu_has_mips_r6)
2158 				return SIGILL;
2159 
2160 			MIPS_FPU_EMU_INC_STATS(seleqz_d);
2161 			DPFROMREG(rv.d, MIPSInst_FT(ir));
2162 			if (rv.l & 0x1)
2163 				rv.l = 0;
2164 			else
2165 				DPFROMREG(rv.d, MIPSInst_FS(ir));
2166 			break;
2167 
2168 		case fselnez_op:
2169 			if (!cpu_has_mips_r6)
2170 				return SIGILL;
2171 
2172 			MIPS_FPU_EMU_INC_STATS(selnez_d);
2173 			DPFROMREG(rv.d, MIPSInst_FT(ir));
2174 			if (rv.l & 0x1)
2175 				DPFROMREG(rv.d, MIPSInst_FS(ir));
2176 			else
2177 				rv.l = 0;
2178 			break;
2179 
2180 		case fmaddf_op: {
2181 			union ieee754dp ft, fs, fd;
2182 
2183 			if (!cpu_has_mips_r6)
2184 				return SIGILL;
2185 
2186 			MIPS_FPU_EMU_INC_STATS(maddf_d);
2187 			DPFROMREG(ft, MIPSInst_FT(ir));
2188 			DPFROMREG(fs, MIPSInst_FS(ir));
2189 			DPFROMREG(fd, MIPSInst_FD(ir));
2190 			rv.d = ieee754dp_maddf(fd, fs, ft);
2191 			goto copcsr;
2192 		}
2193 
2194 		case fmsubf_op: {
2195 			union ieee754dp ft, fs, fd;
2196 
2197 			if (!cpu_has_mips_r6)
2198 				return SIGILL;
2199 
2200 			MIPS_FPU_EMU_INC_STATS(msubf_d);
2201 			DPFROMREG(ft, MIPSInst_FT(ir));
2202 			DPFROMREG(fs, MIPSInst_FS(ir));
2203 			DPFROMREG(fd, MIPSInst_FD(ir));
2204 			rv.d = ieee754dp_msubf(fd, fs, ft);
2205 			goto copcsr;
2206 		}
2207 
2208 		case frint_op: {
2209 			union ieee754dp fs;
2210 
2211 			if (!cpu_has_mips_r6)
2212 				return SIGILL;
2213 
2214 			MIPS_FPU_EMU_INC_STATS(rint_d);
2215 			DPFROMREG(fs, MIPSInst_FS(ir));
2216 			rv.d = ieee754dp_rint(fs);
2217 			goto copcsr;
2218 		}
2219 
2220 		case fclass_op: {
2221 			union ieee754dp fs;
2222 
2223 			if (!cpu_has_mips_r6)
2224 				return SIGILL;
2225 
2226 			MIPS_FPU_EMU_INC_STATS(class_d);
2227 			DPFROMREG(fs, MIPSInst_FS(ir));
2228 			rv.l = ieee754dp_2008class(fs);
2229 			rfmt = l_fmt;
2230 			goto copcsr;
2231 		}
2232 
2233 		case fmin_op: {
2234 			union ieee754dp fs, ft;
2235 
2236 			if (!cpu_has_mips_r6)
2237 				return SIGILL;
2238 
2239 			MIPS_FPU_EMU_INC_STATS(min_d);
2240 			DPFROMREG(ft, MIPSInst_FT(ir));
2241 			DPFROMREG(fs, MIPSInst_FS(ir));
2242 			rv.d = ieee754dp_fmin(fs, ft);
2243 			goto copcsr;
2244 		}
2245 
2246 		case fmina_op: {
2247 			union ieee754dp fs, ft;
2248 
2249 			if (!cpu_has_mips_r6)
2250 				return SIGILL;
2251 
2252 			MIPS_FPU_EMU_INC_STATS(mina_d);
2253 			DPFROMREG(ft, MIPSInst_FT(ir));
2254 			DPFROMREG(fs, MIPSInst_FS(ir));
2255 			rv.d = ieee754dp_fmina(fs, ft);
2256 			goto copcsr;
2257 		}
2258 
2259 		case fmax_op: {
2260 			union ieee754dp fs, ft;
2261 
2262 			if (!cpu_has_mips_r6)
2263 				return SIGILL;
2264 
2265 			MIPS_FPU_EMU_INC_STATS(max_d);
2266 			DPFROMREG(ft, MIPSInst_FT(ir));
