xref: /openbmc/linux/arch/mips/math-emu/cp1emu.c (revision 6d8e62c3)
1 /*
2  * cp1emu.c: a MIPS coprocessor 1 (FPU) instruction emulator
3  *
4  * MIPS floating point support
5  * Copyright (C) 1994-2000 Algorithmics Ltd.
6  *
7  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
8  * Copyright (C) 2000  MIPS Technologies, Inc.
9  *
10  *  This program is free software; you can distribute it and/or modify it
11  *  under the terms of the GNU General Public License (Version 2) as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope it will be useful, but WITHOUT
15  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17  *  for more details.
18  *
19  *  You should have received a copy of the GNU General Public License along
20  *  with this program; if not, write to the Free Software Foundation, Inc.,
21  *  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA.
22  *
23  * A complete emulator for MIPS coprocessor 1 instructions.  This is
24  * required for #float(switch) or #float(trap), where it catches all
25  * COP1 instructions via the "CoProcessor Unusable" exception.
26  *
27  * More surprisingly it is also required for #float(ieee), to help out
28  * the hardware FPU at the boundaries of the IEEE-754 representation
29  * (denormalised values, infinities, underflow, etc).  It is made
30  * quite nasty because emulation of some non-COP1 instructions is
31  * required, e.g. in branch delay slots.
32  *
33  * Note if you know that you won't have an FPU, then you'll get much
34  * better performance by compiling with -msoft-float!
35  */
36 #include <linux/sched.h>
37 #include <linux/debugfs.h>
38 #include <linux/kconfig.h>
39 #include <linux/percpu-defs.h>
40 #include <linux/perf_event.h>
41 
42 #include <asm/branch.h>
43 #include <asm/inst.h>
44 #include <asm/ptrace.h>
45 #include <asm/signal.h>
46 #include <asm/uaccess.h>
47 
48 #include <asm/processor.h>
49 #include <asm/fpu_emulator.h>
50 #include <asm/fpu.h>
51 
52 #include "ieee754.h"
53 
54 /* Function which emulates a floating point instruction. */
55 
56 static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *,
57 	mips_instruction);
58 
59 static int fpux_emu(struct pt_regs *,
60 	struct mips_fpu_struct *, mips_instruction, void *__user *);
61 
62 /* Control registers */
63 
64 #define FPCREG_RID	0	/* $0  = revision id */
65 #define FPCREG_CSR	31	/* $31 = csr */
66 
67 /* Determine rounding mode from the RM bits of the FCSR */
68 #define modeindex(v) ((v) & FPU_CSR_RM)
69 
70 /* convert condition code register number to csr bit */
71 static const unsigned int fpucondbit[8] = {
72 	FPU_CSR_COND0,
73 	FPU_CSR_COND1,
74 	FPU_CSR_COND2,
75 	FPU_CSR_COND3,
76 	FPU_CSR_COND4,
77 	FPU_CSR_COND5,
78 	FPU_CSR_COND6,
79 	FPU_CSR_COND7
80 };
81 
82 /* (microMIPS) Convert certain microMIPS instructions to MIPS32 format. */
83 static const int sd_format[] = {16, 17, 0, 0, 0, 0, 0, 0};
84 static const int sdps_format[] = {16, 17, 22, 0, 0, 0, 0, 0};
85 static const int dwl_format[] = {17, 20, 21, 0, 0, 0, 0, 0};
86 static const int swl_format[] = {16, 20, 21, 0, 0, 0, 0, 0};
87 
88 /*
89  * This functions translates a 32-bit microMIPS instruction
90  * into a 32-bit MIPS32 instruction. Returns 0 on success
91  * and SIGILL otherwise.
92  */
93 static int microMIPS32_to_MIPS32(union mips_instruction *insn_ptr)
94 {
95 	union mips_instruction insn = *insn_ptr;
96 	union mips_instruction mips32_insn = insn;
97 	int func, fmt, op;
98 
99 	switch (insn.mm_i_format.opcode) {
100 	case mm_ldc132_op:
101 		mips32_insn.mm_i_format.opcode = ldc1_op;
102 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
103 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
104 		break;
105 	case mm_lwc132_op:
106 		mips32_insn.mm_i_format.opcode = lwc1_op;
107 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
108 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
109 		break;
110 	case mm_sdc132_op:
111 		mips32_insn.mm_i_format.opcode = sdc1_op;
112 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
113 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
114 		break;
115 	case mm_swc132_op:
116 		mips32_insn.mm_i_format.opcode = swc1_op;
117 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
118 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
119 		break;
120 	case mm_pool32i_op:
121 		/* NOTE: offset is << by 1 if in microMIPS mode. */
122 		if ((insn.mm_i_format.rt == mm_bc1f_op) ||
123 		    (insn.mm_i_format.rt == mm_bc1t_op)) {
124 			mips32_insn.fb_format.opcode = cop1_op;
125 			mips32_insn.fb_format.bc = bc_op;
126 			mips32_insn.fb_format.flag =
127 				(insn.mm_i_format.rt == mm_bc1t_op) ? 1 : 0;
128 		} else
129 			return SIGILL;
130 		break;
131 	case mm_pool32f_op:
132 		switch (insn.mm_fp0_format.func) {
133 		case mm_32f_01_op:
134 		case mm_32f_11_op:
135 		case mm_32f_02_op:
136 		case mm_32f_12_op:
137 		case mm_32f_41_op:
138 		case mm_32f_51_op:
139 		case mm_32f_42_op:
140 		case mm_32f_52_op:
141 			op = insn.mm_fp0_format.func;
142 			if (op == mm_32f_01_op)
143 				func = madd_s_op;
144 			else if (op == mm_32f_11_op)
145 				func = madd_d_op;
146 			else if (op == mm_32f_02_op)
147 				func = nmadd_s_op;
148 			else if (op == mm_32f_12_op)
149 				func = nmadd_d_op;
150 			else if (op == mm_32f_41_op)
151 				func = msub_s_op;
152 			else if (op == mm_32f_51_op)
153 				func = msub_d_op;
154 			else if (op == mm_32f_42_op)
155 				func = nmsub_s_op;
156 			else
157 				func = nmsub_d_op;
158 			mips32_insn.fp6_format.opcode = cop1x_op;
159 			mips32_insn.fp6_format.fr = insn.mm_fp6_format.fr;
160 			mips32_insn.fp6_format.ft = insn.mm_fp6_format.ft;
161 			mips32_insn.fp6_format.fs = insn.mm_fp6_format.fs;
162 			mips32_insn.fp6_format.fd = insn.mm_fp6_format.fd;
163 			mips32_insn.fp6_format.func = func;
164 			break;
165 		case mm_32f_10_op:
166 			func = -1;	/* Invalid */
167 			op = insn.mm_fp5_format.op & 0x7;
168 			if (op == mm_ldxc1_op)
169 				func = ldxc1_op;
170 			else if (op == mm_sdxc1_op)
171 				func = sdxc1_op;
172 			else if (op == mm_lwxc1_op)
173 				func = lwxc1_op;
174 			else if (op == mm_swxc1_op)
175 				func = swxc1_op;
176 
177 			if (func != -1) {
178 				mips32_insn.r_format.opcode = cop1x_op;
179 				mips32_insn.r_format.rs =
180 					insn.mm_fp5_format.base;
181 				mips32_insn.r_format.rt =
182 					insn.mm_fp5_format.index;
183 				mips32_insn.r_format.rd = 0;
184 				mips32_insn.r_format.re = insn.mm_fp5_format.fd;
185 				mips32_insn.r_format.func = func;
186 			} else
187 				return SIGILL;
188 			break;
189 		case mm_32f_40_op:
190 			op = -1;	/* Invalid */
191 			if (insn.mm_fp2_format.op == mm_fmovt_op)
192 				op = 1;
193 			else if (insn.mm_fp2_format.op == mm_fmovf_op)
194 				op = 0;
195 			if (op != -1) {
196 				mips32_insn.fp0_format.opcode = cop1_op;
197 				mips32_insn.fp0_format.fmt =
198 					sdps_format[insn.mm_fp2_format.fmt];
199 				mips32_insn.fp0_format.ft =
200 					(insn.mm_fp2_format.cc<<2) + op;
201 				mips32_insn.fp0_format.fs =
202 					insn.mm_fp2_format.fs;
203 				mips32_insn.fp0_format.fd =
204 					insn.mm_fp2_format.fd;
205 				mips32_insn.fp0_format.func = fmovc_op;
206 			} else
207 				return SIGILL;
208 			break;
209 		case mm_32f_60_op:
210 			func = -1;	/* Invalid */
