xref: /openbmc/linux/arch/mips/math-emu/cp1emu.c (revision f35e839a)
1 /*
2  * cp1emu.c: a MIPS coprocessor 1 (fpu) instruction emulator
3  *
4  * MIPS floating point support
5  * Copyright (C) 1994-2000 Algorithmics Ltd.
6  *
7  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
8  * Copyright (C) 2000  MIPS Technologies, Inc.
9  *
10  *  This program is free software; you can distribute it and/or modify it
11  *  under the terms of the GNU General Public License (Version 2) as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope it will be useful, but WITHOUT
15  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17  *  for more details.
18  *
19  *  You should have received a copy of the GNU General Public License along
20  *  with this program; if not, write to the Free Software Foundation, Inc.,
21  *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
22  *
23  * A complete emulator for MIPS coprocessor 1 instructions.  This is
24  * required for #float(switch) or #float(trap), where it catches all
25  * COP1 instructions via the "CoProcessor Unusable" exception.
26  *
27  * More surprisingly it is also required for #float(ieee), to help out
28  * the hardware fpu at the boundaries of the IEEE-754 representation
29  * (denormalised values, infinities, underflow, etc).  It is made
30  * quite nasty because emulation of some non-COP1 instructions is
31  * required, e.g. in branch delay slots.
32  *
33  * Note if you know that you won't have an fpu, then you'll get much
34  * better performance by compiling with -msoft-float!
35  */
36 #include <linux/sched.h>
37 #include <linux/module.h>
38 #include <linux/debugfs.h>
39 #include <linux/perf_event.h>
40 
41 #include <asm/inst.h>
42 #include <asm/bootinfo.h>
43 #include <asm/processor.h>
44 #include <asm/ptrace.h>
45 #include <asm/signal.h>
46 #include <asm/mipsregs.h>
47 #include <asm/fpu_emulator.h>
48 #include <asm/fpu.h>
49 #include <asm/uaccess.h>
50 #include <asm/branch.h>
51 
52 #include "ieee754.h"
53 
54 /* Strap kernel emulator for full MIPS IV emulation */
55 
56 #ifdef __mips
57 #undef __mips
58 #endif
59 #define __mips 4
60 
61 /* Function which emulates a floating point instruction. */
62 
63 static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *,
64 	mips_instruction);
65 
66 #if __mips >= 4 && __mips != 32
67 static int fpux_emu(struct pt_regs *,
68 	struct mips_fpu_struct *, mips_instruction, void *__user *);
69 #endif
70 
71 /* Further private data for which no space exists in mips_fpu_struct */
72 
73 #ifdef CONFIG_DEBUG_FS
74 DEFINE_PER_CPU(struct mips_fpu_emulator_stats, fpuemustats);
75 #endif
76 
77 /* Control registers */
78 
79 #define FPCREG_RID	0	/* $0  = revision id */
80 #define FPCREG_CSR	31	/* $31 = csr */
81 
82 /* Determine rounding mode from the RM bits of the FCSR */
83 #define modeindex(v) ((v) & FPU_CSR_RM)
84 
85 /* microMIPS bitfields */
86 #define MM_POOL32A_MINOR_MASK	0x3f
87 #define MM_POOL32A_MINOR_SHIFT	0x6
88 #define MM_MIPS32_COND_FC	0x30
89 
90 /* Convert Mips rounding mode (0..3) to IEEE library modes. */
91 static const unsigned char ieee_rm[4] = {
92 	[FPU_CSR_RN] = IEEE754_RN,
93 	[FPU_CSR_RZ] = IEEE754_RZ,
94 	[FPU_CSR_RU] = IEEE754_RU,
95 	[FPU_CSR_RD] = IEEE754_RD,
96 };
97 /* Convert IEEE library modes to Mips rounding mode (0..3). */
98 static const unsigned char mips_rm[4] = {
99 	[IEEE754_RN] = FPU_CSR_RN,
100 	[IEEE754_RZ] = FPU_CSR_RZ,
101 	[IEEE754_RD] = FPU_CSR_RD,
102 	[IEEE754_RU] = FPU_CSR_RU,
103 };
104 
105 #if __mips >= 4
106 /* convert condition code register number to csr bit */
107 static const unsigned int fpucondbit[8] = {
108 	FPU_CSR_COND0,
109 	FPU_CSR_COND1,
110 	FPU_CSR_COND2,
111 	FPU_CSR_COND3,
112 	FPU_CSR_COND4,
113 	FPU_CSR_COND5,
114 	FPU_CSR_COND6,
115 	FPU_CSR_COND7
116 };
117 #endif
118 
119 /* (microMIPS) Convert 16-bit register encoding to 32-bit register encoding. */
120 static const unsigned int reg16to32map[8] = {16, 17, 2, 3, 4, 5, 6, 7};
121 
122 /* (microMIPS) Convert certain microMIPS instructions to MIPS32 format. */
123 static const int sd_format[] = {16, 17, 0, 0, 0, 0, 0, 0};
124 static const int sdps_format[] = {16, 17, 22, 0, 0, 0, 0, 0};
125 static const int dwl_format[] = {17, 20, 21, 0, 0, 0, 0, 0};
126 static const int swl_format[] = {16, 20, 21, 0, 0, 0, 0, 0};
127 
128 /*
129  * This functions translates a 32-bit microMIPS instruction
130  * into a 32-bit MIPS32 instruction. Returns 0 on success
131  * and SIGILL otherwise.
132  */
133 static int microMIPS32_to_MIPS32(union mips_instruction *insn_ptr)
134 {
135 	union mips_instruction insn = *insn_ptr;
136 	union mips_instruction mips32_insn = insn;
137 	int func, fmt, op;
138 
139 	switch (insn.mm_i_format.opcode) {
140 	case mm_ldc132_op:
141 		mips32_insn.mm_i_format.opcode = ldc1_op;
142 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
143 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
144 		break;
145 	case mm_lwc132_op:
146 		mips32_insn.mm_i_format.opcode = lwc1_op;
147 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
148 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
149 		break;
150 	case mm_sdc132_op:
151 		mips32_insn.mm_i_format.opcode = sdc1_op;
152 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
153 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
154 		break;
155 	case mm_swc132_op:
156 		mips32_insn.mm_i_format.opcode = swc1_op;
157 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
158 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
159 		break;
160 	case mm_pool32i_op:
161 		/* NOTE: offset is << by 1 if in microMIPS mode. */
162 		if ((insn.mm_i_format.rt == mm_bc1f_op) ||
163 		    (insn.mm_i_format.rt == mm_bc1t_op)) {
164 			mips32_insn.fb_format.opcode = cop1_op;
165 			mips32_insn.fb_format.bc = bc_op;
166 			mips32_insn.fb_format.flag =
167 				(insn.mm_i_format.rt == mm_bc1t_op) ? 1 : 0;
168 		} else
169 			return SIGILL;
170 		break;
171 	case mm_pool32f_op:
172 		switch (insn.mm_fp0_format.func) {
173 		case mm_32f_01_op:
174 		case mm_32f_11_op:
175 		case mm_32f_02_op:
176 		case mm_32f_12_op:
177 		case mm_32f_41_op:
178 		case mm_32f_51_op:
179 		case mm_32f_42_op:
180 		case mm_32f_52_op:
181 			op = insn.mm_fp0_format.func;
182 			if (op == mm_32f_01_op)
183 				func = madd_s_op;
184 			else if (op == mm_32f_11_op)
185 				func = madd_d_op;
186 			else if (op == mm_32f_02_op)
187 				func = nmadd_s_op;
188 			else if (op == mm_32f_12_op)
189 				func = nmadd_d_op;
190 			else if (op == mm_32f_41_op)
191 				func = msub_s_op;
192 			else if (op == mm_32f_51_op)
193 				func = msub_d_op;
194 			else if (op == mm_32f_42_op)
195 				func = nmsub_s_op;
196 			else
197 				func = nmsub_d_op;
198 			mips32_insn.fp6_format.opcode = cop1x_op;
199 			mips32_insn.fp6_format.fr = insn.mm_fp6_format.fr;
200 			mips32_insn.fp6_format.ft = insn.mm_fp6_format.ft;
201 			mips32_insn.fp6_format.fs = insn.mm_fp6_format.fs;
202 			mips32_insn.fp6_format.fd = insn.mm_fp6_format.fd;
203 			mips32_insn.fp6_format.func = func;
204 			break;
205 		case mm_32f_10_op:
206 			func = -1;	/* Invalid */
207 			op = insn.mm_fp5_format.op & 0x7;