2267 			DPFROMREG(fs, MIPSInst_FS(ir));
2268 			rv.d = ieee754dp_fmax(fs, ft);
2269 			goto copcsr;
2270 		}
2271 
2272 		case fmaxa_op: {
2273 			union ieee754dp fs, ft;
2274 
2275 			if (!cpu_has_mips_r6)
2276 				return SIGILL;
2277 
2278 			MIPS_FPU_EMU_INC_STATS(maxa_d);
2279 			DPFROMREG(ft, MIPSInst_FT(ir));
2280 			DPFROMREG(fs, MIPSInst_FS(ir));
2281 			rv.d = ieee754dp_fmaxa(fs, ft);
2282 			goto copcsr;
2283 		}
2284 
2285 		case fabs_op:
2286 			MIPS_FPU_EMU_INC_STATS(abs_d);
2287 			handler.u = ieee754dp_abs;
2288 			goto dcopuop;
2289 
2290 		case fneg_op:
2291 			MIPS_FPU_EMU_INC_STATS(neg_d);
2292 			handler.u = ieee754dp_neg;
2293 			goto dcopuop;
2294 
2295 		case fmov_op:
2296 			/* an easy one */
2297 			MIPS_FPU_EMU_INC_STATS(mov_d);
2298 			DPFROMREG(rv.d, MIPSInst_FS(ir));
2299 			goto copcsr;
2300 
2301 			/* binary op on handler */
2302 dcopbop:
2303 			DPFROMREG(fs, MIPSInst_FS(ir));
2304 			DPFROMREG(ft, MIPSInst_FT(ir));
2305 
2306 			rv.d = (*handler.b) (fs, ft);
2307 			goto copcsr;
2308 dcopuop:
2309 			DPFROMREG(fs, MIPSInst_FS(ir));
2310 			rv.d = (*handler.u) (fs);
2311 			goto copcsr;
2312 
2313 		/*
2314 		 * unary conv ops
2315 		 */
2316 		case fcvts_op:
2317 			MIPS_FPU_EMU_INC_STATS(cvt_s_d);
2318 			DPFROMREG(fs, MIPSInst_FS(ir));
2319 			rv.s = ieee754sp_fdp(fs);
2320 			rfmt = s_fmt;
2321 			goto copcsr;
2322 
2323 		case fcvtd_op:
2324 			return SIGILL;	/* not defined */
2325 
2326 		case fcvtw_op:
2327 			MIPS_FPU_EMU_INC_STATS(cvt_w_d);
2328 			DPFROMREG(fs, MIPSInst_FS(ir));
2329 			rv.w = ieee754dp_tint(fs);	/* wrong */
2330 			rfmt = w_fmt;
2331 			goto copcsr;
2332 
2333 		case fround_op:
2334 		case ftrunc_op:
2335 		case fceil_op:
2336 		case ffloor_op:
2337 			if (!cpu_has_mips_2_3_4_5_r)
2338 				return SIGILL;
2339 
2340 			if (MIPSInst_FUNC(ir) == fceil_op)
2341 				MIPS_FPU_EMU_INC_STATS(ceil_w_d);
2342 			if (MIPSInst_FUNC(ir) == ffloor_op)
2343 				MIPS_FPU_EMU_INC_STATS(floor_w_d);
2344 			if (MIPSInst_FUNC(ir) == fround_op)
2345 				MIPS_FPU_EMU_INC_STATS(round_w_d);
2346 			if (MIPSInst_FUNC(ir) == ftrunc_op)
2347 				MIPS_FPU_EMU_INC_STATS(trunc_w_d);
2348 
2349 			oldrm = ieee754_csr.rm;
2350 			DPFROMREG(fs, MIPSInst_FS(ir));
2351 			ieee754_csr.rm = MIPSInst_FUNC(ir);
2352 			rv.w = ieee754dp_tint(fs);
2353 			ieee754_csr.rm = oldrm;
2354 			rfmt = w_fmt;
2355 			goto copcsr;
2356 
2357 		case fsel_op:
2358 			if (!cpu_has_mips_r6)
2359 				return SIGILL;
2360 
2361 			MIPS_FPU_EMU_INC_STATS(sel_d);
2362 			DPFROMREG(fd, MIPSInst_FD(ir));
2363 			if (fd.bits & 0x1)
2364 				DPFROMREG(rv.d, MIPSInst_FT(ir));
2365 			else