211 			if (insn.mm_fp0_format.op == mm_fadd_op)
212 				func = fadd_op;
213 			else if (insn.mm_fp0_format.op == mm_fsub_op)
214 				func = fsub_op;
215 			else if (insn.mm_fp0_format.op == mm_fmul_op)
216 				func = fmul_op;
217 			else if (insn.mm_fp0_format.op == mm_fdiv_op)
218 				func = fdiv_op;
219 			if (func != -1) {
220 				mips32_insn.fp0_format.opcode = cop1_op;
221 				mips32_insn.fp0_format.fmt =
222 					sdps_format[insn.mm_fp0_format.fmt];
223 				mips32_insn.fp0_format.ft =
224 					insn.mm_fp0_format.ft;
225 				mips32_insn.fp0_format.fs =
226 					insn.mm_fp0_format.fs;
227 				mips32_insn.fp0_format.fd =
228 					insn.mm_fp0_format.fd;
229 				mips32_insn.fp0_format.func = func;
230 			} else
231 				return SIGILL;
232 			break;
233 		case mm_32f_70_op:
234 			func = -1;	/* Invalid */
235 			if (insn.mm_fp0_format.op == mm_fmovn_op)
236 				func = fmovn_op;
237 			else if (insn.mm_fp0_format.op == mm_fmovz_op)
238 				func = fmovz_op;
239 			if (func != -1) {
240 				mips32_insn.fp0_format.opcode = cop1_op;
241 				mips32_insn.fp0_format.fmt =
242 					sdps_format[insn.mm_fp0_format.fmt];
243 				mips32_insn.fp0_format.ft =
244 					insn.mm_fp0_format.ft;
245 				mips32_insn.fp0_format.fs =
246 					insn.mm_fp0_format.fs;
247 				mips32_insn.fp0_format.fd =
248 					insn.mm_fp0_format.fd;
249 				mips32_insn.fp0_format.func = func;
250 			} else
251 				return SIGILL;
252 			break;
253 		case mm_32f_73_op:    /* POOL32FXF */
254 			switch (insn.mm_fp1_format.op) {
255 			case mm_movf0_op:
256 			case mm_movf1_op:
257 			case mm_movt0_op:
258 			case mm_movt1_op:
259 				if ((insn.mm_fp1_format.op & 0x7f) ==
260 				    mm_movf0_op)
261 					op = 0;
262 				else
263 					op = 1;
264 				mips32_insn.r_format.opcode = spec_op;
265 				mips32_insn.r_format.rs = insn.mm_fp4_format.fs;
266 				mips32_insn.r_format.rt =
267 					(insn.mm_fp4_format.cc << 2) + op;
268 				mips32_insn.r_format.rd = insn.mm_fp4_format.rt;
269 				mips32_insn.r_format.re = 0;
270 				mips32_insn.r_format.func = movc_op;
271 				break;
272 			case mm_fcvtd0_op:
273 			case mm_fcvtd1_op:
274 			case mm_fcvts0_op:
275 			case mm_fcvts1_op:
276 				if ((insn.mm_fp1_format.op & 0x7f) ==
277 				    mm_fcvtd0_op) {
278 					func = fcvtd_op;
279 					fmt = swl_format[insn.mm_fp3_format.fmt];
280 				} else {
281 					func = fcvts_op;
282 					fmt = dwl_format[insn.mm_fp3_format.fmt];
283 				}
284 				mips32_insn.fp0_format.opcode = cop1_op;
285 				mips32_insn.fp0_format.fmt = fmt;
286 				mips32_insn.fp0_format.ft = 0;
287 				mips32_insn.fp0_format.fs =
288 					insn.mm_fp3_format.fs;
289 				mips32_insn.fp0_format.fd =
290 					insn.mm_fp3_format.rt;
291 				mips32_insn.fp0_format.func = func;
292 				break;
293 			case mm_fmov0_op:
294 			case mm_fmov1_op:
295 			case mm_fabs0_op:
296 			case mm_fabs1_op:
297 			case mm_fneg0_op:
298 			case mm_fneg1_op:
299 				if ((insn.mm_fp1_format.op & 0x7f) ==
300 				    mm_fmov0_op)
301 					func = fmov_op;
302 				else if ((insn.mm_fp1_format.op & 0x7f) ==
303 					 mm_fabs0_op)
304 					func = fabs_op;
305 				else
306 					func = fneg_op;
307 				mips32_insn.fp0_format.opcode = cop1_op;
308 				mips32_insn.fp0_format.fmt =
309 					sdps_format[insn.mm_fp3_format.fmt];
310 				mips32_insn.fp0_format.ft = 0;
311 				mips32_insn.fp0_format.fs =
312 					insn.mm_fp3_format.fs;
313 				mips32_insn.fp0_format.fd =
314 					insn.mm_fp3_format.rt;
315 				mips32_insn.fp0_format.func = func;
316 				break;
317 			case mm_ffloorl_op:
318 			case mm_ffloorw_op:
319 			case mm_fceill_op:
320 			case mm_fceilw_op:
321 			case mm_ftruncl_op:
322 			case mm_ftruncw_op:
323 			case mm_froundl_op:
324 			case mm_froundw_op:
325 			case mm_fcvtl_op:
326 			case mm_fcvtw_op:
327 				if (insn.mm_fp1_format.op == mm_ffloorl_op)
328 					func = ffloorl_op;
329 				else if (insn.mm_fp1_format.op == mm_ffloorw_op)
330 					func = ffloor_op;
331 				else if (insn.mm_fp1_format.op == mm_fceill_op)
332 					func = fceill_op;
333 				else if (insn.mm_fp1_format.op == mm_fceilw_op)
334 					func = fceil_op;
335 				else if (insn.mm_fp1_format.op == mm_ftruncl_op)
336 					func = ftruncl_op;
337 				else if (insn.mm_fp1_format.op == mm_ftruncw_op)
338 					func = ftrunc_op;
339 				else if (insn.mm_fp1_format.op == mm_froundl_op)
340 					func = froundl_op;
341 				else if (insn.mm_fp1_format.op == mm_froundw_op)
342 					func = fround_op;
343 				else if (insn.mm_fp1_format.op == mm_fcvtl_op)
344 					func = fcvtl_op;
345 				else
346 					func = fcvtw_op;
347 				mips32_insn.fp0_format.opcode = cop1_op;
348 				mips32_insn.fp0_format.fmt =
349 					sd_format[insn.mm_fp1_format.fmt];
350 				mips32_insn.fp0_format.ft = 0;
351 				mips32_insn.fp0_format.fs =
352 					insn.mm_fp1_format.fs;
353 				mips32_insn.fp0_format.fd =
354 					insn.mm_fp1_format.rt;
355 				mips32_insn.fp0_format.func = func;
356 				break;
357 			case mm_frsqrt_op:
358 			case mm_fsqrt_op:
359 			case mm_frecip_op:
360 				if (insn.mm_fp1_format.op == mm_frsqrt_op)
361 					func = frsqrt_op;
362 				else if (insn.mm_fp1_format.op == mm_fsqrt_op)
363 					func = fsqrt_op;
364 				else
365 					func = frecip_op;
366 				mips32_insn.fp0_format.opcode = cop1_op;
367 				mips32_insn.fp0_format.fmt =
368 					sdps_format[insn.mm_fp1_format.fmt];
369 				mips32_insn.fp0_format.ft = 0;
370 				mips32_insn.fp0_format.fs =
371 					insn.mm_fp1_format.fs;
372 				mips32_insn.fp0_format.fd =
373 					insn.mm_fp1_format.rt;
374 				mips32_insn.fp0_format.func = func;
375 				break;
376 			case mm_mfc1_op:
377 			case mm_mtc1_op:
378 			case mm_cfc1_op:
379 			case mm_ctc1_op:
380 			case mm_mfhc1_op:
381 			case mm_mthc1_op:
382 				if (insn.mm_fp1_format.op == mm_mfc1_op)
383 					op = mfc_op;
384 				else if (insn.mm_fp1_format.op == mm_mtc1_op)
385 					op = mtc_op;
386 				else if (insn.mm_fp1_format.op == mm_cfc1_op)
387 					op = cfc_op;
388 				else if (insn.mm_fp1_format.op == mm_ctc1_op)
389 					op = ctc_op;
390 				else if (insn.mm_fp1_format.op == mm_mfhc1_op)
391 					op = mfhc_op;
392 				else
393 					op = mthc_op;
394 				mips32_insn.fp1_format.opcode = cop1_op;
395 				mips32_insn.fp1_format.op = op;
396 				mips32_insn.fp1_format.rt =
397 					insn.mm_fp1_format.rt;
398 				mips32_insn.fp1_format.fs =
399 					insn.mm_fp1_format.fs;
400 				mips32_insn.fp1_format.fd = 0;
401 				mips32_insn.fp1_format.func = 0;
402 				break;
403 			default:
404 				return SIGILL;
405 			}
406 			break;
407 		case mm_32f_74_op:	/* c.cond.fmt */
408 			mips32_insn.fp0_format.opcode = cop1_op;
409 			mips32_insn.fp0_format.fmt =
410 				sdps_format[insn.mm_fp4_format.fmt];
411 			mips32_insn.fp0_format.ft = insn.mm_fp4_format.rt;
412 			mips32_insn.fp0_format.fs = insn.mm_fp4_format.fs;
413 			mips32_insn.fp0_format.fd = insn.mm_fp4_format.cc << 2;
414 			mips32_insn.fp0_format.func =
415 				insn.mm_fp4_format.cond | MM_MIPS32_COND_FC;
416 			break;
417 		default:
418 			return SIGILL;
419 		}
420 		break;
421 	default:
422 		return SIGILL;
423 	}
424 
425 	*insn_ptr = mips32_insn;
426 	return 0;
427 }
428 
429 /*
430  * Redundant with logic already in kernel/branch.c,
431  * embedded in compute_return_epc.  At some point,
432  * a single subroutine should be used across both
433  * modules.
