xref: /openbmc/linux/arch/mips/math-emu/cp1emu.c (revision d2999e1b)
1 /*
2  * cp1emu.c: a MIPS coprocessor 1 (FPU) instruction emulator
3  *
4  * MIPS floating point support
5  * Copyright (C) 1994-2000 Algorithmics Ltd.
6  *
7  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
8  * Copyright (C) 2000  MIPS Technologies, Inc.
9  *
10  *  This program is free software; you can distribute it and/or modify it
11  *  under the terms of the GNU General Public License (Version 2) as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope it will be useful, but WITHOUT
15  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17  *  for more details.
18  *
19  *  You should have received a copy of the GNU General Public License along
20  *  with this program; if not, write to the Free Software Foundation, Inc.,
21  *  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA.
22  *
23  * A complete emulator for MIPS coprocessor 1 instructions.  This is
24  * required for #float(switch) or #float(trap), where it catches all
25  * COP1 instructions via the "CoProcessor Unusable" exception.
26  *
27  * More surprisingly it is also required for #float(ieee), to help out
28  * the hardware FPU at the boundaries of the IEEE-754 representation
29  * (denormalised values, infinities, underflow, etc).  It is made
30  * quite nasty because emulation of some non-COP1 instructions is
31  * required, e.g. in branch delay slots.
32  *
33  * Note if you know that you won't have an FPU, then you'll get much
34  * better performance by compiling with -msoft-float!
35  */
36 #include <linux/sched.h>
37 #include <linux/debugfs.h>
38 #include <linux/kconfig.h>
39 #include <linux/percpu-defs.h>
40 #include <linux/perf_event.h>
41 
42 #include <asm/branch.h>
43 #include <asm/inst.h>
44 #include <asm/ptrace.h>
45 #include <asm/signal.h>
46 #include <asm/uaccess.h>
47 
48 #include <asm/processor.h>
49 #include <asm/fpu_emulator.h>
50 #include <asm/fpu.h>
51 
52 #include "ieee754.h"
53 
54 /* Function which emulates a floating point instruction. */
55 
56 static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *,
57 	mips_instruction);
58 
59 static int fpux_emu(struct pt_regs *,
60 	struct mips_fpu_struct *, mips_instruction, void *__user *);
61 
62 /* Control registers */
63 
64 #define FPCREG_RID	0	/* $0  = revision id */
65 #define FPCREG_CSR	31	/* $31 = csr */
66 
67 /* Determine rounding mode from the RM bits of the FCSR */
68 #define modeindex(v) ((v) & FPU_CSR_RM)
69 
70 /* convert condition code register number to csr bit */
71 static const unsigned int fpucondbit[8] = {
72 	FPU_CSR_COND0,
73 	FPU_CSR_COND1,
74 	FPU_CSR_COND2,
75 	FPU_CSR_COND3,
76 	FPU_CSR_COND4,
77 	FPU_CSR_COND5,
78 	FPU_CSR_COND6,
79 	FPU_CSR_COND7
80 };
81 
82 /* (microMIPS) Convert certain microMIPS instructions to MIPS32 format. */
83 static const int sd_format[] = {16, 17, 0, 0, 0, 0, 0, 0};
84 static const int sdps_format[] = {16, 17, 22, 0, 0, 0, 0, 0};
85 static const int dwl_format[] = {17, 20, 21, 0, 0, 0, 0, 0};
86 static const int swl_format[] = {16, 20, 21, 0, 0, 0, 0, 0};
87 
88 /*
89  * This functions translates a 32-bit microMIPS instruction
90  * into a 32-bit MIPS32 instruction. Returns 0 on success
91  * and SIGILL otherwise.
92  */
93 static int microMIPS32_to_MIPS32(union mips_instruction *insn_ptr)
94 {
95 	union mips_instruction insn = *insn_ptr;
96 	union mips_instruction mips32_insn = insn;
97 	int func, fmt, op;
98 
99 	switch (insn.mm_i_format.opcode) {
100 	case mm_ldc132_op:
101 		mips32_insn.mm_i_format.opcode = ldc1_op;
102 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
103 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
104 		break;
105 	case mm_lwc132_op:
106 		mips32_insn.mm_i_format.opcode = lwc1_op;
107 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
108 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
109 		break;
110 	case mm_sdc132_op:
111 		mips32_insn.mm_i_format.opcode = sdc1_op;
112 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
113 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
114 		break;
115 	case mm_swc132_op:
116 		mips32_insn.mm_i_format.opcode = swc1_op;
117 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
118 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
119 		break;
120 	case mm_pool32i_op:
121 		/* NOTE: offset is << by 1 if in microMIPS mode. */
122 		if ((insn.mm_i_format.rt == mm_bc1f_op) ||
123 		    (insn.mm_i_format.rt == mm_bc1t_op)) {
124 			mips32_insn.fb_format.opcode = cop1_op;
125 			mips32_insn.fb_format.bc = bc_op;
126 			mips32_insn.fb_format.flag =
127 				(insn.mm_i_format.rt == mm_bc1t_op) ? 1 : 0;
128 		} else
129 			return SIGILL;
130 		break;
131 	case mm_pool32f_op:
132 		switch (insn.mm_fp0_format.func) {
133 		case mm_32f_01_op:
134 		case mm_32f_11_op:
135 		case mm_32f_02_op:
136 		case mm_32f_12_op:
137 		case mm_32f_41_op:
138 		case mm_32f_51_op:
139 		case mm_32f_42_op:
140 		case mm_32f_52_op:
141 			op = insn.mm_fp0_format.func;
142 			if (op == mm_32f_01_op)
143 				func = madd_s_op;
144 			else if (op == mm_32f_11_op)
145 				func = madd_d_op;
146 			else if (op == mm_32f_02_op)
147 				func = nmadd_s_op;
148 			else if (op == mm_32f_12_op)
149 				func = nmadd_d_op;
150 			else if (op == mm_32f_41_op)
151 				func = msub_s_op;
152 			else if (op == mm_32f_51_op)
153 				func = msub_d_op;
154 			else if (op == mm_32f_42_op)
155 				func = nmsub_s_op;
156 			else
157 				func = nmsub_d_op;
158 			mips32_insn.fp6_format.opcode = cop1x_op;
159 			mips32_insn.fp6_format.fr = insn.mm_fp6_format.fr;
160 			mips32_insn.fp6_format.ft = insn.mm_fp6_format.ft;
161 			mips32_insn.fp6_format.fs = insn.mm_fp6_format.fs;
162 			mips32_insn.fp6_format.fd = insn.mm_fp6_format.fd;
163 			mips32_insn.fp6_format.func = func;
164 			break;
165 		case mm_32f_10_op:
166 			func = -1;	/* Invalid */
167 			op = insn.mm_fp5_format.op & 0x7;
168 			if (op == mm_ldxc1_op)
169 				func = ldxc1_op;
170 			else if (op == mm_sdxc1_op)
171 				func = sdxc1_op;
172 			else if (op == mm_lwxc1_op)
173 				func = lwxc1_op;
174 			else if (op == mm_swxc1_op)
175 				func = swxc1_op;
176 
177 			if (func != -1) {
178 				mips32_insn.r_format.opcode = cop1x_op;
179 				mips32_insn.r_format.rs =
180 					insn.mm_fp5_format.base;
181 				mips32_insn.r_format.rt =
182 					insn.mm_fp5_format.index;
183 				mips32_insn.r_format.rd = 0;
184 				mips32_insn.r_format.re = insn.mm_fp5_format.fd;
185 				mips32_insn.r_format.func = func;
186 			} else
187 				return SIGILL;
188 			break;
189 		case mm_32f_40_op:
190 			op = -1;	/* Invalid */
191 			if (insn.mm_fp2_format.op == mm_fmovt_op)
192 				op = 1;
193 			else if (insn.mm_fp2_format.op == mm_fmovf_op)
194 				op = 0;
195 			if (op != -1) {
196 				mips32_insn.fp0_format.opcode = cop1_op;
197 				mips32_insn.fp0_format.fmt =
198 					sdps_format[insn.mm_fp2_format.fmt];
199 				mips32_insn.fp0_format.ft =
200 					(insn.mm_fp2_format.cc<<2) + op;
201 				mips32_insn.fp0_format.fs =
202 					insn.mm_fp2_format.fs;
203 				mips32_insn.fp0_format.fd =
204 					insn.mm_fp2_format.fd;
205 				mips32_insn.fp0_format.func = fmovc_op;
206 			} else
207 				return SIGILL;
208 			break;
209 		case mm_32f_60_op:
210 			func = -1;	/* Invalid */