2366 				DPFROMREG(rv.d, MIPSInst_FS(ir));
2367 			break;
2368 
2369 		case fcvtl_op:
2370 			if (!cpu_has_mips_3_4_5_64_r2_r6)
2371 				return SIGILL;
2372 
2373 			MIPS_FPU_EMU_INC_STATS(cvt_l_d);
2374 			DPFROMREG(fs, MIPSInst_FS(ir));
2375 			rv.l = ieee754dp_tlong(fs);
2376 			rfmt = l_fmt;
2377 			goto copcsr;
2378 
2379 		case froundl_op:
2380 		case ftruncl_op:
2381 		case fceill_op:
2382 		case ffloorl_op:
2383 			if (!cpu_has_mips_3_4_5_64_r2_r6)
2384 				return SIGILL;
2385 
2386 			if (MIPSInst_FUNC(ir) == fceill_op)
2387 				MIPS_FPU_EMU_INC_STATS(ceil_l_d);
2388 			if (MIPSInst_FUNC(ir) == ffloorl_op)
2389 				MIPS_FPU_EMU_INC_STATS(floor_l_d);
2390 			if (MIPSInst_FUNC(ir) == froundl_op)
2391 				MIPS_FPU_EMU_INC_STATS(round_l_d);
2392 			if (MIPSInst_FUNC(ir) == ftruncl_op)
2393 				MIPS_FPU_EMU_INC_STATS(trunc_l_d);
2394 
2395 			oldrm = ieee754_csr.rm;
2396 			DPFROMREG(fs, MIPSInst_FS(ir));
2397 			ieee754_csr.rm = MIPSInst_FUNC(ir);
2398 			rv.l = ieee754dp_tlong(fs);
2399 			ieee754_csr.rm = oldrm;
2400 			rfmt = l_fmt;
2401 			goto copcsr;
2402 
2403 		default:
2404 			if (!NO_R6EMU && MIPSInst_FUNC(ir) >= fcmp_op) {
2405 				unsigned int cmpop;
2406 				union ieee754dp fs, ft;
2407 
2408 				cmpop = MIPSInst_FUNC(ir) - fcmp_op;
2409 				DPFROMREG(fs, MIPSInst_FS(ir));
2410 				DPFROMREG(ft, MIPSInst_FT(ir));
2411 				rv.w = ieee754dp_cmp(fs, ft,
2412 					cmptab[cmpop & 0x7], cmpop & 0x8);
2413 				rfmt = -1;
2414 				if ((cmpop & 0x8)
2415 					&&
2416 					ieee754_cxtest
2417 					(IEEE754_INVALID_OPERATION))
2418 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2419 				else
2420 					goto copcsr;
2421 
2422 			}
2423 			else {
2424 				return SIGILL;
2425 			}
2426 			break;
2427 		}
2428 		break;
2429 	}
2430 
2431 	case w_fmt: {
2432 		union ieee754dp fs;
2433 
2434 		switch (MIPSInst_FUNC(ir)) {
2435 		case fcvts_op:
2436 			/* convert word to single precision real */
2437 			MIPS_FPU_EMU_INC_STATS(cvt_s_w);
2438 			SPFROMREG(fs, MIPSInst_FS(ir));
2439 			rv.s = ieee754sp_fint(fs.bits);
2440 			rfmt = s_fmt;
2441 			goto copcsr;
2442 		case fcvtd_op:
2443 			/* convert word to double precision real */
2444 			MIPS_FPU_EMU_INC_STATS(cvt_d_w);
2445 			SPFROMREG(fs, MIPSInst_FS(ir));
2446 			rv.d = ieee754dp_fint(fs.bits);
2447 			rfmt = d_fmt;
2448 			goto copcsr;
2449 		default: {
2450 			/* Emulating the new CMP.condn.fmt R6 instruction */
2451 #define CMPOP_MASK	0x7
2452 #define SIGN_BIT	(0x1 << 3)
2453 #define PREDICATE_BIT	(0x1 << 4)
2454 
2455 			int cmpop = MIPSInst_FUNC(ir) & CMPOP_MASK;
2456 			int sig = MIPSInst_FUNC(ir) & SIGN_BIT;
2457 			union ieee754sp fs, ft;