434  */
435 static int isBranchInstr(struct pt_regs *regs, struct mm_decoded_insn dec_insn,
436 			 unsigned long *contpc)
437 {
438 	union mips_instruction insn = (union mips_instruction)dec_insn.insn;
439 	unsigned int fcr31;
440 	unsigned int bit = 0;
441 
442 	switch (insn.i_format.opcode) {
443 	case spec_op:
444 		switch (insn.r_format.func) {
445 		case jalr_op:
446 			regs->regs[insn.r_format.rd] =
447 				regs->cp0_epc + dec_insn.pc_inc +
448 				dec_insn.next_pc_inc;
449 			/* Fall through */
450 		case jr_op:
451 			*contpc = regs->regs[insn.r_format.rs];
452 			return 1;
453 		}
454 		break;
455 	case bcond_op:
456 		switch (insn.i_format.rt) {
457 		case bltzal_op:
458 		case bltzall_op:
459 			regs->regs[31] = regs->cp0_epc +
460 				dec_insn.pc_inc +
461 				dec_insn.next_pc_inc;
462 			/* Fall through */
463 		case bltz_op:
464 		case bltzl_op:
465 			if ((long)regs->regs[insn.i_format.rs] < 0)
466 				*contpc = regs->cp0_epc +
467 					dec_insn.pc_inc +
468 					(insn.i_format.simmediate << 2);
469 			else
470 				*contpc = regs->cp0_epc +
471 					dec_insn.pc_inc +
472 					dec_insn.next_pc_inc;
473 			return 1;
474 		case bgezal_op:
475 		case bgezall_op:
476 			regs->regs[31] = regs->cp0_epc +
477 				dec_insn.pc_inc +
478 				dec_insn.next_pc_inc;
479 			/* Fall through */
480 		case bgez_op:
481 		case bgezl_op:
482 			if ((long)regs->regs[insn.i_format.rs] >= 0)
483 				*contpc = regs->cp0_epc +
484 					dec_insn.pc_inc +
485 					(insn.i_format.simmediate << 2);
486 			else
487 				*contpc = regs->cp0_epc +
488 					dec_insn.pc_inc +
489 					dec_insn.next_pc_inc;
490 			return 1;
491 		}
492 		break;
493 	case jalx_op:
494 		set_isa16_mode(bit);
495 	case jal_op:
496 		regs->regs[31] = regs->cp0_epc +
497 			dec_insn.pc_inc +
498 			dec_insn.next_pc_inc;
499 		/* Fall through */
500 	case j_op:
501 		*contpc = regs->cp0_epc + dec_insn.pc_inc;
502 		*contpc >>= 28;
503 		*contpc <<= 28;
504 		*contpc |= (insn.j_format.target << 2);
505 		/* Set microMIPS mode bit: XOR for jalx. */
506 		*contpc ^= bit;
507 		return 1;
508 	case beq_op:
509 	case beql_op:
510 		if (regs->regs[insn.i_format.rs] ==
511 		    regs->regs[insn.i_format.rt])
512 			*contpc = regs->cp0_epc +
513 				dec_insn.pc_inc +
514 				(insn.i_format.simmediate << 2);
515 		else
516 			*contpc = regs->cp0_epc +
517 				dec_insn.pc_inc +
518 				dec_insn.next_pc_inc;
519 		return 1;
520 	case bne_op:
521 	case bnel_op:
522 		if (regs->regs[insn.i_format.rs] !=
523 		    regs->regs[insn.i_format.rt])
524 			*contpc = regs->cp0_epc +
525 				dec_insn.pc_inc +
526 				(insn.i_format.simmediate << 2);
527 		else
528 			*contpc = regs->cp0_epc +
529 				dec_insn.pc_inc +
530 				dec_insn.next_pc_inc;
531 		return 1;
532 	case blez_op:
533 	case blezl_op:
534 		if ((long)regs->regs[insn.i_format.rs] <= 0)
535 			*contpc = regs->cp0_epc +
536 				dec_insn.pc_inc +
537 				(insn.i_format.simmediate << 2);
538 		else
539 			*contpc = regs->cp0_epc +
540 				dec_insn.pc_inc +
541 				dec_insn.next_pc_inc;
542 		return 1;
543 	case bgtz_op:
544 	case bgtzl_op:
545 		if ((long)regs->regs[insn.i_format.rs] > 0)
546 			*contpc = regs->cp0_epc +
547 				dec_insn.pc_inc +
548 				(insn.i_format.simmediate << 2);
549 		else
550 			*contpc = regs->cp0_epc +
551 				dec_insn.pc_inc +
552 				dec_insn.next_pc_inc;
553 		return 1;
554 #ifdef CONFIG_CPU_CAVIUM_OCTEON
555 	case lwc2_op: /* This is bbit0 on Octeon */
556 		if ((regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt)) == 0)
557 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
558 		else
559 			*contpc = regs->cp0_epc + 8;
560 		return 1;
561 	case ldc2_op: /* This is bbit032 on Octeon */
562 		if ((regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32))) == 0)
563 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
564 		else
565 			*contpc = regs->cp0_epc + 8;
566 		return 1;
567 	case swc2_op: /* This is bbit1 on Octeon */
568 		if (regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt))
569 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
570 		else
571 			*contpc = regs->cp0_epc + 8;
572 		return 1;
573 	case sdc2_op: /* This is bbit132 on Octeon */
574 		if (regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32)))
575 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
576 		else
577 			*contpc = regs->cp0_epc + 8;
578 		return 1;
579 #endif
580 	case cop0_op:
581 	case cop1_op:
582 	case cop2_op:
583 	case cop1x_op:
584 		if (insn.i_format.rs == bc_op) {
585 			preempt_disable();
586 			if (is_fpu_owner())
587 			        fcr31 = read_32bit_cp1_register(CP1_STATUS);
588 			else
589 				fcr31 = current->thread.fpu.fcr31;
590 			preempt_enable();
591 
592 			bit = (insn.i_format.rt >> 2);
593 			bit += (bit != 0);
594 			bit += 23;
595 			switch (insn.i_format.rt & 3) {
596 			case 0:	/* bc1f */
597 			case 2:	/* bc1fl */
598 				if (~fcr31 & (1 << bit))
599 					*contpc = regs->cp0_epc +
600 						dec_insn.pc_inc +
601 						(insn.i_format.simmediate << 2);
602 				else
603 					*contpc = regs->cp0_epc +
604 						dec_insn.pc_inc +
605 						dec_insn.next_pc_inc;
606 				return 1;
607 			case 1:	/* bc1t */
608 			case 3:	/* bc1tl */
609 				if (fcr31 & (1 << bit))
610 					*contpc = regs->cp0_epc +
611 						dec_insn.pc_inc +
612 						(insn.i_format.simmediate << 2);
613 				else
614 					*contpc = regs->cp0_epc +
615 						dec_insn.pc_inc +
616 						dec_insn.next_pc_inc;
617 				return 1;
618 			}
619 		}
620 		break;
621 	}
622 	return 0;
623 }
624 
625 /*
626  * In the Linux kernel, we support selection of FPR format on the
627  * basis of the Status.FR bit.	If an FPU is not present, the FR bit
628  * is hardwired to zero, which would imply a 32-bit FPU even for
629  * 64-bit CPUs so we rather look at TIF_32BIT_FPREGS.
630  * FPU emu is slow and bulky and optimizing this function offers fairly
631  * sizeable benefits so we try to be clever and make this function return
632  * a constant whenever possible, that is on 64-bit kernels without O32
633  * compatibility enabled and on 32-bit without 64-bit FPU support.
634  */
635 static inline int cop1_64bit(struct pt_regs *xcp)
636 {
637 	if (config_enabled(CONFIG_64BIT) && !config_enabled(CONFIG_MIPS32_O32))
638 		return 1;
639 	else if (config_enabled(CONFIG_32BIT) &&
640 		 !config_enabled(CONFIG_MIPS_O32_FP64_SUPPORT))
641 		return 0;
642 
643 	return !test_thread_flag(TIF_32BIT_FPREGS);
644 }
645 
646 static inline bool hybrid_fprs(void)
647 {
648 	return test_thread_flag(TIF_HYBRID_FPREGS);
649 }
650 
651 #define SIFROMREG(si, x)						\
652 do {									\
653 	if (cop1_64bit(xcp) && !hybrid_fprs())				\
654 		(si) = (int)get_fpr32(&ctx->fpr[x], 0);			\
655 	else								\
656 		(si) = (int)get_fpr32(&ctx->fpr[(x) & ~1], (x) & 1);	\
657 } while (0)
658 
659 #define SITOREG(si, x)							\
660 do {									\
661 	if (cop1_64bit(xcp) && !hybrid_fprs()) {			\
662 		unsigned i;						\
663 		set_fpr32(&ctx->fpr[x], 0, si);				\
664 		for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val32); i++)	\
665 			set_fpr32(&ctx->fpr[x], i, 0);			\
666 	} else {							\
667 		set_fpr32(&ctx->fpr[(x) & ~1], (x) & 1, si);		\
668 	}								\
669 } while (0)
670 
671 #define SIFROMHREG(si, x)	((si) = (int)get_fpr32(&ctx->fpr[x], 1))
672 
673 #define SITOHREG(si, x)							\
674 do {									\
675 	unsigned i;							\
676 	set_fpr32(&ctx->fpr[x], 1, si);					\
677 	for (i = 2; i < ARRAY_SIZE(ctx->fpr[x].val32); i++)		\
678 		set_fpr32(&ctx->fpr[x], i, 0);				\
679 } while (0)
680 
681 #define DIFROMREG(di, x)						\
682 	((di) = get_fpr64(&ctx->fpr[(x) & ~(cop1_64bit(xcp) == 0)], 0))
683 
684 #define DITOREG(di, x)							\
685 do {									\
686 	unsigned fpr, i;						\
687 	fpr = (x) & ~(cop1_64bit(xcp) == 0);				\
688 	set_fpr64(&ctx->fpr[fpr], 0, di);				\
689 	for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val64); i++)		\
690 		set_fpr64(&ctx->fpr[fpr], i, 0);			\
691 } while (0)
692 
693 #define SPFROMREG(sp, x) SIFROMREG((sp).bits, x)
694 #define SPTOREG(sp, x)	SITOREG((sp).bits, x)
695 #define DPFROMREG(dp, x)	DIFROMREG((dp).bits, x)
696 #define DPTOREG(dp, x)	DITOREG((dp).bits, x)
697 
698 /*
699  * Emulate the single floating point instruction pointed at by EPC.