211 			if (insn.mm_fp0_format.op == mm_fadd_op)
212 				func = fadd_op;
213 			else if (insn.mm_fp0_format.op == mm_fsub_op)
214 				func = fsub_op;
215 			else if (insn.mm_fp0_format.op == mm_fmul_op)
216 				func = fmul_op;
217 			else if (insn.mm_fp0_format.op == mm_fdiv_op)
218 				func = fdiv_op;
219 			if (func != -1) {
220 				mips32_insn.fp0_format.opcode = cop1_op;
221 				mips32_insn.fp0_format.fmt =
222 					sdps_format[insn.mm_fp0_format.fmt];
223 				mips32_insn.fp0_format.ft =
224 					insn.mm_fp0_format.ft;
225 				mips32_insn.fp0_format.fs =
226 					insn.mm_fp0_format.fs;
227 				mips32_insn.fp0_format.fd =
228 					insn.mm_fp0_format.fd;
229 				mips32_insn.fp0_format.func = func;
230 			} else
231 				return SIGILL;
232 			break;
233 		case mm_32f_70_op:
234 			func = -1;	/* Invalid */
235 			if (insn.mm_fp0_format.op == mm_fmovn_op)
236 				func = fmovn_op;
237 			else if (insn.mm_fp0_format.op == mm_fmovz_op)
238 				func = fmovz_op;
239 			if (func != -1) {
240 				mips32_insn.fp0_format.opcode = cop1_op;
241 				mips32_insn.fp0_format.fmt =
242 					sdps_format[insn.mm_fp0_format.fmt];
243 				mips32_insn.fp0_format.ft =
244 					insn.mm_fp0_format.ft;
245 				mips32_insn.fp0_format.fs =
246 					insn.mm_fp0_format.fs;
247 				mips32_insn.fp0_format.fd =
248 					insn.mm_fp0_format.fd;
249 				mips32_insn.fp0_format.func = func;
250 			} else
251 				return SIGILL;
252 			break;
253 		case mm_32f_73_op:    /* POOL32FXF */
254 			switch (insn.mm_fp1_format.op) {
255 			case mm_movf0_op:
256 			case mm_movf1_op:
257 			case mm_movt0_op:
258 			case mm_movt1_op:
259 				if ((insn.mm_fp1_format.op & 0x7f) ==
260 				    mm_movf0_op)
261 					op = 0;
262 				else
263 					op = 1;
264 				mips32_insn.r_format.opcode = spec_op;
265 				mips32_insn.r_format.rs = insn.mm_fp4_format.fs;
266 				mips32_insn.r_format.rt =
267 					(insn.mm_fp4_format.cc << 2) + op;
268 				mips32_insn.r_format.rd = insn.mm_fp4_format.rt;
269 				mips32_insn.r_format.re = 0;
270 				mips32_insn.r_format.func = movc_op;
271 				break;
272 			case mm_fcvtd0_op:
273 			case mm_fcvtd1_op:
274 			case mm_fcvts0_op:
275 			case mm_fcvts1_op:
276 				if ((insn.mm_fp1_format.op & 0x7f) ==
277 				    mm_fcvtd0_op) {
278 					func = fcvtd_op;
279 					fmt = swl_format[insn.mm_fp3_format.fmt];
280 				} else {
281 					func = fcvts_op;
282 					fmt = dwl_format[insn.mm_fp3_format.fmt];
283 				}
284 				mips32_insn.fp0_format.opcode = cop1_op;
285 				mips32_insn.fp0_format.fmt = fmt;
286 				mips32_insn.fp0_format.ft = 0;
287 				mips32_insn.fp0_format.fs =
288 					insn.mm_fp3_format.fs;
289 				mips32_insn.fp0_format.fd =
290 					insn.mm_fp3_format.rt;
291 				mips32_insn.fp0_format.func = func;
292 				break;
293 			case mm_fmov0_op:
294 			case mm_fmov1_op:
295 			case mm_fabs0_op:
296 			case mm_fabs1_op:
297 			case mm_fneg0_op:
298 			case mm_fneg1_op:
299 				if ((insn.mm_fp1_format.op & 0x7f) ==
300 				    mm_fmov0_op)
301 					func = fmov_op;
302 				else if ((insn.mm_fp1_format.op & 0x7f) ==
303 					 mm_fabs0_op)
304 					func = fabs_op;
305 				else
306 					func = fneg_op;
307 				mips32_insn.fp0_format.opcode = cop1_op;
308 				mips32_insn.fp0_format.fmt =
309 					sdps_format[insn.mm_fp3_format.fmt];
310 				mips32_insn.fp0_format.ft = 0;
311 				mips32_insn.fp0_format.fs =
312 					insn.mm_fp3_format.fs;
313 				mips32_insn.fp0_format.fd =
314 					insn.mm_fp3_format.rt;
315 				mips32_insn.fp0_format.func = func;
316 				break;
317 			case mm_ffloorl_op:
318 			case mm_ffloorw_op:
319 			case mm_fceill_op:
320 			case mm_fceilw_op:
321 			case mm_ftruncl_op:
322 			case mm_ftruncw_op:
323 			case mm_froundl_op:
324 			case mm_froundw_op:
325 			case mm_fcvtl_op:
326 			case mm_fcvtw_op:
327 				if (insn.mm_fp1_format.op == mm_ffloorl_op)
328 					func = ffloorl_op;
329 				else if (insn.mm_fp1_format.op == mm_ffloorw_op)
330 					func = ffloor_op;
331 				else if (insn.mm_fp1_format.op == mm_fceill_op)
332 					func = fceill_op;
333 				else if (insn.mm_fp1_format.op == mm_fceilw_op)
334 					func = fceil_op;
335 				else if (insn.mm_fp1_format.op == mm_ftruncl_op)
336 					func = ftruncl_op;
337 				else if (insn.mm_fp1_format.op == mm_ftruncw_op)
338 					func = ftrunc_op;
339 				else if (insn.mm_fp1_format.op == mm_froundl_op)
340 					func = froundl_op;
341 				else if (insn.mm_fp1_format.op == mm_froundw_op)
342 					func = fround_op;
343 				else if (insn.mm_fp1_format.op == mm_fcvtl_op)
344 					func = fcvtl_op;
345 				else
346 					func = fcvtw_op;
347 				mips32_insn.fp0_format.opcode = cop1_op;
348 				mips32_insn.fp0_format.fmt =
349 					sd_format[insn.mm_fp1_format.fmt];
350 				mips32_insn.fp0_format.ft = 0;
351 				mips32_insn.fp0_format.fs =
352 					insn.mm_fp1_format.fs;
353 				mips32_insn.fp0_format.fd =
354 					insn.mm_fp1_format.rt;
355 				mips32_insn.fp0_format.func = func;
356 				break;
357 			case mm_frsqrt_op:
358 			case mm_fsqrt_op:
359 			case mm_frecip_op:
360 				if (insn.mm_fp1_format.op == mm_frsqrt_op)
361 					func = frsqrt_op;
362 				else if (insn.mm_fp1_format.op == mm_fsqrt_op)
363 					func = fsqrt_op;
364 				else
365 					func = frecip_op;
366 				mips32_insn.fp0_format.opcode = cop1_op;
367 				mips32_insn.fp0_format.fmt =
368 					sdps_format[insn.mm_fp1_format.fmt];
369 				mips32_insn.fp0_format.ft = 0;
370 				mips32_insn.fp0_format.fs =
371 					insn.mm_fp1_format.fs;
372 				mips32_insn.fp0_format.fd =
373 					insn.mm_fp1_format.rt;
374 				mips32_insn.fp0_format.func = func;
375 				break;
376 			case mm_mfc1_op:
377 			case mm_mtc1_op:
378 			case mm_cfc1_op:
379 			case mm_ctc1_op:
380 			case mm_mfhc1_op:
381 			case mm_mthc1_op:
382 				if (insn.mm_fp1_format.op == mm_mfc1_op)
383 					op = mfc_op;
384 				else if (insn.mm_fp1_format.op == mm_mtc1_op)
385 					op = mtc_op;
386 				else if (insn.mm_fp1_format.op == mm_cfc1_op)
387 					op = cfc_op;
388 				else if (insn.mm_fp1_format.op == mm_ctc1_op)
389 					op = ctc_op;
390 				else if (insn.mm_fp1_format.op == mm_mfhc1_op)
391 					op = mfhc_op;
392 				else
393 					op = mthc_op;
394 				mips32_insn.fp1_format.opcode = cop1_op;
395 				mips32_insn.fp1_format.op = op;
396 				mips32_insn.fp1_format.rt =
397 					insn.mm_fp1_format.rt;
398 				mips32_insn.fp1_format.fs =
399 					insn.mm_fp1_format.fs;
400 				mips32_insn.fp1_format.fd = 0;
401 				mips32_insn.fp1_format.func = 0;
402 				break;
403 			default:
404 				return SIGILL;
405 			}
406 			break;
407 		case mm_32f_74_op:	/* c.cond.fmt */
408 			mips32_insn.fp0_format.opcode = cop1_op;
409 			mips32_insn.fp0_format.fmt =
410 				sdps_format[insn.mm_fp4_format.fmt];
411 			mips32_insn.fp0_format.ft = insn.mm_fp4_format.rt;
412 			mips32_insn.fp0_format.fs = insn.mm_fp4_format.fs;
413 			mips32_insn.fp0_format.fd = insn.mm_fp4_format.cc << 2;
414 			mips32_insn.fp0_format.func =
415 				insn.mm_fp4_format.cond | MM_MIPS32_COND_FC;
416 			break;
417 		default:
418 			return SIGILL;
419 		}
420 		break;
421 	default:
422 		return SIGILL;
423 	}
424 
425 	*insn_ptr = mips32_insn;
426 	return 0;
427 }
428 
429 /*
430  * Redundant with logic already in kernel/branch.c,
431  * embedded in compute_return_epc.  At some point,
432  * a single subroutine should be used across both
433  * modules.