208 			if (op == mm_ldxc1_op)
209 				func = ldxc1_op;
210 			else if (op == mm_sdxc1_op)
211 				func = sdxc1_op;
212 			else if (op == mm_lwxc1_op)
213 				func = lwxc1_op;
214 			else if (op == mm_swxc1_op)
215 				func = swxc1_op;
216 
217 			if (func != -1) {
218 				mips32_insn.r_format.opcode = cop1x_op;
219 				mips32_insn.r_format.rs =
220 					insn.mm_fp5_format.base;
221 				mips32_insn.r_format.rt =
222 					insn.mm_fp5_format.index;
223 				mips32_insn.r_format.rd = 0;
224 				mips32_insn.r_format.re = insn.mm_fp5_format.fd;
225 				mips32_insn.r_format.func = func;
226 			} else
227 				return SIGILL;
228 			break;
229 		case mm_32f_40_op:
230 			op = -1;	/* Invalid */
231 			if (insn.mm_fp2_format.op == mm_fmovt_op)
232 				op = 1;
233 			else if (insn.mm_fp2_format.op == mm_fmovf_op)
234 				op = 0;
235 			if (op != -1) {
236 				mips32_insn.fp0_format.opcode = cop1_op;
237 				mips32_insn.fp0_format.fmt =
238 					sdps_format[insn.mm_fp2_format.fmt];
239 				mips32_insn.fp0_format.ft =
240 					(insn.mm_fp2_format.cc<<2) + op;
241 				mips32_insn.fp0_format.fs =
242 					insn.mm_fp2_format.fs;
243 				mips32_insn.fp0_format.fd =
244 					insn.mm_fp2_format.fd;
245 				mips32_insn.fp0_format.func = fmovc_op;
246 			} else
247 				return SIGILL;
248 			break;
249 		case mm_32f_60_op:
250 			func = -1;	/* Invalid */
251 			if (insn.mm_fp0_format.op == mm_fadd_op)
252 				func = fadd_op;
253 			else if (insn.mm_fp0_format.op == mm_fsub_op)
254 				func = fsub_op;
255 			else if (insn.mm_fp0_format.op == mm_fmul_op)
256 				func = fmul_op;
257 			else if (insn.mm_fp0_format.op == mm_fdiv_op)
258 				func = fdiv_op;
259 			if (func != -1) {
260 				mips32_insn.fp0_format.opcode = cop1_op;
261 				mips32_insn.fp0_format.fmt =
262 					sdps_format[insn.mm_fp0_format.fmt];
263 				mips32_insn.fp0_format.ft =
264 					insn.mm_fp0_format.ft;
265 				mips32_insn.fp0_format.fs =
266 					insn.mm_fp0_format.fs;
267 				mips32_insn.fp0_format.fd =
268 					insn.mm_fp0_format.fd;
269 				mips32_insn.fp0_format.func = func;
270 			} else
271 				return SIGILL;
272 			break;
273 		case mm_32f_70_op:
274 			func = -1;	/* Invalid */
275 			if (insn.mm_fp0_format.op == mm_fmovn_op)
276 				func = fmovn_op;
277 			else if (insn.mm_fp0_format.op == mm_fmovz_op)
278 				func = fmovz_op;
279 			if (func != -1) {
280 				mips32_insn.fp0_format.opcode = cop1_op;
281 				mips32_insn.fp0_format.fmt =
282 					sdps_format[insn.mm_fp0_format.fmt];
283 				mips32_insn.fp0_format.ft =
284 					insn.mm_fp0_format.ft;
285 				mips32_insn.fp0_format.fs =
286 					insn.mm_fp0_format.fs;
287 				mips32_insn.fp0_format.fd =
288 					insn.mm_fp0_format.fd;
289 				mips32_insn.fp0_format.func = func;
290 			} else
291 				return SIGILL;
292 			break;
293 		case mm_32f_73_op:    /* POOL32FXF */
294 			switch (insn.mm_fp1_format.op) {
295 			case mm_movf0_op:
296 			case mm_movf1_op:
297 			case mm_movt0_op:
298 			case mm_movt1_op:
299 				if ((insn.mm_fp1_format.op & 0x7f) ==
300 				    mm_movf0_op)
301 					op = 0;
302 				else
303 					op = 1;
304 				mips32_insn.r_format.opcode = spec_op;
305 				mips32_insn.r_format.rs = insn.mm_fp4_format.fs;
306 				mips32_insn.r_format.rt =
307 					(insn.mm_fp4_format.cc << 2) + op;
308 				mips32_insn.r_format.rd = insn.mm_fp4_format.rt;
309 				mips32_insn.r_format.re = 0;
310 				mips32_insn.r_format.func = movc_op;
311 				break;
312 			case mm_fcvtd0_op:
313 			case mm_fcvtd1_op:
314 			case mm_fcvts0_op:
315 			case mm_fcvts1_op:
316 				if ((insn.mm_fp1_format.op & 0x7f) ==
317 				    mm_fcvtd0_op) {
318 					func = fcvtd_op;
319 					fmt = swl_format[insn.mm_fp3_format.fmt];
320 				} else {
321 					func = fcvts_op;
322 					fmt = dwl_format[insn.mm_fp3_format.fmt];
323 				}
324 				mips32_insn.fp0_format.opcode = cop1_op;
325 				mips32_insn.fp0_format.fmt = fmt;
326 				mips32_insn.fp0_format.ft = 0;
327 				mips32_insn.fp0_format.fs =
328 					insn.mm_fp3_format.fs;
329 				mips32_insn.fp0_format.fd =
330 					insn.mm_fp3_format.rt;
331 				mips32_insn.fp0_format.func = func;
332 				break;
333 			case mm_fmov0_op:
334 			case mm_fmov1_op:
335 			case mm_fabs0_op:
336 			case mm_fabs1_op:
337 			case mm_fneg0_op:
338 			case mm_fneg1_op:
339 				if ((insn.mm_fp1_format.op & 0x7f) ==
340 				    mm_fmov0_op)
341 					func = fmov_op;
342 				else if ((insn.mm_fp1_format.op & 0x7f) ==
343 					 mm_fabs0_op)
344 					func = fabs_op;
345 				else
346 					func = fneg_op;
347 				mips32_insn.fp0_format.opcode = cop1_op;
348 				mips32_insn.fp0_format.fmt =
349 					sdps_format[insn.mm_fp3_format.fmt];
350 				mips32_insn.fp0_format.ft = 0;
351 				mips32_insn.fp0_format.fs =
352 					insn.mm_fp3_format.fs;
353 				mips32_insn.fp0_format.fd =
354 					insn.mm_fp3_format.rt;
355 				mips32_insn.fp0_format.func = func;
356 				break;
357 			case mm_ffloorl_op:
358 			case mm_ffloorw_op:
359 			case mm_fceill_op:
360 			case mm_fceilw_op:
361 			case mm_ftruncl_op:
362 			case mm_ftruncw_op:
363 			case mm_froundl_op:
364 			case mm_froundw_op:
365 			case mm_fcvtl_op:
366 			case mm_fcvtw_op:
367 				if (insn.mm_fp1_format.op == mm_ffloorl_op)
368 					func = ffloorl_op;
369 				else if (insn.mm_fp1_format.op == mm_ffloorw_op)
370 					func = ffloor_op;
371 				else if (insn.mm_fp1_format.op == mm_fceill_op)
372 					func = fceill_op;
373 				else if (insn.mm_fp1_format.op == mm_fceilw_op)
374 					func = fceil_op;
375 				else if (insn.mm_fp1_format.op == mm_ftruncl_op)
376 					func = ftruncl_op;
377 				else if (insn.mm_fp1_format.op == mm_ftruncw_op)
378 					func = ftrunc_op;
379 				else if (insn.mm_fp1_format.op == mm_froundl_op)
380 					func = froundl_op;
381 				else if (insn.mm_fp1_format.op == mm_froundw_op)
382 					func = fround_op;
383 				else if (insn.mm_fp1_format.op == mm_fcvtl_op)
384 					func = fcvtl_op;
385 				else
386 					func = fcvtw_op;
387 				mips32_insn.fp0_format.opcode = cop1_op;
388 				mips32_insn.fp0_format.fmt =
389 					sd_format[insn.mm_fp1_format.fmt];
390 				mips32_insn.fp0_format.ft = 0;
391 				mips32_insn.fp0_format.fs =
392 					insn.mm_fp1_format.fs;
393 				mips32_insn.fp0_format.fd =
394 					insn.mm_fp1_format.rt;
395 				mips32_insn.fp0_format.func = func;
396 				break;
397 			case mm_frsqrt_op:
398 			case mm_fsqrt_op:
399 			case mm_frecip_op:
400 				if (insn.mm_fp1_format.op == mm_frsqrt_op)
401 					func = frsqrt_op;
402 				else if (insn.mm_fp1_format.op == mm_fsqrt_op)
403 					func = fsqrt_op;
404 				else
405 					func = frecip_op;
406 				mips32_insn.fp0_format.opcode = cop1_op;
407 				mips32_insn.fp0_format.fmt =
408 					sdps_format[insn.mm_fp1_format.fmt];
409 				mips32_insn.fp0_format.ft = 0;
410 				mips32_insn.fp0_format.fs =
411 					insn.mm_fp1_format.fs;
412 				mips32_insn.fp0_format.fd =
413 					insn.mm_fp1_format.rt;
414 				mips32_insn.fp0_format.func = func;
415 				break;
416 			case mm_mfc1_op:
417 			case mm_mtc1_op:
418 			case mm_cfc1_op:
419 			case mm_ctc1_op:
420 				if (insn.mm_fp1_format.op == mm_mfc1_op)
421 					op = mfc_op;
422 				else if (insn.mm_fp1_format.op == mm_mtc1_op)
423 					op = mtc_op;
424 				else if (insn.mm_fp1_format.op == mm_cfc1_op)
