xref: /openbmc/linux/arch/mips/math-emu/cp1emu.c (revision eb3fcf00)
1 /*
2  * cp1emu.c: a MIPS coprocessor 1 (FPU) instruction emulator
3  *
4  * MIPS floating point support
5  * Copyright (C) 1994-2000 Algorithmics Ltd.
6  *
7  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
8  * Copyright (C) 2000  MIPS Technologies, Inc.
9  *
10  *  This program is free software; you can distribute it and/or modify it
11  *  under the terms of the GNU General Public License (Version 2) as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope it will be useful, but WITHOUT
15  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17  *  for more details.
18  *
19  *  You should have received a copy of the GNU General Public License along
20  *  with this program; if not, write to the Free Software Foundation, Inc.,
21  *  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA.
22  *
23  * A complete emulator for MIPS coprocessor 1 instructions.  This is
24  * required for #float(switch) or #float(trap), where it catches all
25  * COP1 instructions via the "CoProcessor Unusable" exception.
26  *
27  * More surprisingly it is also required for #float(ieee), to help out
28  * the hardware FPU at the boundaries of the IEEE-754 representation
29  * (denormalised values, infinities, underflow, etc).  It is made
30  * quite nasty because emulation of some non-COP1 instructions is
31  * required, e.g. in branch delay slots.
32  *
33  * Note if you know that you won't have an FPU, then you'll get much
34  * better performance by compiling with -msoft-float!
35  */
36 #include <linux/sched.h>
37 #include <linux/debugfs.h>
38 #include <linux/kconfig.h>
39 #include <linux/percpu-defs.h>
40 #include <linux/perf_event.h>
41 
42 #include <asm/branch.h>
43 #include <asm/inst.h>
44 #include <asm/ptrace.h>
45 #include <asm/signal.h>
46 #include <asm/uaccess.h>
47 
48 #include <asm/cpu-info.h>
49 #include <asm/processor.h>
50 #include <asm/fpu_emulator.h>
51 #include <asm/fpu.h>
52 #include <asm/mips-r2-to-r6-emul.h>
53 
54 #include "ieee754.h"
55 
56 /* Function which emulates a floating point instruction. */
57 
58 static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *,
59 	mips_instruction);
60 
61 static int fpux_emu(struct pt_regs *,
62 	struct mips_fpu_struct *, mips_instruction, void *__user *);
63 
64 /* Control registers */
65 
66 #define FPCREG_RID	0	/* $0  = revision id */
67 #define FPCREG_FCCR	25	/* $25 = fccr */
68 #define FPCREG_FEXR	26	/* $26 = fexr */
69 #define FPCREG_FENR	28	/* $28 = fenr */
70 #define FPCREG_CSR	31	/* $31 = csr */
71 
72 /* convert condition code register number to csr bit */
73 const unsigned int fpucondbit[8] = {
74 	FPU_CSR_COND,
75 	FPU_CSR_COND1,
76 	FPU_CSR_COND2,
77 	FPU_CSR_COND3,
78 	FPU_CSR_COND4,
79 	FPU_CSR_COND5,
80 	FPU_CSR_COND6,
81 	FPU_CSR_COND7
82 };
83 
84 /* (microMIPS) Convert certain microMIPS instructions to MIPS32 format. */
85 static const int sd_format[] = {16, 17, 0, 0, 0, 0, 0, 0};
86 static const int sdps_format[] = {16, 17, 22, 0, 0, 0, 0, 0};
87 static const int dwl_format[] = {17, 20, 21, 0, 0, 0, 0, 0};
88 static const int swl_format[] = {16, 20, 21, 0, 0, 0, 0, 0};
89 
90 /*
91  * This functions translates a 32-bit microMIPS instruction
92  * into a 32-bit MIPS32 instruction. Returns 0 on success
93  * and SIGILL otherwise.
94  */
95 static int microMIPS32_to_MIPS32(union mips_instruction *insn_ptr)
96 {
97 	union mips_instruction insn = *insn_ptr;
98 	union mips_instruction mips32_insn = insn;
99 	int func, fmt, op;
100 
101 	switch (insn.mm_i_format.opcode) {
102 	case mm_ldc132_op:
103 		mips32_insn.mm_i_format.opcode = ldc1_op;
104 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
105 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
106 		break;
107 	case mm_lwc132_op:
108 		mips32_insn.mm_i_format.opcode = lwc1_op;
109 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
110 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
111 		break;
112 	case mm_sdc132_op:
113 		mips32_insn.mm_i_format.opcode = sdc1_op;
114 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
115 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
116 		break;
117 	case mm_swc132_op:
118 		mips32_insn.mm_i_format.opcode = swc1_op;
119 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
120 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
121 		break;
122 	case mm_pool32i_op:
123 		/* NOTE: offset is << by 1 if in microMIPS mode. */
124 		if ((insn.mm_i_format.rt == mm_bc1f_op) ||
125 		    (insn.mm_i_format.rt == mm_bc1t_op)) {
126 			mips32_insn.fb_format.opcode = cop1_op;
127 			mips32_insn.fb_format.bc = bc_op;
128 			mips32_insn.fb_format.flag =
129 				(insn.mm_i_format.rt == mm_bc1t_op) ? 1 : 0;
130 		} else
131 			return SIGILL;
132 		break;
133 	case mm_pool32f_op:
134 		switch (insn.mm_fp0_format.func) {
135 		case mm_32f_01_op:
136 		case mm_32f_11_op:
137 		case mm_32f_02_op:
138 		case mm_32f_12_op:
139 		case mm_32f_41_op:
140 		case mm_32f_51_op:
141 		case mm_32f_42_op:
142 		case mm_32f_52_op:
143 			op = insn.mm_fp0_format.func;
144 			if (op == mm_32f_01_op)
145 				func = madd_s_op;
146 			else if (op == mm_32f_11_op)
147 				func = madd_d_op;
148 			else if (op == mm_32f_02_op)
149 				func = nmadd_s_op;
150 			else if (op == mm_32f_12_op)
151 				func = nmadd_d_op;
152 			else if (op == mm_32f_41_op)
153 				func = msub_s_op;
154 			else if (op == mm_32f_51_op)
155 				func = msub_d_op;
156 			else if (op == mm_32f_42_op)
157 				func = nmsub_s_op;
158 			else
159 				func = nmsub_d_op;
160 			mips32_insn.fp6_format.opcode = cop1x_op;
161 			mips32_insn.fp6_format.fr = insn.mm_fp6_format.fr;
162 			mips32_insn.fp6_format.ft = insn.mm_fp6_format.ft;
163 			mips32_insn.fp6_format.fs = insn.mm_fp6_format.fs;
164 			mips32_insn.fp6_format.fd = insn.mm_fp6_format.fd;
165 			mips32_insn.fp6_format.func = func;
166 			break;
167 		case mm_32f_10_op:
168 			func = -1;	/* Invalid */
169 			op = insn.mm_fp5_format.op & 0x7;
170 			if (op == mm_ldxc1_op)
171 				func = ldxc1_op;
172 			else if (op == mm_sdxc1_op)
173 				func = sdxc1_op;
174 			else if (op == mm_lwxc1_op)
175 				func = lwxc1_op;
176 			else if (op == mm_swxc1_op)
177 				func = swxc1_op;
178 
179 			if (func != -1) {
180 				mips32_insn.r_format.opcode = cop1x_op;
181 				mips32_insn.r_format.rs =
182 					insn.mm_fp5_format.base;
183 				mips32_insn.r_format.rt =
184 					insn.mm_fp5_format.index;
185 				mips32_insn.r_format.rd = 0;
186 				mips32_insn.r_format.re = insn.mm_fp5_format.fd;
187 				mips32_insn.r_format.func = func;
188 			} else
189 				return SIGILL;
190 			break;
191 		case mm_32f_40_op:
192 			op = -1;	/* Invalid */
193 			if (insn.mm_fp2_format.op == mm_fmovt_op)
194 				op = 1;
195 			else if (insn.mm_fp2_format.op == mm_fmovf_op)
196 				op = 0;
197 			if (op != -1) {
198 				mips32_insn.fp0_format.opcode = cop1_op;
199 				mips32_insn.fp0_format.fmt =
200 					sdps_format[insn.mm_fp2_format.fmt];
201 				mips32_insn.fp0_format.ft =
202 					(insn.mm_fp2_format.cc<<2) + op;
203 				mips32_insn.fp0_format.fs =
204 					insn.mm_fp2_format.fs;
205 				mips32_insn.fp0_format.fd =
206 					insn.mm_fp2_format.fd;
207 				mips32_insn.fp0_format.func = fmovc_op;
208 			} else
209 				return SIGILL;
210 			break;
211 		case mm_32f_60_op:
212 			func = -1;	/* Invalid */
213 			if (insn.mm_fp0_format.op == mm_fadd_op)
214 				func = fadd_op;
215 			else if (insn.mm_fp0_format.op == mm_fsub_op)
216 				func = fsub_op;
217 			else if (insn.mm_fp0_format.op == mm_fmul_op)
218 				func = fmul_op;
219 			else if (insn.mm_fp0_format.op == mm_fdiv_op)
220 				func = fdiv_op;
221 			if (func != -1) {
222 				mips32_insn.fp0_format.opcode = cop1_op;
223 				mips32_insn.fp0_format.fmt =
224 					sdps_format[insn.mm_fp0_format.fmt];
225 				mips32_insn.fp0_format.ft =
226 					insn.mm_fp0_format.ft;
227 				mips32_insn.fp0_format.fs =
228 					insn.mm_fp0_format.fs;
229 				mips32_insn.fp0_format.fd =
230 					insn.mm_fp0_format.fd;
231 				mips32_insn.fp0_format.func = func;
232 			} else
233 				return SIGILL;
234 			break;
235 		case mm_32f_70_op:
236 			func = -1;	/* Invalid */
237 			if (insn.mm_fp0_format.op == mm_fmovn_op)
238 				func = fmovn_op;
239 			else if (insn.mm_fp0_format.op == mm_fmovz_op)
240 				func = fmovz_op;
241 			if (func != -1) {
242 				mips32_insn.fp0_format.opcode = cop1_op;
243 				mips32_insn.fp0_format.fmt =
244 					sdps_format[insn.mm_fp0_format.fmt];
245 				mips32_insn.fp0_format.ft =
246 					insn.mm_fp0_format.ft;
247 				mips32_insn.fp0_format.fs =
248 					insn.mm_fp0_format.fs;
249 				mips32_insn.fp0_format.fd =
250 					insn.mm_fp0_format.fd;
251 				mips32_insn.fp0_format.func = func;
252 			} else
253 				return SIGILL;
254 			break;
255 		case mm_32f_73_op:    /* POOL32FXF */
256 			switch (insn.mm_fp1_format.op) {
257 			case mm_movf0_op:
258 			case mm_movf1_op:
259 			case mm_movt0_op:
260 			case mm_movt1_op:
261 				if ((insn.mm_fp1_format.op & 0x7f) ==
262 				    mm_movf0_op)
263 					op = 0;
264 				else
265 					op = 1;
266 				mips32_insn.r_format.opcode = spec_op;
267 				mips32_insn.r_format.rs = insn.mm_fp4_format.fs;
268 				mips32_insn.r_format.rt =
269 					(insn.mm_fp4_format.cc << 2) + op;
270 				mips32_insn.r_format.rd = insn.mm_fp4_format.rt;
271 				mips32_insn.r_format.re = 0;
272 				mips32_insn.r_format.func = movc_op;
273 				break;
274 			case mm_fcvtd0_op:
275 			case mm_fcvtd1_op:
276 			case mm_fcvts0_op:
277 			case mm_fcvts1_op:
278 				if ((insn.mm_fp1_format.op & 0x7f) ==
279 				    mm_fcvtd0_op) {
280 					func = fcvtd_op;