434  */
435 static int isBranchInstr(struct pt_regs *regs, struct mm_decoded_insn dec_insn,
436 			 unsigned long *contpc)
437 {
438 	union mips_instruction insn = (union mips_instruction)dec_insn.insn;
439 	unsigned int fcr31;
440 	unsigned int bit = 0;
441 
442 	switch (insn.i_format.opcode) {
443 	case spec_op:
444 		switch (insn.r_format.func) {
445 		case jalr_op:
446 			regs->regs[insn.r_format.rd] =
447 				regs->cp0_epc + dec_insn.pc_inc +
448 				dec_insn.next_pc_inc;
449 			/* Fall through */
450 		case jr_op:
451 			*contpc = regs->regs[insn.r_format.rs];
452 			return 1;
453 		}
454 		break;
455 	case bcond_op:
456 		switch (insn.i_format.rt) {
457 		case bltzal_op:
458 		case bltzall_op:
459 			regs->regs[31] = regs->cp0_epc +
460 				dec_insn.pc_inc +
461 				dec_insn.next_pc_inc;
462 			/* Fall through */
463 		case bltz_op:
464 		case bltzl_op:
465 			if ((long)regs->regs[insn.i_format.rs] < 0)
466 				*contpc = regs->cp0_epc +
467 					dec_insn.pc_inc +
468 					(insn.i_format.simmediate << 2);
469 			else
470 				*contpc = regs->cp0_epc +
471 					dec_insn.pc_inc +
472 					dec_insn.next_pc_inc;
473 			return 1;
474 		case bgezal_op:
475 		case bgezall_op:
476 			regs->regs[31] = regs->cp0_epc +
477 				dec_insn.pc_inc +
478 				dec_insn.next_pc_inc;
479 			/* Fall through */
480 		case bgez_op:
481 		case bgezl_op:
482 			if ((long)regs->regs[insn.i_format.rs] >= 0)
483 				*contpc = regs->cp0_epc +
484 					dec_insn.pc_inc +
485 					(insn.i_format.simmediate << 2);
486 			else
487 				*contpc = regs->cp0_epc +
488 					dec_insn.pc_inc +
489 					dec_insn.next_pc_inc;
490 			return 1;
491 		}
492 		break;
493 	case jalx_op:
494 		set_isa16_mode(bit);
495 	case jal_op:
496 		regs->regs[31] = regs->cp0_epc +
497 			dec_insn.pc_inc +
498 			dec_insn.next_pc_inc;
499 		/* Fall through */
500 	case j_op:
501 		*contpc = regs->cp0_epc + dec_insn.pc_inc;
502 		*contpc >>= 28;
503 		*contpc <<= 28;
504 		*contpc |= (insn.j_format.target << 2);
505 		/* Set microMIPS mode bit: XOR for jalx. */
506 		*contpc ^= bit;
507 		return 1;
508 	case beq_op:
509 	case beql_op:
510 		if (regs->regs[insn.i_format.rs] ==
511 		    regs->regs[insn.i_format.rt])
512 			*contpc = regs->cp0_epc +
513 				dec_insn.pc_inc +
514 				(insn.i_format.simmediate << 2);
515 		else
516 			*contpc = regs->cp0_epc +
517 				dec_insn.pc_inc +
518 				dec_insn.next_pc_inc;
519 		return 1;
520 	case bne_op:
521 	case bnel_op:
522 		if (regs->regs[insn.i_format.rs] !=
523 		    regs->regs[insn.i_format.rt])
524 			*contpc = regs->cp0_epc +
525 				dec_insn.pc_inc +
526 				(insn.i_format.simmediate << 2);
527 		else
528 			*contpc = regs->cp0_epc +
529 				dec_insn.pc_inc +
530 				dec_insn.next_pc_inc;
531 		return 1;
532 	case blez_op:
533 	case blezl_op:
534 		if ((long)regs->regs[insn.i_format.rs] <= 0)
535 			*contpc = regs->cp0_epc +
536 				dec_insn.pc_inc +
537 				(insn.i_format.simmediate << 2);
538 		else
539 			*contpc = regs->cp0_epc +
540 				dec_insn.pc_inc +
541 				dec_insn.next_pc_inc;
542 		return 1;
543 	case bgtz_op:
544 	case bgtzl_op:
545 		if ((long)regs->regs[insn.i_format.rs] > 0)
546 			*contpc = regs->cp0_epc +
547 				dec_insn.pc_inc +
548 				(insn.i_format.simmediate << 2);
549 		else
550 			*contpc = regs->cp0_epc +
551 				dec_insn.pc_inc +
552 				dec_insn.next_pc_inc;
553 		return 1;
554 #ifdef CONFIG_CPU_CAVIUM_OCTEON
555 	case lwc2_op: /* This is bbit0 on Octeon */
556 		if ((regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt)) == 0)
557 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
558 		else
559 			*contpc = regs->cp0_epc + 8;
560 		return 1;
561 	case ldc2_op: /* This is bbit032 on Octeon */
562 		if ((regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32))) == 0)
563 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
564 		else
565 			*contpc = regs->cp0_epc + 8;
566 		return 1;
567 	case swc2_op: /* This is bbit1 on Octeon */
568 		if (regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt))
569 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
570 		else
571 			*contpc = regs->cp0_epc + 8;
572 		return 1;
573 	case sdc2_op: /* This is bbit132 on Octeon */
574 		if (regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32)))
575 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
576 		else
577 			*contpc = regs->cp0_epc + 8;
578 		return 1;
579 #endif
580 	case cop0_op:
581 	case cop1_op:
582 	case cop2_op:
583 	case cop1x_op:
584 		if (insn.i_format.rs == bc_op) {
585 			preempt_disable();
586 			if (is_fpu_owner())
587 				asm volatile(
588 					".set push\n"
589 					"\t.set mips1\n"
590 					"\tcfc1\t%0,$31\n"
591 					"\t.set pop" : "=r" (fcr31));
592 			else
593 				fcr31 = current->thread.fpu.fcr31;
594 			preempt_enable();
595 
596 			bit = (insn.i_format.rt >> 2);
597 			bit += (bit != 0);
598 			bit += 23;
599 			switch (insn.i_format.rt & 3) {
600 			case 0:	/* bc1f */
601 			case 2:	/* bc1fl */
602 				if (~fcr31 & (1 << bit))
603 					*contpc = regs->cp0_epc +
604 						dec_insn.pc_inc +
605 						(insn.i_format.simmediate << 2);
606 				else
607 					*contpc = regs->cp0_epc +
608 						dec_insn.pc_inc +
609 						dec_insn.next_pc_inc;
610 				return 1;
611 			case 1:	/* bc1t */
612 			case 3:	/* bc1tl */
613 				if (fcr31 & (1 << bit))
614 					*contpc = regs->cp0_epc +
615 						dec_insn.pc_inc +
616 						(insn.i_format.simmediate << 2);
617 				else
618 					*contpc = regs->cp0_epc +
619 						dec_insn.pc_inc +
620 						dec_insn.next_pc_inc;
621 				return 1;
622 			}
623 		}
624 		break;
625 	}
626 	return 0;
627 }
628 
629 /*
630  * In the Linux kernel, we support selection of FPR format on the
631  * basis of the Status.FR bit.	If an FPU is not present, the FR bit
632  * is hardwired to zero, which would imply a 32-bit FPU even for
633  * 64-bit CPUs so we rather look at TIF_32BIT_FPREGS.
634  * FPU emu is slow and bulky and optimizing this function offers fairly
635  * sizeable benefits so we try to be clever and make this function return
636  * a constant whenever possible, that is on 64-bit kernels without O32
637  * compatibility enabled and on 32-bit without 64-bit FPU support.
638  */
639 static inline int cop1_64bit(struct pt_regs *xcp)
640 {
641 	if (config_enabled(CONFIG_64BIT) && !config_enabled(CONFIG_MIPS32_O32))
642 		return 1;
643 	else if (config_enabled(CONFIG_32BIT) &&
644 		 !config_enabled(CONFIG_MIPS_O32_FP64_SUPPORT))
645 		return 0;
646 
647 	return !test_thread_flag(TIF_32BIT_FPREGS);
648 }
649 
650 #define SIFROMREG(si, x)						\
651 do {									\
652 	if (cop1_64bit(xcp))						\
653 		(si) = get_fpr32(&ctx->fpr[x], 0);			\
654 	else								\
655 		(si) = get_fpr32(&ctx->fpr[(x) & ~1], (x) & 1);		\
656 } while (0)
657 
658 #define SITOREG(si, x)							\
659 do {									\
660 	if (cop1_64bit(xcp)) {						\
661 		unsigned i;						\
662 		set_fpr32(&ctx->fpr[x], 0, si);				\
663 		for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val32); i++)	\
664 			set_fpr32(&ctx->fpr[x], i, 0);			\
665 	} else {							\
666 		set_fpr32(&ctx->fpr[(x) & ~1], (x) & 1, si);		\
667 	}								\
668 } while (0)
669 
670 #define SIFROMHREG(si, x)	((si) = get_fpr32(&ctx->fpr[x], 1))
671 
672 #define SITOHREG(si, x)							\
673 do {									\
674 	unsigned i;							\
675 	set_fpr32(&ctx->fpr[x], 1, si);					\
676 	for (i = 2; i < ARRAY_SIZE(ctx->fpr[x].val32); i++)		\
677 		set_fpr32(&ctx->fpr[x], i, 0);				\
678 } while (0)
679 
680 #define DIFROMREG(di, x)						\
681 	((di) = get_fpr64(&ctx->fpr[(x) & ~(cop1_64bit(xcp) == 0)], 0))
682 
683 #define DITOREG(di, x)							\
684 do {									\
685 	unsigned fpr, i;						\
686 	fpr = (x) & ~(cop1_64bit(xcp) == 0);				\
687 	set_fpr64(&ctx->fpr[fpr], 0, di);				\
688 	for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val64); i++)		\
689 		set_fpr64(&ctx->fpr[fpr], i, 0);			\
690 } while (0)
691 
692 #define SPFROMREG(sp, x) SIFROMREG((sp).bits, x)
693 #define SPTOREG(sp, x)	SITOREG((sp).bits, x)
694 #define DPFROMREG(dp, x)	DIFROMREG((dp).bits, x)
695 #define DPTOREG(dp, x)	DITOREG((dp).bits, x)
696 
697 /*
698  * Emulate the single floating point instruction pointed at by EPC.