425 					op = cfc_op;
426 				else
427 					op = ctc_op;
428 				mips32_insn.fp1_format.opcode = cop1_op;
429 				mips32_insn.fp1_format.op = op;
430 				mips32_insn.fp1_format.rt =
431 					insn.mm_fp1_format.rt;
432 				mips32_insn.fp1_format.fs =
433 					insn.mm_fp1_format.fs;
434 				mips32_insn.fp1_format.fd = 0;
435 				mips32_insn.fp1_format.func = 0;
436 				break;
437 			default:
438 				return SIGILL;
439 				break;
440 			}
441 			break;
442 		case mm_32f_74_op:	/* c.cond.fmt */
443 			mips32_insn.fp0_format.opcode = cop1_op;
444 			mips32_insn.fp0_format.fmt =
445 				sdps_format[insn.mm_fp4_format.fmt];
446 			mips32_insn.fp0_format.ft = insn.mm_fp4_format.rt;
447 			mips32_insn.fp0_format.fs = insn.mm_fp4_format.fs;
448 			mips32_insn.fp0_format.fd = insn.mm_fp4_format.cc << 2;
449 			mips32_insn.fp0_format.func =
450 				insn.mm_fp4_format.cond | MM_MIPS32_COND_FC;
451 			break;
452 		default:
453 			return SIGILL;
454 			break;
455 		}
456 		break;
457 	default:
458 		return SIGILL;
459 		break;
460 	}
461 
462 	*insn_ptr = mips32_insn;
463 	return 0;
464 }
465 
466 int mm_isBranchInstr(struct pt_regs *regs, struct mm_decoded_insn dec_insn,
467 		     unsigned long *contpc)
468 {
469 	union mips_instruction insn = (union mips_instruction)dec_insn.insn;
470 	int bc_false = 0;
471 	unsigned int fcr31;
472 	unsigned int bit;
473 
474 	switch (insn.mm_i_format.opcode) {
475 	case mm_pool32a_op:
476 		if ((insn.mm_i_format.simmediate & MM_POOL32A_MINOR_MASK) ==
477 		    mm_pool32axf_op) {
478 			switch (insn.mm_i_format.simmediate >>
479 				MM_POOL32A_MINOR_SHIFT) {
480 			case mm_jalr_op:
481 			case mm_jalrhb_op:
482 			case mm_jalrs_op:
483 			case mm_jalrshb_op:
484 				if (insn.mm_i_format.rt != 0)	/* Not mm_jr */
485 					regs->regs[insn.mm_i_format.rt] =
486 						regs->cp0_epc +
487 						dec_insn.pc_inc +
488 						dec_insn.next_pc_inc;
489 				*contpc = regs->regs[insn.mm_i_format.rs];
490 				return 1;
491 				break;
492 			}
493 		}
494 		break;
495 	case mm_pool32i_op:
496 		switch (insn.mm_i_format.rt) {
497 		case mm_bltzals_op:
498 		case mm_bltzal_op:
499 			regs->regs[31] = regs->cp0_epc +
500 				dec_insn.pc_inc +
501 				dec_insn.next_pc_inc;
502 			/* Fall through */
503 		case mm_bltz_op:
504 			if ((long)regs->regs[insn.mm_i_format.rs] < 0)
505 				*contpc = regs->cp0_epc +
506 					dec_insn.pc_inc +
507 					(insn.mm_i_format.simmediate << 1);
508 			else
509 				*contpc = regs->cp0_epc +
510 					dec_insn.pc_inc +
511 					dec_insn.next_pc_inc;
512 			return 1;
513 			break;
514 		case mm_bgezals_op:
515 		case mm_bgezal_op:
516 			regs->regs[31] = regs->cp0_epc +
517 					dec_insn.pc_inc +
518 					dec_insn.next_pc_inc;
519 			/* Fall through */
520 		case mm_bgez_op:
521 			if ((long)regs->regs[insn.mm_i_format.rs] >= 0)
522 				*contpc = regs->cp0_epc +
523 					dec_insn.pc_inc +
524 					(insn.mm_i_format.simmediate << 1);
525 			else
526 				*contpc = regs->cp0_epc +
527 					dec_insn.pc_inc +
528 					dec_insn.next_pc_inc;
529 			return 1;
530 			break;
531 		case mm_blez_op:
532 			if ((long)regs->regs[insn.mm_i_format.rs] <= 0)
533 				*contpc = regs->cp0_epc +
534 					dec_insn.pc_inc +
535 					(insn.mm_i_format.simmediate << 1);
536 			else
537 				*contpc = regs->cp0_epc +
538 					dec_insn.pc_inc +
539 					dec_insn.next_pc_inc;
540 			return 1;
541 			break;
542 		case mm_bgtz_op:
543 			if ((long)regs->regs[insn.mm_i_format.rs] <= 0)
544 				*contpc = regs->cp0_epc +
545 					dec_insn.pc_inc +
546 					(insn.mm_i_format.simmediate << 1);
547 			else
548 				*contpc = regs->cp0_epc +
549 					dec_insn.pc_inc +
550 					dec_insn.next_pc_inc;
551 			return 1;
552 			break;
553 		case mm_bc2f_op:
554 		case mm_bc1f_op:
555 			bc_false = 1;
556 			/* Fall through */
557 		case mm_bc2t_op:
558 		case mm_bc1t_op:
559 			preempt_disable();
560 			if (is_fpu_owner())
561 				asm volatile("cfc1\t%0,$31" : "=r" (fcr31));
562 			else
563 				fcr31 = current->thread.fpu.fcr31;
564 			preempt_enable();
565 
566 			if (bc_false)
567 				fcr31 = ~fcr31;
568 
569 			bit = (insn.mm_i_format.rs >> 2);
570 			bit += (bit != 0);
571 			bit += 23;
572 			if (fcr31 & (1 << bit))
573 				*contpc = regs->cp0_epc +
574 					dec_insn.pc_inc +
575 					(insn.mm_i_format.simmediate << 1);
576 			else
577 				*contpc = regs->cp0_epc +
578 					dec_insn.pc_inc + dec_insn.next_pc_inc;
579 			return 1;
580 			break;
581 		}
582 		break;
583 	case mm_pool16c_op:
584 		switch (insn.mm_i_format.rt) {
585 		case mm_jalr16_op:
586 		case mm_jalrs16_op:
587 			regs->regs[31] = regs->cp0_epc +
588 				dec_insn.pc_inc + dec_insn.next_pc_inc;
589 			/* Fall through */
590 		case mm_jr16_op:
591 			*contpc = regs->regs[insn.mm_i_format.rs];
592 			return 1;
593 			break;
594 		}
595 		break;
596 	case mm_beqz16_op:
597 		if ((long)regs->regs[reg16to32map[insn.mm_b1_format.rs]] == 0)
598 			*contpc = regs->cp0_epc +
599 				dec_insn.pc_inc +
600 				(insn.mm_b1_format.simmediate << 1);
601 		else
602 			*contpc = regs->cp0_epc +
603 				dec_insn.pc_inc + dec_insn.next_pc_inc;
604 		return 1;
605 		break;
606 	case mm_bnez16_op:
607 		if ((long)regs->regs[reg16to32map[insn.mm_b1_format.rs]] != 0)
608 			*contpc = regs->cp0_epc +
609 				dec_insn.pc_inc +
610 				(insn.mm_b1_format.simmediate << 1);
611 		else
612 			*contpc = regs->cp0_epc +
613 				dec_insn.pc_inc + dec_insn.next_pc_inc;
614 		return 1;
615 		break;
616 	case mm_b16_op:
617 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
618 			 (insn.mm_b0_format.simmediate << 1);
619 		return 1;
620 		break;
621 	case mm_beq32_op:
622 		if (regs->regs[insn.mm_i_format.rs] ==
623 		    regs->regs[insn.mm_i_format.rt])
624 			*contpc = regs->cp0_epc +
625 				dec_insn.pc_inc +
626 				(insn.mm_i_format.simmediate << 1);
627 		else
628 			*contpc = regs->cp0_epc +
629 				dec_insn.pc_inc +
630 				dec_insn.next_pc_inc;
631 		return 1;
632 		break;
633 	case mm_bne32_op:
634 		if (regs->regs[insn.mm_i_format.rs] !=
635 		    regs->regs[insn.mm_i_format.rt])
636 			*contpc = regs->cp0_epc +
637 				dec_insn.pc_inc +
638 				(insn.mm_i_format.simmediate << 1);
639 		else
640 			*contpc = regs->cp0_epc +
641 				dec_insn.pc_inc + dec_insn.next_pc_inc;
642 		return 1;
643 		break;
644 	case mm_jalx32_op:
645 		regs->regs[31] = regs->cp0_epc +
646 			dec_insn.pc_inc + dec_insn.next_pc_inc;
647 		*contpc = regs->cp0_epc + dec_insn.pc_inc;
648 		*contpc >>= 28;
649 		*contpc <<= 28;
650 		*contpc |= (insn.j_format.target << 2);
651 		return 1;
652 		break;
653 	case mm_jals32_op:
654 	case mm_jal32_op:
655 		regs->regs[31] = regs->cp0_epc +
656 			dec_insn.pc_inc + dec_insn.next_pc_inc;
657 		/* Fall through */
658 	case mm_j32_op:
659 		*contpc = regs->cp0_epc + dec_insn.pc_inc;
660 		*contpc >>= 27;
661 		*contpc <<= 27;
662 		*contpc |= (insn.j_format.target << 1);
663 		set_isa16_mode(*contpc);
664 		return 1;
665 		break;
666 	}
667 	return 0;
668 }
669 
670 /*
671  * Redundant with logic already in kernel/branch.c,
672  * embedded in compute_return_epc.  At some point,
673  * a single subroutine should be used across both
674  * modules.