281 					fmt = swl_format[insn.mm_fp3_format.fmt];
282 				} else {
283 					func = fcvts_op;
284 					fmt = dwl_format[insn.mm_fp3_format.fmt];
285 				}
286 				mips32_insn.fp0_format.opcode = cop1_op;
287 				mips32_insn.fp0_format.fmt = fmt;
288 				mips32_insn.fp0_format.ft = 0;
289 				mips32_insn.fp0_format.fs =
290 					insn.mm_fp3_format.fs;
291 				mips32_insn.fp0_format.fd =
292 					insn.mm_fp3_format.rt;
293 				mips32_insn.fp0_format.func = func;
294 				break;
295 			case mm_fmov0_op:
296 			case mm_fmov1_op:
297 			case mm_fabs0_op:
298 			case mm_fabs1_op:
299 			case mm_fneg0_op:
300 			case mm_fneg1_op:
301 				if ((insn.mm_fp1_format.op & 0x7f) ==
302 				    mm_fmov0_op)
303 					func = fmov_op;
304 				else if ((insn.mm_fp1_format.op & 0x7f) ==
305 					 mm_fabs0_op)
306 					func = fabs_op;
307 				else
308 					func = fneg_op;
309 				mips32_insn.fp0_format.opcode = cop1_op;
310 				mips32_insn.fp0_format.fmt =
311 					sdps_format[insn.mm_fp3_format.fmt];
312 				mips32_insn.fp0_format.ft = 0;
313 				mips32_insn.fp0_format.fs =
314 					insn.mm_fp3_format.fs;
315 				mips32_insn.fp0_format.fd =
316 					insn.mm_fp3_format.rt;
317 				mips32_insn.fp0_format.func = func;
318 				break;
319 			case mm_ffloorl_op:
320 			case mm_ffloorw_op:
321 			case mm_fceill_op:
322 			case mm_fceilw_op:
323 			case mm_ftruncl_op:
324 			case mm_ftruncw_op:
325 			case mm_froundl_op:
326 			case mm_froundw_op:
327 			case mm_fcvtl_op:
328 			case mm_fcvtw_op:
329 				if (insn.mm_fp1_format.op == mm_ffloorl_op)
330 					func = ffloorl_op;
331 				else if (insn.mm_fp1_format.op == mm_ffloorw_op)
332 					func = ffloor_op;
333 				else if (insn.mm_fp1_format.op == mm_fceill_op)
334 					func = fceill_op;
335 				else if (insn.mm_fp1_format.op == mm_fceilw_op)
336 					func = fceil_op;
337 				else if (insn.mm_fp1_format.op == mm_ftruncl_op)
338 					func = ftruncl_op;
339 				else if (insn.mm_fp1_format.op == mm_ftruncw_op)
340 					func = ftrunc_op;
341 				else if (insn.mm_fp1_format.op == mm_froundl_op)
342 					func = froundl_op;
343 				else if (insn.mm_fp1_format.op == mm_froundw_op)
344 					func = fround_op;
345 				else if (insn.mm_fp1_format.op == mm_fcvtl_op)
346 					func = fcvtl_op;
347 				else
348 					func = fcvtw_op;
349 				mips32_insn.fp0_format.opcode = cop1_op;
350 				mips32_insn.fp0_format.fmt =
351 					sd_format[insn.mm_fp1_format.fmt];
352 				mips32_insn.fp0_format.ft = 0;
353 				mips32_insn.fp0_format.fs =
354 					insn.mm_fp1_format.fs;
355 				mips32_insn.fp0_format.fd =
356 					insn.mm_fp1_format.rt;
357 				mips32_insn.fp0_format.func = func;
358 				break;
359 			case mm_frsqrt_op:
360 			case mm_fsqrt_op:
361 			case mm_frecip_op:
362 				if (insn.mm_fp1_format.op == mm_frsqrt_op)
363 					func = frsqrt_op;
364 				else if (insn.mm_fp1_format.op == mm_fsqrt_op)
365 					func = fsqrt_op;
366 				else
367 					func = frecip_op;
368 				mips32_insn.fp0_format.opcode = cop1_op;
369 				mips32_insn.fp0_format.fmt =
370 					sdps_format[insn.mm_fp1_format.fmt];
371 				mips32_insn.fp0_format.ft = 0;
372 				mips32_insn.fp0_format.fs =
373 					insn.mm_fp1_format.fs;
374 				mips32_insn.fp0_format.fd =
375 					insn.mm_fp1_format.rt;
376 				mips32_insn.fp0_format.func = func;
377 				break;
378 			case mm_mfc1_op:
379 			case mm_mtc1_op:
380 			case mm_cfc1_op:
381 			case mm_ctc1_op:
382 			case mm_mfhc1_op:
383 			case mm_mthc1_op:
384 				if (insn.mm_fp1_format.op == mm_mfc1_op)
385 					op = mfc_op;
386 				else if (insn.mm_fp1_format.op == mm_mtc1_op)
387 					op = mtc_op;
388 				else if (insn.mm_fp1_format.op == mm_cfc1_op)
389 					op = cfc_op;
390 				else if (insn.mm_fp1_format.op == mm_ctc1_op)
391 					op = ctc_op;
392 				else if (insn.mm_fp1_format.op == mm_mfhc1_op)
393 					op = mfhc_op;
394 				else
395 					op = mthc_op;
396 				mips32_insn.fp1_format.opcode = cop1_op;
397 				mips32_insn.fp1_format.op = op;
398 				mips32_insn.fp1_format.rt =
399 					insn.mm_fp1_format.rt;
400 				mips32_insn.fp1_format.fs =
401 					insn.mm_fp1_format.fs;
402 				mips32_insn.fp1_format.fd = 0;
403 				mips32_insn.fp1_format.func = 0;
404 				break;
405 			default:
406 				return SIGILL;
407 			}
408 			break;
409 		case mm_32f_74_op:	/* c.cond.fmt */
410 			mips32_insn.fp0_format.opcode = cop1_op;
411 			mips32_insn.fp0_format.fmt =
412 				sdps_format[insn.mm_fp4_format.fmt];
413 			mips32_insn.fp0_format.ft = insn.mm_fp4_format.rt;
414 			mips32_insn.fp0_format.fs = insn.mm_fp4_format.fs;
415 			mips32_insn.fp0_format.fd = insn.mm_fp4_format.cc << 2;
416 			mips32_insn.fp0_format.func =
417 				insn.mm_fp4_format.cond | MM_MIPS32_COND_FC;
418 			break;
419 		default:
420 			return SIGILL;
421 		}
422 		break;
423 	default:
424 		return SIGILL;
425 	}
426 
427 	*insn_ptr = mips32_insn;
428 	return 0;
429 }
430 
431 /*
432  * Redundant with logic already in kernel/branch.c,
433  * embedded in compute_return_epc.  At some point,
434  * a single subroutine should be used across both
435  * modules.
436  */
437 static int isBranchInstr(struct pt_regs *regs, struct mm_decoded_insn dec_insn,
438 			 unsigned long *contpc)
439 {
440 	union mips_instruction insn = (union mips_instruction)dec_insn.insn;
441 	unsigned int fcr31;
442 	unsigned int bit = 0;
443 
444 	switch (insn.i_format.opcode) {
445 	case spec_op:
446 		switch (insn.r_format.func) {
447 		case jalr_op:
448 			regs->regs[insn.r_format.rd] =
449 				regs->cp0_epc + dec_insn.pc_inc +
450 				dec_insn.next_pc_inc;
451 			/* Fall through */
452 		case jr_op:
453 			/* For R6, JR already emulated in jalr_op */
454 			if (NO_R6EMU && insn.r_format.func == jr_op)
455 				break;
456 			*contpc = regs->regs[insn.r_format.rs];
457 			return 1;
458 		}
459 		break;
460 	case bcond_op:
461 		switch (insn.i_format.rt) {
462 		case bltzal_op:
463 		case bltzall_op:
464 			if (NO_R6EMU && (insn.i_format.rs ||
465 			    insn.i_format.rt == bltzall_op))
466 				break;
467 
468 			regs->regs[31] = regs->cp0_epc +
469 				dec_insn.pc_inc +
470 				dec_insn.next_pc_inc;
471 			/* Fall through */
472 		case bltzl_op:
473 			if (NO_R6EMU)
474 				break;
475 		case bltz_op:
476 			if ((long)regs->regs[insn.i_format.rs] < 0)
477 				*contpc = regs->cp0_epc +
478 					dec_insn.pc_inc +
479 					(insn.i_format.simmediate << 2);
480 			else
481 				*contpc = regs->cp0_epc +
482 					dec_insn.pc_inc +
483 					dec_insn.next_pc_inc;
484 			return 1;
485 		case bgezal_op:
486 		case bgezall_op:
487 			if (NO_R6EMU && (insn.i_format.rs ||
488 			    insn.i_format.rt == bgezall_op))
489 				break;
490 
491 			regs->regs[31] = regs->cp0_epc +
492 				dec_insn.pc_inc +
493 				dec_insn.next_pc_inc;
494 			/* Fall through */
495 		case bgezl_op:
496 			if (NO_R6EMU)
497 				break;
498 		case bgez_op:
499 			if ((long)regs->regs[insn.i_format.rs] >= 0)
500 				*contpc = regs->cp0_epc +
501 					dec_insn.pc_inc +
502 					(insn.i_format.simmediate << 2);
503 			else
504 				*contpc = regs->cp0_epc +
505 					dec_insn.pc_inc +
506 					dec_insn.next_pc_inc;
507 			return 1;
508 		}
509 		break;
510 	case jalx_op:
511 		set_isa16_mode(bit);
512 	case jal_op:
513 		regs->regs[31] = regs->cp0_epc +
514 			dec_insn.pc_inc +
515 			dec_insn.next_pc_inc;
516 		/* Fall through */
517 	case j_op:
518 		*contpc = regs->cp0_epc + dec_insn.pc_inc;
519 		*contpc >>= 28;
520 		*contpc <<= 28;
521 		*contpc |= (insn.j_format.target << 2);
522 		/* Set microMIPS mode bit: XOR for jalx. */
523 		*contpc ^= bit;
524 		return 1;
525 	case beql_op:
526 		if (NO_R6EMU)
527 			break;
528 	case beq_op:
529 		if (regs->regs[insn.i_format.rs] ==
530 		    regs->regs[insn.i_format.rt])
531 			*contpc = regs->cp0_epc +
532 				dec_insn.pc_inc +
533 				(insn.i_format.simmediate << 2);
534 		else
535 			*contpc = regs->cp0_epc +
536 				dec_insn.pc_inc +
537 				dec_insn.next_pc_inc;
538 		return 1;
539 	case bnel_op:
540 		if (NO_R6EMU)
541 			break;
542 	case bne_op:
543 		if (regs->regs[insn.i_format.rs] !=
544 		    regs->regs[insn.i_format.rt])
545 			*contpc = regs->cp0_epc +
546 				dec_insn.pc_inc +
547 				(insn.i_format.simmediate << 2);
548 		else
549 			*contpc = regs->cp0_epc +
550 				dec_insn.pc_inc +
551 				dec_insn.next_pc_inc;
552 		return 1;
553 	case blezl_op:
554 		if (!insn.i_format.rt && NO_R6EMU)
555 			break;
556 	case blez_op:
557 
558 		/*
559 		 * Compact branches for R6 for the
560 		 * blez and blezl opcodes.
561 		 * BLEZ  | rs = 0 | rt != 0  == BLEZALC
562 		 * BLEZ  | rs = rt != 0      == BGEZALC
563 		 * BLEZ  | rs != 0 | rt != 0 == BGEUC
564 		 * BLEZL | rs = 0 | rt != 0  == BLEZC
565 		 * BLEZL | rs = rt != 0      == BGEZC
566 		 * BLEZL | rs != 0 | rt != 0 == BGEC
567 		 *
568 		 * For real BLEZ{,L}, rt is always 0.
569 		 */
570 		if (cpu_has_mips_r6 && insn.i_format.rt) {
571 			if ((insn.i_format.opcode == blez_op) &&
572 			    ((!insn.i_format.rs && insn.i_format.rt) ||
573 			     (insn.i_format.rs == insn.i_format.rt)))
574 				regs->regs[31] = regs->cp0_epc +
575 					dec_insn.pc_inc;
576 			*contpc = regs->cp0_epc + dec_insn.pc_inc +
577 				dec_insn.next_pc_inc;
578 
579 			return 1;
580 		}
581 		if ((long)regs->regs[insn.i_format.rs] <= 0)
582 			*contpc = regs->cp0_epc +
583 				dec_insn.pc_inc +
584 				(insn.i_format.simmediate << 2);
585 		else
586 			*contpc = regs->cp0_epc +
587 				dec_insn.pc_inc +
588 				dec_insn.next_pc_inc;
589 		return 1;
590 	case bgtzl_op:
591 		if (!insn.i_format.rt && NO_R6EMU)
592 			break;
593 	case bgtz_op:
594 		/*
595 		 * Compact branches for R6 for the
596 		 * bgtz and bgtzl opcodes.
