xref: /openbmc/linux/arch/mips/math-emu/cp1emu.c (revision 4f3db074)
1 /*
2  * cp1emu.c: a MIPS coprocessor 1 (FPU) instruction emulator
3  *
4  * MIPS floating point support
5  * Copyright (C) 1994-2000 Algorithmics Ltd.
6  *
7  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
8  * Copyright (C) 2000  MIPS Technologies, Inc.
9  *
10  *  This program is free software; you can distribute it and/or modify it
11  *  under the terms of the GNU General Public License (Version 2) as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope it will be useful, but WITHOUT
15  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17  *  for more details.
18  *
19  *  You should have received a copy of the GNU General Public License along
20  *  with this program; if not, write to the Free Software Foundation, Inc.,
21  *  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA.
22  *
23  * A complete emulator for MIPS coprocessor 1 instructions.  This is
24  * required for #float(switch) or #float(trap), where it catches all
25  * COP1 instructions via the "CoProcessor Unusable" exception.
26  *
27  * More surprisingly it is also required for #float(ieee), to help out
28  * the hardware FPU at the boundaries of the IEEE-754 representation
29  * (denormalised values, infinities, underflow, etc).  It is made
30  * quite nasty because emulation of some non-COP1 instructions is
31  * required, e.g. in branch delay slots.
32  *
33  * Note if you know that you won't have an FPU, then you'll get much
34  * better performance by compiling with -msoft-float!
35  */
36 #include <linux/sched.h>
37 #include <linux/debugfs.h>
38 #include <linux/kconfig.h>
39 #include <linux/percpu-defs.h>
40 #include <linux/perf_event.h>
41 
42 #include <asm/branch.h>
43 #include <asm/inst.h>
44 #include <asm/ptrace.h>
45 #include <asm/signal.h>
46 #include <asm/uaccess.h>
47 
48 #include <asm/cpu-info.h>
49 #include <asm/processor.h>
50 #include <asm/fpu_emulator.h>
51 #include <asm/fpu.h>
52 #include <asm/mips-r2-to-r6-emul.h>
53 
54 #include "ieee754.h"
55 
56 /* Function which emulates a floating point instruction. */
57 
58 static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *,
59 	mips_instruction);
60 
61 static int fpux_emu(struct pt_regs *,
62 	struct mips_fpu_struct *, mips_instruction, void *__user *);
63 
64 /* Control registers */
65 
66 #define FPCREG_RID	0	/* $0  = revision id */
67 #define FPCREG_FCCR	25	/* $25 = fccr */
68 #define FPCREG_FEXR	26	/* $26 = fexr */
69 #define FPCREG_FENR	28	/* $28 = fenr */
70 #define FPCREG_CSR	31	/* $31 = csr */
71 
72 /* convert condition code register number to csr bit */
73 const unsigned int fpucondbit[8] = {
74 	FPU_CSR_COND,
75 	FPU_CSR_COND1,
76 	FPU_CSR_COND2,
77 	FPU_CSR_COND3,
78 	FPU_CSR_COND4,
79 	FPU_CSR_COND5,
80 	FPU_CSR_COND6,
81 	FPU_CSR_COND7
82 };
83 
84 /* (microMIPS) Convert certain microMIPS instructions to MIPS32 format. */
85 static const int sd_format[] = {16, 17, 0, 0, 0, 0, 0, 0};
86 static const int sdps_format[] = {16, 17, 22, 0, 0, 0, 0, 0};
87 static const int dwl_format[] = {17, 20, 21, 0, 0, 0, 0, 0};
88 static const int swl_format[] = {16, 20, 21, 0, 0, 0, 0, 0};
89 
90 /*
91  * This functions translates a 32-bit microMIPS instruction
92  * into a 32-bit MIPS32 instruction. Returns 0 on success
93  * and SIGILL otherwise.