675  */
676 static int isBranchInstr(struct pt_regs *regs, struct mm_decoded_insn dec_insn,
677 			 unsigned long *contpc)
678 {
679 	union mips_instruction insn = (union mips_instruction)dec_insn.insn;
680 	unsigned int fcr31;
681 	unsigned int bit = 0;
682 
683 	switch (insn.i_format.opcode) {
684 	case spec_op:
685 		switch (insn.r_format.func) {
686 		case jalr_op:
687 			regs->regs[insn.r_format.rd] =
688 				regs->cp0_epc + dec_insn.pc_inc +
689 				dec_insn.next_pc_inc;
690 			/* Fall through */
691 		case jr_op:
692 			*contpc = regs->regs[insn.r_format.rs];
693 			return 1;
694 			break;
695 		}
696 		break;
697 	case bcond_op:
698 		switch (insn.i_format.rt) {
699 		case bltzal_op:
700 		case bltzall_op:
701 			regs->regs[31] = regs->cp0_epc +
702 				dec_insn.pc_inc +
703 				dec_insn.next_pc_inc;
704 			/* Fall through */
705 		case bltz_op:
706 		case bltzl_op:
707 			if ((long)regs->regs[insn.i_format.rs] < 0)
708 				*contpc = regs->cp0_epc +
709 					dec_insn.pc_inc +
710 					(insn.i_format.simmediate << 2);
711 			else
712 				*contpc = regs->cp0_epc +
713 					dec_insn.pc_inc +
714 					dec_insn.next_pc_inc;
715 			return 1;
716 			break;
717 		case bgezal_op:
718 		case bgezall_op:
719 			regs->regs[31] = regs->cp0_epc +
720 				dec_insn.pc_inc +
721 				dec_insn.next_pc_inc;
722 			/* Fall through */
723 		case bgez_op:
724 		case bgezl_op:
725 			if ((long)regs->regs[insn.i_format.rs] >= 0)
726 				*contpc = regs->cp0_epc +
727 					dec_insn.pc_inc +
728 					(insn.i_format.simmediate << 2);
729 			else
730 				*contpc = regs->cp0_epc +
731 					dec_insn.pc_inc +
732 					dec_insn.next_pc_inc;
733 			return 1;
734 			break;
735 		}
736 		break;
737 	case jalx_op:
738 		set_isa16_mode(bit);
739 	case jal_op:
740 		regs->regs[31] = regs->cp0_epc +
741 			dec_insn.pc_inc +
742 			dec_insn.next_pc_inc;
743 		/* Fall through */
744 	case j_op:
745 		*contpc = regs->cp0_epc + dec_insn.pc_inc;
746 		*contpc >>= 28;
747 		*contpc <<= 28;
748 		*contpc |= (insn.j_format.target << 2);
749 		/* Set microMIPS mode bit: XOR for jalx. */
750 		*contpc ^= bit;
751 		return 1;
752 		break;
753 	case beq_op:
754 	case beql_op:
755 		if (regs->regs[insn.i_format.rs] ==
756 		    regs->regs[insn.i_format.rt])
757 			*contpc = regs->cp0_epc +
758 				dec_insn.pc_inc +
759 				(insn.i_format.simmediate << 2);
760 		else
761 			*contpc = regs->cp0_epc +
762 				dec_insn.pc_inc +
763 				dec_insn.next_pc_inc;
764 		return 1;
765 		break;
766 	case bne_op:
767 	case bnel_op:
768 		if (regs->regs[insn.i_format.rs] !=
769 		    regs->regs[insn.i_format.rt])
770 			*contpc = regs->cp0_epc +
771 				dec_insn.pc_inc +
772 				(insn.i_format.simmediate << 2);
773 		else
774 			*contpc = regs->cp0_epc +
775 				dec_insn.pc_inc +
776 				dec_insn.next_pc_inc;
777 		return 1;
778 		break;
779 	case blez_op:
780 	case blezl_op:
781 		if ((long)regs->regs[insn.i_format.rs] <= 0)
782 			*contpc = regs->cp0_epc +
783 				dec_insn.pc_inc +
784 				(insn.i_format.simmediate << 2);
785 		else
786 			*contpc = regs->cp0_epc +
787 				dec_insn.pc_inc +
788 				dec_insn.next_pc_inc;
789 		return 1;
790 		break;
791 	case bgtz_op:
792 	case bgtzl_op:
793 		if ((long)regs->regs[insn.i_format.rs] > 0)
794 			*contpc = regs->cp0_epc +
795 				dec_insn.pc_inc +
796 				(insn.i_format.simmediate << 2);
797 		else
798 			*contpc = regs->cp0_epc +
799 				dec_insn.pc_inc +
800 				dec_insn.next_pc_inc;
801 		return 1;
802 		break;
803 	case cop0_op:
804 	case cop1_op:
805 	case cop2_op:
806 	case cop1x_op:
807 		if (insn.i_format.rs == bc_op) {
808 			preempt_disable();
809 			if (is_fpu_owner())
810 				asm volatile("cfc1\t%0,$31" : "=r" (fcr31));
811 			else
812 				fcr31 = current->thread.fpu.fcr31;
813 			preempt_enable();
814 
815 			bit = (insn.i_format.rt >> 2);
816 			bit += (bit != 0);
817 			bit += 23;
818 			switch (insn.i_format.rt & 3) {
819 			case 0:	/* bc1f */
820 			case 2:	/* bc1fl */
821 				if (~fcr31 & (1 << bit))
822 					*contpc = regs->cp0_epc +
823 						dec_insn.pc_inc +
824 						(insn.i_format.simmediate << 2);
825 				else
826 					*contpc = regs->cp0_epc +
827 						dec_insn.pc_inc +
828 						dec_insn.next_pc_inc;
829 				return 1;
830 				break;
831 			case 1:	/* bc1t */
832 			case 3:	/* bc1tl */
833 				if (fcr31 & (1 << bit))
834 					*contpc = regs->cp0_epc +
835 						dec_insn.pc_inc +
836 						(insn.i_format.simmediate << 2);
837 				else
838 					*contpc = regs->cp0_epc +
839 						dec_insn.pc_inc +
840 						dec_insn.next_pc_inc;
841 				return 1;
842 				break;
843 			}
844 		}
845 		break;
846 	}
847 	return 0;
848 }
849 
850 /*
851  * In the Linux kernel, we support selection of FPR format on the
852  * basis of the Status.FR bit.	If an FPU is not present, the FR bit
853  * is hardwired to zero, which would imply a 32-bit FPU even for
854  * 64-bit CPUs so we rather look at TIF_32BIT_REGS.
855  * FPU emu is slow and bulky and optimizing this function offers fairly
856  * sizeable benefits so we try to be clever and make this function return
857  * a constant whenever possible, that is on 64-bit kernels without O32
858  * compatibility enabled and on 32-bit kernels.
859  */
860 static inline int cop1_64bit(struct pt_regs *xcp)
861 {
862 #if defined(CONFIG_64BIT) && !defined(CONFIG_MIPS32_O32)
863 	return 1;
864 #elif defined(CONFIG_64BIT) && defined(CONFIG_MIPS32_O32)
865 	return !test_thread_flag(TIF_32BIT_REGS);
866 #else
867 	return 0;
868 #endif
869 }
870 
871 #define SIFROMREG(si, x) ((si) = cop1_64bit(xcp) || !(x & 1) ? \
872 			(int)ctx->fpr[x] : (int)(ctx->fpr[x & ~1] >> 32))
873 
874 #define SITOREG(si, x)	(ctx->fpr[x & ~(cop1_64bit(xcp) == 0)] = \
875 			cop1_64bit(xcp) || !(x & 1) ? \
876 			ctx->fpr[x & ~1] >> 32 << 32 | (u32)(si) : \
877 			ctx->fpr[x & ~1] << 32 >> 32 | (u64)(si) << 32)
878 
879 #define DIFROMREG(di, x) ((di) = ctx->fpr[x & ~(cop1_64bit(xcp) == 0)])
880 #define DITOREG(di, x)	(ctx->fpr[x & ~(cop1_64bit(xcp) == 0)] = (di))
881 
882 #define SPFROMREG(sp, x) SIFROMREG((sp).bits, x)
883 #define SPTOREG(sp, x)	SITOREG((sp).bits, x)
884 #define DPFROMREG(dp, x)	DIFROMREG((dp).bits, x)
885 #define DPTOREG(dp, x)	DITOREG((dp).bits, x)
886 
887 /*
888  * Emulate the single floating point instruction pointed at by EPC.
889  * Two instructions if the instruction is in a branch delay slot.
890  */
891 
892 static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
893 		struct mm_decoded_insn dec_insn, void *__user *fault_addr)
894 {
895 	mips_instruction ir;
896 	unsigned long contpc = xcp->cp0_epc + dec_insn.pc_inc;
897 	unsigned int cond;
898 	int pc_inc;
899 
900 	/* XXX NEC Vr54xx bug workaround */
901 	if (xcp->cp0_cause & CAUSEF_BD) {
902 		if (dec_insn.micro_mips_mode) {
903 			if (!mm_isBranchInstr(xcp, dec_insn, &contpc))
904 				xcp->cp0_cause &= ~CAUSEF_BD;
905 		} else {
906 			if (!isBranchInstr(xcp, dec_insn, &contpc))
907 				xcp->cp0_cause &= ~CAUSEF_BD;
908 		}
909 	}
910 
911 	if (xcp->cp0_cause & CAUSEF_BD) {
912 		/*
913 		 * The instruction to be emulated is in a branch delay slot
914 		 * which means that we have to	emulate the branch instruction
915 		 * BEFORE we do the cop1 instruction.
916 		 *
917 		 * This branch could be a COP1 branch, but in that case we
918 		 * would have had a trap for that instruction, and would not
919 		 * come through this route.
920 		 *
921 		 * Linux MIPS branch emulator operates on context, updating the
922 		 * cp0_epc.
923 		 */
924 		ir = dec_insn.next_insn;  /* process delay slot instr */
925 		pc_inc = dec_insn.next_pc_inc;
926 	} else {
927 		ir = dec_insn.insn;       /* process current instr */
928 		pc_inc = dec_insn.pc_inc;
929 	}
930 
931 	/*
932 	 * Since microMIPS FPU instructios are a subset of MIPS32 FPU
933 	 * instructions, we want to convert microMIPS FPU instructions
934 	 * into MIPS32 instructions so that we could reuse all of the
935 	 * FPU emulation code.
936 	 *
937 	 * NOTE: We cannot do this for branch instructions since they
938 	 *       are not a subset. Example: Cannot emulate a 16-bit
939 	 *       aligned target address with a MIPS32 instruction.
940 	 */
941 	if (dec_insn.micro_mips_mode) {
942 		/*
943 		 * If next instruction is a 16-bit instruction, then it
944 		 * it cannot be a FPU instruction. This could happen
945 		 * since we can be called for non-FPU instructions.
