xref: /openbmc/linux/arch/mips/math-emu/cp1emu.c (revision 861e10be)
1 /*
2  * cp1emu.c: a MIPS coprocessor 1 (fpu) instruction emulator
3  *
4  * MIPS floating point support
5  * Copyright (C) 1994-2000 Algorithmics Ltd.
6  *
7  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
8  * Copyright (C) 2000  MIPS Technologies, Inc.
9  *
10  *  This program is free software; you can distribute it and/or modify it
11  *  under the terms of the GNU General Public License (Version 2) as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope it will be useful, but WITHOUT
15  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17  *  for more details.
18  *
19  *  You should have received a copy of the GNU General Public License along
20  *  with this program; if not, write to the Free Software Foundation, Inc.,
21  *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
22  *
23  * A complete emulator for MIPS coprocessor 1 instructions.  This is
24  * required for #float(switch) or #float(trap), where it catches all
25  * COP1 instructions via the "CoProcessor Unusable" exception.
26  *
27  * More surprisingly it is also required for #float(ieee), to help out
28  * the hardware fpu at the boundaries of the IEEE-754 representation
29  * (denormalised values, infinities, underflow, etc).  It is made
30  * quite nasty because emulation of some non-COP1 instructions is
31  * required, e.g. in branch delay slots.
32  *
33  * Note if you know that you won't have an fpu, then you'll get much
34  * better performance by compiling with -msoft-float!
35  */
36 #include <linux/sched.h>
37 #include <linux/module.h>
38 #include <linux/debugfs.h>
39 #include <linux/perf_event.h>
40 
41 #include <asm/inst.h>
42 #include <asm/bootinfo.h>
43 #include <asm/processor.h>
44 #include <asm/ptrace.h>
45 #include <asm/signal.h>
46 #include <asm/mipsregs.h>
47 #include <asm/fpu_emulator.h>
48 #include <asm/uaccess.h>
49 #include <asm/branch.h>
50 
51 #include "ieee754.h"
52 
53 /* Strap kernel emulator for full MIPS IV emulation */
54 
55 #ifdef __mips
56 #undef __mips
57 #endif
58 #define __mips 4
59 
60 /* Function which emulates a floating point instruction. */
61 
62 static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *,
63 	mips_instruction);
64 
65 #if __mips >= 4 && __mips != 32
66 static int fpux_emu(struct pt_regs *,
67 	struct mips_fpu_struct *, mips_instruction, void *__user *);
68 #endif
69 
70 /* Further private data for which no space exists in mips_fpu_struct */
71 
72 #ifdef CONFIG_DEBUG_FS
73 DEFINE_PER_CPU(struct mips_fpu_emulator_stats, fpuemustats);
74 #endif
75 
76 /* Control registers */
77 
78 #define FPCREG_RID	0	/* $0  = revision id */
79 #define FPCREG_CSR	31	/* $31 = csr */
80 
81 /* Determine rounding mode from the RM bits of the FCSR */
82 #define modeindex(v) ((v) & FPU_CSR_RM)
83 
84 /* Convert Mips rounding mode (0..3) to IEEE library modes. */
85 static const unsigned char ieee_rm[4] = {
86 	[FPU_CSR_RN] = IEEE754_RN,
87 	[FPU_CSR_RZ] = IEEE754_RZ,
88 	[FPU_CSR_RU] = IEEE754_RU,
89 	[FPU_CSR_RD] = IEEE754_RD,
90 };
91 /* Convert IEEE library modes to Mips rounding mode (0..3). */
92 static const unsigned char mips_rm[4] = {
93 	[IEEE754_RN] = FPU_CSR_RN,
94 	[IEEE754_RZ] = FPU_CSR_RZ,
95 	[IEEE754_RD] = FPU_CSR_RD,
96 	[IEEE754_RU] = FPU_CSR_RU,
97 };
98 
99 #if __mips >= 4
100 /* convert condition code register number to csr bit */
101 static const unsigned int fpucondbit[8] = {
102 	FPU_CSR_COND0,
103 	FPU_CSR_COND1,
104 	FPU_CSR_COND2,
105 	FPU_CSR_COND3,
106 	FPU_CSR_COND4,
107 	FPU_CSR_COND5,
108 	FPU_CSR_COND6,
109 	FPU_CSR_COND7
110 };
111 #endif
112 
113 
114 /*
115  * Redundant with logic already in kernel/branch.c,
116  * embedded in compute_return_epc.  At some point,
117  * a single subroutine should be used across both
118  * modules.
119  */
120 static int isBranchInstr(mips_instruction * i)
121 {
122 	switch (MIPSInst_OPCODE(*i)) {
123 	case spec_op:
124 		switch (MIPSInst_FUNC(*i)) {
125 		case jalr_op:
126 		case jr_op:
127 			return 1;
128 		}
129 		break;
130 
131 	case bcond_op:
132 		switch (MIPSInst_RT(*i)) {
133 		case bltz_op:
134 		case bgez_op:
135 		case bltzl_op:
136 		case bgezl_op:
137 		case bltzal_op:
138 		case bgezal_op:
139 		case bltzall_op:
140 		case bgezall_op:
141 			return 1;
142 		}
143 		break;
144 
145 	case j_op:
146 	case jal_op:
147 	case jalx_op:
148 	case beq_op:
149 	case bne_op:
150 	case blez_op:
151 	case bgtz_op:
152 	case beql_op:
153 	case bnel_op:
154 	case blezl_op:
155 	case bgtzl_op:
156 		return 1;
157 
158 	case cop0_op:
159 	case cop1_op:
160 	case cop2_op:
161 	case cop1x_op:
162 		if (MIPSInst_RS(*i) == bc_op)
163 			return 1;
164 		break;
165 	}
166 
167 	return 0;
168 }
169 
170 /*
171  * In the Linux kernel, we support selection of FPR format on the
172  * basis of the Status.FR bit.  If an FPU is not present, the FR bit
173  * is hardwired to zero, which would imply a 32-bit FPU even for
174  * 64-bit CPUs so we rather look at TIF_32BIT_REGS.
175  * FPU emu is slow and bulky and optimizing this function offers fairly
176  * sizeable benefits so we try to be clever and make this function return
177  * a constant whenever possible, that is on 64-bit kernels without O32
178  * compatibility enabled and on 32-bit kernels.