2458 
2459 			/* This is an R6 only instruction */
2460 			if (!cpu_has_mips_r6 ||
2461 			    (MIPSInst_FUNC(ir) & 0x20))
2462 				return SIGILL;
2463 
2464 			if (!sig) {
2465 				if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
2466 					switch (cmpop) {
2467 					case 0:
2468 					MIPS_FPU_EMU_INC_STATS(cmp_af_s);
2469 					break;
2470 					case 1:
2471 					MIPS_FPU_EMU_INC_STATS(cmp_un_s);
2472 					break;
2473 					case 2:
2474 					MIPS_FPU_EMU_INC_STATS(cmp_eq_s);
2475 					break;
2476 					case 3:
2477 					MIPS_FPU_EMU_INC_STATS(cmp_ueq_s);
2478 					break;
2479 					case 4:
2480 					MIPS_FPU_EMU_INC_STATS(cmp_lt_s);
2481 					break;
2482 					case 5:
2483 					MIPS_FPU_EMU_INC_STATS(cmp_ult_s);
2484 					break;
2485 					case 6:
2486 					MIPS_FPU_EMU_INC_STATS(cmp_le_s);
2487 					break;
2488 					case 7:
2489 					MIPS_FPU_EMU_INC_STATS(cmp_ule_s);
2490 					break;
2491 					}
2492 				} else {
2493 					switch (cmpop) {
2494 					case 1:
2495 					MIPS_FPU_EMU_INC_STATS(cmp_or_s);
2496 					break;
2497 					case 2:
2498 					MIPS_FPU_EMU_INC_STATS(cmp_une_s);
2499 					break;
2500 					case 3:
2501 					MIPS_FPU_EMU_INC_STATS(cmp_ne_s);
2502 					break;
2503 					}
2504 				}
2505 			} else {
2506 				if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
2507 					switch (cmpop) {
2508 					case 0:
2509 					MIPS_FPU_EMU_INC_STATS(cmp_saf_s);
2510 					break;
2511 					case 1:
2512 					MIPS_FPU_EMU_INC_STATS(cmp_sun_s);
2513 					break;
2514 					case 2:
2515 					MIPS_FPU_EMU_INC_STATS(cmp_seq_s);
2516 					break;
2517 					case 3:
2518 					MIPS_FPU_EMU_INC_STATS(cmp_sueq_s);
2519 					break;
2520 					case 4:
2521 					MIPS_FPU_EMU_INC_STATS(cmp_slt_s);
2522 					break;
2523 					case 5:
2524 					MIPS_FPU_EMU_INC_STATS(cmp_sult_s);
2525 					break;
2526 					case 6:
2527 					MIPS_FPU_EMU_INC_STATS(cmp_sle_s);
2528 					break;
2529 					case 7:
2530 					MIPS_FPU_EMU_INC_STATS(cmp_sule_s);
2531 					break;
2532 					}
2533 				} else {
2534 					switch (cmpop) {
2535 					case 1:
2536 					MIPS_FPU_EMU_INC_STATS(cmp_sor_s);
2537 					break;
2538 					case 2:
2539 					MIPS_FPU_EMU_INC_STATS(cmp_sune_s);
2540 					break;
2541 					case 3:
2542 					MIPS_FPU_EMU_INC_STATS(cmp_sne_s);
2543 					break;
2544 					}
2545 				}
2546 			}
2547 
2548 			/* fmt is w_fmt for single precision so fix it */
2549 			rfmt = s_fmt;
2550 			/* default to false */
2551 			rv.w = 0;
2552 
2553 			/* CMP.condn.S */
2554 			SPFROMREG(fs, MIPSInst_FS(ir));
2555 			SPFROMREG(ft, MIPSInst_FT(ir));
2556 
2557 			/* positive predicates */
2558 			if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