700  * Two instructions if the instruction is in a branch delay slot.
701  */
702 
703 static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
704 		struct mm_decoded_insn dec_insn, void *__user *fault_addr)
705 {
706 	unsigned long contpc = xcp->cp0_epc + dec_insn.pc_inc;
707 	unsigned int cond, cbit;
708 	mips_instruction ir;
709 	int likely, pc_inc;
710 	u32 __user *wva;
711 	u64 __user *dva;
712 	u32 value;
713 	u32 wval;
714 	u64 dval;
715 	int sig;
716 
717 	/*
718 	 * These are giving gcc a gentle hint about what to expect in
719 	 * dec_inst in order to do better optimization.
720 	 */
721 	if (!cpu_has_mmips && dec_insn.micro_mips_mode)
722 		unreachable();
723 
724 	/* XXX NEC Vr54xx bug workaround */
725 	if (delay_slot(xcp)) {
726 		if (dec_insn.micro_mips_mode) {
727 			if (!mm_isBranchInstr(xcp, dec_insn, &contpc))
728 				clear_delay_slot(xcp);
729 		} else {
730 			if (!isBranchInstr(xcp, dec_insn, &contpc))
731 				clear_delay_slot(xcp);
732 		}
733 	}
734 
735 	if (delay_slot(xcp)) {
736 		/*
737 		 * The instruction to be emulated is in a branch delay slot
738 		 * which means that we have to	emulate the branch instruction
739 		 * BEFORE we do the cop1 instruction.
740 		 *
741 		 * This branch could be a COP1 branch, but in that case we
742 		 * would have had a trap for that instruction, and would not
743 		 * come through this route.
744 		 *
745 		 * Linux MIPS branch emulator operates on context, updating the
746 		 * cp0_epc.
747 		 */
748 		ir = dec_insn.next_insn;  /* process delay slot instr */
749 		pc_inc = dec_insn.next_pc_inc;
750 	} else {
751 		ir = dec_insn.insn;       /* process current instr */
752 		pc_inc = dec_insn.pc_inc;
753 	}
754 
755 	/*
756 	 * Since microMIPS FPU instructios are a subset of MIPS32 FPU
757 	 * instructions, we want to convert microMIPS FPU instructions
758 	 * into MIPS32 instructions so that we could reuse all of the
759 	 * FPU emulation code.
760 	 *
761 	 * NOTE: We cannot do this for branch instructions since they
762 	 *       are not a subset. Example: Cannot emulate a 16-bit
763 	 *       aligned target address with a MIPS32 instruction.
764 	 */
765 	if (dec_insn.micro_mips_mode) {
766 		/*
767 		 * If next instruction is a 16-bit instruction, then it
768 		 * it cannot be a FPU instruction. This could happen
769 		 * since we can be called for non-FPU instructions.
770 		 */
771 		if ((pc_inc == 2) ||
772 			(microMIPS32_to_MIPS32((union mips_instruction *)&ir)
773 			 == SIGILL))
774 			return SIGILL;
775 	}
776 
777 emul:
778 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, xcp, 0);
779 	MIPS_FPU_EMU_INC_STATS(emulated);
780 	switch (MIPSInst_OPCODE(ir)) {
781 	case ldc1_op:
782 		dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
783 				     MIPSInst_SIMM(ir));
784 		MIPS_FPU_EMU_INC_STATS(loads);
785 
786 		if (!access_ok(VERIFY_READ, dva, sizeof(u64))) {
787 			MIPS_FPU_EMU_INC_STATS(errors);
788 			*fault_addr = dva;
789 			return SIGBUS;
790 		}
791 		if (__get_user(dval, dva)) {
792 			MIPS_FPU_EMU_INC_STATS(errors);
793 			*fault_addr = dva;
794 			return SIGSEGV;
795 		}
796 		DITOREG(dval, MIPSInst_RT(ir));
797 		break;
798 
799 	case sdc1_op:
800 		dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
801 				      MIPSInst_SIMM(ir));
802 		MIPS_FPU_EMU_INC_STATS(stores);
803 		DIFROMREG(dval, MIPSInst_RT(ir));
804 		if (!access_ok(VERIFY_WRITE, dva, sizeof(u64))) {
805 			MIPS_FPU_EMU_INC_STATS(errors);
806 			*fault_addr = dva;
807 			return SIGBUS;
808 		}
809 		if (__put_user(dval, dva)) {
810 			MIPS_FPU_EMU_INC_STATS(errors);
811 			*fault_addr = dva;
812 			return SIGSEGV;
813 		}
814 		break;
815 
816 	case lwc1_op:
817 		wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
818 				      MIPSInst_SIMM(ir));
819 		MIPS_FPU_EMU_INC_STATS(loads);
820 		if (!access_ok(VERIFY_READ, wva, sizeof(u32))) {
821 			MIPS_FPU_EMU_INC_STATS(errors);
822 			*fault_addr = wva;
823 			return SIGBUS;
824 		}
825 		if (__get_user(wval, wva)) {
826 			MIPS_FPU_EMU_INC_STATS(errors);
827 			*fault_addr = wva;
828 			return SIGSEGV;
829 		}
830 		SITOREG(wval, MIPSInst_RT(ir));
831 		break;
832 
833 	case swc1_op:
834 		wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
835 				      MIPSInst_SIMM(ir));
836 		MIPS_FPU_EMU_INC_STATS(stores);
837 		SIFROMREG(wval, MIPSInst_RT(ir));
838 		if (!access_ok(VERIFY_WRITE, wva, sizeof(u32))) {
839 			MIPS_FPU_EMU_INC_STATS(errors);
840 			*fault_addr = wva;
841 			return SIGBUS;
842 		}
843 		if (__put_user(wval, wva)) {
844 			MIPS_FPU_EMU_INC_STATS(errors);
845 			*fault_addr = wva;
846 			return SIGSEGV;
847 		}
848 		break;
849 
850 	case cop1_op:
851 		switch (MIPSInst_RS(ir)) {
852 		case dmfc_op:
853 			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
854 				return SIGILL;
855 
856 			/* copregister fs -> gpr[rt] */
857 			if (MIPSInst_RT(ir) != 0) {
858 				DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
859 					MIPSInst_RD(ir));
860 			}
861 			break;
862 
863 		case dmtc_op:
864 			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
865 				return SIGILL;
866 
867 			/* copregister fs <- rt */
868 			DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
869 			break;
870 
871 		case mfhc_op:
872 			if (!cpu_has_mips_r2)
873 				goto sigill;
874 
875 			/* copregister rd -> gpr[rt] */
876 			if (MIPSInst_RT(ir) != 0) {
877 				SIFROMHREG(xcp->regs[MIPSInst_RT(ir)],
878 					MIPSInst_RD(ir));
879 			}
880 			break;
881 
882 		case mthc_op:
883 			if (!cpu_has_mips_r2)
884 				goto sigill;
885 
886 			/* copregister rd <- gpr[rt] */
887 			SITOHREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
888 			break;
889 
890 		case mfc_op:
891 			/* copregister rd -> gpr[rt] */
892 			if (MIPSInst_RT(ir) != 0) {
893 				SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
894 					MIPSInst_RD(ir));
895 			}
896 			break;
897 
898 		case mtc_op:
899 			/* copregister rd <- rt */
900 			SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
901 			break;
902 
903 		case cfc_op:
904 			/* cop control register rd -> gpr[rt] */
905 			if (MIPSInst_RD(ir) == FPCREG_CSR) {
906 				value = ctx->fcr31;
907 				value = (value & ~FPU_CSR_RM) | modeindex(value);
908 				pr_debug("%p gpr[%d]<-csr=%08x\n",
909 					 (void *) (xcp->cp0_epc),
910 					 MIPSInst_RT(ir), value);
911 			}
912 			else if (MIPSInst_RD(ir) == FPCREG_RID)
913 				value = 0;
914 			else
915 				value = 0;
916 			if (MIPSInst_RT(ir))
917 				xcp->regs[MIPSInst_RT(ir)] = value;
918 			break;
919 
920 		case ctc_op:
921 			/* copregister rd <- rt */
922 			if (MIPSInst_RT(ir) == 0)
923 				value = 0;
924 			else
925 				value = xcp->regs[MIPSInst_RT(ir)];
926 
927 			/* we only have one writable control reg
928 			 */
929 			if (MIPSInst_RD(ir) == FPCREG_CSR) {
930 				pr_debug("%p gpr[%d]->csr=%08x\n",
931 					 (void *) (xcp->cp0_epc),
932 					 MIPSInst_RT(ir), value);
933 
934 				/*
935 				 * Don't write reserved bits,
936 				 * and convert to ieee library modes
937 				 */
938 				ctx->fcr31 = (value & ~(FPU_CSR_RSVD | FPU_CSR_RM)) |
939 					     modeindex(value);
940 			}
941 			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
942 				return SIGFPE;
943 			}
944 			break;
945 
946 		case bc_op:
947 			if (delay_slot(xcp))
948 				return SIGILL;
949 
950 			if (cpu_has_mips_4_5_r)
951 				cbit = fpucondbit[MIPSInst_RT(ir) >> 2];
952 			else
953 				cbit = FPU_CSR_COND;
954 			cond = ctx->fcr31 & cbit;
955 
956 			likely = 0;
957 			switch (MIPSInst_RT(ir) & 3) {
958 			case bcfl_op:
959 				likely = 1;
960 			case bcf_op:
961 				cond = !cond;
962 				break;
963 			case bctl_op:
964 				likely = 1;
965 			case bct_op:
966 				break;
967 			default:
968 				/* thats an illegal instruction */
969 				return SIGILL;
970 			}
971 
972 			set_delay_slot(xcp);
973 			if (cond) {
974 				/*
975 				 * Branch taken: emulate dslot instruction
976 				 */
977 				xcp->cp0_epc += dec_insn.pc_inc;
978 
979 				contpc = MIPSInst_SIMM(ir);
980 				ir = dec_insn.next_insn;
981 				if (dec_insn.micro_mips_mode) {
982 					contpc = (xcp->cp0_epc + (contpc << 1));
983 
984 					/* If 16-bit instruction, not FPU. */
985 					if ((dec_insn.next_pc_inc == 2) ||
986 						(microMIPS32_to_MIPS32((union mips_instruction *)&ir) == SIGILL)) {
987 
988 						/*
989 						 * Since this instruction will
990 						 * be put on the stack with
991 						 * 32-bit words, get around
992 						 * this problem by putting a
993 						 * NOP16 as the second one.