179  */
180 static inline int cop1_64bit(struct pt_regs *xcp)
181 {
182 #if defined(CONFIG_64BIT) && !defined(CONFIG_MIPS32_O32)
183 	return 1;
184 #elif defined(CONFIG_64BIT) && defined(CONFIG_MIPS32_O32)
185 	return !test_thread_flag(TIF_32BIT_REGS);
186 #else
187 	return 0;
188 #endif
189 }
190 
191 #define SIFROMREG(si, x) ((si) = cop1_64bit(xcp) || !(x & 1) ? \
192 			(int)ctx->fpr[x] : (int)(ctx->fpr[x & ~1] >> 32))
193 
194 #define SITOREG(si, x)	(ctx->fpr[x & ~(cop1_64bit(xcp) == 0)] = \
195 			cop1_64bit(xcp) || !(x & 1) ? \
196 			ctx->fpr[x & ~1] >> 32 << 32 | (u32)(si) : \
197 			ctx->fpr[x & ~1] << 32 >> 32 | (u64)(si) << 32)
198 
199 #define DIFROMREG(di, x) ((di) = ctx->fpr[x & ~(cop1_64bit(xcp) == 0)])
200 #define DITOREG(di, x)	(ctx->fpr[x & ~(cop1_64bit(xcp) == 0)] = (di))
201 
202 #define SPFROMREG(sp, x) SIFROMREG((sp).bits, x)
203 #define SPTOREG(sp, x)	SITOREG((sp).bits, x)
204 #define DPFROMREG(dp, x)	DIFROMREG((dp).bits, x)
205 #define DPTOREG(dp, x)	DITOREG((dp).bits, x)
206 
207 /*
208  * Emulate the single floating point instruction pointed at by EPC.
209  * Two instructions if the instruction is in a branch delay slot.
210  */
211 
212 static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
213 		       void *__user *fault_addr)
214 {
215 	mips_instruction ir;
216 	unsigned long emulpc, contpc;
217 	unsigned int cond;
218 
219 	if (!access_ok(VERIFY_READ, xcp->cp0_epc, sizeof(mips_instruction))) {
220 		MIPS_FPU_EMU_INC_STATS(errors);
221 		*fault_addr = (mips_instruction __user *)xcp->cp0_epc;
222 		return SIGBUS;
223 	}
224 	if (__get_user(ir, (mips_instruction __user *) xcp->cp0_epc)) {
225 		MIPS_FPU_EMU_INC_STATS(errors);
226 		*fault_addr = (mips_instruction __user *)xcp->cp0_epc;
227 		return SIGSEGV;
228 	}
229 
230 	/* XXX NEC Vr54xx bug workaround */
231 	if ((xcp->cp0_cause & CAUSEF_BD) && !isBranchInstr(&ir))
232 		xcp->cp0_cause &= ~CAUSEF_BD;
233 
234 	if (xcp->cp0_cause & CAUSEF_BD) {
235 		/*
236 		 * The instruction to be emulated is in a branch delay slot
237 		 * which means that we have to  emulate the branch instruction
238 		 * BEFORE we do the cop1 instruction.
239 		 *
240 		 * This branch could be a COP1 branch, but in that case we
241 		 * would have had a trap for that instruction, and would not
242 		 * come through this route.
243 		 *
244 		 * Linux MIPS branch emulator operates on context, updating the
245 		 * cp0_epc.
246 		 */
247 		emulpc = xcp->cp0_epc + 4;	/* Snapshot emulation target */
248 
249 		if (__compute_return_epc(xcp) < 0) {
250 #ifdef CP1DBG
251 			printk("failed to emulate branch at %p\n",
252 				(void *) (xcp->cp0_epc));
253 #endif
254 			return SIGILL;
255 		}
256 		if (!access_ok(VERIFY_READ, emulpc, sizeof(mips_instruction))) {
257 			MIPS_FPU_EMU_INC_STATS(errors);
258 			*fault_addr = (mips_instruction __user *)emulpc;
259 			return SIGBUS;
260 		}
261 		if (__get_user(ir, (mips_instruction __user *) emulpc)) {
262 			MIPS_FPU_EMU_INC_STATS(errors);
263 			*fault_addr = (mips_instruction __user *)emulpc;
264 			return SIGSEGV;
265 		}
266 		/* __compute_return_epc() will have updated cp0_epc */
267 		contpc = xcp->cp0_epc;
268 		/* In order not to confuse ptrace() et al, tweak context */
269 		xcp->cp0_epc = emulpc - 4;
270 	} else {
271 		emulpc = xcp->cp0_epc;
272 		contpc = xcp->cp0_epc + 4;
273 	}
274 
275       emul:
276 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, xcp, 0);
277 	MIPS_FPU_EMU_INC_STATS(emulated);
278 	switch (MIPSInst_OPCODE(ir)) {
279 	case ldc1_op:{
280 		u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
281 			MIPSInst_SIMM(ir));
282 		u64 val;
283 
284 		MIPS_FPU_EMU_INC_STATS(loads);
285 
286 		if (!access_ok(VERIFY_READ, va, sizeof(u64))) {
287 			MIPS_FPU_EMU_INC_STATS(errors);
288 			*fault_addr = va;
289 			return SIGBUS;
290 		}
291 		if (__get_user(val, va)) {
292 			MIPS_FPU_EMU_INC_STATS(errors);
293 			*fault_addr = va;
294 			return SIGSEGV;
295 		}
296 		DITOREG(val, MIPSInst_RT(ir));
297 		break;
298 	}
299 
300 	case sdc1_op:{
301 		u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
302 			MIPSInst_SIMM(ir));
303 		u64 val;
304 
305 		MIPS_FPU_EMU_INC_STATS(stores);
306 		DIFROMREG(val, MIPSInst_RT(ir));
307 		if (!access_ok(VERIFY_WRITE, va, sizeof(u64))) {
308 			MIPS_FPU_EMU_INC_STATS(errors);
309 			*fault_addr = va;
310 			return SIGBUS;
311 		}
312 		if (__put_user(val, va)) {
313 			MIPS_FPU_EMU_INC_STATS(errors);
314 			*fault_addr = va;
315 			return SIGSEGV;