2559 				if (ieee754sp_cmp(fs, ft, cmptab[cmpop],
2560 						  sig))
2561 				    rv.w = -1; /* true, all 1s */
2562 				if ((sig) &&
2563 				    ieee754_cxtest(IEEE754_INVALID_OPERATION))
2564 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2565 				else
2566 					goto copcsr;
2567 			} else {
2568 				/* negative predicates */
2569 				switch (cmpop) {
2570 				case 1:
2571 				case 2:
2572 				case 3:
2573 					if (ieee754sp_cmp(fs, ft,
2574 							  negative_cmptab[cmpop],
2575 							  sig))
2576 						rv.w = -1; /* true, all 1s */
2577 					if (sig &&
2578 					    ieee754_cxtest(IEEE754_INVALID_OPERATION))
2579 						rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2580 					else
2581 						goto copcsr;
2582 					break;
2583 				default:
2584 					/* Reserved R6 ops */
2585 					return SIGILL;
2586 				}
2587 			}
2588 			break;
2589 			}
2590 		}
2591 		break;
2592 	}
2593 
2594 	case l_fmt:
2595 
2596 		if (!cpu_has_mips_3_4_5_64_r2_r6)
2597 			return SIGILL;
2598 
2599 		DIFROMREG(bits, MIPSInst_FS(ir));
2600 
2601 		switch (MIPSInst_FUNC(ir)) {
2602 		case fcvts_op:
2603 			/* convert long to single precision real */
2604 			MIPS_FPU_EMU_INC_STATS(cvt_s_l);
2605 			rv.s = ieee754sp_flong(bits);
2606 			rfmt = s_fmt;
2607 			goto copcsr;
2608 		case fcvtd_op:
2609 			/* convert long to double precision real */
2610 			MIPS_FPU_EMU_INC_STATS(cvt_d_l);
2611 			rv.d = ieee754dp_flong(bits);
2612 			rfmt = d_fmt;
2613 			goto copcsr;
2614 		default: {
2615 			/* Emulating the new CMP.condn.fmt R6 instruction */
2616 			int cmpop = MIPSInst_FUNC(ir) & CMPOP_MASK;
2617 			int sig = MIPSInst_FUNC(ir) & SIGN_BIT;
2618 			union ieee754dp fs, ft;
2619 
2620 			if (!cpu_has_mips_r6 ||
2621 			    (MIPSInst_FUNC(ir) & 0x20))
2622 				return SIGILL;
2623 
2624 			if (!sig) {
2625 				if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
2626 					switch (cmpop) {
2627 					case 0:
2628 					MIPS_FPU_EMU_INC_STATS(cmp_af_d);
2629 					break;
2630 					case 1:
2631 					MIPS_FPU_EMU_INC_STATS(cmp_un_d);
2632 					break;
2633 					case 2:
2634 					MIPS_FPU_EMU_INC_STATS(cmp_eq_d);
2635 					break;
2636 					case 3:
2637 					MIPS_FPU_EMU_INC_STATS(cmp_ueq_d);
2638 					break;
2639 					case 4:
2640 					MIPS_FPU_EMU_INC_STATS(cmp_lt_d);
2641 					break;
2642 					case 5:
2643 					MIPS_FPU_EMU_INC_STATS(cmp_ult_d);
2644 					break;
2645 					case 6:
2646 					MIPS_FPU_EMU_INC_STATS(cmp_le_d);
2647 					break;
2648 					case 7:
2649 					MIPS_FPU_EMU_INC_STATS(cmp_ule_d);
2650 					break;
2651 					}
2652 				} else {
2653 					switch (cmpop) {
2654 					case 1:
2655 					MIPS_FPU_EMU_INC_STATS(cmp_or_d);