994 						 */
995 						if (dec_insn.next_pc_inc == 2)
996 							ir = (ir & (~0xffff)) | MM_NOP16;
997 
998 						/*
999 						 * Single step the non-CP1
1000 						 * instruction in the dslot.
1001 						 */
1002 						return mips_dsemul(xcp, ir, contpc);
1003 					}
1004 				} else
1005 					contpc = (xcp->cp0_epc + (contpc << 2));
1006 
1007 				switch (MIPSInst_OPCODE(ir)) {
1008 				case lwc1_op:
1009 					goto emul;
1010 
1011 				case swc1_op:
1012 					goto emul;
1013 
1014 				case ldc1_op:
1015 				case sdc1_op:
1016 					if (cpu_has_mips_2_3_4_5 ||
1017 					    cpu_has_mips64)
1018 						goto emul;
1019 
1020 					return SIGILL;
1021 					goto emul;
1022 
1023 				case cop1_op:
1024 					goto emul;
1025 
1026 				case cop1x_op:
1027 					if (cpu_has_mips_4_5 || cpu_has_mips64 || cpu_has_mips32r2)
1028 						/* its one of ours */
1029 						goto emul;
1030 
1031 					return SIGILL;
1032 
1033 				case spec_op:
1034 					if (!cpu_has_mips_4_5_r)
1035 						return SIGILL;
1036 
1037 					if (MIPSInst_FUNC(ir) == movc_op)
1038 						goto emul;
1039 					break;
1040 				}
1041 
1042 				/*
1043 				 * Single step the non-cp1
1044 				 * instruction in the dslot
1045 				 */
1046 				return mips_dsemul(xcp, ir, contpc);
1047 			} else if (likely) {	/* branch not taken */
1048 					/*
1049 					 * branch likely nullifies
1050 					 * dslot if not taken
1051 					 */
1052 					xcp->cp0_epc += dec_insn.pc_inc;
1053 					contpc += dec_insn.pc_inc;
1054 					/*
1055 					 * else continue & execute
1056 					 * dslot as normal insn
1057 					 */
1058 				}
1059 			break;
1060 
1061 		default:
1062 			if (!(MIPSInst_RS(ir) & 0x10))
1063 				return SIGILL;
1064 
1065 			/* a real fpu computation instruction */
1066 			if ((sig = fpu_emu(xcp, ctx, ir)))
1067 				return sig;
1068 		}
1069 		break;
1070 
1071 	case cop1x_op:
1072 		if (!cpu_has_mips_4_5 && !cpu_has_mips64 && !cpu_has_mips32r2)
1073 			return SIGILL;
1074 
1075 		sig = fpux_emu(xcp, ctx, ir, fault_addr);
1076 		if (sig)
1077 			return sig;
1078 		break;
1079 
1080 	case spec_op:
1081 		if (!cpu_has_mips_4_5_r)
1082 			return SIGILL;
1083 
1084 		if (MIPSInst_FUNC(ir) != movc_op)
1085 			return SIGILL;
1086 		cond = fpucondbit[MIPSInst_RT(ir) >> 2];
1087 		if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
1088 			xcp->regs[MIPSInst_RD(ir)] =
1089 				xcp->regs[MIPSInst_RS(ir)];
1090 		break;
1091 	default:
1092 sigill:
1093 		return SIGILL;
1094 	}
1095 
1096 	/* we did it !! */
1097 	xcp->cp0_epc = contpc;
1098 	clear_delay_slot(xcp);
1099 
1100 	return 0;
1101 }
1102 
1103 /*
1104  * Conversion table from MIPS compare ops 48-63
1105  * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
1106  */
1107 static const unsigned char cmptab[8] = {
1108 	0,			/* cmp_0 (sig) cmp_sf */
1109 	IEEE754_CUN,		/* cmp_un (sig) cmp_ngle */
1110 	IEEE754_CEQ,		/* cmp_eq (sig) cmp_seq */
1111 	IEEE754_CEQ | IEEE754_CUN,	/* cmp_ueq (sig) cmp_ngl  */
1112 	IEEE754_CLT,		/* cmp_olt (sig) cmp_lt */
1113 	IEEE754_CLT | IEEE754_CUN,	/* cmp_ult (sig) cmp_nge */
1114 	IEEE754_CLT | IEEE754_CEQ,	/* cmp_ole (sig) cmp_le */
1115 	IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN,	/* cmp_ule (sig) cmp_ngt */
1116 };
1117 
1118 
1119 /*
1120  * Additional MIPS4 instructions
1121  */
1122 
1123 #define DEF3OP(name, p, f1, f2, f3)					\
1124 static union ieee754##p fpemu_##p##_##name(union ieee754##p r,		\
1125 	union ieee754##p s, union ieee754##p t)				\
1126 {									\
1127 	struct _ieee754_csr ieee754_csr_save;				\
1128 	s = f1(s, t);							\
1129 	ieee754_csr_save = ieee754_csr;					\
1130 	s = f2(s, r);							\
1131 	ieee754_csr_save.cx |= ieee754_csr.cx;				\
1132 	ieee754_csr_save.sx |= ieee754_csr.sx;				\
1133 	s = f3(s);							\
1134 	ieee754_csr.cx |= ieee754_csr_save.cx;				\
1135 	ieee754_csr.sx |= ieee754_csr_save.sx;				\
1136 	return s;							\
1137 }
1138 
1139 static union ieee754dp fpemu_dp_recip(union ieee754dp d)
1140 {
1141 	return ieee754dp_div(ieee754dp_one(0), d);
1142 }
1143 
1144 static union ieee754dp fpemu_dp_rsqrt(union ieee754dp d)
1145 {
1146 	return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d));
1147 }
1148 
1149 static union ieee754sp fpemu_sp_recip(union ieee754sp s)
1150 {
1151 	return ieee754sp_div(ieee754sp_one(0), s);
1152 }
1153 
1154 static union ieee754sp fpemu_sp_rsqrt(union ieee754sp s)
1155 {
1156 	return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s));
1157 }
1158 
1159 DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add, );
1160 DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub, );
1161 DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg);
1162 DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg);
1163 DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add, );
1164 DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub, );
1165 DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg);
1166 DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg);
1167 
1168 static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1169 	mips_instruction ir, void *__user *fault_addr)
1170 {
1171 	unsigned rcsr = 0;	/* resulting csr */
1172 
1173 	MIPS_FPU_EMU_INC_STATS(cp1xops);
1174 
1175 	switch (MIPSInst_FMA_FFMT(ir)) {
1176 	case s_fmt:{		/* 0 */
1177 
1178 		union ieee754sp(*handler) (union ieee754sp, union ieee754sp, union ieee754sp);
1179 		union ieee754sp fd, fr, fs, ft;
1180 		u32 __user *va;
1181 		u32 val;
1182 
1183 		switch (MIPSInst_FUNC(ir)) {
1184 		case lwxc1_op:
1185 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1186 				xcp->regs[MIPSInst_FT(ir)]);
1187 
1188 			MIPS_FPU_EMU_INC_STATS(loads);
1189 			if (!access_ok(VERIFY_READ, va, sizeof(u32))) {
1190 				MIPS_FPU_EMU_INC_STATS(errors);
1191 				*fault_addr = va;
1192 				return SIGBUS;
1193 			}
1194 			if (__get_user(val, va)) {
1195 				MIPS_FPU_EMU_INC_STATS(errors);
1196 				*fault_addr = va;
1197 				return SIGSEGV;