699  * Two instructions if the instruction is in a branch delay slot.
700  */
701 
702 static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
703 		struct mm_decoded_insn dec_insn, void *__user *fault_addr)
704 {
705 	unsigned long contpc = xcp->cp0_epc + dec_insn.pc_inc;
706 	unsigned int cond, cbit;
707 	mips_instruction ir;
708 	int likely, pc_inc;
709 	u32 __user *wva;
710 	u64 __user *dva;
711 	u32 value;
712 	u32 wval;
713 	u64 dval;
714 	int sig;
715 
716 	/*
717 	 * These are giving gcc a gentle hint about what to expect in
718 	 * dec_inst in order to do better optimization.
719 	 */
720 	if (!cpu_has_mmips && dec_insn.micro_mips_mode)
721 		unreachable();
722 
723 	/* XXX NEC Vr54xx bug workaround */
724 	if (delay_slot(xcp)) {
725 		if (dec_insn.micro_mips_mode) {
726 			if (!mm_isBranchInstr(xcp, dec_insn, &contpc))
727 				clear_delay_slot(xcp);
728 		} else {
729 			if (!isBranchInstr(xcp, dec_insn, &contpc))
730 				clear_delay_slot(xcp);
731 		}
732 	}
733 
734 	if (delay_slot(xcp)) {
735 		/*
736 		 * The instruction to be emulated is in a branch delay slot
737 		 * which means that we have to	emulate the branch instruction
738 		 * BEFORE we do the cop1 instruction.
739 		 *
740 		 * This branch could be a COP1 branch, but in that case we
741 		 * would have had a trap for that instruction, and would not
742 		 * come through this route.
743 		 *
744 		 * Linux MIPS branch emulator operates on context, updating the
745 		 * cp0_epc.
746 		 */
747 		ir = dec_insn.next_insn;  /* process delay slot instr */
748 		pc_inc = dec_insn.next_pc_inc;
749 	} else {
750 		ir = dec_insn.insn;       /* process current instr */
751 		pc_inc = dec_insn.pc_inc;
752 	}
753 
754 	/*
755 	 * Since microMIPS FPU instructios are a subset of MIPS32 FPU
756 	 * instructions, we want to convert microMIPS FPU instructions
757 	 * into MIPS32 instructions so that we could reuse all of the
758 	 * FPU emulation code.
759 	 *
760 	 * NOTE: We cannot do this for branch instructions since they
761 	 *       are not a subset. Example: Cannot emulate a 16-bit
762 	 *       aligned target address with a MIPS32 instruction.
763 	 */
764 	if (dec_insn.micro_mips_mode) {
765 		/*
766 		 * If next instruction is a 16-bit instruction, then it
767 		 * it cannot be a FPU instruction. This could happen
768 		 * since we can be called for non-FPU instructions.
769 		 */
770 		if ((pc_inc == 2) ||
771 			(microMIPS32_to_MIPS32((union mips_instruction *)&ir)
772 			 == SIGILL))
773 			return SIGILL;
774 	}
775 
776 emul:
777 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, xcp, 0);
778 	MIPS_FPU_EMU_INC_STATS(emulated);
779 	switch (MIPSInst_OPCODE(ir)) {
780 	case ldc1_op:
781 		dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
782 				     MIPSInst_SIMM(ir));
783 		MIPS_FPU_EMU_INC_STATS(loads);
784 
785 		if (!access_ok(VERIFY_READ, dva, sizeof(u64))) {
786 			MIPS_FPU_EMU_INC_STATS(errors);
787 			*fault_addr = dva;
788 			return SIGBUS;
789 		}
790 		if (__get_user(dval, dva)) {
791 			MIPS_FPU_EMU_INC_STATS(errors);
792 			*fault_addr = dva;
793 			return SIGSEGV;
794 		}
795 		DITOREG(dval, MIPSInst_RT(ir));
796 		break;
797 
798 	case sdc1_op:
799 		dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
800 				      MIPSInst_SIMM(ir));
801 		MIPS_FPU_EMU_INC_STATS(stores);
802 		DIFROMREG(dval, MIPSInst_RT(ir));
803 		if (!access_ok(VERIFY_WRITE, dva, sizeof(u64))) {
804 			MIPS_FPU_EMU_INC_STATS(errors);
805 			*fault_addr = dva;
806 			return SIGBUS;
807 		}
808 		if (__put_user(dval, dva)) {
809 			MIPS_FPU_EMU_INC_STATS(errors);
810 			*fault_addr = dva;
811 			return SIGSEGV;
812 		}
813 		break;
814 
815 	case lwc1_op:
816 		wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
817 				      MIPSInst_SIMM(ir));
818 		MIPS_FPU_EMU_INC_STATS(loads);
819 		if (!access_ok(VERIFY_READ, wva, sizeof(u32))) {
820 			MIPS_FPU_EMU_INC_STATS(errors);
821 			*fault_addr = wva;
822 			return SIGBUS;
823 		}
824 		if (__get_user(wval, wva)) {
825 			MIPS_FPU_EMU_INC_STATS(errors);
826 			*fault_addr = wva;
827 			return SIGSEGV;
828 		}
829 		SITOREG(wval, MIPSInst_RT(ir));
830 		break;
831 
832 	case swc1_op:
833 		wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
834 				      MIPSInst_SIMM(ir));
835 		MIPS_FPU_EMU_INC_STATS(stores);
836 		SIFROMREG(wval, MIPSInst_RT(ir));
837 		if (!access_ok(VERIFY_WRITE, wva, sizeof(u32))) {
838 			MIPS_FPU_EMU_INC_STATS(errors);
839 			*fault_addr = wva;
840 			return SIGBUS;
841 		}
842 		if (__put_user(wval, wva)) {
843 			MIPS_FPU_EMU_INC_STATS(errors);
844 			*fault_addr = wva;
845 			return SIGSEGV;
846 		}
847 		break;
848 
849 	case cop1_op:
850 		switch (MIPSInst_RS(ir)) {
851 		case dmfc_op:
852 			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
853 				return SIGILL;
854 
855 			/* copregister fs -> gpr[rt] */
856 			if (MIPSInst_RT(ir) != 0) {
857 				DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
858 					MIPSInst_RD(ir));
859 			}
860 			break;
861 
862 		case dmtc_op:
863 			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
864 				return SIGILL;
865 
866 			/* copregister fs <- rt */
867 			DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
868 			break;
869 
870 		case mfhc_op:
871 			if (!cpu_has_mips_r2)
872 				goto sigill;
873 
874 			/* copregister rd -> gpr[rt] */
875 			if (MIPSInst_RT(ir) != 0) {
876 				SIFROMHREG(xcp->regs[MIPSInst_RT(ir)],
877 					MIPSInst_RD(ir));
878 			}
879 			break;
880 
881 		case mthc_op:
882 			if (!cpu_has_mips_r2)
883 				goto sigill;
884 
885 			/* copregister rd <- gpr[rt] */
886 			SITOHREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
887 			break;
888 
889 		case mfc_op:
890 			/* copregister rd -> gpr[rt] */
891 			if (MIPSInst_RT(ir) != 0) {
892 				SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
893 					MIPSInst_RD(ir));
894 			}
895 			break;
896 
897 		case mtc_op:
898 			/* copregister rd <- rt */
899 			SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
900 			break;
901 
902 		case cfc_op:
903 			/* cop control register rd -> gpr[rt] */
904 			if (MIPSInst_RD(ir) == FPCREG_CSR) {
905 				value = ctx->fcr31;
906 				value = (value & ~FPU_CSR_RM) | modeindex(value);
907 				pr_debug("%p gpr[%d]<-csr=%08x\n",
908 					 (void *) (xcp->cp0_epc),
909 					 MIPSInst_RT(ir), value);
910 			}
911 			else if (MIPSInst_RD(ir) == FPCREG_RID)
912 				value = 0;
913 			else
914 				value = 0;
915 			if (MIPSInst_RT(ir))
916 				xcp->regs[MIPSInst_RT(ir)] = value;
917 			break;
918 
919 		case ctc_op:
920 			/* copregister rd <- rt */
921 			if (MIPSInst_RT(ir) == 0)
922 				value = 0;
923 			else
924 				value = xcp->regs[MIPSInst_RT(ir)];
925 
926 			/* we only have one writable control reg
927 			 */
928 			if (MIPSInst_RD(ir) == FPCREG_CSR) {
929 				pr_debug("%p gpr[%d]->csr=%08x\n",
930 					 (void *) (xcp->cp0_epc),
931 					 MIPSInst_RT(ir), value);
932 
933 				/*
934 				 * Don't write reserved bits,
935 				 * and convert to ieee library modes
936 				 */
937 				ctx->fcr31 = (value & ~(FPU_CSR_RSVD | FPU_CSR_RM)) |
938 					     modeindex(value);
939 			}
940 			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
941 				return SIGFPE;
942 			}
943 			break;
944 
945 		case bc_op:
946 			if (delay_slot(xcp))
947 				return SIGILL;
948 
949 			if (cpu_has_mips_4_5_r)
950 				cbit = fpucondbit[MIPSInst_RT(ir) >> 2];
951 			else
952 				cbit = FPU_CSR_COND;
953 			cond = ctx->fcr31 & cbit;
954 
955 			likely = 0;
956 			switch (MIPSInst_RT(ir) & 3) {
957 			case bcfl_op:
958 				likely = 1;
959 			case bcf_op:
960 				cond = !cond;
961 				break;
962 			case bctl_op:
963 				likely = 1;
964 			case bct_op:
965 				break;
966 			default:
967 				/* thats an illegal instruction */
968 				return SIGILL;
969 			}
970 
971 			set_delay_slot(xcp);
972 			if (cond) {
973 				/*
974 				 * Branch taken: emulate dslot instruction
975 				 */
976 				xcp->cp0_epc += dec_insn.pc_inc;
977 
978 				contpc = MIPSInst_SIMM(ir);
979 				ir = dec_insn.next_insn;
980 				if (dec_insn.micro_mips_mode) {
981 					contpc = (xcp->cp0_epc + (contpc << 1));
982 
983 					/* If 16-bit instruction, not FPU. */
984 					if ((dec_insn.next_pc_inc == 2) ||
985 						(microMIPS32_to_MIPS32((union mips_instruction *)&ir) == SIGILL)) {
986 
987 						/*
988 						 * Since this instruction will
989 						 * be put on the stack with
990 						 * 32-bit words, get around
991 						 * this problem by putting a
992 						 * NOP16 as the second one.