316 		}
317 		break;
318 	}
319 
320 	case lwc1_op:{
321 		u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
322 			MIPSInst_SIMM(ir));
323 		u32 val;
324 
325 		MIPS_FPU_EMU_INC_STATS(loads);
326 		if (!access_ok(VERIFY_READ, va, sizeof(u32))) {
327 			MIPS_FPU_EMU_INC_STATS(errors);
328 			*fault_addr = va;
329 			return SIGBUS;
330 		}
331 		if (__get_user(val, va)) {
332 			MIPS_FPU_EMU_INC_STATS(errors);
333 			*fault_addr = va;
334 			return SIGSEGV;
335 		}
336 		SITOREG(val, MIPSInst_RT(ir));
337 		break;
338 	}
339 
340 	case swc1_op:{
341 		u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
342 			MIPSInst_SIMM(ir));
343 		u32 val;
344 
345 		MIPS_FPU_EMU_INC_STATS(stores);
346 		SIFROMREG(val, MIPSInst_RT(ir));
347 		if (!access_ok(VERIFY_WRITE, va, sizeof(u32))) {
348 			MIPS_FPU_EMU_INC_STATS(errors);
349 			*fault_addr = va;
350 			return SIGBUS;
351 		}
352 		if (__put_user(val, va)) {
353 			MIPS_FPU_EMU_INC_STATS(errors);
354 			*fault_addr = va;
355 			return SIGSEGV;
356 		}
357 		break;
358 	}
359 
360 	case cop1_op:
361 		switch (MIPSInst_RS(ir)) {
362 
363 #if defined(__mips64)
364 		case dmfc_op:
365 			/* copregister fs -> gpr[rt] */
366 			if (MIPSInst_RT(ir) != 0) {
367 				DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
368 					MIPSInst_RD(ir));
369 			}
370 			break;
371 
372 		case dmtc_op:
373 			/* copregister fs <- rt */
374 			DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
375 			break;
376 #endif
377 
378 		case mfc_op:
379 			/* copregister rd -> gpr[rt] */
380 			if (MIPSInst_RT(ir) != 0) {
381 				SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
382 					MIPSInst_RD(ir));
383 			}
384 			break;
385 
386 		case mtc_op:
387 			/* copregister rd <- rt */
388 			SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
389 			break;
390 
391 		case cfc_op:{
392 			/* cop control register rd -> gpr[rt] */
393 			u32 value;
394 
395 			if (MIPSInst_RD(ir) == FPCREG_CSR) {
396 				value = ctx->fcr31;
397 				value = (value & ~FPU_CSR_RM) |
398 					mips_rm[modeindex(value)];
399 #ifdef CSRTRACE
400 				printk("%p gpr[%d]<-csr=%08x\n",
401 					(void *) (xcp->cp0_epc),
402 					MIPSInst_RT(ir), value);
403 #endif
404 			}
405 			else if (MIPSInst_RD(ir) == FPCREG_RID)
406 				value = 0;
407 			else
408 				value = 0;
409 			if (MIPSInst_RT(ir))
410 				xcp->regs[MIPSInst_RT(ir)] = value;
411 			break;
412 		}
413 
414 		case ctc_op:{
415 			/* copregister rd <- rt */
416 			u32 value;
417 
418 			if (MIPSInst_RT(ir) == 0)
419 				value = 0;
420 			else
421 				value = xcp->regs[MIPSInst_RT(ir)];
422 
423 			/* we only have one writable control reg
424 			 */
425 			if (MIPSInst_RD(ir) == FPCREG_CSR) {
426 #ifdef CSRTRACE
427 				printk("%p gpr[%d]->csr=%08x\n",
428 					(void *) (xcp->cp0_epc),
429 					MIPSInst_RT(ir), value);
430 #endif
431 
432 				/*
433 				 * Don't write reserved bits,
434 				 * and convert to ieee library modes
435 				 */
436 				ctx->fcr31 = (value &
437 						~(FPU_CSR_RSVD | FPU_CSR_RM)) |
438 						ieee_rm[modeindex(value)];
439 			}
440 			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
441 				return SIGFPE;
442 			}
443 			break;
444 		}
445 
446 		case bc_op:{
447 			int likely = 0;
448 
449 			if (xcp->cp0_cause & CAUSEF_BD)
450 				return SIGILL;
451 
452 #if __mips >= 4
453 			cond = ctx->fcr31 & fpucondbit[MIPSInst_RT(ir) >> 2];
454 #else
455 			cond = ctx->fcr31 & FPU_CSR_COND;
456 #endif
457 			switch (MIPSInst_RT(ir) & 3) {
458 			case bcfl_op:
459 				likely = 1;
460 			case bcf_op:
461 				cond = !cond;
462 				break;
463 			case bctl_op:
464 				likely = 1;
465 			case bct_op:
466 				break;
467 			default:
468 				/* thats an illegal instruction */
469 				return SIGILL;
470 			}
471 
472 			xcp->cp0_cause |= CAUSEF_BD;
473 			if (cond) {
474 				/* branch taken: emulate dslot
475 				 * instruction
476 				 */
477 				xcp->cp0_epc += 4;
478 				contpc = (xcp->cp0_epc +
479 					(MIPSInst_SIMM(ir) << 2));
480 
481 				if (!access_ok(VERIFY_READ, xcp->cp0_epc,
482 					       sizeof(mips_instruction))) {
483 					MIPS_FPU_EMU_INC_STATS(errors);
484 					*fault_addr = (mips_instruction __user *)xcp->cp0_epc;
485 					return SIGBUS;
486 				}
487 				if (__get_user(ir,
488 				    (mips_instruction __user *) xcp->cp0_epc)) {
489 					MIPS_FPU_EMU_INC_STATS(errors);
490 					*fault_addr = (mips_instruction __user *)xcp->cp0_epc;
491 					return SIGSEGV;
492 				}
493 
494 				switch (MIPSInst_OPCODE(ir)) {