946 		 */
947 		if ((pc_inc == 2) ||
948 			(microMIPS32_to_MIPS32((union mips_instruction *)&ir)
949 			 == SIGILL))
950 			return SIGILL;
951 	}
952 
953       emul:
954 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, xcp, 0);
955 	MIPS_FPU_EMU_INC_STATS(emulated);
956 	switch (MIPSInst_OPCODE(ir)) {
957 	case ldc1_op:{
958 		u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
959 			MIPSInst_SIMM(ir));
960 		u64 val;
961 
962 		MIPS_FPU_EMU_INC_STATS(loads);
963 
964 		if (!access_ok(VERIFY_READ, va, sizeof(u64))) {
965 			MIPS_FPU_EMU_INC_STATS(errors);
966 			*fault_addr = va;
967 			return SIGBUS;
968 		}
969 		if (__get_user(val, va)) {
970 			MIPS_FPU_EMU_INC_STATS(errors);
971 			*fault_addr = va;
972 			return SIGSEGV;
973 		}
974 		DITOREG(val, MIPSInst_RT(ir));
975 		break;
976 	}
977 
978 	case sdc1_op:{
979 		u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
980 			MIPSInst_SIMM(ir));
981 		u64 val;
982 
983 		MIPS_FPU_EMU_INC_STATS(stores);
984 		DIFROMREG(val, MIPSInst_RT(ir));
985 		if (!access_ok(VERIFY_WRITE, va, sizeof(u64))) {
986 			MIPS_FPU_EMU_INC_STATS(errors);
987 			*fault_addr = va;
988 			return SIGBUS;
989 		}
990 		if (__put_user(val, va)) {
991 			MIPS_FPU_EMU_INC_STATS(errors);
992 			*fault_addr = va;
993 			return SIGSEGV;
994 		}
995 		break;
996 	}
997 
998 	case lwc1_op:{
999 		u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1000 			MIPSInst_SIMM(ir));
1001 		u32 val;
1002 
1003 		MIPS_FPU_EMU_INC_STATS(loads);
1004 		if (!access_ok(VERIFY_READ, va, sizeof(u32))) {
1005 			MIPS_FPU_EMU_INC_STATS(errors);
1006 			*fault_addr = va;
1007 			return SIGBUS;
1008 		}
1009 		if (__get_user(val, va)) {
1010 			MIPS_FPU_EMU_INC_STATS(errors);
1011 			*fault_addr = va;
1012 			return SIGSEGV;
1013 		}
1014 		SITOREG(val, MIPSInst_RT(ir));
1015 		break;
1016 	}
1017 
1018 	case swc1_op:{
1019 		u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1020 			MIPSInst_SIMM(ir));
1021 		u32 val;
1022 
1023 		MIPS_FPU_EMU_INC_STATS(stores);
1024 		SIFROMREG(val, MIPSInst_RT(ir));
1025 		if (!access_ok(VERIFY_WRITE, va, sizeof(u32))) {
1026 			MIPS_FPU_EMU_INC_STATS(errors);
1027 			*fault_addr = va;
1028 			return SIGBUS;
1029 		}
1030 		if (__put_user(val, va)) {
1031 			MIPS_FPU_EMU_INC_STATS(errors);
1032 			*fault_addr = va;
1033 			return SIGSEGV;
1034 		}
1035 		break;
1036 	}
1037 
1038 	case cop1_op:
1039 		switch (MIPSInst_RS(ir)) {
1040 
1041 #if defined(__mips64)
1042 		case dmfc_op:
1043 			/* copregister fs -> gpr[rt] */
1044 			if (MIPSInst_RT(ir) != 0) {
1045 				DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
1046 					MIPSInst_RD(ir));
1047 			}
1048 			break;
1049 
1050 		case dmtc_op:
1051 			/* copregister fs <- rt */
1052 			DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1053 			break;
1054 #endif
1055 
1056 		case mfc_op:
1057 			/* copregister rd -> gpr[rt] */
1058 			if (MIPSInst_RT(ir) != 0) {
1059 				SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
1060 					MIPSInst_RD(ir));
1061 			}
1062 			break;
1063 
1064 		case mtc_op:
1065 			/* copregister rd <- rt */
1066 			SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1067 			break;
1068 
1069 		case cfc_op:{
1070 			/* cop control register rd -> gpr[rt] */
1071 			u32 value;
1072 
1073 			if (MIPSInst_RD(ir) == FPCREG_CSR) {
1074 				value = ctx->fcr31;
1075 				value = (value & ~FPU_CSR_RM) |
1076 					mips_rm[modeindex(value)];
1077 #ifdef CSRTRACE
1078 				printk("%p gpr[%d]<-csr=%08x\n",
1079 					(void *) (xcp->cp0_epc),
1080 					MIPSInst_RT(ir), value);
1081 #endif
1082 			}
1083 			else if (MIPSInst_RD(ir) == FPCREG_RID)
1084 				value = 0;
1085 			else
1086 				value = 0;
1087 			if (MIPSInst_RT(ir))
1088 				xcp->regs[MIPSInst_RT(ir)] = value;
1089 			break;
1090 		}
1091 
1092 		case ctc_op:{
1093 			/* copregister rd <- rt */
1094 			u32 value;
1095 
1096 			if (MIPSInst_RT(ir) == 0)
1097 				value = 0;
1098 			else
1099 				value = xcp->regs[MIPSInst_RT(ir)];
1100 
1101 			/* we only have one writable control reg
1102 			 */
1103 			if (MIPSInst_RD(ir) == FPCREG_CSR) {
1104 #ifdef CSRTRACE
1105 				printk("%p gpr[%d]->csr=%08x\n",
1106 					(void *) (xcp->cp0_epc),
1107 					MIPSInst_RT(ir), value);
1108 #endif
1109 
1110 				/*
1111 				 * Don't write reserved bits,
1112 				 * and convert to ieee library modes
1113 				 */
1114 				ctx->fcr31 = (value &
1115 						~(FPU_CSR_RSVD | FPU_CSR_RM)) |
1116 						ieee_rm[modeindex(value)];
1117 			}
1118 			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1119 				return SIGFPE;
1120 			}
1121 			break;
1122 		}
1123 
1124 		case bc_op:{
1125 			int likely = 0;
1126 
1127 			if (xcp->cp0_cause & CAUSEF_BD)
1128 				return SIGILL;
1129 
1130 #if __mips >= 4
1131 			cond = ctx->fcr31 & fpucondbit[MIPSInst_RT(ir) >> 2];
1132 #else
1133 			cond = ctx->fcr31 & FPU_CSR_COND;
1134 #endif
1135 			switch (MIPSInst_RT(ir) & 3) {
1136 			case bcfl_op:
1137 				likely = 1;
1138 			case bcf_op:
1139 				cond = !cond;
1140 				break;
1141 			case bctl_op:
1142 				likely = 1;
1143 			case bct_op:
1144 				break;
1145 			default:
1146 				/* thats an illegal instruction */
1147 				return SIGILL;
1148 			}
1149 
1150 			xcp->cp0_cause |= CAUSEF_BD;
1151 			if (cond) {
1152 				/* branch taken: emulate dslot
1153 				 * instruction
1154 				 */
1155 				xcp->cp0_epc += dec_insn.pc_inc;
1156 
1157 				contpc = MIPSInst_SIMM(ir);
1158 				ir = dec_insn.next_insn;
1159 				if (dec_insn.micro_mips_mode) {
1160 					contpc = (xcp->cp0_epc + (contpc << 1));
1161 
1162 					/* If 16-bit instruction, not FPU. */
1163 					if ((dec_insn.next_pc_inc == 2) ||
1164 						(microMIPS32_to_MIPS32((union mips_instruction *)&ir) == SIGILL)) {
1165 
1166 						/*
1167 						 * Since this instruction will
1168 						 * be put on the stack with
1169 						 * 32-bit words, get around
1170 						 * this problem by putting a
1171 						 * NOP16 as the second one.
1172 						 */
1173 						if (dec_insn.next_pc_inc == 2)
1174 							ir = (ir & (~0xffff)) | MM_NOP16;
1175 
1176 						/*
1177 						 * Single step the non-CP1
1178 						 * instruction in the dslot.
1179 						 */
1180 						return mips_dsemul(xcp, ir, contpc);
1181 					}
1182 				} else
1183 					contpc = (xcp->cp0_epc + (contpc << 2));
1184 
1185 				switch (MIPSInst_OPCODE(ir)) {
1186 				case lwc1_op:
1187 				case swc1_op:
1188 #if (__mips >= 2 || defined(__mips64))
1189 				case ldc1_op:
1190 				case sdc1_op:
1191 #endif
1192 				case cop1_op:
1193 #if __mips >= 4 && __mips != 32
1194 				case cop1x_op:
1195 #endif
1196 					/* its one of ours */
1197 					goto emul;
1198 #if __mips >= 4
1199 				case spec_op:
1200 					if (MIPSInst_FUNC(ir) == movc_op)
1201 						goto emul;
1202 					break;
1203 #endif
1204 				}
1205 
1206 				/*
1207 				 * Single step the non-cp1
1208 				 * instruction in the dslot
1209 				 */
1210 				return mips_dsemul(xcp, ir, contpc);
1211 			}
1212 			else {
1213 				/* branch not taken */
1214 				if (likely) {
1215 					/*
1216 					 * branch likely nullifies
1217 					 * dslot if not taken
1218 					 */
1219 					xcp->cp0_epc += dec_insn.pc_inc;
1220 					contpc += dec_insn.pc_inc;
1221 					/*
1222 					 * else continue & execute
1223 					 * dslot as normal insn
1224 					 */
1225 				}
1226 			}
1227 			break;
1228 		}
1229 
1230 		default:
1231 			if (!(MIPSInst_RS(ir) & 0x10))
1232 				return SIGILL;
1233 			{
1234 				int sig;
1235 
1236 				/* a real fpu computation instruction */
1237 				if ((sig = fpu_emu(xcp, ctx, ir)))
1238 					return sig;
1239 			}
1240 		}
1241 		break;
1242 
1243 #if __mips >= 4 && __mips != 32
1244 	case cop1x_op:{
1245 		int sig = fpux_emu(xcp, ctx, ir, fault_addr);
1246 		if (sig)
1247 			return sig;
1248 		break;
1249 	}
1250 #endif
1251 
1252 #if __mips >= 4
1253 	case spec_op:
1254 		if (MIPSInst_FUNC(ir) != movc_op)
1255 			return SIGILL;
1256 		cond = fpucondbit[MIPSInst_RT(ir) >> 2];
1257 		if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
1258 			xcp->regs[MIPSInst_RD(ir)] =
1259 				xcp->regs[MIPSInst_RS(ir)];
1260 		break;
1261 #endif
1262 
1263 	default:
1264 		return SIGILL;
1265 	}
1266 
1267 	/* we did it !! */
1268 	xcp->cp0_epc = contpc;
1269 	xcp->cp0_cause &= ~CAUSEF_BD;
1270 
1271 	return 0;
1272 }
1273 
1274 /*
1275  * Conversion table from MIPS compare ops 48-63
1276  * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
1277  */
1278 static const unsigned char cmptab[8] = {
1279 	0,			/* cmp_0 (sig) cmp_sf */
1280 	IEEE754_CUN,		/* cmp_un (sig) cmp_ngle */
1281 	IEEE754_CEQ,		/* cmp_eq (sig) cmp_seq */
1282 	IEEE754_CEQ | IEEE754_CUN,	/* cmp_ueq (sig) cmp_ngl  */
1283 	IEEE754_CLT,		/* cmp_olt (sig) cmp_lt */
1284 	IEEE754_CLT | IEEE754_CUN,	/* cmp_ult (sig) cmp_nge */
1285 	IEEE754_CLT | IEEE754_CEQ,	/* cmp_ole (sig) cmp_le */
1286 	IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN,	/* cmp_ule (sig) cmp_ngt */
1287 };
1288 
1289 
1290 #if __mips >= 4 && __mips != 32
1291 
1292 /*
1293  * Additional MIPS4 instructions
1294  */
1295 
1296 #define DEF3OP(name, p, f1, f2, f3) \
1297 static ieee754##p fpemu_##p##_##name(ieee754##p r, ieee754##p s, \
1298     ieee754##p t) \
1299 { \
1300 	struct _ieee754_csr ieee754_csr_save; \
1301 	s = f1(s, t); \
1302 	ieee754_csr_save = ieee754_csr; \
1303 	s = f2(s, r); \
1304 	ieee754_csr_save.cx |= ieee754_csr.cx; \
1305 	ieee754_csr_save.sx |= ieee754_csr.sx; \
1306 	s = f3(s); \
1307 	ieee754_csr.cx |= ieee754_csr_save.cx; \
1308 	ieee754_csr.sx |= ieee754_csr_save.sx; \
1309 	return s; \
1310 }
1311 
1312 static ieee754dp fpemu_dp_recip(ieee754dp d)
1313 {
1314 	return ieee754dp_div(ieee754dp_one(0), d);
1315 }
1316 
1317 static ieee754dp fpemu_dp_rsqrt(ieee754dp d)
1318 {
1319 	return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d));
1320 }
1321 
1322 static ieee754sp fpemu_sp_recip(ieee754sp s)
1323 {
1324 	return ieee754sp_div(ieee754sp_one(0), s);
1325 }
1326 
1327 static ieee754sp fpemu_sp_rsqrt(ieee754sp s)
1328 {
1329 	return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s));
1330 }
1331 
1332 DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add, );
1333 DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub, );
1334 DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg);
1335 DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg);
1336 DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add, );
1337 DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub, );
1338 DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg);
1339 DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg);
1340 
1341 static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1342 	mips_instruction ir, void *__user *fault_addr)
1343 {
1344 	unsigned rcsr = 0;	/* resulting csr */
1345 
1346 	MIPS_FPU_EMU_INC_STATS(cp1xops);
1347 
1348 	switch (MIPSInst_FMA_FFMT(ir)) {
1349 	case s_fmt:{		/* 0 */
1350 
1351 		ieee754sp(*handler) (ieee754sp, ieee754sp, ieee754sp);
1352 		ieee754sp fd, fr, fs, ft;
1353 		u32 __user *va;
1354 		u32 val;
1355 
1356 		switch (MIPSInst_FUNC(ir)) {
1357 		case lwxc1_op:
1358 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1359 				xcp->regs[MIPSInst_FT(ir)]);
1360 
1361 			MIPS_FPU_EMU_INC_STATS(loads);
1362 			if (!access_ok(VERIFY_READ, va, sizeof(u32))) {
1363 				MIPS_FPU_EMU_INC_STATS(errors);
1364 				*fault_addr = va;
1365 				return SIGBUS;
1366 			}
1367 			if (__get_user(val, va)) {
1368 				MIPS_FPU_EMU_INC_STATS(errors);
1369 				*fault_addr = va;
1370 				return SIGSEGV;
1371 			}
1372 			SITOREG(val, MIPSInst_FD(ir));
1373 			break;
1374 
1375 		case swxc1_op:
1376 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1377 				xcp->regs[MIPSInst_FT(ir)]);
1378 
1379 			MIPS_FPU_EMU_INC_STATS(stores);
1380 
1381 			SIFROMREG(val, MIPSInst_FS(ir));
1382 			if (!access_ok(VERIFY_WRITE, va, sizeof(u32))) {
1383 				MIPS_FPU_EMU_INC_STATS(errors);
1384 				*fault_addr = va;
1385 				return SIGBUS;
1386 			}
1387 			if (put_user(val, va)) {
1388 				MIPS_FPU_EMU_INC_STATS(errors);
1389 				*fault_addr = va;
1390 				return SIGSEGV;
1391 			}
1392 			break;
1393 
1394 		case madd_s_op:
1395 			handler = fpemu_sp_madd;
1396 			goto scoptop;
1397 		case msub_s_op:
1398 			handler = fpemu_sp_msub;
1399 			goto scoptop;
1400 		case nmadd_s_op:
1401 			handler = fpemu_sp_nmadd;
1402 			goto scoptop;
1403 		case nmsub_s_op:
1404 			handler = fpemu_sp_nmsub;
1405 			goto scoptop;
1406 
1407 		      scoptop:
1408 			SPFROMREG(fr, MIPSInst_FR(ir));
1409 			SPFROMREG(fs, MIPSInst_FS(ir));
1410 			SPFROMREG(ft, MIPSInst_FT(ir));
1411 			fd = (*handler) (fr, fs, ft);
1412 			SPTOREG(fd, MIPSInst_FD(ir));
1413 
1414 		      copcsr:
1415 			if (ieee754_cxtest(IEEE754_INEXACT))
1416 				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1417 			if (ieee754_cxtest(IEEE754_UNDERFLOW))
1418 				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1419 			if (ieee754_cxtest(IEEE754_OVERFLOW))
1420 				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1421 			if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
1422 				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1423 
1424 			ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1425 			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1426 				/*printk ("SIGFPE: fpu csr = %08x\n",
1427 				   ctx->fcr31); */
1428 				return SIGFPE;
1429 			}
1430 
1431 			break;
1432 
1433 		default:
1434 			return SIGILL;
1435 		}
1436 		break;
1437 	}
1438 
1439 	case d_fmt:{		/* 1 */
1440 		ieee754dp(*handler) (ieee754dp, ieee754dp, ieee754dp);
1441 		ieee754dp fd, fr, fs, ft;
1442 		u64 __user *va;
1443 		u64 val;
1444 
1445 		switch (MIPSInst_FUNC(ir)) {
1446 		case ldxc1_op:
1447 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1448 				xcp->regs[MIPSInst_FT(ir)]);
1449 
1450 			MIPS_FPU_EMU_INC_STATS(loads);
1451 			if (!access_ok(VERIFY_READ, va, sizeof(u64))) {
1452 				MIPS_FPU_EMU_INC_STATS(errors);
1453 				*fault_addr = va;
1454 				return SIGBUS;
1455 			}
1456 			if (__get_user(val, va)) {
1457 				MIPS_FPU_EMU_INC_STATS(errors);
1458 				*fault_addr = va;
1459 				return SIGSEGV;
1460 			}
1461 			DITOREG(val, MIPSInst_FD(ir));
1462 			break;
1463 
1464 		case sdxc1_op:
1465 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1466 				xcp->regs[MIPSInst_FT(ir)]);
1467 
1468 			MIPS_FPU_EMU_INC_STATS(stores);
1469 			DIFROMREG(val, MIPSInst_FS(ir));
1470 			if (!access_ok(VERIFY_WRITE, va, sizeof(u64))) {
1471 				MIPS_FPU_EMU_INC_STATS(errors);
1472 				*fault_addr = va;
1473 				return SIGBUS;
1474 			}
1475 			if (__put_user(val, va)) {
1476 				MIPS_FPU_EMU_INC_STATS(errors);
1477 				*fault_addr = va;
1478 				return SIGSEGV;
1479 			}
1480 			break;
1481 
1482 		case madd_d_op:
1483 			handler = fpemu_dp_madd;
1484 			goto dcoptop;
1485 		case msub_d_op:
1486 			handler = fpemu_dp_msub;
1487 			goto dcoptop;
1488 		case nmadd_d_op:
1489 			handler = fpemu_dp_nmadd;
1490 			goto dcoptop;
1491 		case nmsub_d_op:
1492 			handler = fpemu_dp_nmsub;
1493 			goto dcoptop;
1494 
1495 		      dcoptop:
1496 			DPFROMREG(fr, MIPSInst_FR(ir));
1497 			DPFROMREG(fs, MIPSInst_FS(ir));
1498 			DPFROMREG(ft, MIPSInst_FT(ir));
1499 			fd = (*handler) (fr, fs, ft);
1500 			DPTOREG(fd, MIPSInst_FD(ir));
1501 			goto copcsr;
1502 
1503 		default:
1504 			return SIGILL;
1505 		}
1506 		break;
1507 	}
1508 
1509 	case 0x7:		/* 7 */
1510 		if (MIPSInst_FUNC(ir) != pfetch_op) {
1511 			return SIGILL;
1512 		}
1513 		/* ignore prefx operation */
1514 		break;
1515 
1516 	default:
1517 		return SIGILL;
1518 	}
1519 
1520 	return 0;
1521 }
1522 #endif
1523 
1524 
1525 
1526 /*
1527  * Emulate a single COP1 arithmetic instruction.