993 						 */
994 						if (dec_insn.next_pc_inc == 2)
995 							ir = (ir & (~0xffff)) | MM_NOP16;
996 
997 						/*
998 						 * Single step the non-CP1
999 						 * instruction in the dslot.
1000 						 */
1001 						return mips_dsemul(xcp, ir, contpc);
1002 					}
1003 				} else
1004 					contpc = (xcp->cp0_epc + (contpc << 2));
1005 
1006 				switch (MIPSInst_OPCODE(ir)) {
1007 				case lwc1_op:
1008 					goto emul;
1009 
1010 				case swc1_op:
1011 					goto emul;
1012 
1013 				case ldc1_op:
1014 				case sdc1_op:
1015 					if (cpu_has_mips_2_3_4_5 ||
1016 					    cpu_has_mips64)
1017 						goto emul;
1018 
1019 					return SIGILL;
1020 					goto emul;
1021 
1022 				case cop1_op:
1023 					goto emul;
1024 
1025 				case cop1x_op:
1026 					if (cpu_has_mips_4_5 || cpu_has_mips64)
1027 						/* its one of ours */
1028 						goto emul;
1029 
1030 					return SIGILL;
1031 
1032 				case spec_op:
1033 					if (!cpu_has_mips_4_5_r)
1034 						return SIGILL;
1035 
1036 					if (MIPSInst_FUNC(ir) == movc_op)
1037 						goto emul;
1038 					break;
1039 				}
1040 
1041 				/*
1042 				 * Single step the non-cp1
1043 				 * instruction in the dslot
1044 				 */
1045 				return mips_dsemul(xcp, ir, contpc);
1046 			} else if (likely) {	/* branch not taken */
1047 					/*
1048 					 * branch likely nullifies
1049 					 * dslot if not taken
1050 					 */
1051 					xcp->cp0_epc += dec_insn.pc_inc;
1052 					contpc += dec_insn.pc_inc;
1053 					/*
1054 					 * else continue & execute
1055 					 * dslot as normal insn
1056 					 */
1057 				}
1058 			break;
1059 
1060 		default:
1061 			if (!(MIPSInst_RS(ir) & 0x10))
1062 				return SIGILL;
1063 
1064 			/* a real fpu computation instruction */
1065 			if ((sig = fpu_emu(xcp, ctx, ir)))
1066 				return sig;
1067 		}
1068 		break;
1069 
1070 	case cop1x_op:
1071 		if (!cpu_has_mips_4_5 && !cpu_has_mips64)
1072 			return SIGILL;
1073 
1074 		sig = fpux_emu(xcp, ctx, ir, fault_addr);
1075 		if (sig)
1076 			return sig;
1077 		break;
1078 
1079 	case spec_op:
1080 		if (!cpu_has_mips_4_5_r)
1081 			return SIGILL;
1082 
1083 		if (MIPSInst_FUNC(ir) != movc_op)
1084 			return SIGILL;
1085 		cond = fpucondbit[MIPSInst_RT(ir) >> 2];
1086 		if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
1087 			xcp->regs[MIPSInst_RD(ir)] =
1088 				xcp->regs[MIPSInst_RS(ir)];
1089 		break;
1090 	default:
1091 sigill:
1092 		return SIGILL;
1093 	}
1094 
1095 	/* we did it !! */
1096 	xcp->cp0_epc = contpc;
1097 	clear_delay_slot(xcp);
1098 
1099 	return 0;
1100 }
1101 
1102 /*
1103  * Conversion table from MIPS compare ops 48-63
1104  * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
1105  */
1106 static const unsigned char cmptab[8] = {
1107 	0,			/* cmp_0 (sig) cmp_sf */
1108 	IEEE754_CUN,		/* cmp_un (sig) cmp_ngle */
1109 	IEEE754_CEQ,		/* cmp_eq (sig) cmp_seq */
1110 	IEEE754_CEQ | IEEE754_CUN,	/* cmp_ueq (sig) cmp_ngl  */
1111 	IEEE754_CLT,		/* cmp_olt (sig) cmp_lt */
1112 	IEEE754_CLT | IEEE754_CUN,	/* cmp_ult (sig) cmp_nge */
1113 	IEEE754_CLT | IEEE754_CEQ,	/* cmp_ole (sig) cmp_le */
1114 	IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN,	/* cmp_ule (sig) cmp_ngt */
1115 };
1116 
1117 
1118 /*
1119  * Additional MIPS4 instructions
1120  */
1121 
1122 #define DEF3OP(name, p, f1, f2, f3)					\
1123 static union ieee754##p fpemu_##p##_##name(union ieee754##p r,		\
1124 	union ieee754##p s, union ieee754##p t)				\
1125 {									\
1126 	struct _ieee754_csr ieee754_csr_save;				\
1127 	s = f1(s, t);							\
1128 	ieee754_csr_save = ieee754_csr;					\
1129 	s = f2(s, r);							\
1130 	ieee754_csr_save.cx |= ieee754_csr.cx;				\
1131 	ieee754_csr_save.sx |= ieee754_csr.sx;				\
1132 	s = f3(s);							\
1133 	ieee754_csr.cx |= ieee754_csr_save.cx;				\
1134 	ieee754_csr.sx |= ieee754_csr_save.sx;				\
1135 	return s;							\
1136 }
1137 
1138 static union ieee754dp fpemu_dp_recip(union ieee754dp d)
1139 {
1140 	return ieee754dp_div(ieee754dp_one(0), d);
1141 }
1142 
1143 static union ieee754dp fpemu_dp_rsqrt(union ieee754dp d)
1144 {
1145 	return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d));
1146 }
1147 
1148 static union ieee754sp fpemu_sp_recip(union ieee754sp s)
1149 {
1150 	return ieee754sp_div(ieee754sp_one(0), s);
1151 }
1152 
1153 static union ieee754sp fpemu_sp_rsqrt(union ieee754sp s)
1154 {
1155 	return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s));
1156 }
1157 
1158 DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add, );
1159 DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub, );
1160 DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg);
1161 DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg);
1162 DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add, );
1163 DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub, );
1164 DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg);
1165 DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg);
1166 
1167 static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1168 	mips_instruction ir, void *__user *fault_addr)
1169 {
1170 	unsigned rcsr = 0;	/* resulting csr */
1171 
1172 	MIPS_FPU_EMU_INC_STATS(cp1xops);
1173 
1174 	switch (MIPSInst_FMA_FFMT(ir)) {
1175 	case s_fmt:{		/* 0 */
1176 
1177 		union ieee754sp(*handler) (union ieee754sp, union ieee754sp, union ieee754sp);
1178 		union ieee754sp fd, fr, fs, ft;
1179 		u32 __user *va;
1180 		u32 val;
1181 
1182 		switch (MIPSInst_FUNC(ir)) {
1183 		case lwxc1_op:
1184 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1185 				xcp->regs[MIPSInst_FT(ir)]);
1186 
1187 			MIPS_FPU_EMU_INC_STATS(loads);
1188 			if (!access_ok(VERIFY_READ, va, sizeof(u32))) {
1189 				MIPS_FPU_EMU_INC_STATS(errors);
1190 				*fault_addr = va;
1191 				return SIGBUS;
1192 			}
1193 			if (__get_user(val, va)) {
1194 				MIPS_FPU_EMU_INC_STATS(errors);
1195 				*fault_addr = va;
1196 				return SIGSEGV;
1197 			}