1198 			}
1199 			SITOREG(val, MIPSInst_FD(ir));
1200 			break;
1201 
1202 		case swxc1_op:
1203 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1204 				xcp->regs[MIPSInst_FT(ir)]);
1205 
1206 			MIPS_FPU_EMU_INC_STATS(stores);
1207 
1208 			SIFROMREG(val, MIPSInst_FS(ir));
1209 			if (!access_ok(VERIFY_WRITE, va, sizeof(u32))) {
1210 				MIPS_FPU_EMU_INC_STATS(errors);
1211 				*fault_addr = va;
1212 				return SIGBUS;
1213 			}
1214 			if (put_user(val, va)) {
1215 				MIPS_FPU_EMU_INC_STATS(errors);
1216 				*fault_addr = va;
1217 				return SIGSEGV;
1218 			}
1219 			break;
1220 
1221 		case madd_s_op:
1222 			handler = fpemu_sp_madd;
1223 			goto scoptop;
1224 		case msub_s_op:
1225 			handler = fpemu_sp_msub;
1226 			goto scoptop;
1227 		case nmadd_s_op:
1228 			handler = fpemu_sp_nmadd;
1229 			goto scoptop;
1230 		case nmsub_s_op:
1231 			handler = fpemu_sp_nmsub;
1232 			goto scoptop;
1233 
1234 		      scoptop:
1235 			SPFROMREG(fr, MIPSInst_FR(ir));
1236 			SPFROMREG(fs, MIPSInst_FS(ir));
1237 			SPFROMREG(ft, MIPSInst_FT(ir));
1238 			fd = (*handler) (fr, fs, ft);
1239 			SPTOREG(fd, MIPSInst_FD(ir));
1240 
1241 		      copcsr:
1242 			if (ieee754_cxtest(IEEE754_INEXACT)) {
1243 				MIPS_FPU_EMU_INC_STATS(ieee754_inexact);
1244 				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1245 			}
1246 			if (ieee754_cxtest(IEEE754_UNDERFLOW)) {
1247 				MIPS_FPU_EMU_INC_STATS(ieee754_underflow);
1248 				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1249 			}
1250 			if (ieee754_cxtest(IEEE754_OVERFLOW)) {
1251 				MIPS_FPU_EMU_INC_STATS(ieee754_overflow);
1252 				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1253 			}
1254 			if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) {
1255 				MIPS_FPU_EMU_INC_STATS(ieee754_invalidop);
1256 				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1257 			}
1258 
1259 			ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1260 			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1261 				/*printk ("SIGFPE: FPU csr = %08x\n",
1262 				   ctx->fcr31); */
1263 				return SIGFPE;
1264 			}
1265 
1266 			break;
1267 
1268 		default:
1269 			return SIGILL;
1270 		}
1271 		break;
1272 	}
1273 
1274 	case d_fmt:{		/* 1 */
1275 		union ieee754dp(*handler) (union ieee754dp, union ieee754dp, union ieee754dp);
1276 		union ieee754dp fd, fr, fs, ft;
1277 		u64 __user *va;
1278 		u64 val;
1279 
1280 		switch (MIPSInst_FUNC(ir)) {
1281 		case ldxc1_op:
1282 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1283 				xcp->regs[MIPSInst_FT(ir)]);
1284 
1285 			MIPS_FPU_EMU_INC_STATS(loads);
1286 			if (!access_ok(VERIFY_READ, va, sizeof(u64))) {
1287 				MIPS_FPU_EMU_INC_STATS(errors);
1288 				*fault_addr = va;
1289 				return SIGBUS;
1290 			}
1291 			if (__get_user(val, va)) {
1292 				MIPS_FPU_EMU_INC_STATS(errors);
1293 				*fault_addr = va;
1294 				return SIGSEGV;
1295 			}
1296 			DITOREG(val, MIPSInst_FD(ir));
1297 			break;
1298 
1299 		case sdxc1_op:
1300 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1301 				xcp->regs[MIPSInst_FT(ir)]);
1302 
1303 			MIPS_FPU_EMU_INC_STATS(stores);
1304 			DIFROMREG(val, MIPSInst_FS(ir));
1305 			if (!access_ok(VERIFY_WRITE, va, sizeof(u64))) {
1306 				MIPS_FPU_EMU_INC_STATS(errors);
1307 				*fault_addr = va;
1308 				return SIGBUS;
1309 			}
1310 			if (__put_user(val, va)) {
1311 				MIPS_FPU_EMU_INC_STATS(errors);
1312 				*fault_addr = va;
1313 				return SIGSEGV;
1314 			}
1315 			break;
1316 
1317 		case madd_d_op:
1318 			handler = fpemu_dp_madd;
1319 			goto dcoptop;
1320 		case msub_d_op:
1321 			handler = fpemu_dp_msub;
1322 			goto dcoptop;
1323 		case nmadd_d_op:
1324 			handler = fpemu_dp_nmadd;
1325 			goto dcoptop;
1326 		case nmsub_d_op:
1327 			handler = fpemu_dp_nmsub;
1328 			goto dcoptop;
1329 
1330 		      dcoptop:
1331 			DPFROMREG(fr, MIPSInst_FR(ir));
1332 			DPFROMREG(fs, MIPSInst_FS(ir));
1333 			DPFROMREG(ft, MIPSInst_FT(ir));
1334 			fd = (*handler) (fr, fs, ft);
1335 			DPTOREG(fd, MIPSInst_FD(ir));
1336 			goto copcsr;
1337 
1338 		default:
1339 			return SIGILL;
1340 		}
1341 		break;
1342 	}
1343 
1344 	case 0x3:
1345 		if (MIPSInst_FUNC(ir) != pfetch_op)
1346 			return SIGILL;
1347 
1348 		/* ignore prefx operation */
1349 		break;
1350 
1351 	default:
1352 		return SIGILL;
1353 	}
1354 
1355 	return 0;
1356 }
1357 
1358 
1359 
1360 /*
1361  * Emulate a single COP1 arithmetic instruction.
1362  */
1363 static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1364 	mips_instruction ir)
1365 {
1366 	int rfmt;		/* resulting format */
1367 	unsigned rcsr = 0;	/* resulting csr */
1368 	unsigned int oldrm;
1369 	unsigned int cbit;
1370 	unsigned cond;
1371 	union {
1372 		union ieee754dp d;
1373 		union ieee754sp s;
1374 		int w;
1375 		s64 l;
1376 	} rv;			/* resulting value */
1377 	u64 bits;
1378 
1379 	MIPS_FPU_EMU_INC_STATS(cp1ops);
1380 	switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) {
1381 	case s_fmt: {		/* 0 */
1382 		union {
1383 			union ieee754sp(*b) (union ieee754sp, union ieee754sp);
1384 			union ieee754sp(*u) (union ieee754sp);
1385 		} handler;
1386 		union ieee754sp fs, ft;
1387 
1388 		switch (MIPSInst_FUNC(ir)) {
1389 			/* binary ops */
1390 		case fadd_op:
1391 			handler.b = ieee754sp_add;
1392 			goto scopbop;
1393 		case fsub_op:
1394 			handler.b = ieee754sp_sub;
1395 			goto scopbop;
1396 		case fmul_op:
1397 			handler.b = ieee754sp_mul;
1398 			goto scopbop;
1399 		case fdiv_op:
1400 			handler.b = ieee754sp_div;
1401 			goto scopbop;
1402 
1403 			/* unary  ops */
1404 		case fsqrt_op:
1405 			if (!cpu_has_mips_4_5_r)
1406 				return SIGILL;
1407 
1408 			handler.u = ieee754sp_sqrt;
1409 			goto scopuop;
1410 
1411 		/*
1412 		 * Note that on some MIPS IV implementations such as the
1413 		 * R5000 and R8000 the FSQRT and FRECIP instructions do not
1414 		 * achieve full IEEE-754 accuracy - however this emulator does.