2656 					break;
2657 					case 2:
2658 					MIPS_FPU_EMU_INC_STATS(cmp_une_d);
2659 					break;
2660 					case 3:
2661 					MIPS_FPU_EMU_INC_STATS(cmp_ne_d);
2662 					break;
2663 					}
2664 				}
2665 			} else {
2666 				if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
2667 					switch (cmpop) {
2668 					case 0:
2669 					MIPS_FPU_EMU_INC_STATS(cmp_saf_d);
2670 					break;
2671 					case 1:
2672 					MIPS_FPU_EMU_INC_STATS(cmp_sun_d);
2673 					break;
2674 					case 2:
2675 					MIPS_FPU_EMU_INC_STATS(cmp_seq_d);
2676 					break;
2677 					case 3:
2678 					MIPS_FPU_EMU_INC_STATS(cmp_sueq_d);
2679 					break;
2680 					case 4:
2681 					MIPS_FPU_EMU_INC_STATS(cmp_slt_d);
2682 					break;
2683 					case 5:
2684 					MIPS_FPU_EMU_INC_STATS(cmp_sult_d);
2685 					break;
2686 					case 6:
2687 					MIPS_FPU_EMU_INC_STATS(cmp_sle_d);
2688 					break;
2689 					case 7:
2690 					MIPS_FPU_EMU_INC_STATS(cmp_sule_d);
2691 					break;
2692 					}
2693 				} else {
2694 					switch (cmpop) {
2695 					case 1:
2696 					MIPS_FPU_EMU_INC_STATS(cmp_sor_d);
2697 					break;
2698 					case 2:
2699 					MIPS_FPU_EMU_INC_STATS(cmp_sune_d);
2700 					break;
2701 					case 3:
2702 					MIPS_FPU_EMU_INC_STATS(cmp_sne_d);
2703 					break;
2704 					}
2705 				}
2706 			}
2707 
2708 			/* fmt is l_fmt for double precision so fix it */
2709 			rfmt = d_fmt;
2710 			/* default to false */
2711 			rv.l = 0;
2712 
2713 			/* CMP.condn.D */
2714 			DPFROMREG(fs, MIPSInst_FS(ir));
2715 			DPFROMREG(ft, MIPSInst_FT(ir));
2716 
2717 			/* positive predicates */
2718 			if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
2719 				if (ieee754dp_cmp(fs, ft,
2720 						  cmptab[cmpop], sig))
2721 				    rv.l = -1LL; /* true, all 1s */
2722 				if (sig &&
2723 				    ieee754_cxtest(IEEE754_INVALID_OPERATION))
2724 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2725 				else
2726 					goto copcsr;
2727 			} else {
2728 				/* negative predicates */
2729 				switch (cmpop) {
2730 				case 1:
2731 				case 2:
2732 				case 3:
2733 					if (ieee754dp_cmp(fs, ft,
2734 							  negative_cmptab[cmpop],
2735 							  sig))
2736 						rv.l = -1LL; /* true, all 1s */
2737 					if (sig &&
2738 					    ieee754_cxtest(IEEE754_INVALID_OPERATION))
2739 						rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2740 					else
2741 						goto copcsr;
2742 					break;
2743 				default:
2744 					/* Reserved R6 ops */
2745 					return SIGILL;
2746 				}
2747 			}
2748 			break;
2749 			}
2750 		}
2751 		break;
2752 
2753 	default:
2754 		return SIGILL;
2755 	}
2756 
2757 	/*
2758 	 * Update the fpu CSR register for this operation.