1528  */
1529 static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1530 	mips_instruction ir)
1531 {
1532 	int rfmt;		/* resulting format */
1533 	unsigned rcsr = 0;	/* resulting csr */
1534 	unsigned cond;
1535 	union {
1536 		ieee754dp d;
1537 		ieee754sp s;
1538 		int w;
1539 #ifdef __mips64
1540 		s64 l;
1541 #endif
1542 	} rv;			/* resulting value */
1543 
1544 	MIPS_FPU_EMU_INC_STATS(cp1ops);
1545 	switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) {
1546 	case s_fmt:{		/* 0 */
1547 		union {
1548 			ieee754sp(*b) (ieee754sp, ieee754sp);
1549 			ieee754sp(*u) (ieee754sp);
1550 		} handler;
1551 
1552 		switch (MIPSInst_FUNC(ir)) {
1553 			/* binary ops */
1554 		case fadd_op:
1555 			handler.b = ieee754sp_add;
1556 			goto scopbop;
1557 		case fsub_op:
1558 			handler.b = ieee754sp_sub;
1559 			goto scopbop;
1560 		case fmul_op:
1561 			handler.b = ieee754sp_mul;
1562 			goto scopbop;
1563 		case fdiv_op:
1564 			handler.b = ieee754sp_div;
1565 			goto scopbop;
1566 
1567 			/* unary  ops */
1568 #if __mips >= 2 || defined(__mips64)
1569 		case fsqrt_op:
1570 			handler.u = ieee754sp_sqrt;
1571 			goto scopuop;
1572 #endif
1573 #if __mips >= 4 && __mips != 32
1574 		case frsqrt_op:
1575 			handler.u = fpemu_sp_rsqrt;
1576 			goto scopuop;
1577 		case frecip_op:
1578 			handler.u = fpemu_sp_recip;
1579 			goto scopuop;
1580 #endif
1581 #if __mips >= 4
1582 		case fmovc_op:
1583 			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1584 			if (((ctx->fcr31 & cond) != 0) !=
1585 				((MIPSInst_FT(ir) & 1) != 0))
1586 				return 0;
1587 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1588 			break;
1589 		case fmovz_op:
1590 			if (xcp->regs[MIPSInst_FT(ir)] != 0)
1591 				return 0;
1592 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1593 			break;
1594 		case fmovn_op:
1595 			if (xcp->regs[MIPSInst_FT(ir)] == 0)
1596 				return 0;
1597 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1598 			break;
1599 #endif
1600 		case fabs_op:
1601 			handler.u = ieee754sp_abs;
1602 			goto scopuop;
1603 		case fneg_op:
1604 			handler.u = ieee754sp_neg;
1605 			goto scopuop;
1606 		case fmov_op:
1607 			/* an easy one */
1608 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1609 			goto copcsr;
1610 
1611 			/* binary op on handler */
1612 		      scopbop:
1613 			{
1614 				ieee754sp fs, ft;
1615 
1616 				SPFROMREG(fs, MIPSInst_FS(ir));
1617 				SPFROMREG(ft, MIPSInst_FT(ir));
1618 
1619 				rv.s = (*handler.b) (fs, ft);
1620 				goto copcsr;
1621 			}
1622 		      scopuop:
1623 			{
1624 				ieee754sp fs;
1625 
1626 				SPFROMREG(fs, MIPSInst_FS(ir));
1627 				rv.s = (*handler.u) (fs);
1628 				goto copcsr;
1629 			}
1630 		      copcsr:
1631 			if (ieee754_cxtest(IEEE754_INEXACT))
1632 				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1633 			if (ieee754_cxtest(IEEE754_UNDERFLOW))
1634 				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1635 			if (ieee754_cxtest(IEEE754_OVERFLOW))
1636 				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1637 			if (ieee754_cxtest(IEEE754_ZERO_DIVIDE))
1638 				rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S;
1639 			if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
1640 				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1641 			break;
1642 
1643 			/* unary conv ops */
1644 		case fcvts_op:
1645 			return SIGILL;	/* not defined */
1646 		case fcvtd_op:{
1647 			ieee754sp fs;
1648 
1649 			SPFROMREG(fs, MIPSInst_FS(ir));
1650 			rv.d = ieee754dp_fsp(fs);
1651 			rfmt = d_fmt;
1652 			goto copcsr;
1653 		}
1654 		case fcvtw_op:{
1655 			ieee754sp fs;
1656 
1657 			SPFROMREG(fs, MIPSInst_FS(ir));
1658 			rv.w = ieee754sp_tint(fs);
1659 			rfmt = w_fmt;
1660 			goto copcsr;
1661 		}
1662 
1663 #if __mips >= 2 || defined(__mips64)
1664 		case fround_op:
1665 		case ftrunc_op:
1666 		case fceil_op:
1667 		case ffloor_op:{
1668 			unsigned int oldrm = ieee754_csr.rm;
1669 			ieee754sp fs;
1670 
1671 			SPFROMREG(fs, MIPSInst_FS(ir));
1672 			ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1673 			rv.w = ieee754sp_tint(fs);
1674 			ieee754_csr.rm = oldrm;
1675 			rfmt = w_fmt;
1676 			goto copcsr;
1677 		}
1678 #endif /* __mips >= 2 */
1679 
1680 #if defined(__mips64)
1681 		case fcvtl_op:{
1682 			ieee754sp fs;
1683 
1684 			SPFROMREG(fs, MIPSInst_FS(ir));
1685 			rv.l = ieee754sp_tlong(fs);
1686 			rfmt = l_fmt;
1687 			goto copcsr;
1688 		}
1689 
1690 		case froundl_op:
1691 		case ftruncl_op:
1692 		case fceill_op:
1693 		case ffloorl_op:{
1694 			unsigned int oldrm = ieee754_csr.rm;
1695 			ieee754sp fs;
1696 
1697 			SPFROMREG(fs, MIPSInst_FS(ir));
1698 			ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1699 			rv.l = ieee754sp_tlong(fs);
1700 			ieee754_csr.rm = oldrm;
1701 			rfmt = l_fmt;
1702 			goto copcsr;
1703 		}
1704 #endif /* defined(__mips64) */
1705 
1706 		default:
1707 			if (MIPSInst_FUNC(ir) >= fcmp_op) {
1708 				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1709 				ieee754sp fs, ft;
1710 
1711 				SPFROMREG(fs, MIPSInst_FS(ir));
1712 				SPFROMREG(ft, MIPSInst_FT(ir));
1713 				rv.w = ieee754sp_cmp(fs, ft,
1714 					cmptab[cmpop & 0x7], cmpop & 0x8);
1715 				rfmt = -1;
1716 				if ((cmpop & 0x8) && ieee754_cxtest
1717 					(IEEE754_INVALID_OPERATION))
1718 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1719 				else
1720 					goto copcsr;
1721 
1722 			}
1723 			else {
1724 				return SIGILL;
1725 			}
1726 			break;
1727 		}
1728 		break;
1729 	}
1730 
1731 	case d_fmt:{
1732 		union {
1733 			ieee754dp(*b) (ieee754dp, ieee754dp);
1734 			ieee754dp(*u) (ieee754dp);
1735 		} handler;
1736 
1737 		switch (MIPSInst_FUNC(ir)) {
1738 			/* binary ops */
1739 		case fadd_op:
1740 			handler.b = ieee754dp_add;
1741 			goto dcopbop;
1742 		case fsub_op:
1743 			handler.b = ieee754dp_sub;
1744 			goto dcopbop;
1745 		case fmul_op:
1746 			handler.b = ieee754dp_mul;
1747 			goto dcopbop;
1748 		case fdiv_op:
1749 			handler.b = ieee754dp_div;
1750 			goto dcopbop;
1751 
1752 			/* unary  ops */
1753 #if __mips >= 2 || defined(__mips64)
1754 		case fsqrt_op:
1755 			handler.u = ieee754dp_sqrt;
1756 			goto dcopuop;
1757 #endif
1758 #if __mips >= 4 && __mips != 32
1759 		case frsqrt_op:
1760 			handler.u = fpemu_dp_rsqrt;
1761 			goto dcopuop;
1762 		case frecip_op:
1763 			handler.u = fpemu_dp_recip;
1764 			goto dcopuop;
1765 #endif
1766 #if __mips >= 4
1767 		case fmovc_op:
1768 			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1769 			if (((ctx->fcr31 & cond) != 0) !=
1770 				((MIPSInst_FT(ir) & 1) != 0))
1771 				return 0;
1772 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1773 			break;
1774 		case fmovz_op:
1775 			if (xcp->regs[MIPSInst_FT(ir)] != 0)
1776 				return 0;
1777 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1778 			break;
1779 		case fmovn_op:
1780 			if (xcp->regs[MIPSInst_FT(ir)] == 0)
1781 				return 0;
1782 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1783 			break;
1784 #endif
1785 		case fabs_op:
1786 			handler.u = ieee754dp_abs;
1787 			goto dcopuop;
1788 
1789 		case fneg_op:
1790 			handler.u = ieee754dp_neg;
1791 			goto dcopuop;
1792 
1793 		case fmov_op:
1794 			/* an easy one */
1795 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1796 			goto copcsr;
1797 
1798 			/* binary op on handler */
1799 		      dcopbop:{
1800 				ieee754dp fs, ft;
1801 
1802 				DPFROMREG(fs, MIPSInst_FS(ir));
1803 				DPFROMREG(ft, MIPSInst_FT(ir));
1804 
1805 				rv.d = (*handler.b) (fs, ft);
1806 				goto copcsr;
1807 			}
1808 		      dcopuop:{
1809 				ieee754dp fs;
1810 
1811 				DPFROMREG(fs, MIPSInst_FS(ir));
1812 				rv.d = (*handler.u) (fs);
1813 				goto copcsr;
1814 			}
1815 
1816 			/* unary conv ops */
1817 		case fcvts_op:{
1818 			ieee754dp fs;
1819 
1820 			DPFROMREG(fs, MIPSInst_FS(ir));
1821 			rv.s = ieee754sp_fdp(fs);
1822 			rfmt = s_fmt;
1823 			goto copcsr;
1824 		}
1825 		case fcvtd_op:
1826 			return SIGILL;	/* not defined */
1827 
1828 		case fcvtw_op:{
1829 			ieee754dp fs;
1830 
1831 			DPFROMREG(fs, MIPSInst_FS(ir));
1832 			rv.w = ieee754dp_tint(fs);	/* wrong */
1833 			rfmt = w_fmt;
1834 			goto copcsr;
1835 		}
1836 
1837 #if __mips >= 2 || defined(__mips64)
1838 		case fround_op:
1839 		case ftrunc_op:
1840 		case fceil_op:
1841 		case ffloor_op:{
1842 			unsigned int oldrm = ieee754_csr.rm;
1843 			ieee754dp fs;
1844 
1845 			DPFROMREG(fs, MIPSInst_FS(ir));
1846 			ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1847 			rv.w = ieee754dp_tint(fs);
1848 			ieee754_csr.rm = oldrm;
1849 			rfmt = w_fmt;
1850 			goto copcsr;
1851 		}
1852 #endif
1853 
1854 #if defined(__mips64)
1855 		case fcvtl_op:{
1856 			ieee754dp fs;
1857 
1858 			DPFROMREG(fs, MIPSInst_FS(ir));
1859 			rv.l = ieee754dp_tlong(fs);
1860 			rfmt = l_fmt;
1861 			goto copcsr;
1862 		}
1863 
1864 		case froundl_op:
1865 		case ftruncl_op:
1866 		case fceill_op:
1867 		case ffloorl_op:{
1868 			unsigned int oldrm = ieee754_csr.rm;
1869 			ieee754dp fs;
1870 
1871 			DPFROMREG(fs, MIPSInst_FS(ir));
1872 			ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1873 			rv.l = ieee754dp_tlong(fs);
1874 			ieee754_csr.rm = oldrm;
1875 			rfmt = l_fmt;
1876 			goto copcsr;
1877 		}
1878 #endif /* __mips >= 3 */
1879 
1880 		default:
1881 			if (MIPSInst_FUNC(ir) >= fcmp_op) {
1882 				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1883 				ieee754dp fs, ft;
1884 
1885 				DPFROMREG(fs, MIPSInst_FS(ir));
1886 				DPFROMREG(ft, MIPSInst_FT(ir));
1887 				rv.w = ieee754dp_cmp(fs, ft,
1888 					cmptab[cmpop & 0x7], cmpop & 0x8);
1889 				rfmt = -1;
1890 				if ((cmpop & 0x8)
1891 					&&
1892 					ieee754_cxtest
1893 					(IEEE754_INVALID_OPERATION))
1894 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1895 				else
1896 					goto copcsr;
1897 
1898 			}
1899 			else {
1900 				return SIGILL;
1901 			}
1902 			break;
1903 		}
1904 		break;
1905 	}
1906 
1907 	case w_fmt:{
1908 		ieee754sp fs;
1909 
1910 		switch (MIPSInst_FUNC(ir)) {
1911 		case fcvts_op:
1912 			/* convert word to single precision real */
1913 			SPFROMREG(fs, MIPSInst_FS(ir));
1914 			rv.s = ieee754sp_fint(fs.bits);
1915 			rfmt = s_fmt;
1916 			goto copcsr;
1917 		case fcvtd_op:
1918 			/* convert word to double precision real */
1919 			SPFROMREG(fs, MIPSInst_FS(ir));
1920 			rv.d = ieee754dp_fint(fs.bits);
1921 			rfmt = d_fmt;
1922 			goto copcsr;
1923 		default:
1924 			return SIGILL;
1925 		}
1926 		break;
1927 	}
1928 
1929 #if defined(__mips64)
1930 	case l_fmt:{
1931 		switch (MIPSInst_FUNC(ir)) {
1932 		case fcvts_op:
1933 			/* convert long to single precision real */
1934 			rv.s = ieee754sp_flong(ctx->fpr[MIPSInst_FS(ir)]);
1935 			rfmt = s_fmt;
1936 			goto copcsr;
1937 		case fcvtd_op:
1938 			/* convert long to double precision real */
1939 			rv.d = ieee754dp_flong(ctx->fpr[MIPSInst_FS(ir)]);
1940 			rfmt = d_fmt;
1941 			goto copcsr;
1942 		default:
1943 			return SIGILL;
1944 		}
1945 		break;
1946 	}
1947 #endif
1948 
1949 	default:
1950 		return SIGILL;
1951 	}
1952 
1953 	/*
1954 	 * Update the fpu CSR register for this operation.