495 				case lwc1_op:
496 				case swc1_op:
497 #if (__mips >= 2 || defined(__mips64))
498 				case ldc1_op:
499 				case sdc1_op:
500 #endif
501 				case cop1_op:
502 #if __mips >= 4 && __mips != 32
503 				case cop1x_op:
504 #endif
505 					/* its one of ours */
506 					goto emul;
507 #if __mips >= 4
508 				case spec_op:
509 					if (MIPSInst_FUNC(ir) == movc_op)
510 						goto emul;
511 					break;
512 #endif
513 				}
514 
515 				/*
516 				 * Single step the non-cp1
517 				 * instruction in the dslot
518 				 */
519 				return mips_dsemul(xcp, ir, contpc);
520 			}
521 			else {
522 				/* branch not taken */
523 				if (likely) {
524 					/*
525 					 * branch likely nullifies
526 					 * dslot if not taken
527 					 */
528 					xcp->cp0_epc += 4;
529 					contpc += 4;
530 					/*
531 					 * else continue & execute
532 					 * dslot as normal insn
533 					 */
534 				}
535 			}
536 			break;
537 		}
538 
539 		default:
540 			if (!(MIPSInst_RS(ir) & 0x10))
541 				return SIGILL;
542 			{
543 				int sig;
544 
545 				/* a real fpu computation instruction */
546 				if ((sig = fpu_emu(xcp, ctx, ir)))
547 					return sig;
548 			}
549 		}
550 		break;
551 
552 #if __mips >= 4 && __mips != 32
553 	case cop1x_op:{
554 		int sig = fpux_emu(xcp, ctx, ir, fault_addr);
555 		if (sig)
556 			return sig;
557 		break;
558 	}
559 #endif
560 
561 #if __mips >= 4
562 	case spec_op:
563 		if (MIPSInst_FUNC(ir) != movc_op)
564 			return SIGILL;
565 		cond = fpucondbit[MIPSInst_RT(ir) >> 2];
566 		if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
567 			xcp->regs[MIPSInst_RD(ir)] =
568 				xcp->regs[MIPSInst_RS(ir)];
569 		break;
570 #endif
571 
572 	default:
573 		return SIGILL;
574 	}
575 
576 	/* we did it !! */
577 	xcp->cp0_epc = contpc;
578 	xcp->cp0_cause &= ~CAUSEF_BD;
579 
580 	return 0;
581 }
582 
583 /*
584  * Conversion table from MIPS compare ops 48-63
585  * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
586  */
587 static const unsigned char cmptab[8] = {
588 	0,			/* cmp_0 (sig) cmp_sf */
589 	IEEE754_CUN,		/* cmp_un (sig) cmp_ngle */
590 	IEEE754_CEQ,		/* cmp_eq (sig) cmp_seq */
591 	IEEE754_CEQ | IEEE754_CUN,	/* cmp_ueq (sig) cmp_ngl  */
592 	IEEE754_CLT,		/* cmp_olt (sig) cmp_lt */
593 	IEEE754_CLT | IEEE754_CUN,	/* cmp_ult (sig) cmp_nge */
594 	IEEE754_CLT | IEEE754_CEQ,	/* cmp_ole (sig) cmp_le */
595 	IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN,	/* cmp_ule (sig) cmp_ngt */
596 };
597 
598 
599 #if __mips >= 4 && __mips != 32
600 
601 /*
602  * Additional MIPS4 instructions
603  */
604 
605 #define DEF3OP(name, p, f1, f2, f3) \
606 static ieee754##p fpemu_##p##_##name(ieee754##p r, ieee754##p s, \
607     ieee754##p t) \
608 { \
609 	struct _ieee754_csr ieee754_csr_save; \
610 	s = f1(s, t); \
611 	ieee754_csr_save = ieee754_csr; \
612 	s = f2(s, r); \
613 	ieee754_csr_save.cx |= ieee754_csr.cx; \
614 	ieee754_csr_save.sx |= ieee754_csr.sx; \
615 	s = f3(s); \
616 	ieee754_csr.cx |= ieee754_csr_save.cx; \
617 	ieee754_csr.sx |= ieee754_csr_save.sx; \
618 	return s; \
619 }
620 
621 static ieee754dp fpemu_dp_recip(ieee754dp d)
622 {
623 	return ieee754dp_div(ieee754dp_one(0), d);
624 }
625 
626 static ieee754dp fpemu_dp_rsqrt(ieee754dp d)
627 {
628 	return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d));
629 }
630 
631 static ieee754sp fpemu_sp_recip(ieee754sp s)
632 {
633 	return ieee754sp_div(ieee754sp_one(0), s);
634 }
635 
636 static ieee754sp fpemu_sp_rsqrt(ieee754sp s)
637 {
638 	return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s));
639 }
640 
641 DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add, );
642 DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub, );
643 DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg);
644 DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg);
645 DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add, );
646 DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub, );
647 DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg);
648 DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg);
649 
650 static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
651 	mips_instruction ir, void *__user *fault_addr)
652 {
653 	unsigned rcsr = 0;	/* resulting csr */
654 
655 	MIPS_FPU_EMU_INC_STATS(cp1xops);
656 
657 	switch (MIPSInst_FMA_FFMT(ir)) {
658 	case s_fmt:{		/* 0 */
659 
660 		ieee754sp(*handler) (ieee754sp, ieee754sp, ieee754sp);
661 		ieee754sp fd, fr, fs, ft;
662 		u32 __user *va;
663 		u32 val;