94  */
95 static int microMIPS32_to_MIPS32(union mips_instruction *insn_ptr)
96 {
97 	union mips_instruction insn = *insn_ptr;
98 	union mips_instruction mips32_insn = insn;
99 	int func, fmt, op;
100 
101 	switch (insn.mm_i_format.opcode) {
102 	case mm_ldc132_op:
103 		mips32_insn.mm_i_format.opcode = ldc1_op;
104 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
105 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
106 		break;
107 	case mm_lwc132_op:
108 		mips32_insn.mm_i_format.opcode = lwc1_op;
109 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
110 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
111 		break;
112 	case mm_sdc132_op:
113 		mips32_insn.mm_i_format.opcode = sdc1_op;
114 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
115 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
116 		break;
117 	case mm_swc132_op:
118 		mips32_insn.mm_i_format.opcode = swc1_op;
119 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
120 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
121 		break;
122 	case mm_pool32i_op:
123 		/* NOTE: offset is << by 1 if in microMIPS mode. */
124 		if ((insn.mm_i_format.rt == mm_bc1f_op) ||
125 		    (insn.mm_i_format.rt == mm_bc1t_op)) {
126 			mips32_insn.fb_format.opcode = cop1_op;
127 			mips32_insn.fb_format.bc = bc_op;
128 			mips32_insn.fb_format.flag =
129 				(insn.mm_i_format.rt == mm_bc1t_op) ? 1 : 0;
130 		} else
131 			return SIGILL;
132 		break;
133 	case mm_pool32f_op:
134 		switch (insn.mm_fp0_format.func) {
135 		case mm_32f_01_op:
136 		case mm_32f_11_op:
137 		case mm_32f_02_op:
138 		case mm_32f_12_op:
139 		case mm_32f_41_op:
140 		case mm_32f_51_op:
141 		case mm_32f_42_op:
142 		case mm_32f_52_op:
143 			op = insn.mm_fp0_format.func;
144 			if (op == mm_32f_01_op)
145 				func = madd_s_op;
146 			else if (op == mm_32f_11_op)
147 				func = madd_d_op;
148 			else if (op == mm_32f_02_op)
149 				func = nmadd_s_op;
150 			else if (op == mm_32f_12_op)
151 				func = nmadd_d_op;
152 			else if (op == mm_32f_41_op)
153 				func = msub_s_op;
154 			else if (op == mm_32f_51_op)
155 				func = msub_d_op;
156 			else if (op == mm_32f_42_op)
157 				func = nmsub_s_op;
158 			else
159 				func = nmsub_d_op;
160 			mips32_insn.fp6_format.opcode = cop1x_op;
161 			mips32_insn.fp6_format.fr = insn.mm_fp6_format.fr;
162 			mips32_insn.fp6_format.ft = insn.mm_fp6_format.ft;
163 			mips32_insn.fp6_format.fs = insn.mm_fp6_format.fs;
164 			mips32_insn.fp6_format.fd = insn.mm_fp6_format.fd;
165 			mips32_insn.fp6_format.func = func;
166 			break;
167 		case mm_32f_10_op:
168 			func = -1;	/* Invalid */
169 			op = insn.mm_fp5_format.op & 0x7;
170 			if (op == mm_ldxc1_op)
171 				func = ldxc1_op;
172 			else if (op == mm_sdxc1_op)
173 				func = sdxc1_op;
174 			else if (op == mm_lwxc1_op)
175 				func = lwxc1_op;
176 			else if (op == mm_swxc1_op)
177 				func = swxc1_op;
178 
179 			if (func != -1) {
180 				mips32_insn.r_format.opcode = cop1x_op;
181 				mips32_insn.r_format.rs =
182 					insn.mm_fp5_format.base;
183 				mips32_insn.r_format.rt =
184 					insn.mm_fp5_format.index;
185 				mips32_insn.r_format.rd = 0;
186 				mips32_insn.r_format.re = insn.mm_fp5_format.fd;
187 				mips32_insn.r_format.func = func;