1415 		 */
1416 		case frsqrt_op:
1417 			if (!cpu_has_mips_4_5_r2)
1418 				return SIGILL;
1419 
1420 			handler.u = fpemu_sp_rsqrt;
1421 			goto scopuop;
1422 
1423 		case frecip_op:
1424 			if (!cpu_has_mips_4_5_r2)
1425 				return SIGILL;
1426 
1427 			handler.u = fpemu_sp_recip;
1428 			goto scopuop;
1429 
1430 		case fmovc_op:
1431 			if (!cpu_has_mips_4_5_r)
1432 				return SIGILL;
1433 
1434 			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1435 			if (((ctx->fcr31 & cond) != 0) !=
1436 				((MIPSInst_FT(ir) & 1) != 0))
1437 				return 0;
1438 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1439 			break;
1440 
1441 		case fmovz_op:
1442 			if (!cpu_has_mips_4_5_r)
1443 				return SIGILL;
1444 
1445 			if (xcp->regs[MIPSInst_FT(ir)] != 0)
1446 				return 0;
1447 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1448 			break;
1449 
1450 		case fmovn_op:
1451 			if (!cpu_has_mips_4_5_r)
1452 				return SIGILL;
1453 
1454 			if (xcp->regs[MIPSInst_FT(ir)] == 0)
1455 				return 0;
1456 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1457 			break;
1458 
1459 		case fabs_op:
1460 			handler.u = ieee754sp_abs;
1461 			goto scopuop;
1462 
1463 		case fneg_op:
1464 			handler.u = ieee754sp_neg;
1465 			goto scopuop;
1466 
1467 		case fmov_op:
1468 			/* an easy one */
1469 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1470 			goto copcsr;
1471 
1472 			/* binary op on handler */
1473 scopbop:
1474 			SPFROMREG(fs, MIPSInst_FS(ir));
1475 			SPFROMREG(ft, MIPSInst_FT(ir));
1476 
1477 			rv.s = (*handler.b) (fs, ft);
1478 			goto copcsr;
1479 scopuop:
1480 			SPFROMREG(fs, MIPSInst_FS(ir));
1481 			rv.s = (*handler.u) (fs);
1482 			goto copcsr;
1483 copcsr:
1484 			if (ieee754_cxtest(IEEE754_INEXACT)) {
1485 				MIPS_FPU_EMU_INC_STATS(ieee754_inexact);
1486 				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1487 			}
1488 			if (ieee754_cxtest(IEEE754_UNDERFLOW)) {
1489 				MIPS_FPU_EMU_INC_STATS(ieee754_underflow);
1490 				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1491 			}
1492 			if (ieee754_cxtest(IEEE754_OVERFLOW)) {
1493 				MIPS_FPU_EMU_INC_STATS(ieee754_overflow);
1494 				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1495 			}
1496 			if (ieee754_cxtest(IEEE754_ZERO_DIVIDE)) {
1497 				MIPS_FPU_EMU_INC_STATS(ieee754_zerodiv);
1498 				rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S;
1499 			}
1500 			if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) {
1501 				MIPS_FPU_EMU_INC_STATS(ieee754_invalidop);
1502 				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1503 			}
1504 			break;
1505 
1506 			/* unary conv ops */
1507 		case fcvts_op:
1508 			return SIGILL;	/* not defined */
1509 
1510 		case fcvtd_op:
1511 			SPFROMREG(fs, MIPSInst_FS(ir));
1512 			rv.d = ieee754dp_fsp(fs);
1513 			rfmt = d_fmt;
1514 			goto copcsr;
1515 
1516 		case fcvtw_op:
1517 			SPFROMREG(fs, MIPSInst_FS(ir));
1518 			rv.w = ieee754sp_tint(fs);
1519 			rfmt = w_fmt;
1520 			goto copcsr;
1521 
1522 		case fround_op:
1523 		case ftrunc_op:
1524 		case fceil_op:
1525 		case ffloor_op:
1526 			if (!cpu_has_mips_2_3_4_5 && !cpu_has_mips64)
1527 				return SIGILL;
1528 
1529 			oldrm = ieee754_csr.rm;
1530 			SPFROMREG(fs, MIPSInst_FS(ir));
1531 			ieee754_csr.rm = modeindex(MIPSInst_FUNC(ir));
1532 			rv.w = ieee754sp_tint(fs);
1533 			ieee754_csr.rm = oldrm;
1534 			rfmt = w_fmt;
1535 			goto copcsr;
1536 
1537 		case fcvtl_op:
1538 			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1539 				return SIGILL;
1540 
1541 			SPFROMREG(fs, MIPSInst_FS(ir));
1542 			rv.l = ieee754sp_tlong(fs);
1543 			rfmt = l_fmt;
1544 			goto copcsr;
1545 
1546 		case froundl_op:
1547 		case ftruncl_op:
1548 		case fceill_op:
1549 		case ffloorl_op:
1550 			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1551 				return SIGILL;
1552 
1553 			oldrm = ieee754_csr.rm;
1554 			SPFROMREG(fs, MIPSInst_FS(ir));
1555 			ieee754_csr.rm = modeindex(MIPSInst_FUNC(ir));
1556 			rv.l = ieee754sp_tlong(fs);
1557 			ieee754_csr.rm = oldrm;
1558 			rfmt = l_fmt;
1559 			goto copcsr;
1560 
1561 		default:
1562 			if (MIPSInst_FUNC(ir) >= fcmp_op) {
1563 				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1564 				union ieee754sp fs, ft;
1565 
1566 				SPFROMREG(fs, MIPSInst_FS(ir));
1567 				SPFROMREG(ft, MIPSInst_FT(ir));
1568 				rv.w = ieee754sp_cmp(fs, ft,
1569 					cmptab[cmpop & 0x7], cmpop & 0x8);
1570 				rfmt = -1;
1571 				if ((cmpop & 0x8) && ieee754_cxtest
1572 					(IEEE754_INVALID_OPERATION))
1573 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1574 				else
1575 					goto copcsr;
1576 
1577 			} else
1578 				return SIGILL;
1579 			break;
1580 		}
1581 		break;
1582 	}
1583 
1584 	case d_fmt: {
1585 		union ieee754dp fs, ft;
1586 		union {
1587 			union ieee754dp(*b) (union ieee754dp, union ieee754dp);
1588 			union ieee754dp(*u) (union ieee754dp);
1589 		} handler;
1590 
1591 		switch (MIPSInst_FUNC(ir)) {
1592 			/* binary ops */
1593 		case fadd_op:
1594 			handler.b = ieee754dp_add;
1595 			goto dcopbop;
1596 		case fsub_op:
1597 			handler.b = ieee754dp_sub;
1598 			goto dcopbop;
1599 		case fmul_op:
1600 			handler.b = ieee754dp_mul;
1601 			goto dcopbop;
1602 		case fdiv_op:
1603 			handler.b = ieee754dp_div;
1604 			goto dcopbop;
1605 
1606 			/* unary  ops */
1607 		case fsqrt_op:
1608 			if (!cpu_has_mips_2_3_4_5_r)
1609 				return SIGILL;
1610 
1611 			handler.u = ieee754dp_sqrt;
1612 			goto dcopuop;
1613 		/*
1614 		 * Note that on some MIPS IV implementations such as the
1615 		 * R5000 and R8000 the FSQRT and FRECIP instructions do not
1616 		 * achieve full IEEE-754 accuracy - however this emulator does.
1617 		 */
1618 		case frsqrt_op:
1619 			if (!cpu_has_mips_4_5_r2)
1620 				return SIGILL;
1621 
1622 			handler.u = fpemu_dp_rsqrt;
1623 			goto dcopuop;
1624 		case frecip_op:
1625 			if (!cpu_has_mips_4_5_r2)
1626 				return SIGILL;
1627 
1628 			handler.u = fpemu_dp_recip;
1629 			goto dcopuop;
1630 		case fmovc_op:
1631 			if (!cpu_has_mips_4_5_r)
1632 				return SIGILL;
1633 
1634 			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1635 			if (((ctx->fcr31 & cond) != 0) !=
1636 				((MIPSInst_FT(ir) & 1) != 0))
1637 				return 0;
1638 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1639 			break;
1640 		case fmovz_op:
1641 			if (!cpu_has_mips_4_5_r)
1642 				return SIGILL;
1643 
1644 			if (xcp->regs[MIPSInst_FT(ir)] != 0)
1645 				return 0;
1646 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1647 			break;
1648 		case fmovn_op:
1649 			if (!cpu_has_mips_4_5_r)
1650 				return SIGILL;
1651 
1652 			if (xcp->regs[MIPSInst_FT(ir)] == 0)
1653 				return 0;
1654 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1655 			break;
1656 		case fabs_op:
1657 			handler.u = ieee754dp_abs;
1658 			goto dcopuop;
1659 
1660 		case fneg_op:
1661 			handler.u = ieee754dp_neg;
1662 			goto dcopuop;
1663 
1664 		case fmov_op:
1665 			/* an easy one */
1666 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1667 			goto copcsr;
1668 
1669 			/* binary op on handler */
1670 dcopbop:
1671 			DPFROMREG(fs, MIPSInst_FS(ir));
1672 			DPFROMREG(ft, MIPSInst_FT(ir));
1673 
1674 			rv.d = (*handler.b) (fs, ft);
1675 			goto copcsr;
1676 dcopuop:
1677 			DPFROMREG(fs, MIPSInst_FS(ir));
1678 			rv.d = (*handler.u) (fs);
1679 			goto copcsr;
1680 
1681 		/*
1682 		 * unary conv ops
1683 		 */
1684 		case fcvts_op:
1685 			DPFROMREG(fs, MIPSInst_FS(ir));
1686 			rv.s = ieee754sp_fdp(fs);
1687 			rfmt = s_fmt;
1688 			goto copcsr;
1689 
1690 		case fcvtd_op:
1691 			return SIGILL;	/* not defined */