664 
665 		switch (MIPSInst_FUNC(ir)) {
666 		case lwxc1_op:
667 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
668 				xcp->regs[MIPSInst_FT(ir)]);
669 
670 			MIPS_FPU_EMU_INC_STATS(loads);
671 			if (!access_ok(VERIFY_READ, va, sizeof(u32))) {
672 				MIPS_FPU_EMU_INC_STATS(errors);
673 				*fault_addr = va;
674 				return SIGBUS;
675 			}
676 			if (__get_user(val, va)) {
677 				MIPS_FPU_EMU_INC_STATS(errors);
678 				*fault_addr = va;
679 				return SIGSEGV;
680 			}
681 			SITOREG(val, MIPSInst_FD(ir));
682 			break;
683 
684 		case swxc1_op:
685 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
686 				xcp->regs[MIPSInst_FT(ir)]);
687 
688 			MIPS_FPU_EMU_INC_STATS(stores);
689 
690 			SIFROMREG(val, MIPSInst_FS(ir));
691 			if (!access_ok(VERIFY_WRITE, va, sizeof(u32))) {
692 				MIPS_FPU_EMU_INC_STATS(errors);
693 				*fault_addr = va;
694 				return SIGBUS;
695 			}
696 			if (put_user(val, va)) {
697 				MIPS_FPU_EMU_INC_STATS(errors);
698 				*fault_addr = va;
699 				return SIGSEGV;
700 			}
701 			break;
702 
703 		case madd_s_op:
704 			handler = fpemu_sp_madd;
705 			goto scoptop;
706 		case msub_s_op:
707 			handler = fpemu_sp_msub;
708 			goto scoptop;
709 		case nmadd_s_op:
710 			handler = fpemu_sp_nmadd;
711 			goto scoptop;
712 		case nmsub_s_op:
713 			handler = fpemu_sp_nmsub;
714 			goto scoptop;
715 
716 		      scoptop:
717 			SPFROMREG(fr, MIPSInst_FR(ir));
718 			SPFROMREG(fs, MIPSInst_FS(ir));
719 			SPFROMREG(ft, MIPSInst_FT(ir));
720 			fd = (*handler) (fr, fs, ft);
721 			SPTOREG(fd, MIPSInst_FD(ir));
722 
723 		      copcsr:
724 			if (ieee754_cxtest(IEEE754_INEXACT))
725 				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
726 			if (ieee754_cxtest(IEEE754_UNDERFLOW))
727 				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
728 			if (ieee754_cxtest(IEEE754_OVERFLOW))
729 				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
730 			if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
731 				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
732 
733 			ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
734 			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
735 				/*printk ("SIGFPE: fpu csr = %08x\n",
736 				   ctx->fcr31); */
737 				return SIGFPE;
738 			}
739 
740 			break;
741 
742 		default:
743 			return SIGILL;
744 		}
745 		break;
746 	}
747 
748 	case d_fmt:{		/* 1 */
749 		ieee754dp(*handler) (ieee754dp, ieee754dp, ieee754dp);
750 		ieee754dp fd, fr, fs, ft;
751 		u64 __user *va;
752 		u64 val;
753 
754 		switch (MIPSInst_FUNC(ir)) {
755 		case ldxc1_op:
756 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
757 				xcp->regs[MIPSInst_FT(ir)]);
758 
759 			MIPS_FPU_EMU_INC_STATS(loads);
760 			if (!access_ok(VERIFY_READ, va, sizeof(u64))) {
761 				MIPS_FPU_EMU_INC_STATS(errors);
762 				*fault_addr = va;
763 				return SIGBUS;
764 			}
765 			if (__get_user(val, va)) {
766 				MIPS_FPU_EMU_INC_STATS(errors);
767 				*fault_addr = va;
768 				return SIGSEGV;
769 			}
770 			DITOREG(val, MIPSInst_FD(ir));
771 			break;
772 
773 		case sdxc1_op:
774 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
775 				xcp->regs[MIPSInst_FT(ir)]);
776 
777 			MIPS_FPU_EMU_INC_STATS(stores);
778 			DIFROMREG(val, MIPSInst_FS(ir));
779 			if (!access_ok(VERIFY_WRITE, va, sizeof(u64))) {
780 				MIPS_FPU_EMU_INC_STATS(errors);
781 				*fault_addr = va;
782 				return SIGBUS;
783 			}
784 			if (__put_user(val, va)) {
785 				MIPS_FPU_EMU_INC_STATS(errors);
786 				*fault_addr = va;
787 				return SIGSEGV;
788 			}
789 			break;
790 
791 		case madd_d_op:
792 			handler = fpemu_dp_madd;
793 			goto dcoptop;
794 		case msub_d_op:
795 			handler = fpemu_dp_msub;
796 			goto dcoptop;
797 		case nmadd_d_op:
798 			handler = fpemu_dp_nmadd;
799 			goto dcoptop;
800 		case nmsub_d_op:
801 			handler = fpemu_dp_nmsub;
802 			goto dcoptop;
803 
804 		      dcoptop:
805 			DPFROMREG(fr, MIPSInst_FR(ir));
806 			DPFROMREG(fs, MIPSInst_FS(ir));
807 			DPFROMREG(ft, MIPSInst_FT(ir));
808 			fd = (*handler) (fr, fs, ft);
809 			DPTOREG(fd, MIPSInst_FD(ir));
810 			goto copcsr;
811 
812 		default:
813 			return SIGILL;
814 		}
815 		break;
816 	}
817 
818 	case 0x7:		/* 7 */
819 		if (MIPSInst_FUNC(ir) != pfetch_op) {
820 			return SIGILL;
821 		}
822 		/* ignore prefx operation */
823 		break;
824 
825 	default:
826 		return SIGILL;
827 	}
828 
829 	return 0;
830 }
831 #endif
832 
833 
834 
835 /*
836  * Emulate a single COP1 arithmetic instruction.