188 			} else
189 				return SIGILL;
190 			break;
191 		case mm_32f_40_op:
192 			op = -1;	/* Invalid */
193 			if (insn.mm_fp2_format.op == mm_fmovt_op)
194 				op = 1;
195 			else if (insn.mm_fp2_format.op == mm_fmovf_op)
196 				op = 0;
197 			if (op != -1) {
198 				mips32_insn.fp0_format.opcode = cop1_op;
199 				mips32_insn.fp0_format.fmt =
200 					sdps_format[insn.mm_fp2_format.fmt];
201 				mips32_insn.fp0_format.ft =
202 					(insn.mm_fp2_format.cc<<2) + op;
203 				mips32_insn.fp0_format.fs =
204 					insn.mm_fp2_format.fs;
205 				mips32_insn.fp0_format.fd =
206 					insn.mm_fp2_format.fd;
207 				mips32_insn.fp0_format.func = fmovc_op;
208 			} else
209 				return SIGILL;
210 			break;
211 		case mm_32f_60_op:
212 			func = -1;	/* Invalid */
213 			if (insn.mm_fp0_format.op == mm_fadd_op)
214 				func = fadd_op;
215 			else if (insn.mm_fp0_format.op == mm_fsub_op)
216 				func = fsub_op;
217 			else if (insn.mm_fp0_format.op == mm_fmul_op)
218 				func = fmul_op;
219 			else if (insn.mm_fp0_format.op == mm_fdiv_op)
220 				func = fdiv_op;
221 			if (func != -1) {
222 				mips32_insn.fp0_format.opcode = cop1_op;
223 				mips32_insn.fp0_format.fmt =
224 					sdps_format[insn.mm_fp0_format.fmt];
225 				mips32_insn.fp0_format.ft =
226 					insn.mm_fp0_format.ft;
227 				mips32_insn.fp0_format.fs =
228 					insn.mm_fp0_format.fs;
229 				mips32_insn.fp0_format.fd =
230 					insn.mm_fp0_format.fd;
231 				mips32_insn.fp0_format.func = func;
232 			} else
233 				return SIGILL;
234 			break;
235 		case mm_32f_70_op:
236 			func = -1;	/* Invalid */
237 			if (insn.mm_fp0_format.op == mm_fmovn_op)
238 				func = fmovn_op;
239 			else if (insn.mm_fp0_format.op == mm_fmovz_op)
240 				func = fmovz_op;
241 			if (func != -1) {
242 				mips32_insn.fp0_format.opcode = cop1_op;
243 				mips32_insn.fp0_format.fmt =
244 					sdps_format[insn.mm_fp0_format.fmt];
245 				mips32_insn.fp0_format.ft =
246 					insn.mm_fp0_format.ft;
247 				mips32_insn.fp0_format.fs =
248 					insn.mm_fp0_format.fs;
249 				mips32_insn.fp0_format.fd =
250 					insn.mm_fp0_format.fd;
251 				mips32_insn.fp0_format.func = func;
252 			} else
253 				return SIGILL;
254 			break;
255 		case mm_32f_73_op:    /* POOL32FXF */
256 			switch (insn.mm_fp1_format.op) {
257 			case mm_movf0_op:
258 			case mm_movf1_op:
259 			case mm_movt0_op:
260 			case mm_movt1_op:
261 				if ((insn.mm_fp1_format.op & 0x7f) ==
262 				    mm_movf0_op)
263 					op = 0;
264 				else
265 					op = 1;
266 				mips32_insn.r_format.opcode = spec_op;
267 				mips32_insn.r_format.rs = insn.mm_fp4_format.fs;
268 				mips32_insn.r_format.rt =
269 					(insn.mm_fp4_format.cc << 2) + op;
270 				mips32_insn.r_format.rd = insn.mm_fp4_format.rt;
271 				mips32_insn.r_format.re = 0;
272 				mips32_insn.r_format.func = movc_op;
273 				break;
274 			case mm_fcvtd0_op:
275 			case mm_fcvtd1_op:
276 			case mm_fcvts0_op:
277 			case mm_fcvts1_op:
278 				if ((insn.mm_fp1_format.op & 0x7f) ==
279 				    mm_fcvtd0_op) {
280 					func = fcvtd_op;
281 					fmt = swl_format[insn.mm_fp3_format.fmt];
282 				} else {
283 					func = fcvts_op;
284 					fmt = dwl_format[insn.mm_fp3_format.fmt];
285 				}