1692 
1693 		case fcvtw_op:
1694 			DPFROMREG(fs, MIPSInst_FS(ir));
1695 			rv.w = ieee754dp_tint(fs);	/* wrong */
1696 			rfmt = w_fmt;
1697 			goto copcsr;
1698 
1699 		case fround_op:
1700 		case ftrunc_op:
1701 		case fceil_op:
1702 		case ffloor_op:
1703 			if (!cpu_has_mips_2_3_4_5_r)
1704 				return SIGILL;
1705 
1706 			oldrm = ieee754_csr.rm;
1707 			DPFROMREG(fs, MIPSInst_FS(ir));
1708 			ieee754_csr.rm = modeindex(MIPSInst_FUNC(ir));
1709 			rv.w = ieee754dp_tint(fs);
1710 			ieee754_csr.rm = oldrm;
1711 			rfmt = w_fmt;
1712 			goto copcsr;
1713 
1714 		case fcvtl_op:
1715 			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1716 				return SIGILL;
1717 
1718 			DPFROMREG(fs, MIPSInst_FS(ir));
1719 			rv.l = ieee754dp_tlong(fs);
1720 			rfmt = l_fmt;
1721 			goto copcsr;
1722 
1723 		case froundl_op:
1724 		case ftruncl_op:
1725 		case fceill_op:
1726 		case ffloorl_op:
1727 			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1728 				return SIGILL;
1729 
1730 			oldrm = ieee754_csr.rm;
1731 			DPFROMREG(fs, MIPSInst_FS(ir));
1732 			ieee754_csr.rm = modeindex(MIPSInst_FUNC(ir));
1733 			rv.l = ieee754dp_tlong(fs);
1734 			ieee754_csr.rm = oldrm;
1735 			rfmt = l_fmt;
1736 			goto copcsr;
1737 
1738 		default:
1739 			if (MIPSInst_FUNC(ir) >= fcmp_op) {
1740 				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1741 				union ieee754dp fs, ft;
1742 
1743 				DPFROMREG(fs, MIPSInst_FS(ir));
1744 				DPFROMREG(ft, MIPSInst_FT(ir));
1745 				rv.w = ieee754dp_cmp(fs, ft,
1746 					cmptab[cmpop & 0x7], cmpop & 0x8);
1747 				rfmt = -1;
1748 				if ((cmpop & 0x8)
1749 					&&
1750 					ieee754_cxtest
1751 					(IEEE754_INVALID_OPERATION))
1752 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1753 				else
1754 					goto copcsr;
1755 
1756 			}
1757 			else {
1758 				return SIGILL;
1759 			}
1760 			break;
1761 		}
1762 		break;
1763 
1764 	case w_fmt:
1765 		switch (MIPSInst_FUNC(ir)) {
1766 		case fcvts_op:
1767 			/* convert word to single precision real */
1768 			SPFROMREG(fs, MIPSInst_FS(ir));
1769 			rv.s = ieee754sp_fint(fs.bits);
1770 			rfmt = s_fmt;
1771 			goto copcsr;
1772 		case fcvtd_op:
1773 			/* convert word to double precision real */
1774 			SPFROMREG(fs, MIPSInst_FS(ir));
1775 			rv.d = ieee754dp_fint(fs.bits);
1776 			rfmt = d_fmt;
1777 			goto copcsr;
1778 		default:
1779 			return SIGILL;
1780 		}
1781 		break;
1782 	}
1783 
1784 	case l_fmt:
1785 
1786 		if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1787 			return SIGILL;
1788 
1789 		DIFROMREG(bits, MIPSInst_FS(ir));
1790 
1791 		switch (MIPSInst_FUNC(ir)) {
1792 		case fcvts_op:
1793 			/* convert long to single precision real */
1794 			rv.s = ieee754sp_flong(bits);
1795 			rfmt = s_fmt;
1796 			goto copcsr;
1797 		case fcvtd_op:
1798 			/* convert long to double precision real */
1799 			rv.d = ieee754dp_flong(bits);
1800 			rfmt = d_fmt;
1801 			goto copcsr;
1802 		default:
1803 			return SIGILL;
1804 		}
1805 		break;
1806 
1807 	default:
1808 		return SIGILL;
1809 	}
1810 
1811 	/*
1812 	 * Update the fpu CSR register for this operation.
1813 	 * If an exception is required, generate a tidy SIGFPE exception,
1814 	 * without updating the result register.
1815 	 * Note: cause exception bits do not accumulate, they are rewritten
1816 	 * for each op; only the flag/sticky bits accumulate.
1817 	 */
1818 	ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1819 	if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1820 		/*printk ("SIGFPE: FPU csr = %08x\n",ctx->fcr31); */
1821 		return SIGFPE;
1822 	}
1823 
1824 	/*
1825 	 * Now we can safely write the result back to the register file.
1826 	 */
1827 	switch (rfmt) {
1828 	case -1:
1829 
1830 		if (cpu_has_mips_4_5_r)
1831 			cbit = fpucondbit[MIPSInst_FD(ir) >> 2];
1832 		else
1833 			cbit = FPU_CSR_COND;
1834 		if (rv.w)
1835 			ctx->fcr31 |= cbit;
1836 		else
1837 			ctx->fcr31 &= ~cbit;
1838 		break;
1839 
1840 	case d_fmt:
1841 		DPTOREG(rv.d, MIPSInst_FD(ir));
1842 		break;
1843 	case s_fmt:
1844 		SPTOREG(rv.s, MIPSInst_FD(ir));
1845 		break;
1846 	case w_fmt:
1847 		SITOREG(rv.w, MIPSInst_FD(ir));
1848 		break;
1849 	case l_fmt:
1850 		if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1851 			return SIGILL;
1852 
1853 		DITOREG(rv.l, MIPSInst_FD(ir));
1854 		break;
1855 	default:
1856 		return SIGILL;
1857 	}
1858 
1859 	return 0;
1860 }
1861 
1862 int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1863 	int has_fpu, void *__user *fault_addr)
1864 {
1865 	unsigned long oldepc, prevepc;
1866 	struct mm_decoded_insn dec_insn;
1867 	u16 instr[4];
1868 	u16 *instr_ptr;
1869 	int sig = 0;
1870 
1871 	oldepc = xcp->cp0_epc;
1872 	do {
1873 		prevepc = xcp->cp0_epc;
1874 
1875 		if (get_isa16_mode(prevepc) && cpu_has_mmips) {
1876 			/*
1877 			 * Get next 2 microMIPS instructions and convert them
1878 			 * into 32-bit instructions.
1879 			 */
1880 			if ((get_user(instr[0], (u16 __user *)msk_isa16_mode(xcp->cp0_epc))) ||
1881 			    (get_user(instr[1], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 2))) ||
1882 			    (get_user(instr[2], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 4))) ||
1883 			    (get_user(instr[3], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 6)))) {
1884 				MIPS_FPU_EMU_INC_STATS(errors);
1885 				return SIGBUS;
1886 			}
1887 			instr_ptr = instr;
1888 
1889 			/* Get first instruction. */
1890 			if (mm_insn_16bit(*instr_ptr)) {
1891 				/* Duplicate the half-word. */
1892 				dec_insn.insn = (*instr_ptr << 16) |
1893 					(*instr_ptr);
1894 				/* 16-bit instruction. */
1895 				dec_insn.pc_inc = 2;
1896 				instr_ptr += 1;
1897 			} else {
1898 				dec_insn.insn = (*instr_ptr << 16) |
1899 					*(instr_ptr+1);
1900 				/* 32-bit instruction. */
1901 				dec_insn.pc_inc = 4;
1902 				instr_ptr += 2;
1903 			}
1904 			/* Get second instruction. */
1905 			if (mm_insn_16bit(*instr_ptr)) {
1906 				/* Duplicate the half-word. */
1907 				dec_insn.next_insn = (*instr_ptr << 16) |
1908 					(*instr_ptr);
1909 				/* 16-bit instruction. */
1910 				dec_insn.next_pc_inc = 2;
1911 			} else {
1912 				dec_insn.next_insn = (*instr_ptr << 16) |
1913 					*(instr_ptr+1);
1914 				/* 32-bit instruction. */
1915 				dec_insn.next_pc_inc = 4;
1916 			}
1917 			dec_insn.micro_mips_mode = 1;
1918 		} else {
1919 			if ((get_user(dec_insn.insn,
1920 			    (mips_instruction __user *) xcp->cp0_epc)) ||
1921 			    (get_user(dec_insn.next_insn,
1922 			    (mips_instruction __user *)(xcp->cp0_epc+4)))) {
1923 				MIPS_FPU_EMU_INC_STATS(errors);
1924 				return SIGBUS;
1925 			}
1926 			dec_insn.pc_inc = 4;
1927 			dec_insn.next_pc_inc = 4;
1928 			dec_insn.micro_mips_mode = 0;
1929 		}
1930 
1931 		if ((dec_insn.insn == 0) ||
1932 		   ((dec_insn.pc_inc == 2) &&
1933 		   ((dec_insn.insn & 0xffff) == MM_NOP16)))
1934 			xcp->cp0_epc += dec_insn.pc_inc;	/* Skip NOPs */
1935 		else {
1936 			/*
1937 			 * The 'ieee754_csr' is an alias of
1938 			 * ctx->fcr31.	No need to copy ctx->fcr31 to
1939 			 * ieee754_csr.	 But ieee754_csr.rm is ieee
1940 			 * library modes. (not mips rounding mode)
1941 			 */
1942 			sig = cop1Emulate(xcp, ctx, dec_insn, fault_addr);
1943 		}
1944 
1945 		if (has_fpu)
1946 			break;
1947 		if (sig)
1948 			break;
1949 
1950 		cond_resched();
1951 	} while (xcp->cp0_epc > prevepc);
1952 
1953 	/* SIGILL indicates a non-fpu instruction */
1954 	if (sig == SIGILL && xcp->cp0_epc != oldepc)
1955 		/* but if EPC has advanced, then ignore it */
1956 		sig = 0;
1957 
1958 	return sig;
1959 }
1960