837  */
838 static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
839 	mips_instruction ir)
840 {
841 	int rfmt;		/* resulting format */
842 	unsigned rcsr = 0;	/* resulting csr */
843 	unsigned cond;
844 	union {
845 		ieee754dp d;
846 		ieee754sp s;
847 		int w;
848 #ifdef __mips64
849 		s64 l;
850 #endif
851 	} rv;			/* resulting value */
852 
853 	MIPS_FPU_EMU_INC_STATS(cp1ops);
854 	switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) {
855 	case s_fmt:{		/* 0 */
856 		union {
857 			ieee754sp(*b) (ieee754sp, ieee754sp);
858 			ieee754sp(*u) (ieee754sp);
859 		} handler;
860 
861 		switch (MIPSInst_FUNC(ir)) {
862 			/* binary ops */
863 		case fadd_op:
864 			handler.b = ieee754sp_add;
865 			goto scopbop;
866 		case fsub_op:
867 			handler.b = ieee754sp_sub;
868 			goto scopbop;
869 		case fmul_op:
870 			handler.b = ieee754sp_mul;
871 			goto scopbop;
872 		case fdiv_op:
873 			handler.b = ieee754sp_div;
874 			goto scopbop;
875 
876 			/* unary  ops */
877 #if __mips >= 2 || defined(__mips64)
878 		case fsqrt_op:
879 			handler.u = ieee754sp_sqrt;
880 			goto scopuop;
881 #endif
882 #if __mips >= 4 && __mips != 32
883 		case frsqrt_op:
884 			handler.u = fpemu_sp_rsqrt;
885 			goto scopuop;
886 		case frecip_op:
887 			handler.u = fpemu_sp_recip;
888 			goto scopuop;
889 #endif
890 #if __mips >= 4
891 		case fmovc_op:
892 			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
893 			if (((ctx->fcr31 & cond) != 0) !=
894 				((MIPSInst_FT(ir) & 1) != 0))
895 				return 0;
896 			SPFROMREG(rv.s, MIPSInst_FS(ir));
897 			break;
898 		case fmovz_op:
899 			if (xcp->regs[MIPSInst_FT(ir)] != 0)
900 				return 0;
901 			SPFROMREG(rv.s, MIPSInst_FS(ir));
902 			break;
903 		case fmovn_op:
904 			if (xcp->regs[MIPSInst_FT(ir)] == 0)
905 				return 0;
906 			SPFROMREG(rv.s, MIPSInst_FS(ir));
907 			break;
908 #endif
909 		case fabs_op:
910 			handler.u = ieee754sp_abs;
911 			goto scopuop;
912 		case fneg_op:
913 			handler.u = ieee754sp_neg;
914 			goto scopuop;
915 		case fmov_op:
916 			/* an easy one */
917 			SPFROMREG(rv.s, MIPSInst_FS(ir));
918 			goto copcsr;
919 
920 			/* binary op on handler */
921 		      scopbop:
922 			{
923 				ieee754sp fs, ft;
924 
925 				SPFROMREG(fs, MIPSInst_FS(ir));
926 				SPFROMREG(ft, MIPSInst_FT(ir));
927 
928 				rv.s = (*handler.b) (fs, ft);
929 				goto copcsr;
930 			}
931 		      scopuop:
932 			{
933 				ieee754sp fs;
934 
935 				SPFROMREG(fs, MIPSInst_FS(ir));
936 				rv.s = (*handler.u) (fs);
937 				goto copcsr;
938 			}
939 		      copcsr:
940 			if (ieee754_cxtest(IEEE754_INEXACT))
941 				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
942 			if (ieee754_cxtest(IEEE754_UNDERFLOW))
943 				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
944 			if (ieee754_cxtest(IEEE754_OVERFLOW))
945 				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
946 			if (ieee754_cxtest(IEEE754_ZERO_DIVIDE))
947 				rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S;
948 			if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
949 				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
950 			break;
951 
952 			/* unary conv ops */
953 		case fcvts_op:
954 			return SIGILL;	/* not defined */
955 		case fcvtd_op:{
956 			ieee754sp fs;
957 
958 			SPFROMREG(fs, MIPSInst_FS(ir));
959 			rv.d = ieee754dp_fsp(fs);
960 			rfmt = d_fmt;
961 			goto copcsr;
962 		}
963 		case fcvtw_op:{
964 			ieee754sp fs;
965 
966 			SPFROMREG(fs, MIPSInst_FS(ir));
967 			rv.w = ieee754sp_tint(fs);
968 			rfmt = w_fmt;
969 			goto copcsr;
970 		}
971 
972 #if __mips >= 2 || defined(__mips64)
973 		case fround_op:
974 		case ftrunc_op:
975 		case fceil_op:
976 		case ffloor_op:{
977 			unsigned int oldrm = ieee754_csr.rm;
978 			ieee754sp fs;
979 
980 			SPFROMREG(fs, MIPSInst_FS(ir));
981 			ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
982 			rv.w = ieee754sp_tint(fs);
983 			ieee754_csr.rm = oldrm;
984 			rfmt = w_fmt;
985 			goto copcsr;
986 		}
987 #endif /* __mips >= 2 */
988 
989 #if defined(__mips64)
990 		case fcvtl_op:{
991 			ieee754sp fs;
992 
993 			SPFROMREG(fs, MIPSInst_FS(ir));
994 			rv.l = ieee754sp_tlong(fs);
995 			rfmt = l_fmt;
996 			goto copcsr;
997 		}
998 
999 		case froundl_op:
1000 		case ftruncl_op:
1001 		case fceill_op:
1002 		case ffloorl_op:{
1003 			unsigned int oldrm = ieee754_csr.rm;
1004 			ieee754sp fs;
1005 
1006 			SPFROMREG(fs, MIPSInst_FS(ir));
1007 			ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1008 			rv.l = ieee754sp_tlong(fs);
1009 			ieee754_csr.rm = oldrm;
1010 			rfmt = l_fmt;
1011 			goto copcsr;
1012 		}
1013 #endif /* defined(__mips64) */
1014 
1015 		default:
1016 			if (MIPSInst_FUNC(ir) >= fcmp_op) {
1017 				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1018 				ieee754sp fs, ft;
1019 
1020 				SPFROMREG(fs, MIPSInst_FS(ir));
1021 				SPFROMREG(ft, MIPSInst_FT(ir));
1022 				rv.w = ieee754sp_cmp(fs, ft,
1023 					cmptab[cmpop & 0x7], cmpop & 0x8);
1024 				rfmt = -1;
1025 				if ((cmpop & 0x8) && ieee754_cxtest
1026 					(IEEE754_INVALID_OPERATION))
1027 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1028 				else
1029 					goto copcsr;
1030 
1031 			}
1032 			else {
1033 				return SIGILL;
1034 			}
1035 			break;
1036 		}
1037 		break;
1038 	}
1039 
1040 	case d_fmt:{
1041 		union {
1042 			ieee754dp(*b) (ieee754dp, ieee754dp);
1043 			ieee754dp(*u) (ieee754dp);
1044 		} handler;
1045 
1046 		switch (MIPSInst_FUNC(ir)) {