597 		 * BGTZ  | rs = 0 | rt != 0  == BGTZALC
598 		 * BGTZ  | rs = rt != 0      == BLTZALC
599 		 * BGTZ  | rs != 0 | rt != 0 == BLTUC
600 		 * BGTZL | rs = 0 | rt != 0  == BGTZC
601 		 * BGTZL | rs = rt != 0      == BLTZC
602 		 * BGTZL | rs != 0 | rt != 0 == BLTC
603 		 *
604 		 * *ZALC varint for BGTZ &&& rt != 0
605 		 * For real GTZ{,L}, rt is always 0.
606 		 */
607 		if (cpu_has_mips_r6 && insn.i_format.rt) {
608 			if ((insn.i_format.opcode == blez_op) &&
609 			    ((!insn.i_format.rs && insn.i_format.rt) ||
610 			     (insn.i_format.rs == insn.i_format.rt)))
611 				regs->regs[31] = regs->cp0_epc +
612 					dec_insn.pc_inc;
613 			*contpc = regs->cp0_epc + dec_insn.pc_inc +
614 				dec_insn.next_pc_inc;
615 
616 			return 1;
617 		}
618 
619 		if ((long)regs->regs[insn.i_format.rs] > 0)
620 			*contpc = regs->cp0_epc +
621 				dec_insn.pc_inc +
622 				(insn.i_format.simmediate << 2);
623 		else
624 			*contpc = regs->cp0_epc +
625 				dec_insn.pc_inc +
626 				dec_insn.next_pc_inc;
627 		return 1;
628 	case cbcond0_op:
629 	case cbcond1_op:
630 		if (!cpu_has_mips_r6)
631 			break;
632 		if (insn.i_format.rt && !insn.i_format.rs)
633 			regs->regs[31] = regs->cp0_epc + 4;
634 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
635 			dec_insn.next_pc_inc;
636 
637 		return 1;
638 #ifdef CONFIG_CPU_CAVIUM_OCTEON
639 	case lwc2_op: /* This is bbit0 on Octeon */
640 		if ((regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt)) == 0)
641 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
642 		else
643 			*contpc = regs->cp0_epc + 8;
644 		return 1;
645 	case ldc2_op: /* This is bbit032 on Octeon */
646 		if ((regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32))) == 0)
647 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
648 		else
649 			*contpc = regs->cp0_epc + 8;
650 		return 1;
651 	case swc2_op: /* This is bbit1 on Octeon */
652 		if (regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt))
653 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
654 		else
655 			*contpc = regs->cp0_epc + 8;
656 		return 1;
657 	case sdc2_op: /* This is bbit132 on Octeon */
658 		if (regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32)))
659 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
660 		else
661 			*contpc = regs->cp0_epc + 8;
662 		return 1;
663 #else
664 	case bc6_op:
665 		/*
666 		 * Only valid for MIPS R6 but we can still end up
667 		 * here from a broken userland so just tell emulator
668 		 * this is not a branch and let it break later on.
669 		 */
670 		if  (!cpu_has_mips_r6)
671 			break;
672 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
673 			dec_insn.next_pc_inc;
674 
675 		return 1;
676 	case balc6_op:
677 		if (!cpu_has_mips_r6)
678 			break;
679 		regs->regs[31] = regs->cp0_epc + 4;
680 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
681 			dec_insn.next_pc_inc;
682 
683 		return 1;
684 	case beqzcjic_op:
685 		if (!cpu_has_mips_r6)
686 			break;
687 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
688 			dec_insn.next_pc_inc;
689 
690 		return 1;
691 	case bnezcjialc_op:
692 		if (!cpu_has_mips_r6)
693 			break;
694 		if (!insn.i_format.rs)
695 			regs->regs[31] = regs->cp0_epc + 4;
696 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
697 			dec_insn.next_pc_inc;
698 
699 		return 1;
700 #endif
701 	case cop0_op:
702 	case cop1_op:
703 		/* Need to check for R6 bc1nez and bc1eqz branches */
704 		if (cpu_has_mips_r6 &&
705 		    ((insn.i_format.rs == bc1eqz_op) ||
706 		     (insn.i_format.rs == bc1nez_op))) {
707 			bit = 0;
708 			switch (insn.i_format.rs) {
709 			case bc1eqz_op:
710 				if (get_fpr32(&current->thread.fpu.fpr[insn.i_format.rt], 0) & 0x1)
711 				    bit = 1;
712 				break;
713 			case bc1nez_op:
714 				if (!(get_fpr32(&current->thread.fpu.fpr[insn.i_format.rt], 0) & 0x1))
715 				    bit = 1;
716 				break;
717 			}
718 			if (bit)
719 				*contpc = regs->cp0_epc +
720 					dec_insn.pc_inc +
721 					(insn.i_format.simmediate << 2);
722 			else
723 				*contpc = regs->cp0_epc +
724 					dec_insn.pc_inc +
725 					dec_insn.next_pc_inc;
726 
727 			return 1;
728 		}
729 		/* R2/R6 compatible cop1 instruction. Fall through */
730 	case cop2_op:
731 	case cop1x_op:
732 		if (insn.i_format.rs == bc_op) {
733 			preempt_disable();
734 			if (is_fpu_owner())
735 			        fcr31 = read_32bit_cp1_register(CP1_STATUS);
736 			else
737 				fcr31 = current->thread.fpu.fcr31;
738 			preempt_enable();
739 
740 			bit = (insn.i_format.rt >> 2);
741 			bit += (bit != 0);
742 			bit += 23;
743 			switch (insn.i_format.rt & 3) {
744 			case 0:	/* bc1f */
745 			case 2:	/* bc1fl */
746 				if (~fcr31 & (1 << bit))
747 					*contpc = regs->cp0_epc +
748 						dec_insn.pc_inc +
749 						(insn.i_format.simmediate << 2);
750 				else
751 					*contpc = regs->cp0_epc +
752 						dec_insn.pc_inc +
753 						dec_insn.next_pc_inc;
754 				return 1;
755 			case 1:	/* bc1t */
756 			case 3:	/* bc1tl */
757 				if (fcr31 & (1 << bit))
758 					*contpc = regs->cp0_epc +
759 						dec_insn.pc_inc +
760 						(insn.i_format.simmediate << 2);
761 				else
762 					*contpc = regs->cp0_epc +
763 						dec_insn.pc_inc +
764 						dec_insn.next_pc_inc;
765 				return 1;
766 			}
767 		}
768 		break;
769 	}
770 	return 0;
771 }
772 
773 /*
774  * In the Linux kernel, we support selection of FPR format on the
775  * basis of the Status.FR bit.	If an FPU is not present, the FR bit
776  * is hardwired to zero, which would imply a 32-bit FPU even for
777  * 64-bit CPUs so we rather look at TIF_32BIT_FPREGS.
778  * FPU emu is slow and bulky and optimizing this function offers fairly
779  * sizeable benefits so we try to be clever and make this function return
780  * a constant whenever possible, that is on 64-bit kernels without O32
781  * compatibility enabled and on 32-bit without 64-bit FPU support.
782  */
783 static inline int cop1_64bit(struct pt_regs *xcp)
784 {
785 	if (config_enabled(CONFIG_64BIT) && !config_enabled(CONFIG_MIPS32_O32))
786 		return 1;
787 	else if (config_enabled(CONFIG_32BIT) &&
788 		 !config_enabled(CONFIG_MIPS_O32_FP64_SUPPORT))
789 		return 0;
790 
791 	return !test_thread_flag(TIF_32BIT_FPREGS);
792 }
793 
794 static inline bool hybrid_fprs(void)
795 {
796 	return test_thread_flag(TIF_HYBRID_FPREGS);
797 }
798 
799 #define SIFROMREG(si, x)						\
800 do {									\
801 	if (cop1_64bit(xcp) && !hybrid_fprs())				\
802 		(si) = (int)get_fpr32(&ctx->fpr[x], 0);			\
803 	else								\
804 		(si) = (int)get_fpr32(&ctx->fpr[(x) & ~1], (x) & 1);	\
805 } while (0)
806 
807 #define SITOREG(si, x)							\
808 do {									\
809 	if (cop1_64bit(xcp) && !hybrid_fprs()) {			\
810 		unsigned i;						\
811 		set_fpr32(&ctx->fpr[x], 0, si);				\
812 		for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val32); i++)	\
813 			set_fpr32(&ctx->fpr[x], i, 0);			\
814 	} else {							\
815 		set_fpr32(&ctx->fpr[(x) & ~1], (x) & 1, si);		\
816 	}								\
817 } while (0)
818 
819 #define SIFROMHREG(si, x)	((si) = (int)get_fpr32(&ctx->fpr[x], 1))
820 
821 #define SITOHREG(si, x)							\
822 do {									\
823 	unsigned i;							\
824 	set_fpr32(&ctx->fpr[x], 1, si);					\
825 	for (i = 2; i < ARRAY_SIZE(ctx->fpr[x].val32); i++)		\
826 		set_fpr32(&ctx->fpr[x], i, 0);				\
827 } while (0)
828 
829 #define DIFROMREG(di, x)						\
830 	((di) = get_fpr64(&ctx->fpr[(x) & ~(cop1_64bit(xcp) == 0)], 0))
831 
832 #define DITOREG(di, x)							\
833 do {									\
834 	unsigned fpr, i;						\
835 	fpr = (x) & ~(cop1_64bit(xcp) == 0);				\
836 	set_fpr64(&ctx->fpr[fpr], 0, di);				\
837 	for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val64); i++)		\
838 		set_fpr64(&ctx->fpr[fpr], i, 0);			\
839 } while (0)
840 
841 #define SPFROMREG(sp, x) SIFROMREG((sp).bits, x)
842 #define SPTOREG(sp, x)	SITOREG((sp).bits, x)
843 #define DPFROMREG(dp, x)	DIFROMREG((dp).bits, x)
844 #define DPTOREG(dp, x)	DITOREG((dp).bits, x)
845 
846 /*
847  * Emulate a CFC1 instruction.
848  */
849 static inline void cop1_cfc(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
850 			    mips_instruction ir)
851 {
852 	u32 fcr31 = ctx->fcr31;
853 	u32 value = 0;
854 
855 	switch (MIPSInst_RD(ir)) {
856 	case FPCREG_CSR:
857 		value = fcr31;
858 		pr_debug("%p gpr[%d]<-csr=%08x\n",
859 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
860 		break;
861 
862 	case FPCREG_FENR:
863 		if (!cpu_has_mips_r)
864 			break;
865 		value = (fcr31 >> (FPU_CSR_FS_S - MIPS_FENR_FS_S)) &
866 			MIPS_FENR_FS;
867 		value |= fcr31 & (FPU_CSR_ALL_E | FPU_CSR_RM);
868 		pr_debug("%p gpr[%d]<-enr=%08x\n",
869 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
870 		break;
871 
872 	case FPCREG_FEXR:
873 		if (!cpu_has_mips_r)
874 			break;
875 		value = fcr31 & (FPU_CSR_ALL_X | FPU_CSR_ALL_S);
876 		pr_debug("%p gpr[%d]<-exr=%08x\n",
877 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
878 		break;
879 
880 	case FPCREG_FCCR:
881 		if (!cpu_has_mips_r)
882 			break;
883 		value = (fcr31 >> (FPU_CSR_COND_S - MIPS_FCCR_COND0_S)) &
884 			MIPS_FCCR_COND0;
885 		value |= (fcr31 >> (FPU_CSR_COND1_S - MIPS_FCCR_COND1_S)) &
886 			 (MIPS_FCCR_CONDX & ~MIPS_FCCR_COND0);
887 		pr_debug("%p gpr[%d]<-ccr=%08x\n",
888 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
889 		break;
890 
891 	case FPCREG_RID:
892 		value = boot_cpu_data.fpu_id;
893 		break;
894 
895 	default:
896 		break;
897 	}
898 
899 	if (MIPSInst_RT(ir))
900 		xcp->regs[MIPSInst_RT(ir)] = value;
901 }
902 
903 /*
904  * Emulate a CTC1 instruction.