1955 	 * If an exception is required, generate a tidy SIGFPE exception,
1956 	 * without updating the result register.
1957 	 * Note: cause exception bits do not accumulate, they are rewritten
1958 	 * for each op; only the flag/sticky bits accumulate.
1959 	 */
1960 	ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1961 	if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1962 		/*printk ("SIGFPE: fpu csr = %08x\n",ctx->fcr31); */
1963 		return SIGFPE;
1964 	}
1965 
1966 	/*
1967 	 * Now we can safely write the result back to the register file.
1968 	 */
1969 	switch (rfmt) {
1970 	case -1:{
1971 #if __mips >= 4
1972 		cond = fpucondbit[MIPSInst_FD(ir) >> 2];
1973 #else
1974 		cond = FPU_CSR_COND;
1975 #endif
1976 		if (rv.w)
1977 			ctx->fcr31 |= cond;
1978 		else
1979 			ctx->fcr31 &= ~cond;
1980 		break;
1981 	}
1982 	case d_fmt:
1983 		DPTOREG(rv.d, MIPSInst_FD(ir));
1984 		break;
1985 	case s_fmt:
1986 		SPTOREG(rv.s, MIPSInst_FD(ir));
1987 		break;
1988 	case w_fmt:
1989 		SITOREG(rv.w, MIPSInst_FD(ir));
1990 		break;
1991 #if defined(__mips64)
1992 	case l_fmt:
1993 		DITOREG(rv.l, MIPSInst_FD(ir));
1994 		break;
1995 #endif
1996 	default:
1997 		return SIGILL;
1998 	}
1999 
2000 	return 0;
2001 }
2002 
2003 int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
2004 	int has_fpu, void *__user *fault_addr)
2005 {
2006 	unsigned long oldepc, prevepc;
2007 	struct mm_decoded_insn dec_insn;
2008 	u16 instr[4];
2009 	u16 *instr_ptr;
2010 	int sig = 0;
2011 
2012 	oldepc = xcp->cp0_epc;
2013 	do {
2014 		prevepc = xcp->cp0_epc;
2015 
2016 		if (get_isa16_mode(prevepc) && cpu_has_mmips) {
2017 			/*
2018 			 * Get next 2 microMIPS instructions and convert them
2019 			 * into 32-bit instructions.
2020 			 */
2021 			if ((get_user(instr[0], (u16 __user *)msk_isa16_mode(xcp->cp0_epc))) ||
2022 			    (get_user(instr[1], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 2))) ||
2023 			    (get_user(instr[2], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 4))) ||
2024 			    (get_user(instr[3], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 6)))) {
2025 				MIPS_FPU_EMU_INC_STATS(errors);
2026 				return SIGBUS;
2027 			}
2028 			instr_ptr = instr;
2029 
2030 			/* Get first instruction. */
2031 			if (mm_insn_16bit(*instr_ptr)) {
2032 				/* Duplicate the half-word. */
2033 				dec_insn.insn = (*instr_ptr << 16) |
2034 					(*instr_ptr);
2035 				/* 16-bit instruction. */
2036 				dec_insn.pc_inc = 2;
2037 				instr_ptr += 1;
2038 			} else {
2039 				dec_insn.insn = (*instr_ptr << 16) |
2040 					*(instr_ptr+1);
2041 				/* 32-bit instruction. */
2042 				dec_insn.pc_inc = 4;
2043 				instr_ptr += 2;
2044 			}
2045 			/* Get second instruction. */
2046 			if (mm_insn_16bit(*instr_ptr)) {
2047 				/* Duplicate the half-word. */
2048 				dec_insn.next_insn = (*instr_ptr << 16) |
2049 					(*instr_ptr);
2050 				/* 16-bit instruction. */
2051 				dec_insn.next_pc_inc = 2;
2052 			} else {
2053 				dec_insn.next_insn = (*instr_ptr << 16) |
2054 					*(instr_ptr+1);
2055 				/* 32-bit instruction. */
2056 				dec_insn.next_pc_inc = 4;
2057 			}
2058 			dec_insn.micro_mips_mode = 1;
2059 		} else {
2060 			if ((get_user(dec_insn.insn,
2061 			    (mips_instruction __user *) xcp->cp0_epc)) ||
2062 			    (get_user(dec_insn.next_insn,
2063 			    (mips_instruction __user *)(xcp->cp0_epc+4)))) {
2064 				MIPS_FPU_EMU_INC_STATS(errors);
2065 				return SIGBUS;
2066 			}
2067 			dec_insn.pc_inc = 4;
2068 			dec_insn.next_pc_inc = 4;
2069 			dec_insn.micro_mips_mode = 0;
2070 		}
2071 
2072 		if ((dec_insn.insn == 0) ||
2073 		   ((dec_insn.pc_inc == 2) &&
2074 		   ((dec_insn.insn & 0xffff) == MM_NOP16)))
2075 			xcp->cp0_epc += dec_insn.pc_inc;	/* Skip NOPs */
2076 		else {
2077 			/*
2078 			 * The 'ieee754_csr' is an alias of
2079 			 * ctx->fcr31.	No need to copy ctx->fcr31 to
2080 			 * ieee754_csr.	 But ieee754_csr.rm is ieee
2081 			 * library modes. (not mips rounding mode)
2082 			 */
2083 			/* convert to ieee library modes */
2084 			ieee754_csr.rm = ieee_rm[ieee754_csr.rm];
2085 			sig = cop1Emulate(xcp, ctx, dec_insn, fault_addr);
2086 			/* revert to mips rounding mode */
2087 			ieee754_csr.rm = mips_rm[ieee754_csr.rm];
2088 		}
2089 
2090 		if (has_fpu)
2091 			break;
2092 		if (sig)
2093 			break;
2094 
2095 		cond_resched();
2096 	} while (xcp->cp0_epc > prevepc);
2097 
2098 	/* SIGILL indicates a non-fpu instruction */
2099 	if (sig == SIGILL && xcp->cp0_epc != oldepc)
2100 		/* but if epc has advanced, then ignore it */
2101 		sig = 0;
2102 
2103 	return sig;
2104 }
2105 
2106 #ifdef CONFIG_DEBUG_FS
2107 
2108 static int fpuemu_stat_get(void *data, u64 *val)
2109 {
2110 	int cpu;
2111 	unsigned long sum = 0;
2112 	for_each_online_cpu(cpu) {
2113 		struct mips_fpu_emulator_stats *ps;
2114 		local_t *pv;
2115 		ps = &per_cpu(fpuemustats, cpu);
2116 		pv = (void *)ps + (unsigned long)data;
2117 		sum += local_read(pv);
2118 	}
2119 	*val = sum;
2120 	return 0;
2121 }
2122 DEFINE_SIMPLE_ATTRIBUTE(fops_fpuemu_stat, fpuemu_stat_get, NULL, "%llu\n");
2123 
2124 extern struct dentry *mips_debugfs_dir;
2125 static int __init debugfs_fpuemu(void)
2126 {
2127 	struct dentry *d, *dir;
2128 
2129 	if (!mips_debugfs_dir)
2130 		return -ENODEV;
2131 	dir = debugfs_create_dir("fpuemustats", mips_debugfs_dir);
2132 	if (!dir)
2133 		return -ENOMEM;
2134 
2135 #define FPU_STAT_CREATE(M)						\
2136 	do {								\
2137 		d = debugfs_create_file(#M , S_IRUGO, dir,		\
2138 			(void *)offsetof(struct mips_fpu_emulator_stats, M), \
2139 			&fops_fpuemu_stat);				\
2140 		if (!d)							\
2141 			return -ENOMEM;					\
2142 	} while (0)
2143 
2144 	FPU_STAT_CREATE(emulated);
2145 	FPU_STAT_CREATE(loads);
2146 	FPU_STAT_CREATE(stores);
2147 	FPU_STAT_CREATE(cp1ops);
2148 	FPU_STAT_CREATE(cp1xops);
2149 	FPU_STAT_CREATE(errors);
2150 
2151 	return 0;
2152 }
2153 __initcall(debugfs_fpuemu);
2154 #endif
2155