1047 			/* binary ops */
1048 		case fadd_op:
1049 			handler.b = ieee754dp_add;
1050 			goto dcopbop;
1051 		case fsub_op:
1052 			handler.b = ieee754dp_sub;
1053 			goto dcopbop;
1054 		case fmul_op:
1055 			handler.b = ieee754dp_mul;
1056 			goto dcopbop;
1057 		case fdiv_op:
1058 			handler.b = ieee754dp_div;
1059 			goto dcopbop;
1060 
1061 			/* unary  ops */
1062 #if __mips >= 2 || defined(__mips64)
1063 		case fsqrt_op:
1064 			handler.u = ieee754dp_sqrt;
1065 			goto dcopuop;
1066 #endif
1067 #if __mips >= 4 && __mips != 32
1068 		case frsqrt_op:
1069 			handler.u = fpemu_dp_rsqrt;
1070 			goto dcopuop;
1071 		case frecip_op:
1072 			handler.u = fpemu_dp_recip;
1073 			goto dcopuop;
1074 #endif
1075 #if __mips >= 4
1076 		case fmovc_op:
1077 			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1078 			if (((ctx->fcr31 & cond) != 0) !=
1079 				((MIPSInst_FT(ir) & 1) != 0))
1080 				return 0;
1081 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1082 			break;
1083 		case fmovz_op:
1084 			if (xcp->regs[MIPSInst_FT(ir)] != 0)
1085 				return 0;
1086 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1087 			break;
1088 		case fmovn_op:
1089 			if (xcp->regs[MIPSInst_FT(ir)] == 0)
1090 				return 0;
1091 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1092 			break;
1093 #endif
1094 		case fabs_op:
1095 			handler.u = ieee754dp_abs;
1096 			goto dcopuop;
1097 
1098 		case fneg_op:
1099 			handler.u = ieee754dp_neg;
1100 			goto dcopuop;
1101 
1102 		case fmov_op:
1103 			/* an easy one */
1104 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1105 			goto copcsr;
1106 
1107 			/* binary op on handler */
1108 		      dcopbop:{
1109 				ieee754dp fs, ft;
1110 
1111 				DPFROMREG(fs, MIPSInst_FS(ir));
1112 				DPFROMREG(ft, MIPSInst_FT(ir));
1113 
1114 				rv.d = (*handler.b) (fs, ft);
1115 				goto copcsr;
1116 			}
1117 		      dcopuop:{
1118 				ieee754dp fs;
1119 
1120 				DPFROMREG(fs, MIPSInst_FS(ir));
1121 				rv.d = (*handler.u) (fs);
1122 				goto copcsr;
1123 			}
1124 
1125 			/* unary conv ops */
1126 		case fcvts_op:{
1127 			ieee754dp fs;
1128 
1129 			DPFROMREG(fs, MIPSInst_FS(ir));
1130 			rv.s = ieee754sp_fdp(fs);
1131 			rfmt = s_fmt;
1132 			goto copcsr;
1133 		}
1134 		case fcvtd_op:
1135 			return SIGILL;	/* not defined */
1136 
1137 		case fcvtw_op:{
1138 			ieee754dp fs;
1139 
1140 			DPFROMREG(fs, MIPSInst_FS(ir));
1141 			rv.w = ieee754dp_tint(fs);	/* wrong */
1142 			rfmt = w_fmt;
1143 			goto copcsr;
1144 		}
1145 
1146 #if __mips >= 2 || defined(__mips64)
1147 		case fround_op:
1148 		case ftrunc_op:
1149 		case fceil_op:
1150 		case ffloor_op:{
1151 			unsigned int oldrm = ieee754_csr.rm;
1152 			ieee754dp fs;
1153 
1154 			DPFROMREG(fs, MIPSInst_FS(ir));
1155 			ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1156 			rv.w = ieee754dp_tint(fs);
1157 			ieee754_csr.rm = oldrm;
1158 			rfmt = w_fmt;
1159 			goto copcsr;
1160 		}
1161 #endif
1162 
1163 #if defined(__mips64)
1164 		case fcvtl_op:{
1165 			ieee754dp fs;
1166 
1167 			DPFROMREG(fs, MIPSInst_FS(ir));
1168 			rv.l = ieee754dp_tlong(fs);
1169 			rfmt = l_fmt;
1170 			goto copcsr;
1171 		}
1172 
1173 		case froundl_op:
1174 		case ftruncl_op:
1175 		case fceill_op:
1176 		case ffloorl_op:{
1177 			unsigned int oldrm = ieee754_csr.rm;
1178 			ieee754dp fs;
1179 
1180 			DPFROMREG(fs, MIPSInst_FS(ir));
1181 			ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1182 			rv.l = ieee754dp_tlong(fs);
1183 			ieee754_csr.rm = oldrm;
1184 			rfmt = l_fmt;
1185 			goto copcsr;
1186 		}
1187 #endif /* __mips >= 3 */
1188 
1189 		default:
1190 			if (MIPSInst_FUNC(ir) >= fcmp_op) {
1191 				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1192 				ieee754dp fs, ft;
1193 
1194 				DPFROMREG(fs, MIPSInst_FS(ir));
1195 				DPFROMREG(ft, MIPSInst_FT(ir));
1196 				rv.w = ieee754dp_cmp(fs, ft,
1197 					cmptab[cmpop & 0x7], cmpop & 0x8);
1198 				rfmt = -1;
1199 				if ((cmpop & 0x8)
1200 					&&
1201 					ieee754_cxtest
1202 					(IEEE754_INVALID_OPERATION))
1203 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1204 				else
1205 					goto copcsr;
1206 
1207 			}
1208 			else {
1209 				return SIGILL;
1210 			}
1211 			break;
1212 		}
1213 		break;
1214 	}
1215 
1216 	case w_fmt:{
1217 		ieee754sp fs;
1218 
1219 		switch (MIPSInst_FUNC(ir)) {
1220 		case fcvts_op:
1221 			/* convert word to single precision real */
1222 			SPFROMREG(fs, MIPSInst_FS(ir));
1223 			rv.s = ieee754sp_fint(fs.bits);
1224 			rfmt = s_fmt;
1225 			goto copcsr;
1226 		case fcvtd_op:
1227 			/* convert word to double precision real */
1228 			SPFROMREG(fs, MIPSInst_FS(ir));
1229 			rv.d = ieee754dp_fint(fs.bits);
1230 			rfmt = d_fmt;
1231 			goto copcsr;
1232 		default:
1233 			return SIGILL;
1234 		}
1235 		break;
1236 	}
1237 
1238 #if defined(__mips64)
1239 	case l_fmt:{
1240 		switch (MIPSInst_FUNC(ir)) {
1241 		case fcvts_op:
1242 			/* convert long to single precision real */
1243 			rv.s = ieee754sp_flong(ctx->fpr[MIPSInst_FS(ir)]);
1244 			rfmt = s_fmt;
1245 			goto copcsr;
1246 		case fcvtd_op:
1247 			/* convert long to double precision real */
1248 			rv.d = ieee754dp_flong(ctx->fpr[MIPSInst_FS(ir)]);
1249 			rfmt = d_fmt;
1250 			goto copcsr;
1251 		default:
1252 			return SIGILL;
1253 		}
1254 		break;
1255 	}
1256 #endif
1257 
1258 	default:
1259 		return SIGILL;
1260 	}
1261 
1262 	/*
1263 	 * Update the fpu CSR register for this operation.