905  */
906 static inline void cop1_ctc(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
907 			    mips_instruction ir)
908 {
909 	u32 fcr31 = ctx->fcr31;
910 	u32 value;
911 	u32 mask;
912 
913 	if (MIPSInst_RT(ir) == 0)
914 		value = 0;
915 	else
916 		value = xcp->regs[MIPSInst_RT(ir)];
917 
918 	switch (MIPSInst_RD(ir)) {
919 	case FPCREG_CSR:
920 		pr_debug("%p gpr[%d]->csr=%08x\n",
921 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
922 
923 		/* Preserve read-only bits.  */
924 		mask = boot_cpu_data.fpu_msk31;
925 		fcr31 = (value & ~mask) | (fcr31 & mask);
926 		break;
927 
928 	case FPCREG_FENR:
929 		if (!cpu_has_mips_r)
930 			break;
931 		pr_debug("%p gpr[%d]->enr=%08x\n",
932 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
933 		fcr31 &= ~(FPU_CSR_FS | FPU_CSR_ALL_E | FPU_CSR_RM);
934 		fcr31 |= (value << (FPU_CSR_FS_S - MIPS_FENR_FS_S)) &
935 			 FPU_CSR_FS;
936 		fcr31 |= value & (FPU_CSR_ALL_E | FPU_CSR_RM);
937 		break;
938 
939 	case FPCREG_FEXR:
940 		if (!cpu_has_mips_r)
941 			break;
942 		pr_debug("%p gpr[%d]->exr=%08x\n",
943 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
944 		fcr31 &= ~(FPU_CSR_ALL_X | FPU_CSR_ALL_S);
945 		fcr31 |= value & (FPU_CSR_ALL_X | FPU_CSR_ALL_S);
946 		break;
947 
948 	case FPCREG_FCCR:
949 		if (!cpu_has_mips_r)
950 			break;
951 		pr_debug("%p gpr[%d]->ccr=%08x\n",
952 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
953 		fcr31 &= ~(FPU_CSR_CONDX | FPU_CSR_COND);
954 		fcr31 |= (value << (FPU_CSR_COND_S - MIPS_FCCR_COND0_S)) &
955 			 FPU_CSR_COND;
956 		fcr31 |= (value << (FPU_CSR_COND1_S - MIPS_FCCR_COND1_S)) &
957 			 FPU_CSR_CONDX;
958 		break;
959 
960 	default:
961 		break;
962 	}
963 
964 	ctx->fcr31 = fcr31;
965 }
966 
967 /*
968  * Emulate the single floating point instruction pointed at by EPC.
969  * Two instructions if the instruction is in a branch delay slot.
970  */
971 
972 static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
973 		struct mm_decoded_insn dec_insn, void *__user *fault_addr)
974 {
975 	unsigned long contpc = xcp->cp0_epc + dec_insn.pc_inc;
976 	unsigned int cond, cbit;
977 	mips_instruction ir;
978 	int likely, pc_inc;
979 	u32 __user *wva;
980 	u64 __user *dva;
981 	u32 wval;
982 	u64 dval;
983 	int sig;
984 
985 	/*
986 	 * These are giving gcc a gentle hint about what to expect in
987 	 * dec_inst in order to do better optimization.
988 	 */
989 	if (!cpu_has_mmips && dec_insn.micro_mips_mode)
990 		unreachable();
991 
992 	/* XXX NEC Vr54xx bug workaround */
993 	if (delay_slot(xcp)) {
994 		if (dec_insn.micro_mips_mode) {
995 			if (!mm_isBranchInstr(xcp, dec_insn, &contpc))
996 				clear_delay_slot(xcp);
997 		} else {
998 			if (!isBranchInstr(xcp, dec_insn, &contpc))
999 				clear_delay_slot(xcp);
1000 		}
1001 	}
1002 
1003 	if (delay_slot(xcp)) {
1004 		/*
1005 		 * The instruction to be emulated is in a branch delay slot
1006 		 * which means that we have to	emulate the branch instruction
1007 		 * BEFORE we do the cop1 instruction.
1008 		 *
1009 		 * This branch could be a COP1 branch, but in that case we
1010 		 * would have had a trap for that instruction, and would not
1011 		 * come through this route.
1012 		 *
1013 		 * Linux MIPS branch emulator operates on context, updating the
1014 		 * cp0_epc.
1015 		 */
1016 		ir = dec_insn.next_insn;  /* process delay slot instr */
1017 		pc_inc = dec_insn.next_pc_inc;
1018 	} else {
1019 		ir = dec_insn.insn;       /* process current instr */
1020 		pc_inc = dec_insn.pc_inc;
1021 	}
1022 
1023 	/*
1024 	 * Since microMIPS FPU instructios are a subset of MIPS32 FPU
1025 	 * instructions, we want to convert microMIPS FPU instructions
1026 	 * into MIPS32 instructions so that we could reuse all of the
1027 	 * FPU emulation code.
1028 	 *
1029 	 * NOTE: We cannot do this for branch instructions since they
1030 	 *       are not a subset. Example: Cannot emulate a 16-bit
1031 	 *       aligned target address with a MIPS32 instruction.
1032 	 */
1033 	if (dec_insn.micro_mips_mode) {
1034 		/*
1035 		 * If next instruction is a 16-bit instruction, then it
1036 		 * it cannot be a FPU instruction. This could happen
1037 		 * since we can be called for non-FPU instructions.
1038 		 */
1039 		if ((pc_inc == 2) ||
1040 			(microMIPS32_to_MIPS32((union mips_instruction *)&ir)
1041 			 == SIGILL))
1042 			return SIGILL;
1043 	}
1044 
1045 emul:
1046 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, xcp, 0);
1047 	MIPS_FPU_EMU_INC_STATS(emulated);
1048 	switch (MIPSInst_OPCODE(ir)) {
1049 	case ldc1_op:
1050 		dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1051 				     MIPSInst_SIMM(ir));
1052 		MIPS_FPU_EMU_INC_STATS(loads);
1053 
1054 		if (!access_ok(VERIFY_READ, dva, sizeof(u64))) {
1055 			MIPS_FPU_EMU_INC_STATS(errors);
1056 			*fault_addr = dva;
1057 			return SIGBUS;
1058 		}
1059 		if (__get_user(dval, dva)) {
1060 			MIPS_FPU_EMU_INC_STATS(errors);
1061 			*fault_addr = dva;
1062 			return SIGSEGV;
1063 		}
1064 		DITOREG(dval, MIPSInst_RT(ir));
1065 		break;
1066 
1067 	case sdc1_op:
1068 		dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1069 				      MIPSInst_SIMM(ir));
1070 		MIPS_FPU_EMU_INC_STATS(stores);
1071 		DIFROMREG(dval, MIPSInst_RT(ir));
1072 		if (!access_ok(VERIFY_WRITE, dva, sizeof(u64))) {
1073 			MIPS_FPU_EMU_INC_STATS(errors);
1074 			*fault_addr = dva;
1075 			return SIGBUS;
1076 		}
1077 		if (__put_user(dval, dva)) {
1078 			MIPS_FPU_EMU_INC_STATS(errors);
1079 			*fault_addr = dva;
1080 			return SIGSEGV;
1081 		}
1082 		break;
1083 
1084 	case lwc1_op:
1085 		wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1086 				      MIPSInst_SIMM(ir));
1087 		MIPS_FPU_EMU_INC_STATS(loads);
1088 		if (!access_ok(VERIFY_READ, wva, sizeof(u32))) {
1089 			MIPS_FPU_EMU_INC_STATS(errors);
1090 			*fault_addr = wva;
1091 			return SIGBUS;
1092 		}
1093 		if (__get_user(wval, wva)) {
1094 			MIPS_FPU_EMU_INC_STATS(errors);
1095 			*fault_addr = wva;
1096 			return SIGSEGV;
1097 		}
1098 		SITOREG(wval, MIPSInst_RT(ir));
1099 		break;
1100 
1101 	case swc1_op:
1102 		wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1103 				      MIPSInst_SIMM(ir));
1104 		MIPS_FPU_EMU_INC_STATS(stores);
1105 		SIFROMREG(wval, MIPSInst_RT(ir));
1106 		if (!access_ok(VERIFY_WRITE, wva, sizeof(u32))) {
1107 			MIPS_FPU_EMU_INC_STATS(errors);
1108 			*fault_addr = wva;
1109 			return SIGBUS;
1110 		}
1111 		if (__put_user(wval, wva)) {
1112 			MIPS_FPU_EMU_INC_STATS(errors);
1113 			*fault_addr = wva;
1114 			return SIGSEGV;
1115 		}
1116 		break;
1117 
1118 	case cop1_op:
1119 		switch (MIPSInst_RS(ir)) {
1120 		case dmfc_op:
1121 			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1122 				return SIGILL;
1123 
1124 			/* copregister fs -> gpr[rt] */
1125 			if (MIPSInst_RT(ir) != 0) {
1126 				DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
1127 					MIPSInst_RD(ir));
1128 			}
1129 			break;
1130 
1131 		case dmtc_op:
1132 			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1133 				return SIGILL;
1134 
1135 			/* copregister fs <- rt */
1136 			DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1137 			break;
1138 
1139 		case mfhc_op:
1140 			if (!cpu_has_mips_r2_r6)
1141 				goto sigill;
1142 
1143 			/* copregister rd -> gpr[rt] */
1144 			if (MIPSInst_RT(ir) != 0) {
1145 				SIFROMHREG(xcp->regs[MIPSInst_RT(ir)],
1146 					MIPSInst_RD(ir));
1147 			}
1148 			break;
1149 
1150 		case mthc_op:
1151 			if (!cpu_has_mips_r2_r6)
1152 				goto sigill;
1153 
1154 			/* copregister rd <- gpr[rt] */
1155 			SITOHREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1156 			break;
1157 
1158 		case mfc_op:
1159 			/* copregister rd -> gpr[rt] */
1160 			if (MIPSInst_RT(ir) != 0) {
1161 				SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
1162 					MIPSInst_RD(ir));
1163 			}
1164 			break;
1165 
1166 		case mtc_op:
1167 			/* copregister rd <- rt */
1168 			SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1169 			break;
1170 
1171 		case cfc_op:
1172 			/* cop control register rd -> gpr[rt] */
1173 			cop1_cfc(xcp, ctx, ir);
1174 			break;
1175 
1176 		case ctc_op:
1177 			/* copregister rd <- rt */
1178 			cop1_ctc(xcp, ctx, ir);
1179 			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1180 				return SIGFPE;
1181 			}
1182 			break;
1183 
1184 		case bc1eqz_op:
1185 		case bc1nez_op:
1186 			if (!cpu_has_mips_r6 || delay_slot(xcp))
1187 				return SIGILL;
1188 
1189 			cond = likely = 0;
1190 			switch (MIPSInst_RS(ir)) {
1191 			case bc1eqz_op:
1192 				if (get_fpr32(&current->thread.fpu.fpr[MIPSInst_RT(ir)], 0) & 0x1)
1193 				    cond = 1;
1194 				break;
1195 			case bc1nez_op:
1196 				if (!(get_fpr32(&current->thread.fpu.fpr[MIPSInst_RT(ir)], 0) & 0x1))
1197 				    cond = 1;
1198 				break;
1199 			}
1200 			goto branch_common;
1201 
1202 		case bc_op:
1203 			if (delay_slot(xcp))
1204 				return SIGILL;
1205 
1206 			if (cpu_has_mips_4_5_r)
1207 				cbit = fpucondbit[MIPSInst_RT(ir) >> 2];
1208 			else
1209 				cbit = FPU_CSR_COND;
1210 			cond = ctx->fcr31 & cbit;
1211 
1212 			likely = 0;
1213 			switch (MIPSInst_RT(ir) & 3) {
1214 			case bcfl_op:
1215 				if (cpu_has_mips_2_3_4_5_r)
1216 					likely = 1;
1217 				/* Fall through */
1218 			case bcf_op:
1219 				cond = !cond;
1220 				break;
1221 			case bctl_op:
1222 				if (cpu_has_mips_2_3_4_5_r)
1223 					likely = 1;
1224 				/* Fall through */
1225 			case bct_op:
1226 				break;
1227 			}
1228 branch_common:
1229 			set_delay_slot(xcp);
1230 			if (cond) {
1231 				/*
1232 				 * Branch taken: emulate dslot instruction
1233 				 */
1234 				unsigned long bcpc;
1235 
1236 				/*
1237 				 * Remember EPC at the branch to point back
1238 				 * at so that any delay-slot instruction
1239 				 * signal is not silently ignored.