1198 			SITOREG(val, MIPSInst_FD(ir));
1199 			break;
1200 
1201 		case swxc1_op:
1202 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1203 				xcp->regs[MIPSInst_FT(ir)]);
1204 
1205 			MIPS_FPU_EMU_INC_STATS(stores);
1206 
1207 			SIFROMREG(val, MIPSInst_FS(ir));
1208 			if (!access_ok(VERIFY_WRITE, va, sizeof(u32))) {
1209 				MIPS_FPU_EMU_INC_STATS(errors);
1210 				*fault_addr = va;
1211 				return SIGBUS;
1212 			}
1213 			if (put_user(val, va)) {
1214 				MIPS_FPU_EMU_INC_STATS(errors);
1215 				*fault_addr = va;
1216 				return SIGSEGV;
1217 			}
1218 			break;
1219 
1220 		case madd_s_op:
1221 			handler = fpemu_sp_madd;
1222 			goto scoptop;
1223 		case msub_s_op:
1224 			handler = fpemu_sp_msub;
1225 			goto scoptop;
1226 		case nmadd_s_op:
1227 			handler = fpemu_sp_nmadd;
1228 			goto scoptop;
1229 		case nmsub_s_op:
1230 			handler = fpemu_sp_nmsub;
1231 			goto scoptop;
1232 
1233 		      scoptop:
1234 			SPFROMREG(fr, MIPSInst_FR(ir));
1235 			SPFROMREG(fs, MIPSInst_FS(ir));
1236 			SPFROMREG(ft, MIPSInst_FT(ir));
1237 			fd = (*handler) (fr, fs, ft);
1238 			SPTOREG(fd, MIPSInst_FD(ir));
1239 
1240 		      copcsr:
1241 			if (ieee754_cxtest(IEEE754_INEXACT)) {
1242 				MIPS_FPU_EMU_INC_STATS(ieee754_inexact);
1243 				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1244 			}
1245 			if (ieee754_cxtest(IEEE754_UNDERFLOW)) {
1246 				MIPS_FPU_EMU_INC_STATS(ieee754_underflow);
1247 				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1248 			}
1249 			if (ieee754_cxtest(IEEE754_OVERFLOW)) {
1250 				MIPS_FPU_EMU_INC_STATS(ieee754_overflow);
1251 				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1252 			}
1253 			if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) {
1254 				MIPS_FPU_EMU_INC_STATS(ieee754_invalidop);
1255 				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1256 			}
1257 
1258 			ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1259 			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1260 				/*printk ("SIGFPE: FPU csr = %08x\n",
1261 				   ctx->fcr31); */
1262 				return SIGFPE;
1263 			}
1264 
1265 			break;
1266 
1267 		default:
1268 			return SIGILL;
1269 		}
1270 		break;
1271 	}
1272 
1273 	case d_fmt:{		/* 1 */
1274 		union ieee754dp(*handler) (union ieee754dp, union ieee754dp, union ieee754dp);
1275 		union ieee754dp fd, fr, fs, ft;
1276 		u64 __user *va;
1277 		u64 val;
1278 
1279 		switch (MIPSInst_FUNC(ir)) {
1280 		case ldxc1_op:
1281 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1282 				xcp->regs[MIPSInst_FT(ir)]);
1283 
1284 			MIPS_FPU_EMU_INC_STATS(loads);
1285 			if (!access_ok(VERIFY_READ, va, sizeof(u64))) {
1286 				MIPS_FPU_EMU_INC_STATS(errors);
1287 				*fault_addr = va;
1288 				return SIGBUS;
1289 			}
1290 			if (__get_user(val, va)) {
1291 				MIPS_FPU_EMU_INC_STATS(errors);
1292 				*fault_addr = va;
1293 				return SIGSEGV;
1294 			}
1295 			DITOREG(val, MIPSInst_FD(ir));
1296 			break;
1297 
1298 		case sdxc1_op:
1299 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1300 				xcp->regs[MIPSInst_FT(ir)]);
1301 
1302 			MIPS_FPU_EMU_INC_STATS(stores);
1303 			DIFROMREG(val, MIPSInst_FS(ir));
1304 			if (!access_ok(VERIFY_WRITE, va, sizeof(u64))) {
1305 				MIPS_FPU_EMU_INC_STATS(errors);
1306 				*fault_addr = va;
1307 				return SIGBUS;
1308 			}
1309 			if (__put_user(val, va)) {
1310 				MIPS_FPU_EMU_INC_STATS(errors);
1311 				*fault_addr = va;
1312 				return SIGSEGV;
1313 			}
1314 			break;
1315 
1316 		case madd_d_op:
1317 			handler = fpemu_dp_madd;
1318 			goto dcoptop;
1319 		case msub_d_op:
1320 			handler = fpemu_dp_msub;
1321 			goto dcoptop;
1322 		case nmadd_d_op:
1323 			handler = fpemu_dp_nmadd;
1324 			goto dcoptop;
1325 		case nmsub_d_op:
1326 			handler = fpemu_dp_nmsub;
1327 			goto dcoptop;
1328 
1329 		      dcoptop:
1330 			DPFROMREG(fr, MIPSInst_FR(ir));
1331 			DPFROMREG(fs, MIPSInst_FS(ir));
1332 			DPFROMREG(ft, MIPSInst_FT(ir));
1333 			fd = (*handler) (fr, fs, ft);
1334 			DPTOREG(fd, MIPSInst_FD(ir));
1335 			goto copcsr;
1336 
1337 		default:
1338 			return SIGILL;
1339 		}
1340 		break;
1341 	}
1342 
1343 	case 0x3:
1344 		if (MIPSInst_FUNC(ir) != pfetch_op)
1345 			return SIGILL;
1346 
1347 		/* ignore prefx operation */
1348 		break;
1349 
1350 	default:
1351 		return SIGILL;
1352 	}
1353 
1354 	return 0;
1355 }
1356 
1357 
1358 
1359 /*
1360  * Emulate a single COP1 arithmetic instruction.
1361  */
1362 static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1363 	mips_instruction ir)
1364 {
1365 	int rfmt;		/* resulting format */
1366 	unsigned rcsr = 0;	/* resulting csr */
1367 	unsigned int oldrm;
1368 	unsigned int cbit;
1369 	unsigned cond;
1370 	union {
1371 		union ieee754dp d;
1372 		union ieee754sp s;
1373 		int w;
1374 		s64 l;
1375 	} rv;			/* resulting value */
1376 	u64 bits;
1377 
1378 	MIPS_FPU_EMU_INC_STATS(cp1ops);
1379 	switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) {
1380 	case s_fmt: {		/* 0 */
1381 		union {
1382 			union ieee754sp(*b) (union ieee754sp, union ieee754sp);
1383 			union ieee754sp(*u) (union ieee754sp);
1384 		} handler;
1385 		union ieee754sp fs, ft;
1386 
1387 		switch (MIPSInst_FUNC(ir)) {
1388 			/* binary ops */
1389 		case fadd_op:
1390 			handler.b = ieee754sp_add;
1391 			goto scopbop;
1392 		case fsub_op:
1393 			handler.b = ieee754sp_sub;
1394 			goto scopbop;
1395 		case fmul_op:
1396 			handler.b = ieee754sp_mul;
1397 			goto scopbop;
1398 		case fdiv_op:
1399 			handler.b = ieee754sp_div;
1400 			goto scopbop;
1401 
1402 			/* unary  ops */
1403 		case fsqrt_op:
1404 			if (!cpu_has_mips_4_5_r)
1405 				return SIGILL;
1406 
1407 			handler.u = ieee754sp_sqrt;
1408 			goto scopuop;
1409 
1410 		/*
1411 		 * Note that on some MIPS IV implementations such as the
1412 		 * R5000 and R8000 the FSQRT and FRECIP instructions do not
1413 		 * achieve full IEEE-754 accuracy - however this emulator does.