1264 	 * If an exception is required, generate a tidy SIGFPE exception,
1265 	 * without updating the result register.
1266 	 * Note: cause exception bits do not accumulate, they are rewritten
1267 	 * for each op; only the flag/sticky bits accumulate.
1268 	 */
1269 	ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1270 	if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1271 		/*printk ("SIGFPE: fpu csr = %08x\n",ctx->fcr31); */
1272 		return SIGFPE;
1273 	}
1274 
1275 	/*
1276 	 * Now we can safely write the result back to the register file.
1277 	 */
1278 	switch (rfmt) {
1279 	case -1:{
1280 #if __mips >= 4
1281 		cond = fpucondbit[MIPSInst_FD(ir) >> 2];
1282 #else
1283 		cond = FPU_CSR_COND;
1284 #endif
1285 		if (rv.w)
1286 			ctx->fcr31 |= cond;
1287 		else
1288 			ctx->fcr31 &= ~cond;
1289 		break;
1290 	}
1291 	case d_fmt:
1292 		DPTOREG(rv.d, MIPSInst_FD(ir));
1293 		break;
1294 	case s_fmt:
1295 		SPTOREG(rv.s, MIPSInst_FD(ir));
1296 		break;
1297 	case w_fmt:
1298 		SITOREG(rv.w, MIPSInst_FD(ir));
1299 		break;
1300 #if defined(__mips64)
1301 	case l_fmt:
1302 		DITOREG(rv.l, MIPSInst_FD(ir));
1303 		break;
1304 #endif
1305 	default:
1306 		return SIGILL;
1307 	}
1308 
1309 	return 0;
1310 }
1311 
1312 int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1313 	int has_fpu, void *__user *fault_addr)
1314 {
1315 	unsigned long oldepc, prevepc;
1316 	mips_instruction insn;
1317 	int sig = 0;
1318 
1319 	oldepc = xcp->cp0_epc;
1320 	do {
1321 		prevepc = xcp->cp0_epc;
1322 
1323 		if (!access_ok(VERIFY_READ, xcp->cp0_epc, sizeof(mips_instruction))) {
1324 			MIPS_FPU_EMU_INC_STATS(errors);
1325 			*fault_addr = (mips_instruction __user *)xcp->cp0_epc;
1326 			return SIGBUS;
1327 		}
1328 		if (__get_user(insn, (mips_instruction __user *) xcp->cp0_epc)) {
1329 			MIPS_FPU_EMU_INC_STATS(errors);
1330 			*fault_addr = (mips_instruction __user *)xcp->cp0_epc;
1331 			return SIGSEGV;
1332 		}
1333 		if (insn == 0)
1334 			xcp->cp0_epc += 4;	/* skip nops */
1335 		else {
1336 			/*
1337 			 * The 'ieee754_csr' is an alias of
1338 			 * ctx->fcr31.  No need to copy ctx->fcr31 to
1339 			 * ieee754_csr.  But ieee754_csr.rm is ieee
1340 			 * library modes. (not mips rounding mode)
1341 			 */
1342 			/* convert to ieee library modes */
1343 			ieee754_csr.rm = ieee_rm[ieee754_csr.rm];
1344 			sig = cop1Emulate(xcp, ctx, fault_addr);
1345 			/* revert to mips rounding mode */
1346 			ieee754_csr.rm = mips_rm[ieee754_csr.rm];
1347 		}
1348 
1349 		if (has_fpu)
1350 			break;
1351 		if (sig)
1352 			break;
1353 
1354 		cond_resched();
1355 	} while (xcp->cp0_epc > prevepc);
1356 
1357 	/* SIGILL indicates a non-fpu instruction */
1358 	if (sig == SIGILL && xcp->cp0_epc != oldepc)
1359 		/* but if epc has advanced, then ignore it */
1360 		sig = 0;
1361 
1362 	return sig;
1363 }
1364 
1365 #ifdef CONFIG_DEBUG_FS
1366 
1367 static int fpuemu_stat_get(void *data, u64 *val)
1368 {
1369 	int cpu;
1370 	unsigned long sum = 0;
1371 	for_each_online_cpu(cpu) {
1372 		struct mips_fpu_emulator_stats *ps;
1373 		local_t *pv;
1374 		ps = &per_cpu(fpuemustats, cpu);
1375 		pv = (void *)ps + (unsigned long)data;
1376 		sum += local_read(pv);
1377 	}
1378 	*val = sum;
1379 	return 0;
1380 }
1381 DEFINE_SIMPLE_ATTRIBUTE(fops_fpuemu_stat, fpuemu_stat_get, NULL, "%llu\n");
1382 
1383 extern struct dentry *mips_debugfs_dir;
1384 static int __init debugfs_fpuemu(void)
1385 {
1386 	struct dentry *d, *dir;
1387 
1388 	if (!mips_debugfs_dir)
1389 		return -ENODEV;
1390 	dir = debugfs_create_dir("fpuemustats", mips_debugfs_dir);
1391 	if (!dir)
1392 		return -ENOMEM;
1393 
1394 #define FPU_STAT_CREATE(M)						\
1395 	do {								\
1396 		d = debugfs_create_file(#M , S_IRUGO, dir,		\
1397 			(void *)offsetof(struct mips_fpu_emulator_stats, M), \
1398 			&fops_fpuemu_stat);				\
1399 		if (!d)							\
1400 			return -ENOMEM;					\
1401 	} while (0)
1402 
1403 	FPU_STAT_CREATE(emulated);
1404 	FPU_STAT_CREATE(loads);
1405 	FPU_STAT_CREATE(stores);
1406 	FPU_STAT_CREATE(cp1ops);
1407 	FPU_STAT_CREATE(cp1xops);
1408 	FPU_STAT_CREATE(errors);
1409 
1410 	return 0;
1411 }
1412 __initcall(debugfs_fpuemu);
1413 #endif
1414