1240 				 */
1241 				bcpc = xcp->cp0_epc;
1242 				xcp->cp0_epc += dec_insn.pc_inc;
1243 
1244 				contpc = MIPSInst_SIMM(ir);
1245 				ir = dec_insn.next_insn;
1246 				if (dec_insn.micro_mips_mode) {
1247 					contpc = (xcp->cp0_epc + (contpc << 1));
1248 
1249 					/* If 16-bit instruction, not FPU. */
1250 					if ((dec_insn.next_pc_inc == 2) ||
1251 						(microMIPS32_to_MIPS32((union mips_instruction *)&ir) == SIGILL)) {
1252 
1253 						/*
1254 						 * Since this instruction will
1255 						 * be put on the stack with
1256 						 * 32-bit words, get around
1257 						 * this problem by putting a
1258 						 * NOP16 as the second one.
1259 						 */
1260 						if (dec_insn.next_pc_inc == 2)
1261 							ir = (ir & (~0xffff)) | MM_NOP16;
1262 
1263 						/*
1264 						 * Single step the non-CP1
1265 						 * instruction in the dslot.
1266 						 */
1267 						sig = mips_dsemul(xcp, ir,
1268 								  contpc);
1269 						if (sig)
1270 							xcp->cp0_epc = bcpc;
1271 						/*
1272 						 * SIGILL forces out of
1273 						 * the emulation loop.
1274 						 */
1275 						return sig ? sig : SIGILL;
1276 					}
1277 				} else
1278 					contpc = (xcp->cp0_epc + (contpc << 2));
1279 
1280 				switch (MIPSInst_OPCODE(ir)) {
1281 				case lwc1_op:
1282 				case swc1_op:
1283 					goto emul;
1284 
1285 				case ldc1_op:
1286 				case sdc1_op:
1287 					if (cpu_has_mips_2_3_4_5_r)
1288 						goto emul;
1289 
1290 					goto bc_sigill;
1291 
1292 				case cop1_op:
1293 					goto emul;
1294 
1295 				case cop1x_op:
1296 					if (cpu_has_mips_4_5_64_r2_r6)
1297 						/* its one of ours */
1298 						goto emul;
1299 
1300 					goto bc_sigill;
1301 
1302 				case spec_op:
1303 					switch (MIPSInst_FUNC(ir)) {
1304 					case movc_op:
1305 						if (cpu_has_mips_4_5_r)
1306 							goto emul;
1307 
1308 						goto bc_sigill;
1309 					}
1310 					break;
1311 
1312 				bc_sigill:
1313 					xcp->cp0_epc = bcpc;
1314 					return SIGILL;
1315 				}
1316 
1317 				/*
1318 				 * Single step the non-cp1
1319 				 * instruction in the dslot
1320 				 */
1321 				sig = mips_dsemul(xcp, ir, contpc);
1322 				if (sig)
1323 					xcp->cp0_epc = bcpc;
1324 				/* SIGILL forces out of the emulation loop.  */
1325 				return sig ? sig : SIGILL;
1326 			} else if (likely) {	/* branch not taken */
1327 				/*
1328 				 * branch likely nullifies
1329 				 * dslot if not taken
1330 				 */
1331 				xcp->cp0_epc += dec_insn.pc_inc;
1332 				contpc += dec_insn.pc_inc;
1333 				/*
1334 				 * else continue & execute
1335 				 * dslot as normal insn
1336 				 */
1337 			}
1338 			break;
1339 
1340 		default:
1341 			if (!(MIPSInst_RS(ir) & 0x10))
1342 				return SIGILL;
1343 
1344 			/* a real fpu computation instruction */
1345 			if ((sig = fpu_emu(xcp, ctx, ir)))
1346 				return sig;
1347 		}
1348 		break;
1349 
1350 	case cop1x_op:
1351 		if (!cpu_has_mips_4_5_64_r2_r6)
1352 			return SIGILL;
1353 
1354 		sig = fpux_emu(xcp, ctx, ir, fault_addr);
1355 		if (sig)
1356 			return sig;
1357 		break;
1358 
1359 	case spec_op:
1360 		if (!cpu_has_mips_4_5_r)
1361 			return SIGILL;
1362 
1363 		if (MIPSInst_FUNC(ir) != movc_op)
1364 			return SIGILL;
1365 		cond = fpucondbit[MIPSInst_RT(ir) >> 2];
1366 		if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
1367 			xcp->regs[MIPSInst_RD(ir)] =
1368 				xcp->regs[MIPSInst_RS(ir)];
1369 		break;
1370 	default:
1371 sigill:
1372 		return SIGILL;
1373 	}
1374 
1375 	/* we did it !! */
1376 	xcp->cp0_epc = contpc;
1377 	clear_delay_slot(xcp);
1378 
1379 	return 0;
1380 }
1381 
1382 /*
1383  * Conversion table from MIPS compare ops 48-63
1384  * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
1385  */
1386 static const unsigned char cmptab[8] = {
1387 	0,			/* cmp_0 (sig) cmp_sf */
1388 	IEEE754_CUN,		/* cmp_un (sig) cmp_ngle */
1389 	IEEE754_CEQ,		/* cmp_eq (sig) cmp_seq */
1390 	IEEE754_CEQ | IEEE754_CUN,	/* cmp_ueq (sig) cmp_ngl  */
1391 	IEEE754_CLT,		/* cmp_olt (sig) cmp_lt */
1392 	IEEE754_CLT | IEEE754_CUN,	/* cmp_ult (sig) cmp_nge */
1393 	IEEE754_CLT | IEEE754_CEQ,	/* cmp_ole (sig) cmp_le */
1394 	IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN,	/* cmp_ule (sig) cmp_ngt */
1395 };
1396 
1397 static const unsigned char negative_cmptab[8] = {
1398 	0, /* Reserved */
1399 	IEEE754_CLT | IEEE754_CGT | IEEE754_CEQ,
1400 	IEEE754_CLT | IEEE754_CGT | IEEE754_CUN,
1401 	IEEE754_CLT | IEEE754_CGT,
1402 	/* Reserved */
1403 };
1404 
1405 
1406 /*
1407  * Additional MIPS4 instructions
1408  */
1409 
1410 #define DEF3OP(name, p, f1, f2, f3)					\
1411 static union ieee754##p fpemu_##p##_##name(union ieee754##p r,		\
1412 	union ieee754##p s, union ieee754##p t)				\
1413 {									\
1414 	struct _ieee754_csr ieee754_csr_save;				\
1415 	s = f1(s, t);							\
1416 	ieee754_csr_save = ieee754_csr;					\
1417 	s = f2(s, r);							\
1418 	ieee754_csr_save.cx |= ieee754_csr.cx;				\
1419 	ieee754_csr_save.sx |= ieee754_csr.sx;				\
1420 	s = f3(s);							\
1421 	ieee754_csr.cx |= ieee754_csr_save.cx;				\
1422 	ieee754_csr.sx |= ieee754_csr_save.sx;				\
1423 	return s;							\
1424 }
1425 
1426 static union ieee754dp fpemu_dp_recip(union ieee754dp d)
1427 {
1428 	return ieee754dp_div(ieee754dp_one(0), d);
1429 }
1430 
1431 static union ieee754dp fpemu_dp_rsqrt(union ieee754dp d)
1432 {
1433 	return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d));
1434 }
1435 
1436 static union ieee754sp fpemu_sp_recip(union ieee754sp s)
1437 {
1438 	return ieee754sp_div(ieee754sp_one(0), s);
1439 }
1440 
1441 static union ieee754sp fpemu_sp_rsqrt(union ieee754sp s)
1442 {
1443 	return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s));
1444 }
1445 
1446 DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add, );
1447 DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub, );
1448 DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg);
1449 DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg);
1450 DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add, );
1451 DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub, );
1452 DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg);
1453 DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg);
1454 
1455 static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1456 	mips_instruction ir, void *__user *fault_addr)
1457 {
1458 	unsigned rcsr = 0;	/* resulting csr */
1459 
1460 	MIPS_FPU_EMU_INC_STATS(cp1xops);
1461 
1462 	switch (MIPSInst_FMA_FFMT(ir)) {
1463 	case s_fmt:{		/* 0 */
1464 
1465 		union ieee754sp(*handler) (union ieee754sp, union ieee754sp, union ieee754sp);
1466 		union ieee754sp fd, fr, fs, ft;
1467 		u32 __user *va;
1468 		u32 val;
1469 
1470 		switch (MIPSInst_FUNC(ir)) {
1471 		case lwxc1_op:
1472 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1473 				xcp->regs[MIPSInst_FT(ir)]);
1474 
1475 			MIPS_FPU_EMU_INC_STATS(loads);
1476 			if (!access_ok(VERIFY_READ, va, sizeof(u32))) {
1477 				MIPS_FPU_EMU_INC_STATS(errors);
1478 				*fault_addr = va;
1479 				return SIGBUS;
1480 			}
1481 			if (__get_user(val, va)) {
1482 				MIPS_FPU_EMU_INC_STATS(errors);
1483 				*fault_addr = va;
1484 				return SIGSEGV;
1485 			}
1486 			SITOREG(val, MIPSInst_FD(ir));
1487 			break;
1488 
1489 		case swxc1_op:
1490 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1491 				xcp->regs[MIPSInst_FT(ir)]);
1492 
1493 			MIPS_FPU_EMU_INC_STATS(stores);
1494 
1495 			SIFROMREG(val, MIPSInst_FS(ir));
1496 			if (!access_ok(VERIFY_WRITE, va, sizeof(u32))) {
1497 				MIPS_FPU_EMU_INC_STATS(errors);
1498 				*fault_addr = va;
1499 				return SIGBUS;
1500 			}
1501 			if (put_user(val, va)) {
1502 				MIPS_FPU_EMU_INC_STATS(errors);
1503 				*fault_addr = va;
1504 				return SIGSEGV;
1505 			}
1506 			break;
1507 
1508 		case madd_s_op:
1509 			handler = fpemu_sp_madd;
1510 			goto scoptop;
1511 		case msub_s_op:
1512 			handler = fpemu_sp_msub;
1513 			goto scoptop;
1514 		case nmadd_s_op:
1515 			handler = fpemu_sp_nmadd;
1516 			goto scoptop;
1517 		case nmsub_s_op:
1518 			handler = fpemu_sp_nmsub;
1519 			goto scoptop;
1520 
1521 		      scoptop:
1522 			SPFROMREG(fr, MIPSInst_FR(ir));
1523 			SPFROMREG(fs, MIPSInst_FS(ir));
1524 			SPFROMREG(ft, MIPSInst_FT(ir));
1525 			fd = (*handler) (fr, fs, ft);
1526 			SPTOREG(fd, MIPSInst_FD(ir));
1527 
1528 		      copcsr:
1529 			if (ieee754_cxtest(IEEE754_INEXACT)) {
1530 				MIPS_FPU_EMU_INC_STATS(ieee754_inexact);
1531 				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1532 			}
1533 			if (ieee754_cxtest(IEEE754_UNDERFLOW)) {
1534 				MIPS_FPU_EMU_INC_STATS(ieee754_underflow);
1535 				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1536 			}
1537 			if (ieee754_cxtest(IEEE754_OVERFLOW)) {
1538 				MIPS_FPU_EMU_INC_STATS(ieee754_overflow);
1539 				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1540 			}
1541 			if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) {
1542 				MIPS_FPU_EMU_INC_STATS(ieee754_invalidop);
1543 				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1544 			}
1545 
1546 			ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1547 			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1548 				/*printk ("SIGFPE: FPU csr = %08x\n",
1549 				   ctx->fcr31); */
1550 				return SIGFPE;
1551 			}
1552 
1553 			break;
1554 
1555 		default:
1556 			return SIGILL;
1557 		}
1558 		break;
1559 	}
1560 
1561 	case d_fmt:{		/* 1 */
1562 		union ieee754dp(*handler) (union ieee754dp, union ieee754dp, union ieee754dp);
1563 		union ieee754dp fd, fr, fs, ft;
1564 		u64 __user *va;
1565 		u64 val;
1566 
1567 		switch (MIPSInst_FUNC(ir)) {
1568 		case ldxc1_op:
1569 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1570 				xcp->regs[MIPSInst_FT(ir)]);
1571 
1572 			MIPS_FPU_EMU_INC_STATS(loads);
1573 			if (!access_ok(VERIFY_READ, va, sizeof(u64))) {
1574 				MIPS_FPU_EMU_INC_STATS(errors);
1575 				*fault_addr = va;
1576 				return SIGBUS;
1577 			}
1578 			if (__get_user(val, va)) {
1579 				MIPS_FPU_EMU_INC_STATS(errors);
1580 				*fault_addr = va;
1581 				return SIGSEGV;
1582 			}
1583 			DITOREG(val, MIPSInst_FD(ir));
1584 			break;
1585 
1586 		case sdxc1_op:
1587 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1588 				xcp->regs[MIPSInst_FT(ir)]);
1589 
1590 			MIPS_FPU_EMU_INC_STATS(stores);
1591 			DIFROMREG(val, MIPSInst_FS(ir));
1592 			if (!access_ok(VERIFY_WRITE, va, sizeof(u64))) {
1593 				MIPS_FPU_EMU_INC_STATS(errors);
1594 				*fault_addr = va;
1595 				return SIGBUS;
1596 			}
1597 			if (__put_user(val, va)) {
1598 				MIPS_FPU_EMU_INC_STATS(errors);
1599 				*fault_addr = va;
1600 				return SIGSEGV;
1601 			}
1602 			break;
1603 
1604 		case madd_d_op:
1605 			handler = fpemu_dp_madd;
1606 			goto dcoptop;
1607 		case msub_d_op:
1608 			handler = fpemu_dp_msub;
1609 			goto dcoptop;
1610 		case nmadd_d_op:
1611 			handler = fpemu_dp_nmadd;
1612 			goto dcoptop;
1613 		case nmsub_d_op:
1614 			handler = fpemu_dp_nmsub;
1615 			goto dcoptop;
1616 
1617 		      dcoptop:
1618 			DPFROMREG(fr, MIPSInst_FR(ir));
1619 			DPFROMREG(fs, MIPSInst_FS(ir));
1620 			DPFROMREG(ft, MIPSInst_FT(ir));
1621 			fd = (*handler) (fr, fs, ft);
1622 			DPTOREG(fd, MIPSInst_FD(ir));
1623 			goto copcsr;
1624 
1625 		default:
1626 			return SIGILL;
1627 		}
1628 		break;
1629 	}
1630 
1631 	case 0x3:
1632 		if (MIPSInst_FUNC(ir) != pfetch_op)
1633 			return SIGILL;
1634 
1635 		/* ignore prefx operation */
1636 		break;
1637 
1638 	default:
1639 		return SIGILL;
1640 	}
1641 
1642 	return 0;
1643 }
1644 
1645 
1646 
1647 /*
1648  * Emulate a single COP1 arithmetic instruction.