2759 	 * If an exception is required, generate a tidy SIGFPE exception,
2760 	 * without updating the result register.
2761 	 * Note: cause exception bits do not accumulate, they are rewritten
2762 	 * for each op; only the flag/sticky bits accumulate.
2763 	 */
2764 	ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
2765 	if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
2766 		/*printk ("SIGFPE: FPU csr = %08x\n",ctx->fcr31); */
2767 		return SIGFPE;
2768 	}
2769 
2770 	/*
2771 	 * Now we can safely write the result back to the register file.
2772 	 */
2773 	switch (rfmt) {
2774 	case -1:
2775 
2776 		if (cpu_has_mips_4_5_r)
2777 			cbit = fpucondbit[MIPSInst_FD(ir) >> 2];
2778 		else
2779 			cbit = FPU_CSR_COND;
2780 		if (rv.w)
2781 			ctx->fcr31 |= cbit;
2782 		else
2783 			ctx->fcr31 &= ~cbit;
2784 		break;
2785 
2786 	case d_fmt:
2787 		DPTOREG(rv.d, MIPSInst_FD(ir));
2788 		break;
2789 	case s_fmt:
2790 		SPTOREG(rv.s, MIPSInst_FD(ir));
2791 		break;
2792 	case w_fmt:
2793 		SITOREG(rv.w, MIPSInst_FD(ir));
2794 		break;
2795 	case l_fmt:
2796 		if (!cpu_has_mips_3_4_5_64_r2_r6)
2797 			return SIGILL;
2798 
2799 		DITOREG(rv.l, MIPSInst_FD(ir));
2800 		break;
2801 	default:
2802 		return SIGILL;
2803 	}
2804 
2805 	return 0;
2806 }
2807 
2808 /*
2809  * Emulate FPU instructions.
2810  *
2811  * If we use FPU hardware, then we have been typically called to handle
2812  * an unimplemented operation, such as where an operand is a NaN or
2813  * denormalized.  In that case exit the emulation loop after a single
2814  * iteration so as to let hardware execute any subsequent instructions.
2815  *
2816  * If we have no FPU hardware or it has been disabled, then continue
2817  * emulating floating-point instructions until one of these conditions
2818  * has occurred:
2819  *
2820  * - a non-FPU instruction has been encountered,
2821  *
2822  * - an attempt to emulate has ended with a signal,
2823  *
2824  * - the ISA mode has been switched.
2825  *
2826  * We need to terminate the emulation loop if we got switched to the
2827  * MIPS16 mode, whether supported or not, so that we do not attempt
2828  * to emulate a MIPS16 instruction as a regular MIPS FPU instruction.
2829  * Similarly if we got switched to the microMIPS mode and only the
2830  * regular MIPS mode is supported, so that we do not attempt to emulate
2831  * a microMIPS instruction as a regular MIPS FPU instruction.  Or if
2832  * we got switched to the regular MIPS mode and only the microMIPS mode
2833  * is supported, so that we do not attempt to emulate a regular MIPS
2834  * instruction that should cause an Address Error exception instead.
2835  * For simplicity we always terminate upon an ISA mode switch.
2836  */
2837 int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
2838 	int has_fpu, void __user **fault_addr)
2839 {
2840 	unsigned long oldepc, prevepc;
2841 	struct mm_decoded_insn dec_insn;
2842 	u16 instr[4];
2843 	u16 *instr_ptr;
2844 	int sig = 0;
2845 
2846 	/*
2847 	 * Initialize context if it hasn't been used already, otherwise ensure
2848 	 * it has been saved to struct thread_struct.
2849 	 */
2850 	if (!init_fp_ctx(current))
2851 		lose_fpu(1);
2852 
2853 	oldepc = xcp->cp0_epc;
2854 	do {
2855 		prevepc = xcp->cp0_epc;
2856 
2857 		if (get_isa16_mode(prevepc) && cpu_has_mmips) {
2858 			/*
2859 			 * Get next 2 microMIPS instructions and convert them
2860 			 * into 32-bit instructions.