1414 		 */
1415 		case frsqrt_op:
1416 			if (!cpu_has_mips_4_5_r2)
1417 				return SIGILL;
1418 
1419 			handler.u = fpemu_sp_rsqrt;
1420 			goto scopuop;
1421 
1422 		case frecip_op:
1423 			if (!cpu_has_mips_4_5_r2)
1424 				return SIGILL;
1425 
1426 			handler.u = fpemu_sp_recip;
1427 			goto scopuop;
1428 
1429 		case fmovc_op:
1430 			if (!cpu_has_mips_4_5_r)
1431 				return SIGILL;
1432 
1433 			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1434 			if (((ctx->fcr31 & cond) != 0) !=
1435 				((MIPSInst_FT(ir) & 1) != 0))
1436 				return 0;
1437 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1438 			break;
1439 
1440 		case fmovz_op:
1441 			if (!cpu_has_mips_4_5_r)
1442 				return SIGILL;
1443 
1444 			if (xcp->regs[MIPSInst_FT(ir)] != 0)
1445 				return 0;
1446 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1447 			break;
1448 
1449 		case fmovn_op:
1450 			if (!cpu_has_mips_4_5_r)
1451 				return SIGILL;
1452 
1453 			if (xcp->regs[MIPSInst_FT(ir)] == 0)
1454 				return 0;
1455 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1456 			break;
1457 
1458 		case fabs_op:
1459 			handler.u = ieee754sp_abs;
1460 			goto scopuop;
1461 
1462 		case fneg_op:
1463 			handler.u = ieee754sp_neg;
1464 			goto scopuop;
1465 
1466 		case fmov_op:
1467 			/* an easy one */
1468 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1469 			goto copcsr;
1470 
1471 			/* binary op on handler */
1472 scopbop:
1473 			SPFROMREG(fs, MIPSInst_FS(ir));
1474 			SPFROMREG(ft, MIPSInst_FT(ir));
1475 
1476 			rv.s = (*handler.b) (fs, ft);
1477 			goto copcsr;
1478 scopuop:
1479 			SPFROMREG(fs, MIPSInst_FS(ir));
1480 			rv.s = (*handler.u) (fs);
1481 			goto copcsr;
1482 copcsr:
1483 			if (ieee754_cxtest(IEEE754_INEXACT)) {
1484 				MIPS_FPU_EMU_INC_STATS(ieee754_inexact);
1485 				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1486 			}
1487 			if (ieee754_cxtest(IEEE754_UNDERFLOW)) {
1488 				MIPS_FPU_EMU_INC_STATS(ieee754_underflow);
1489 				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1490 			}
1491 			if (ieee754_cxtest(IEEE754_OVERFLOW)) {
1492 				MIPS_FPU_EMU_INC_STATS(ieee754_overflow);
1493 				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1494 			}
1495 			if (ieee754_cxtest(IEEE754_ZERO_DIVIDE)) {
1496 				MIPS_FPU_EMU_INC_STATS(ieee754_zerodiv);
1497 				rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S;
1498 			}
1499 			if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) {
1500 				MIPS_FPU_EMU_INC_STATS(ieee754_invalidop);
1501 				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1502 			}
1503 			break;
1504 
1505 			/* unary conv ops */
1506 		case fcvts_op:
1507 			return SIGILL;	/* not defined */
1508 
1509 		case fcvtd_op:
1510 			SPFROMREG(fs, MIPSInst_FS(ir));
1511 			rv.d = ieee754dp_fsp(fs);
1512 			rfmt = d_fmt;
1513 			goto copcsr;
1514 
1515 		case fcvtw_op:
1516 			SPFROMREG(fs, MIPSInst_FS(ir));
1517 			rv.w = ieee754sp_tint(fs);
1518 			rfmt = w_fmt;
1519 			goto copcsr;
1520 
1521 		case fround_op:
1522 		case ftrunc_op:
1523 		case fceil_op:
1524 		case ffloor_op:
1525 			if (!cpu_has_mips_2_3_4_5 && !cpu_has_mips64)
1526 				return SIGILL;
1527 
1528 			oldrm = ieee754_csr.rm;
1529 			SPFROMREG(fs, MIPSInst_FS(ir));
1530 			ieee754_csr.rm = modeindex(MIPSInst_FUNC(ir));
1531 			rv.w = ieee754sp_tint(fs);
1532 			ieee754_csr.rm = oldrm;
1533 			rfmt = w_fmt;
1534 			goto copcsr;
1535 
1536 		case fcvtl_op:
1537 			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1538 				return SIGILL;
1539 
1540 			SPFROMREG(fs, MIPSInst_FS(ir));
1541 			rv.l = ieee754sp_tlong(fs);
1542 			rfmt = l_fmt;
1543 			goto copcsr;
1544 
1545 		case froundl_op:
1546 		case ftruncl_op:
1547 		case fceill_op:
1548 		case ffloorl_op:
1549 			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1550 				return SIGILL;
1551 
1552 			oldrm = ieee754_csr.rm;
1553 			SPFROMREG(fs, MIPSInst_FS(ir));
1554 			ieee754_csr.rm = modeindex(MIPSInst_FUNC(ir));
1555 			rv.l = ieee754sp_tlong(fs);
1556 			ieee754_csr.rm = oldrm;
1557 			rfmt = l_fmt;
1558 			goto copcsr;
1559 
1560 		default:
1561 			if (MIPSInst_FUNC(ir) >= fcmp_op) {
1562 				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1563 				union ieee754sp fs, ft;
1564 
1565 				SPFROMREG(fs, MIPSInst_FS(ir));
1566 				SPFROMREG(ft, MIPSInst_FT(ir));
1567 				rv.w = ieee754sp_cmp(fs, ft,
1568 					cmptab[cmpop & 0x7], cmpop & 0x8);
1569 				rfmt = -1;
1570 				if ((cmpop & 0x8) && ieee754_cxtest
1571 					(IEEE754_INVALID_OPERATION))
1572 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1573 				else
1574 					goto copcsr;
1575 
1576 			} else
1577 				return SIGILL;
1578 			break;
1579 		}
1580 		break;
1581 	}
1582 
1583 	case d_fmt: {
1584 		union ieee754dp fs, ft;
1585 		union {
1586 			union ieee754dp(*b) (union ieee754dp, union ieee754dp);
1587 			union ieee754dp(*u) (union ieee754dp);
1588 		} handler;
1589 
1590 		switch (MIPSInst_FUNC(ir)) {
1591 			/* binary ops */
1592 		case fadd_op:
1593 			handler.b = ieee754dp_add;
1594 			goto dcopbop;
1595 		case fsub_op:
1596 			handler.b = ieee754dp_sub;
1597 			goto dcopbop;
1598 		case fmul_op:
1599 			handler.b = ieee754dp_mul;
1600 			goto dcopbop;
1601 		case fdiv_op:
1602 			handler.b = ieee754dp_div;
1603 			goto dcopbop;
1604 
1605 			/* unary  ops */
1606 		case fsqrt_op:
1607 			if (!cpu_has_mips_2_3_4_5_r)
1608 				return SIGILL;
1609 
1610 			handler.u = ieee754dp_sqrt;
1611 			goto dcopuop;
1612 		/*
1613 		 * Note that on some MIPS IV implementations such as the
1614 		 * R5000 and R8000 the FSQRT and FRECIP instructions do not
1615 		 * achieve full IEEE-754 accuracy - however this emulator does.
1616 		 */
1617 		case frsqrt_op:
1618 			if (!cpu_has_mips_4_5_r2)
1619 				return SIGILL;
1620 
1621 			handler.u = fpemu_dp_rsqrt;
1622 			goto dcopuop;
1623 		case frecip_op:
1624 			if (!cpu_has_mips_4_5_r2)
1625 				return SIGILL;
1626 
1627 			handler.u = fpemu_dp_recip;
1628 			goto dcopuop;
1629 		case fmovc_op:
1630 			if (!cpu_has_mips_4_5_r)
1631 				return SIGILL;
1632 
1633 			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1634 			if (((ctx->fcr31 & cond) != 0) !=
1635 				((MIPSInst_FT(ir) & 1) != 0))
1636 				return 0;
1637 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1638 			break;
1639 		case fmovz_op:
1640 			if (!cpu_has_mips_4_5_r)
1641 				return SIGILL;
1642 
1643 			if (xcp->regs[MIPSInst_FT(ir)] != 0)
1644 				return 0;
1645 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1646 			break;
1647 		case fmovn_op:
1648 			if (!cpu_has_mips_4_5_r)
1649 				return SIGILL;
1650 
1651 			if (xcp->regs[MIPSInst_FT(ir)] == 0)
1652 				return 0;
1653 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1654 			break;
1655 		case fabs_op:
1656 			handler.u = ieee754dp_abs;
1657 			goto dcopuop;
1658 
1659 		case fneg_op:
1660 			handler.u = ieee754dp_neg;
1661 			goto dcopuop;
1662 
1663 		case fmov_op:
1664 			/* an easy one */
1665 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1666 			goto copcsr;
1667 
1668 			/* binary op on handler */
1669 dcopbop:
1670 			DPFROMREG(fs, MIPSInst_FS(ir));
1671 			DPFROMREG(ft, MIPSInst_FT(ir));
1672 
1673 			rv.d = (*handler.b) (fs, ft);
1674 			goto copcsr;
1675 dcopuop:
1676 			DPFROMREG(fs, MIPSInst_FS(ir));
1677 			rv.d = (*handler.u) (fs);
1678 			goto copcsr;
1679 
1680 		/*
1681 		 * unary conv ops
1682 		 */
1683 		case fcvts_op:
1684 			DPFROMREG(fs, MIPSInst_FS(ir));
1685 			rv.s = ieee754sp_fdp(fs);
1686 			rfmt = s_fmt;
1687 			goto copcsr;
1688 
1689 		case fcvtd_op:
1690 			return SIGILL;	/* not defined */