1649  */
1650 static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1651 	mips_instruction ir)
1652 {
1653 	int rfmt;		/* resulting format */
1654 	unsigned rcsr = 0;	/* resulting csr */
1655 	unsigned int oldrm;
1656 	unsigned int cbit;
1657 	unsigned cond;
1658 	union {
1659 		union ieee754dp d;
1660 		union ieee754sp s;
1661 		int w;
1662 		s64 l;
1663 	} rv;			/* resulting value */
1664 	u64 bits;
1665 
1666 	MIPS_FPU_EMU_INC_STATS(cp1ops);
1667 	switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) {
1668 	case s_fmt: {		/* 0 */
1669 		union {
1670 			union ieee754sp(*b) (union ieee754sp, union ieee754sp);
1671 			union ieee754sp(*u) (union ieee754sp);
1672 		} handler;
1673 		union ieee754sp fs, ft;
1674 
1675 		switch (MIPSInst_FUNC(ir)) {
1676 			/* binary ops */
1677 		case fadd_op:
1678 			handler.b = ieee754sp_add;
1679 			goto scopbop;
1680 		case fsub_op:
1681 			handler.b = ieee754sp_sub;
1682 			goto scopbop;
1683 		case fmul_op:
1684 			handler.b = ieee754sp_mul;
1685 			goto scopbop;
1686 		case fdiv_op:
1687 			handler.b = ieee754sp_div;
1688 			goto scopbop;
1689 
1690 			/* unary  ops */
1691 		case fsqrt_op:
1692 			if (!cpu_has_mips_2_3_4_5_r)
1693 				return SIGILL;
1694 
1695 			handler.u = ieee754sp_sqrt;
1696 			goto scopuop;
1697 
1698 		/*
1699 		 * Note that on some MIPS IV implementations such as the
1700 		 * R5000 and R8000 the FSQRT and FRECIP instructions do not
1701 		 * achieve full IEEE-754 accuracy - however this emulator does.
1702 		 */
1703 		case frsqrt_op:
1704 			if (!cpu_has_mips_4_5_64_r2_r6)
1705 				return SIGILL;
1706 
1707 			handler.u = fpemu_sp_rsqrt;
1708 			goto scopuop;
1709 
1710 		case frecip_op:
1711 			if (!cpu_has_mips_4_5_64_r2_r6)
1712 				return SIGILL;
1713 
1714 			handler.u = fpemu_sp_recip;
1715 			goto scopuop;
1716 
1717 		case fmovc_op:
1718 			if (!cpu_has_mips_4_5_r)
1719 				return SIGILL;
1720 
1721 			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1722 			if (((ctx->fcr31 & cond) != 0) !=
1723 				((MIPSInst_FT(ir) & 1) != 0))
1724 				return 0;
1725 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1726 			break;
1727 
1728 		case fmovz_op:
1729 			if (!cpu_has_mips_4_5_r)
1730 				return SIGILL;
1731 
1732 			if (xcp->regs[MIPSInst_FT(ir)] != 0)
1733 				return 0;
1734 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1735 			break;
1736 
1737 		case fmovn_op:
1738 			if (!cpu_has_mips_4_5_r)
1739 				return SIGILL;
1740 
1741 			if (xcp->regs[MIPSInst_FT(ir)] == 0)
1742 				return 0;
1743 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1744 			break;
1745 
1746 		case fseleqz_op:
1747 			if (!cpu_has_mips_r6)
1748 				return SIGILL;
1749 
1750 			SPFROMREG(rv.s, MIPSInst_FT(ir));
1751 			if (rv.w & 0x1)
1752 				rv.w = 0;
1753 			else
1754 				SPFROMREG(rv.s, MIPSInst_FS(ir));
1755 			break;
1756 
1757 		case fselnez_op:
1758 			if (!cpu_has_mips_r6)
1759 				return SIGILL;
1760 
1761 			SPFROMREG(rv.s, MIPSInst_FT(ir));
1762 			if (rv.w & 0x1)
1763 				SPFROMREG(rv.s, MIPSInst_FS(ir));
1764 			else
1765 				rv.w = 0;
1766 			break;
1767 
1768 		case fmaddf_op: {
1769 			union ieee754sp ft, fs, fd;
1770 
1771 			if (!cpu_has_mips_r6)
1772 				return SIGILL;
1773 
1774 			SPFROMREG(ft, MIPSInst_FT(ir));
1775 			SPFROMREG(fs, MIPSInst_FS(ir));
1776 			SPFROMREG(fd, MIPSInst_FD(ir));
1777 			rv.s = ieee754sp_maddf(fd, fs, ft);
1778 			break;
1779 		}
1780 
1781 		case fmsubf_op: {
1782 			union ieee754sp ft, fs, fd;
1783 
1784 			if (!cpu_has_mips_r6)
1785 				return SIGILL;
1786 
1787 			SPFROMREG(ft, MIPSInst_FT(ir));
1788 			SPFROMREG(fs, MIPSInst_FS(ir));
1789 			SPFROMREG(fd, MIPSInst_FD(ir));
1790 			rv.s = ieee754sp_msubf(fd, fs, ft);
1791 			break;
1792 		}
1793 
1794 		case frint_op: {
1795 			union ieee754sp fs;
1796 
1797 			if (!cpu_has_mips_r6)
1798 				return SIGILL;
1799 
1800 			SPFROMREG(fs, MIPSInst_FS(ir));
1801 			rv.l = ieee754sp_tlong(fs);
1802 			rv.s = ieee754sp_flong(rv.l);
1803 			goto copcsr;
1804 		}
1805 
1806 		case fclass_op: {
1807 			union ieee754sp fs;
1808 
1809 			if (!cpu_has_mips_r6)
1810 				return SIGILL;
1811 
1812 			SPFROMREG(fs, MIPSInst_FS(ir));
1813 			rv.w = ieee754sp_2008class(fs);
1814 			rfmt = w_fmt;
1815 			break;
1816 		}
1817 
1818 		case fmin_op: {
1819 			union ieee754sp fs, ft;
1820 
1821 			if (!cpu_has_mips_r6)
1822 				return SIGILL;
1823 
1824 			SPFROMREG(ft, MIPSInst_FT(ir));
1825 			SPFROMREG(fs, MIPSInst_FS(ir));
1826 			rv.s = ieee754sp_fmin(fs, ft);
1827 			break;
1828 		}
1829 
1830 		case fmina_op: {
1831 			union ieee754sp fs, ft;
1832 
1833 			if (!cpu_has_mips_r6)
1834 				return SIGILL;
1835 
1836 			SPFROMREG(ft, MIPSInst_FT(ir));
1837 			SPFROMREG(fs, MIPSInst_FS(ir));
1838 			rv.s = ieee754sp_fmina(fs, ft);
1839 			break;
1840 		}
1841 
1842 		case fmax_op: {
1843 			union ieee754sp fs, ft;
1844 
1845 			if (!cpu_has_mips_r6)
1846 				return SIGILL;
1847 
1848 			SPFROMREG(ft, MIPSInst_FT(ir));
1849 			SPFROMREG(fs, MIPSInst_FS(ir));
1850 			rv.s = ieee754sp_fmax(fs, ft);
1851 			break;
1852 		}
1853 
1854 		case fmaxa_op: {
1855 			union ieee754sp fs, ft;
1856 
1857 			if (!cpu_has_mips_r6)
1858 				return SIGILL;
1859 
1860 			SPFROMREG(ft, MIPSInst_FT(ir));
1861 			SPFROMREG(fs, MIPSInst_FS(ir));
1862 			rv.s = ieee754sp_fmaxa(fs, ft);
1863 			break;
1864 		}
1865 
1866 		case fabs_op:
1867 			handler.u = ieee754sp_abs;
1868 			goto scopuop;
1869 
1870 		case fneg_op:
1871 			handler.u = ieee754sp_neg;
1872 			goto scopuop;
1873 
1874 		case fmov_op:
1875 			/* an easy one */
1876 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1877 			goto copcsr;
1878 
1879 			/* binary op on handler */
1880 scopbop:
1881 			SPFROMREG(fs, MIPSInst_FS(ir));
1882 			SPFROMREG(ft, MIPSInst_FT(ir));
1883 
1884 			rv.s = (*handler.b) (fs, ft);
1885 			goto copcsr;
1886 scopuop:
1887 			SPFROMREG(fs, MIPSInst_FS(ir));
1888 			rv.s = (*handler.u) (fs);
1889 			goto copcsr;
1890 copcsr:
1891 			if (ieee754_cxtest(IEEE754_INEXACT)) {
1892 				MIPS_FPU_EMU_INC_STATS(ieee754_inexact);
1893 				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1894 			}
1895 			if (ieee754_cxtest(IEEE754_UNDERFLOW)) {
1896 				MIPS_FPU_EMU_INC_STATS(ieee754_underflow);
1897 				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1898 			}
1899 			if (ieee754_cxtest(IEEE754_OVERFLOW)) {
1900 				MIPS_FPU_EMU_INC_STATS(ieee754_overflow);
1901 				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1902 			}
1903 			if (ieee754_cxtest(IEEE754_ZERO_DIVIDE)) {
1904 				MIPS_FPU_EMU_INC_STATS(ieee754_zerodiv);
1905 				rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S;
1906 			}
1907 			if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) {
1908 				MIPS_FPU_EMU_INC_STATS(ieee754_invalidop);
1909 				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1910 			}
1911 			break;
1912 
1913 			/* unary conv ops */
1914 		case fcvts_op:
1915 			return SIGILL;	/* not defined */
1916 
1917 		case fcvtd_op:
1918 			SPFROMREG(fs, MIPSInst_FS(ir));
1919 			rv.d = ieee754dp_fsp(fs);
1920 			rfmt = d_fmt;
1921 			goto copcsr;
1922 
1923 		case fcvtw_op:
1924 			SPFROMREG(fs, MIPSInst_FS(ir));
1925 			rv.w = ieee754sp_tint(fs);
1926 			rfmt = w_fmt;
1927 			goto copcsr;
1928 
1929 		case fround_op:
1930 		case ftrunc_op:
1931 		case fceil_op:
1932 		case ffloor_op:
1933 			if (!cpu_has_mips_2_3_4_5_r)
1934 				return SIGILL;
1935 
1936 			oldrm = ieee754_csr.rm;
1937 			SPFROMREG(fs, MIPSInst_FS(ir));
1938 			ieee754_csr.rm = MIPSInst_FUNC(ir);
1939 			rv.w = ieee754sp_tint(fs);
1940 			ieee754_csr.rm = oldrm;
1941 			rfmt = w_fmt;
1942 			goto copcsr;
1943 
1944 		case fcvtl_op:
1945 			if (!cpu_has_mips_3_4_5_64_r2_r6)
1946 				return SIGILL;
1947 
1948 			SPFROMREG(fs, MIPSInst_FS(ir));
1949 			rv.l = ieee754sp_tlong(fs);
1950 			rfmt = l_fmt;
1951 			goto copcsr;
1952 
1953 		case froundl_op:
1954 		case ftruncl_op:
1955 		case fceill_op:
1956 		case ffloorl_op:
1957 			if (!cpu_has_mips_3_4_5_64_r2_r6)
1958 				return SIGILL;
1959 
1960 			oldrm = ieee754_csr.rm;
1961 			SPFROMREG(fs, MIPSInst_FS(ir));
1962 			ieee754_csr.rm = MIPSInst_FUNC(ir);
1963 			rv.l = ieee754sp_tlong(fs);
1964 			ieee754_csr.rm = oldrm;
1965 			rfmt = l_fmt;
1966 			goto copcsr;
1967 
1968 		default:
1969 			if (!NO_R6EMU && MIPSInst_FUNC(ir) >= fcmp_op) {
1970 				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1971 				union ieee754sp fs, ft;
1972 
1973 				SPFROMREG(fs, MIPSInst_FS(ir));
1974 				SPFROMREG(ft, MIPSInst_FT(ir));
1975 				rv.w = ieee754sp_cmp(fs, ft,
1976 					cmptab[cmpop & 0x7], cmpop & 0x8);
1977 				rfmt = -1;
1978 				if ((cmpop & 0x8) && ieee754_cxtest
1979 					(IEEE754_INVALID_OPERATION))
1980 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1981 				else
1982 					goto copcsr;
1983 
1984 			} else
1985 				return SIGILL;
1986 			break;
1987 		}
1988 		break;
1989 	}
1990 
1991 	case d_fmt: {
1992 		union ieee754dp fs, ft;
1993 		union {
1994 			union ieee754dp(*b) (union ieee754dp, union ieee754dp);
1995 			union ieee754dp(*u) (union ieee754dp);
1996 		} handler;
1997 
1998 		switch (MIPSInst_FUNC(ir)) {
1999 			/* binary ops */
2000 		case fadd_op:
2001 			handler.b = ieee754dp_add;
2002 			goto dcopbop;
2003 		case fsub_op:
2004 			handler.b = ieee754dp_sub;
2005 			goto dcopbop;
2006 		case fmul_op:
2007 			handler.b = ieee754dp_mul;
2008 			goto dcopbop;
2009 		case fdiv_op:
2010 			handler.b = ieee754dp_div;
2011 			goto dcopbop;
2012 
2013 			/* unary  ops */
2014 		case fsqrt_op:
2015 			if (!cpu_has_mips_2_3_4_5_r)
2016 				return SIGILL;
2017 
2018 			handler.u = ieee754dp_sqrt;
2019 			goto dcopuop;
2020 		/*
2021 		 * Note that on some MIPS IV implementations such as the
2022 		 * R5000 and R8000 the FSQRT and FRECIP instructions do not
2023 		 * achieve full IEEE-754 accuracy - however this emulator does.