2861 			 */
2862 			if ((get_user(instr[0], (u16 __user *)msk_isa16_mode(xcp->cp0_epc))) ||
2863 			    (get_user(instr[1], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 2))) ||
2864 			    (get_user(instr[2], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 4))) ||
2865 			    (get_user(instr[3], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 6)))) {
2866 				MIPS_FPU_EMU_INC_STATS(errors);
2867 				return SIGBUS;
2868 			}
2869 			instr_ptr = instr;
2870 
2871 			/* Get first instruction. */
2872 			if (mm_insn_16bit(*instr_ptr)) {
2873 				/* Duplicate the half-word. */
2874 				dec_insn.insn = (*instr_ptr << 16) |
2875 					(*instr_ptr);
2876 				/* 16-bit instruction. */
2877 				dec_insn.pc_inc = 2;
2878 				instr_ptr += 1;
2879 			} else {
2880 				dec_insn.insn = (*instr_ptr << 16) |
2881 					*(instr_ptr+1);
2882 				/* 32-bit instruction. */
2883 				dec_insn.pc_inc = 4;
2884 				instr_ptr += 2;
2885 			}
2886 			/* Get second instruction. */
2887 			if (mm_insn_16bit(*instr_ptr)) {
2888 				/* Duplicate the half-word. */
2889 				dec_insn.next_insn = (*instr_ptr << 16) |
2890 					(*instr_ptr);
2891 				/* 16-bit instruction. */
2892 				dec_insn.next_pc_inc = 2;
2893 			} else {
2894 				dec_insn.next_insn = (*instr_ptr << 16) |
2895 					*(instr_ptr+1);
2896 				/* 32-bit instruction. */
2897 				dec_insn.next_pc_inc = 4;
2898 			}
2899 			dec_insn.micro_mips_mode = 1;
2900 		} else {
2901 			if ((get_user(dec_insn.insn,
2902 			    (mips_instruction __user *) xcp->cp0_epc)) ||
2903 			    (get_user(dec_insn.next_insn,
2904 			    (mips_instruction __user *)(xcp->cp0_epc+4)))) {
2905 				MIPS_FPU_EMU_INC_STATS(errors);
2906 				return SIGBUS;
2907 			}
2908 			dec_insn.pc_inc = 4;
2909 			dec_insn.next_pc_inc = 4;
2910 			dec_insn.micro_mips_mode = 0;
2911 		}
2912 
2913 		if ((dec_insn.insn == 0) ||
2914 		   ((dec_insn.pc_inc == 2) &&
2915 		   ((dec_insn.insn & 0xffff) == MM_NOP16)))
2916 			xcp->cp0_epc += dec_insn.pc_inc;	/* Skip NOPs */
2917 		else {
2918 			/*
2919 			 * The 'ieee754_csr' is an alias of ctx->fcr31.
2920 			 * No need to copy ctx->fcr31 to ieee754_csr.
2921 			 */
2922 			sig = cop1Emulate(xcp, ctx, dec_insn, fault_addr);
2923 		}
2924 
2925 		if (has_fpu)
2926 			break;
2927 		if (sig)
2928 			break;
2929 		/*
2930 		 * We have to check for the ISA bit explicitly here,
2931 		 * because `get_isa16_mode' may return 0 if support
2932 		 * for code compression has been globally disabled,
2933 		 * or otherwise we may produce the wrong signal or
2934 		 * even proceed successfully where we must not.
2935 		 */
2936 		if ((xcp->cp0_epc ^ prevepc) & 0x1)
2937 			break;
2938 
2939 		cond_resched();
2940 	} while (xcp->cp0_epc > prevepc);
2941 
2942 	/* SIGILL indicates a non-fpu instruction */
2943 	if (sig == SIGILL && xcp->cp0_epc != oldepc)
2944 		/* but if EPC has advanced, then ignore it */
2945 		sig = 0;
2946 
2947 	return sig;
2948 }
2949