1691 
1692 		case fcvtw_op:
1693 			DPFROMREG(fs, MIPSInst_FS(ir));
1694 			rv.w = ieee754dp_tint(fs);	/* wrong */
1695 			rfmt = w_fmt;
1696 			goto copcsr;
1697 
1698 		case fround_op:
1699 		case ftrunc_op:
1700 		case fceil_op:
1701 		case ffloor_op:
1702 			if (!cpu_has_mips_2_3_4_5_r)
1703 				return SIGILL;
1704 
1705 			oldrm = ieee754_csr.rm;
1706 			DPFROMREG(fs, MIPSInst_FS(ir));
1707 			ieee754_csr.rm = modeindex(MIPSInst_FUNC(ir));
1708 			rv.w = ieee754dp_tint(fs);
1709 			ieee754_csr.rm = oldrm;
1710 			rfmt = w_fmt;
1711 			goto copcsr;
1712 
1713 		case fcvtl_op:
1714 			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1715 				return SIGILL;
1716 
1717 			DPFROMREG(fs, MIPSInst_FS(ir));
1718 			rv.l = ieee754dp_tlong(fs);
1719 			rfmt = l_fmt;
1720 			goto copcsr;
1721 
1722 		case froundl_op:
1723 		case ftruncl_op:
1724 		case fceill_op:
1725 		case ffloorl_op:
1726 			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1727 				return SIGILL;
1728 
1729 			oldrm = ieee754_csr.rm;
1730 			DPFROMREG(fs, MIPSInst_FS(ir));
1731 			ieee754_csr.rm = modeindex(MIPSInst_FUNC(ir));
1732 			rv.l = ieee754dp_tlong(fs);
1733 			ieee754_csr.rm = oldrm;
1734 			rfmt = l_fmt;
1735 			goto copcsr;
1736 
1737 		default:
1738 			if (MIPSInst_FUNC(ir) >= fcmp_op) {
1739 				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1740 				union ieee754dp fs, ft;
1741 
1742 				DPFROMREG(fs, MIPSInst_FS(ir));
1743 				DPFROMREG(ft, MIPSInst_FT(ir));
1744 				rv.w = ieee754dp_cmp(fs, ft,
1745 					cmptab[cmpop & 0x7], cmpop & 0x8);
1746 				rfmt = -1;
1747 				if ((cmpop & 0x8)
1748 					&&
1749 					ieee754_cxtest
1750 					(IEEE754_INVALID_OPERATION))
1751 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1752 				else
1753 					goto copcsr;
1754 
1755 			}
1756 			else {
1757 				return SIGILL;
1758 			}
1759 			break;
1760 		}
1761 		break;
1762 
1763 	case w_fmt:
1764 		switch (MIPSInst_FUNC(ir)) {
1765 		case fcvts_op:
1766 			/* convert word to single precision real */
1767 			SPFROMREG(fs, MIPSInst_FS(ir));
1768 			rv.s = ieee754sp_fint(fs.bits);
1769 			rfmt = s_fmt;
1770 			goto copcsr;
1771 		case fcvtd_op:
1772 			/* convert word to double precision real */
1773 			SPFROMREG(fs, MIPSInst_FS(ir));
1774 			rv.d = ieee754dp_fint(fs.bits);
1775 			rfmt = d_fmt;
1776 			goto copcsr;
1777 		default:
1778 			return SIGILL;
1779 		}
1780 		break;
1781 	}
1782 
1783 	case l_fmt:
1784 
1785 		if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1786 			return SIGILL;
1787 
1788 		DIFROMREG(bits, MIPSInst_FS(ir));
1789 
1790 		switch (MIPSInst_FUNC(ir)) {
1791 		case fcvts_op:
1792 			/* convert long to single precision real */
1793 			rv.s = ieee754sp_flong(bits);
1794 			rfmt = s_fmt;
1795 			goto copcsr;
1796 		case fcvtd_op:
1797 			/* convert long to double precision real */
1798 			rv.d = ieee754dp_flong(bits);
1799 			rfmt = d_fmt;
1800 			goto copcsr;
1801 		default:
1802 			return SIGILL;
1803 		}
1804 		break;
1805 
1806 	default:
1807 		return SIGILL;
1808 	}
1809 
1810 	/*
1811 	 * Update the fpu CSR register for this operation.
1812 	 * If an exception is required, generate a tidy SIGFPE exception,
1813 	 * without updating the result register.
1814 	 * Note: cause exception bits do not accumulate, they are rewritten
1815 	 * for each op; only the flag/sticky bits accumulate.
1816 	 */
1817 	ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1818 	if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1819 		/*printk ("SIGFPE: FPU csr = %08x\n",ctx->fcr31); */
1820 		return SIGFPE;
1821 	}
1822 
1823 	/*
1824 	 * Now we can safely write the result back to the register file.
1825 	 */
1826 	switch (rfmt) {
1827 	case -1:
1828 
1829 		if (cpu_has_mips_4_5_r)
1830 			cbit = fpucondbit[MIPSInst_RT(ir) >> 2];
1831 		else
1832 			cbit = FPU_CSR_COND;
1833 		if (rv.w)
1834 			ctx->fcr31 |= cbit;
1835 		else
1836 			ctx->fcr31 &= ~cbit;
1837 		break;
1838 
1839 	case d_fmt:
1840 		DPTOREG(rv.d, MIPSInst_FD(ir));
1841 		break;
1842 	case s_fmt:
1843 		SPTOREG(rv.s, MIPSInst_FD(ir));
1844 		break;
1845 	case w_fmt:
1846 		SITOREG(rv.w, MIPSInst_FD(ir));
1847 		break;
1848 	case l_fmt:
1849 		if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1850 			return SIGILL;
1851 
1852 		DITOREG(rv.l, MIPSInst_FD(ir));
1853 		break;
1854 	default:
1855 		return SIGILL;
1856 	}
1857 
1858 	return 0;
1859 }
1860 
1861 int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1862 	int has_fpu, void *__user *fault_addr)
1863 {
1864 	unsigned long oldepc, prevepc;
1865 	struct mm_decoded_insn dec_insn;
1866 	u16 instr[4];
1867 	u16 *instr_ptr;
1868 	int sig = 0;
1869 
1870 	oldepc = xcp->cp0_epc;
1871 	do {
1872 		prevepc = xcp->cp0_epc;
1873 
1874 		if (get_isa16_mode(prevepc) && cpu_has_mmips) {
1875 			/*
1876 			 * Get next 2 microMIPS instructions and convert them
1877 			 * into 32-bit instructions.
1878 			 */
1879 			if ((get_user(instr[0], (u16 __user *)msk_isa16_mode(xcp->cp0_epc))) ||
1880 			    (get_user(instr[1], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 2))) ||
1881 			    (get_user(instr[2], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 4))) ||
1882 			    (get_user(instr[3], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 6)))) {
1883 				MIPS_FPU_EMU_INC_STATS(errors);
1884 				return SIGBUS;
1885 			}
1886 			instr_ptr = instr;
1887 
1888 			/* Get first instruction. */
1889 			if (mm_insn_16bit(*instr_ptr)) {
1890 				/* Duplicate the half-word. */
1891 				dec_insn.insn = (*instr_ptr << 16) |
1892 					(*instr_ptr);
1893 				/* 16-bit instruction. */
1894 				dec_insn.pc_inc = 2;
1895 				instr_ptr += 1;
1896 			} else {
1897 				dec_insn.insn = (*instr_ptr << 16) |
1898 					*(instr_ptr+1);
1899 				/* 32-bit instruction. */
1900 				dec_insn.pc_inc = 4;
1901 				instr_ptr += 2;
1902 			}
1903 			/* Get second instruction. */
1904 			if (mm_insn_16bit(*instr_ptr)) {
1905 				/* Duplicate the half-word. */
1906 				dec_insn.next_insn = (*instr_ptr << 16) |
1907 					(*instr_ptr);
1908 				/* 16-bit instruction. */
1909 				dec_insn.next_pc_inc = 2;
1910 			} else {
1911 				dec_insn.next_insn = (*instr_ptr << 16) |
1912 					*(instr_ptr+1);
1913 				/* 32-bit instruction. */
1914 				dec_insn.next_pc_inc = 4;
1915 			}
1916 			dec_insn.micro_mips_mode = 1;
1917 		} else {
1918 			if ((get_user(dec_insn.insn,
1919 			    (mips_instruction __user *) xcp->cp0_epc)) ||
1920 			    (get_user(dec_insn.next_insn,
1921 			    (mips_instruction __user *)(xcp->cp0_epc+4)))) {
1922 				MIPS_FPU_EMU_INC_STATS(errors);
1923 				return SIGBUS;
1924 			}
1925 			dec_insn.pc_inc = 4;
1926 			dec_insn.next_pc_inc = 4;
1927 			dec_insn.micro_mips_mode = 0;
1928 		}
1929 
1930 		if ((dec_insn.insn == 0) ||
1931 		   ((dec_insn.pc_inc == 2) &&
1932 		   ((dec_insn.insn & 0xffff) == MM_NOP16)))
1933 			xcp->cp0_epc += dec_insn.pc_inc;	/* Skip NOPs */
1934 		else {
1935 			/*
1936 			 * The 'ieee754_csr' is an alias of
1937 			 * ctx->fcr31.	No need to copy ctx->fcr31 to
1938 			 * ieee754_csr.	 But ieee754_csr.rm is ieee
1939 			 * library modes. (not mips rounding mode)
1940 			 */
1941 			sig = cop1Emulate(xcp, ctx, dec_insn, fault_addr);
1942 		}
1943 
1944 		if (has_fpu)
1945 			break;
1946 		if (sig)
1947 			break;
1948 
1949 		cond_resched();
1950 	} while (xcp->cp0_epc > prevepc);
1951 
1952 	/* SIGILL indicates a non-fpu instruction */
1953 	if (sig == SIGILL && xcp->cp0_epc != oldepc)
1954 		/* but if EPC has advanced, then ignore it */
1955 		sig = 0;
1956 
1957 	return sig;
1958 }
1959