2024 		 */
2025 		case frsqrt_op:
2026 			if (!cpu_has_mips_4_5_64_r2_r6)
2027 				return SIGILL;
2028 
2029 			handler.u = fpemu_dp_rsqrt;
2030 			goto dcopuop;
2031 		case frecip_op:
2032 			if (!cpu_has_mips_4_5_64_r2_r6)
2033 				return SIGILL;
2034 
2035 			handler.u = fpemu_dp_recip;
2036 			goto dcopuop;
2037 		case fmovc_op:
2038 			if (!cpu_has_mips_4_5_r)
2039 				return SIGILL;
2040 
2041 			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
2042 			if (((ctx->fcr31 & cond) != 0) !=
2043 				((MIPSInst_FT(ir) & 1) != 0))
2044 				return 0;
2045 			DPFROMREG(rv.d, MIPSInst_FS(ir));
2046 			break;
2047 		case fmovz_op:
2048 			if (!cpu_has_mips_4_5_r)
2049 				return SIGILL;
2050 
2051 			if (xcp->regs[MIPSInst_FT(ir)] != 0)
2052 				return 0;
2053 			DPFROMREG(rv.d, MIPSInst_FS(ir));
2054 			break;
2055 		case fmovn_op:
2056 			if (!cpu_has_mips_4_5_r)
2057 				return SIGILL;
2058 
2059 			if (xcp->regs[MIPSInst_FT(ir)] == 0)
2060 				return 0;
2061 			DPFROMREG(rv.d, MIPSInst_FS(ir));
2062 			break;
2063 
2064 		case fseleqz_op:
2065 			if (!cpu_has_mips_r6)
2066 				return SIGILL;
2067 
2068 			DPFROMREG(rv.d, MIPSInst_FT(ir));
2069 			if (rv.l & 0x1)
2070 				rv.l = 0;
2071 			else
2072 				DPFROMREG(rv.d, MIPSInst_FS(ir));
2073 			break;
2074 
2075 		case fselnez_op:
2076 			if (!cpu_has_mips_r6)
2077 				return SIGILL;
2078 
2079 			DPFROMREG(rv.d, MIPSInst_FT(ir));
2080 			if (rv.l & 0x1)
2081 				DPFROMREG(rv.d, MIPSInst_FS(ir));
2082 			else
2083 				rv.l = 0;
2084 			break;
2085 
2086 		case fmaddf_op: {
2087 			union ieee754dp ft, fs, fd;
2088 
2089 			if (!cpu_has_mips_r6)
2090 				return SIGILL;
2091 
2092 			DPFROMREG(ft, MIPSInst_FT(ir));
2093 			DPFROMREG(fs, MIPSInst_FS(ir));
2094 			DPFROMREG(fd, MIPSInst_FD(ir));
2095 			rv.d = ieee754dp_maddf(fd, fs, ft);
2096 			break;
2097 		}
2098 
2099 		case fmsubf_op: {
2100 			union ieee754dp ft, fs, fd;
2101 
2102 			if (!cpu_has_mips_r6)
2103 				return SIGILL;
2104 
2105 			DPFROMREG(ft, MIPSInst_FT(ir));
2106 			DPFROMREG(fs, MIPSInst_FS(ir));
2107 			DPFROMREG(fd, MIPSInst_FD(ir));
2108 			rv.d = ieee754dp_msubf(fd, fs, ft);
2109 			break;
2110 		}
2111 
2112 		case frint_op: {
2113 			union ieee754dp fs;
2114 
2115 			if (!cpu_has_mips_r6)
2116 				return SIGILL;
2117 
2118 			DPFROMREG(fs, MIPSInst_FS(ir));
2119 			rv.l = ieee754dp_tlong(fs);
2120 			rv.d = ieee754dp_flong(rv.l);
2121 			goto copcsr;
2122 		}
2123 
2124 		case fclass_op: {
2125 			union ieee754dp fs;
2126 
2127 			if (!cpu_has_mips_r6)
2128 				return SIGILL;
2129 
2130 			DPFROMREG(fs, MIPSInst_FS(ir));
2131 			rv.w = ieee754dp_2008class(fs);
2132 			rfmt = w_fmt;
2133 			break;
2134 		}
2135 
2136 		case fmin_op: {
2137 			union ieee754dp fs, ft;
2138 
2139 			if (!cpu_has_mips_r6)
2140 				return SIGILL;
2141 
2142 			DPFROMREG(ft, MIPSInst_FT(ir));
2143 			DPFROMREG(fs, MIPSInst_FS(ir));
2144 			rv.d = ieee754dp_fmin(fs, ft);
2145 			break;
2146 		}
2147 
2148 		case fmina_op: {
2149 			union ieee754dp fs, ft;
2150 
2151 			if (!cpu_has_mips_r6)
2152 				return SIGILL;
2153 
2154 			DPFROMREG(ft, MIPSInst_FT(ir));
2155 			DPFROMREG(fs, MIPSInst_FS(ir));
2156 			rv.d = ieee754dp_fmina(fs, ft);
2157 			break;
2158 		}
2159 
2160 		case fmax_op: {
2161 			union ieee754dp fs, ft;
2162 
2163 			if (!cpu_has_mips_r6)
2164 				return SIGILL;
2165 
2166 			DPFROMREG(ft, MIPSInst_FT(ir));
2167 			DPFROMREG(fs, MIPSInst_FS(ir));
2168 			rv.d = ieee754dp_fmax(fs, ft);
2169 			break;
2170 		}
2171 
2172 		case fmaxa_op: {
2173 			union ieee754dp fs, ft;
2174 
2175 			if (!cpu_has_mips_r6)
2176 				return SIGILL;
2177 
2178 			DPFROMREG(ft, MIPSInst_FT(ir));
2179 			DPFROMREG(fs, MIPSInst_FS(ir));
2180 			rv.d = ieee754dp_fmaxa(fs, ft);
2181 			break;
2182 		}
2183 
2184 		case fabs_op:
2185 			handler.u = ieee754dp_abs;
2186 			goto dcopuop;
2187 
2188 		case fneg_op:
2189 			handler.u = ieee754dp_neg;
2190 			goto dcopuop;
2191 
2192 		case fmov_op:
2193 			/* an easy one */
2194 			DPFROMREG(rv.d, MIPSInst_FS(ir));
2195 			goto copcsr;
2196 
2197 			/* binary op on handler */
2198 dcopbop:
2199 			DPFROMREG(fs, MIPSInst_FS(ir));
2200 			DPFROMREG(ft, MIPSInst_FT(ir));
2201 
2202 			rv.d = (*handler.b) (fs, ft);
2203 			goto copcsr;
2204 dcopuop:
2205 			DPFROMREG(fs, MIPSInst_FS(ir));
2206 			rv.d = (*handler.u) (fs);
2207 			goto copcsr;
2208 
2209 		/*
2210 		 * unary conv ops
2211 		 */
2212 		case fcvts_op:
2213 			DPFROMREG(fs, MIPSInst_FS(ir));
2214 			rv.s = ieee754sp_fdp(fs);
2215 			rfmt = s_fmt;
2216 			goto copcsr;
2217 
2218 		case fcvtd_op:
2219 			return SIGILL;	/* not defined */
2220 
2221 		case fcvtw_op:
2222 			DPFROMREG(fs, MIPSInst_FS(ir));
2223 			rv.w = ieee754dp_tint(fs);	/* wrong */
2224 			rfmt = w_fmt;
2225 			goto copcsr;
2226 
2227 		case fround_op:
2228 		case ftrunc_op:
2229 		case fceil_op:
2230 		case ffloor_op:
2231 			if (!cpu_has_mips_2_3_4_5_r)
2232 				return SIGILL;
2233 
2234 			oldrm = ieee754_csr.rm;
2235 			DPFROMREG(fs, MIPSInst_FS(ir));
2236 			ieee754_csr.rm = MIPSInst_FUNC(ir);
2237 			rv.w = ieee754dp_tint(fs);
2238 			ieee754_csr.rm = oldrm;
2239 			rfmt = w_fmt;
2240 			goto copcsr;
2241 
2242 		case fcvtl_op:
2243 			if (!cpu_has_mips_3_4_5_64_r2_r6)
2244 				return SIGILL;
2245 
2246 			DPFROMREG(fs, MIPSInst_FS(ir));
2247 			rv.l = ieee754dp_tlong(fs);
2248 			rfmt = l_fmt;
2249 			goto copcsr;
2250 
2251 		case froundl_op:
2252 		case ftruncl_op:
2253 		case fceill_op:
2254 		case ffloorl_op:
2255 			if (!cpu_has_mips_3_4_5_64_r2_r6)
2256 				return SIGILL;
2257 
2258 			oldrm = ieee754_csr.rm;
2259 			DPFROMREG(fs, MIPSInst_FS(ir));
2260 			ieee754_csr.rm = MIPSInst_FUNC(ir);
2261 			rv.l = ieee754dp_tlong(fs);
2262 			ieee754_csr.rm = oldrm;
2263 			rfmt = l_fmt;
2264 			goto copcsr;
2265 
2266 		default:
2267 			if (!NO_R6EMU && MIPSInst_FUNC(ir) >= fcmp_op) {
2268 				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
2269 				union ieee754dp fs, ft;
2270 
2271 				DPFROMREG(fs, MIPSInst_FS(ir));
2272 				DPFROMREG(ft, MIPSInst_FT(ir));
2273 				rv.w = ieee754dp_cmp(fs, ft,
2274 					cmptab[cmpop & 0x7], cmpop & 0x8);
2275 				rfmt = -1;
2276 				if ((cmpop & 0x8)
2277 					&&
2278 					ieee754_cxtest
2279 					(IEEE754_INVALID_OPERATION))
2280 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2281 				else
2282 					goto copcsr;
2283 
2284 			}
2285 			else {
2286 				return SIGILL;
2287 			}
2288 			break;
2289 		}
2290 		break;
2291 	}
2292 
2293 	case w_fmt: {
2294 		union ieee754dp fs;
2295 
2296 		switch (MIPSInst_FUNC(ir)) {
2297 		case fcvts_op:
2298 			/* convert word to single precision real */
2299 			SPFROMREG(fs, MIPSInst_FS(ir));
2300 			rv.s = ieee754sp_fint(fs.bits);
2301 			rfmt = s_fmt;
2302 			goto copcsr;
2303 		case fcvtd_op:
2304 			/* convert word to double precision real */
2305 			SPFROMREG(fs, MIPSInst_FS(ir));
2306 			rv.d = ieee754dp_fint(fs.bits);
2307 			rfmt = d_fmt;
2308 			goto copcsr;
2309 		default: {
2310 			/* Emulating the new CMP.condn.fmt R6 instruction */
2311 #define CMPOP_MASK	0x7
2312 #define SIGN_BIT	(0x1 << 3)
2313 #define PREDICATE_BIT	(0x1 << 4)
2314 
2315 			int cmpop = MIPSInst_FUNC(ir) & CMPOP_MASK;
2316 			int sig = MIPSInst_FUNC(ir) & SIGN_BIT;
2317 			union ieee754sp fs, ft;
2318 
2319 			/* This is an R6 only instruction */
2320 			if (!cpu_has_mips_r6 ||
2321 			    (MIPSInst_FUNC(ir) & 0x20))
2322 				return SIGILL;
2323 
2324 			/* fmt is w_fmt for single precision so fix it */
2325 			rfmt = s_fmt;
2326 			/* default to false */
2327 			rv.w = 0;
2328 
2329 			/* CMP.condn.S */
2330 			SPFROMREG(fs, MIPSInst_FS(ir));
2331 			SPFROMREG(ft, MIPSInst_FT(ir));
2332 
2333 			/* positive predicates */
2334 			if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
2335 				if (ieee754sp_cmp(fs, ft, cmptab[cmpop],
2336 						  sig))
2337 				    rv.w = -1; /* true, all 1s */
2338 				if ((sig) &&
2339 				    ieee754_cxtest(IEEE754_INVALID_OPERATION))
2340 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2341 				else
2342 					goto copcsr;
2343 			} else {
2344 				/* negative predicates */
2345 				switch (cmpop) {
2346 				case 1:
2347 				case 2:
2348 				case 3:
2349 					if (ieee754sp_cmp(fs, ft,
2350 							  negative_cmptab[cmpop],
2351 							  sig))
2352 						rv.w = -1; /* true, all 1s */
2353 					if (sig &&
2354 					    ieee754_cxtest(IEEE754_INVALID_OPERATION))
2355 						rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2356 					else
2357 						goto copcsr;
2358 					break;
2359 				default:
2360 					/* Reserved R6 ops */
2361 					pr_err("Reserved MIPS R6 CMP.condn.S operation\n");
2362 					return SIGILL;
2363 				}
2364 			}
2365 			break;
2366 			}
2367 		}
2368 	}
2369 
2370 	case l_fmt:
2371 
2372 		if (!cpu_has_mips_3_4_5_64_r2_r6)
2373 			return SIGILL;
2374 
2375 		DIFROMREG(bits, MIPSInst_FS(ir));
2376 
2377 		switch (MIPSInst_FUNC(ir)) {
2378 		case fcvts_op:
2379 			/* convert long to single precision real */
2380 			rv.s = ieee754sp_flong(bits);
2381 			rfmt = s_fmt;
2382 			goto copcsr;
2383 		case fcvtd_op:
2384 			/* convert long to double precision real */
2385 			rv.d = ieee754dp_flong(bits);
2386 			rfmt = d_fmt;
2387 			goto copcsr;
2388 		default: {
2389 			/* Emulating the new CMP.condn.fmt R6 instruction */
2390 			int cmpop = MIPSInst_FUNC(ir) & CMPOP_MASK;
2391 			int sig = MIPSInst_FUNC(ir) & SIGN_BIT;
2392 			union ieee754dp fs, ft;
2393 
2394 			if (!cpu_has_mips_r6 ||
2395 			    (MIPSInst_FUNC(ir) & 0x20))
2396 				return SIGILL;
2397 
2398 			/* fmt is l_fmt for double precision so fix it */
2399 			rfmt = d_fmt;
2400 			/* default to false */
2401 			rv.l = 0;
2402 
2403 			/* CMP.condn.D */
2404 			DPFROMREG(fs, MIPSInst_FS(ir));
2405 			DPFROMREG(ft, MIPSInst_FT(ir));
2406 
2407 			/* positive predicates */
2408 			if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
2409 				if (ieee754dp_cmp(fs, ft,
2410 						  cmptab[cmpop], sig))
2411 				    rv.l = -1LL; /* true, all 1s */
2412 				if (sig &&
2413 				    ieee754_cxtest(IEEE754_INVALID_OPERATION))
2414 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2415 				else
2416 					goto copcsr;
2417 			} else {
2418 				/* negative predicates */
2419 				switch (cmpop) {
2420 				case 1:
2421 				case 2:
2422 				case 3:
2423 					if (ieee754dp_cmp(fs, ft,
2424 							  negative_cmptab[cmpop],
2425 							  sig))
2426 						rv.l = -1LL; /* true, all 1s */
2427 					if (sig &&
2428 					    ieee754_cxtest(IEEE754_INVALID_OPERATION))
2429 						rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2430 					else
2431 						goto copcsr;
2432 					break;
2433 				default:
2434 					/* Reserved R6 ops */
2435 					pr_err("Reserved MIPS R6 CMP.condn.D operation\n");
2436 					return SIGILL;
2437 				}
2438 			}
2439 			break;
2440 			}
2441 		}
2442 	default:
2443 		return SIGILL;
2444 	}
2445 
2446 	/*
2447 	 * Update the fpu CSR register for this operation.
2448 	 * If an exception is required, generate a tidy SIGFPE exception,
2449 	 * without updating the result register.
2450 	 * Note: cause exception bits do not accumulate, they are rewritten
2451 	 * for each op; only the flag/sticky bits accumulate.
2452 	 */
2453 	ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
2454 	if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
2455 		/*printk ("SIGFPE: FPU csr = %08x\n",ctx->fcr31); */
2456 		return SIGFPE;
2457 	}
2458 
2459 	/*
2460 	 * Now we can safely write the result back to the register file.
2461 	 */
2462 	switch (rfmt) {
2463 	case -1:
2464 
2465 		if (cpu_has_mips_4_5_r)
2466 			cbit = fpucondbit[MIPSInst_FD(ir) >> 2];
2467 		else
2468 			cbit = FPU_CSR_COND;
2469 		if (rv.w)
2470 			ctx->fcr31 |= cbit;
2471 		else
2472 			ctx->fcr31 &= ~cbit;
2473 		break;
2474 
2475 	case d_fmt:
2476 		DPTOREG(rv.d, MIPSInst_FD(ir));
2477 		break;
2478 	case s_fmt:
2479 		SPTOREG(rv.s, MIPSInst_FD(ir));
2480 		break;
2481 	case w_fmt:
2482 		SITOREG(rv.w, MIPSInst_FD(ir));
2483 		break;
2484 	case l_fmt:
2485 		if (!cpu_has_mips_3_4_5_64_r2_r6)
2486 			return SIGILL;
2487 
2488 		DITOREG(rv.l, MIPSInst_FD(ir));
2489 		break;
2490 	default:
2491 		return SIGILL;
2492 	}
2493 
2494 	return 0;
2495 }
2496 
2497 int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
2498 	int has_fpu, void *__user *fault_addr)
2499 {
2500 	unsigned long oldepc, prevepc;
2501 	struct mm_decoded_insn dec_insn;
2502 	u16 instr[4];
2503 	u16 *instr_ptr;
2504 	int sig = 0;
2505 
2506 	oldepc = xcp->cp0_epc;
2507 	do {
2508 		prevepc = xcp->cp0_epc;
2509 
2510 		if (get_isa16_mode(prevepc) && cpu_has_mmips) {
2511 			/*
2512 			 * Get next 2 microMIPS instructions and convert them
2513 			 * into 32-bit instructions.
2514 			 */
2515 			if ((get_user(instr[0], (u16 __user *)msk_isa16_mode(xcp->cp0_epc))) ||
2516 			    (get_user(instr[1], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 2))) ||
2517 			    (get_user(instr[2], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 4))) ||
2518 			    (get_user(instr[3], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 6)))) {
2519 				MIPS_FPU_EMU_INC_STATS(errors);
2520 				return SIGBUS;
2521 			}
2522 			instr_ptr = instr;
2523 
2524 			/* Get first instruction. */
2525 			if (mm_insn_16bit(*instr_ptr)) {
2526 				/* Duplicate the half-word. */
2527 				dec_insn.insn = (*instr_ptr << 16) |
2528 					(*instr_ptr);
2529 				/* 16-bit instruction. */
2530 				dec_insn.pc_inc = 2;
2531 				instr_ptr += 1;
2532 			} else {
2533 				dec_insn.insn = (*instr_ptr << 16) |
2534 					*(instr_ptr+1);
2535 				/* 32-bit instruction. */
2536 				dec_insn.pc_inc = 4;
2537 				instr_ptr += 2;
2538 			}
2539 			/* Get second instruction. */
2540 			if (mm_insn_16bit(*instr_ptr)) {
2541 				/* Duplicate the half-word. */
2542 				dec_insn.next_insn = (*instr_ptr << 16) |
2543 					(*instr_ptr);
2544 				/* 16-bit instruction. */
2545 				dec_insn.next_pc_inc = 2;
2546 			} else {
2547 				dec_insn.next_insn = (*instr_ptr << 16) |
2548 					*(instr_ptr+1);
2549 				/* 32-bit instruction. */
2550 				dec_insn.next_pc_inc = 4;
2551 			}
2552 			dec_insn.micro_mips_mode = 1;
2553 		} else {
2554 			if ((get_user(dec_insn.insn,
2555 			    (mips_instruction __user *) xcp->cp0_epc)) ||
2556 			    (get_user(dec_insn.next_insn,
2557 			    (mips_instruction __user *)(xcp->cp0_epc+4)))) {
2558 				MIPS_FPU_EMU_INC_STATS(errors);
2559 				return SIGBUS;
2560 			}
2561 			dec_insn.pc_inc = 4;
2562 			dec_insn.next_pc_inc = 4;
2563 			dec_insn.micro_mips_mode = 0;
2564 		}
2565 
2566 		if ((dec_insn.insn == 0) ||
2567 		   ((dec_insn.pc_inc == 2) &&
2568 		   ((dec_insn.insn & 0xffff) == MM_NOP16)))
2569 			xcp->cp0_epc += dec_insn.pc_inc;	/* Skip NOPs */
2570 		else {
2571 			/*
2572 			 * The 'ieee754_csr' is an alias of ctx->fcr31.
2573 			 * No need to copy ctx->fcr31 to ieee754_csr.
2574 			 */
2575 			sig = cop1Emulate(xcp, ctx, dec_insn, fault_addr);
2576 		}
2577 
2578 		if (has_fpu)
2579 			break;
2580 		if (sig)
2581 			break;
2582 
2583 		cond_resched();
2584 	} while (xcp->cp0_epc > prevepc);
2585 
2586 	/* SIGILL indicates a non-fpu instruction */
2587 	if (sig == SIGILL && xcp->cp0_epc != oldepc)
2588 		/* but if EPC has advanced, then ignore it */
2589 		sig = 0;
2590 
2591 	return sig;
2592 }
2593