286 				mips32_insn.fp0_format.opcode = cop1_op;
287 				mips32_insn.fp0_format.fmt = fmt;
288 				mips32_insn.fp0_format.ft = 0;
289 				mips32_insn.fp0_format.fs =
290 					insn.mm_fp3_format.fs;
291 				mips32_insn.fp0_format.fd =
292 					insn.mm_fp3_format.rt;
293 				mips32_insn.fp0_format.func = func;
294 				break;
295 			case mm_fmov0_op:
296 			case mm_fmov1_op:
297 			case mm_fabs0_op:
298 			case mm_fabs1_op:
299 			case mm_fneg0_op:
300 			case mm_fneg1_op:
301 				if ((insn.mm_fp1_format.op & 0x7f) ==
302 				    mm_fmov0_op)
303 					func = fmov_op;
304 				else if ((insn.mm_fp1_format.op & 0x7f) ==
305 					 mm_fabs0_op)
306 					func = fabs_op;
307 				else
308 					func = fneg_op;
309 				mips32_insn.fp0_format.opcode = cop1_op;
310 				mips32_insn.fp0_format.fmt =
311 					sdps_format[insn.mm_fp3_format.fmt];
312 				mips32_insn.fp0_format.ft = 0;
313 				mips32_insn.fp0_format.fs =
314 					insn.mm_fp3_format.fs;
315 				mips32_insn.fp0_format.fd =
316 					insn.mm_fp3_format.rt;
317 				mips32_insn.fp0_format.func = func;
318 				break;
319 			case mm_ffloorl_op:
320 			case mm_ffloorw_op:
321 			case mm_fceill_op:
322 			case mm_fceilw_op:
323 			case mm_ftruncl_op:
324 			case mm_ftruncw_op:
325 			case mm_froundl_op:
326 			case mm_froundw_op:
327 			case mm_fcvtl_op:
328 			case mm_fcvtw_op:
329 				if (insn.mm_fp1_format.op == mm_ffloorl_op)
330 					func = ffloorl_op;
331 				else if (insn.mm_fp1_format.op == mm_ffloorw_op)
332 					func = ffloor_op;
333 				else if (insn.mm_fp1_format.op == mm_fceill_op)
334 					func = fceill_op;
335 				else if (insn.mm_fp1_format.op == mm_fceilw_op)
336 					func = fceil_op;
337 				else if (insn.mm_fp1_format.op == mm_ftruncl_op)
338 					func = ftruncl_op;
339 				else if (insn.mm_fp1_format.op == mm_ftruncw_op)
340 					func = ftrunc_op;
341 				else if (insn.mm_fp1_format.op == mm_froundl_op)
342 					func = froundl_op;
343 				else if (insn.mm_fp1_format.op == mm_froundw_op)
344 					func = fround_op;
345 				else if (insn.mm_fp1_format.op == mm_fcvtl_op)
346 					func = fcvtl_op;
347 				else
348 					func = fcvtw_op;
349 				mips32_insn.fp0_format.opcode = cop1_op;
350 				mips32_insn.fp0_format.fmt =
351 					sd_format[insn.mm_fp1_format.fmt];
352 				mips32_insn.fp0_format.ft = 0;
353 				mips32_insn.fp0_format.fs =
354 					insn.mm_fp1_format.fs;
355 				mips32_insn.fp0_format.fd =
356 					insn.mm_fp1_format.rt;
357 				mips32_insn.fp0_format.func = func;
358 				break;
359 			case mm_frsqrt_op:
360 			case mm_fsqrt_op:
361 			case mm_frecip_op:
362 				if (insn.mm_fp1_format.op == mm_frsqrt_op)
363 					func = frsqrt_op;
364 				else if (insn.mm_fp1_format.op == mm_fsqrt_op)
365 					func = fsqrt_op;
366 				else
367 					func = frecip_op;
368 				mips32_insn.fp0_format.opcode = cop1_op;
369 				mips32_insn.fp0_format.fmt =
370 					sdps_format[insn.mm_fp1_format.fmt];
371 				mips32_insn.fp0_format.ft = 0;
372 				mips32_insn.fp0_format.fs =
373 					insn.mm_fp1_format.fs;
374 				mips32_insn.fp0_format.fd =
375 					insn.mm_fp1_format.rt;
376 				mips32_insn.fp0_format.func = func;
377 				break;
378 			case mm_mfc1_op:
379 			case mm_mtc1_op:
380 			case mm_cfc1_op:
381 			case mm_ctc1_op:
382 			case mm_mfhc1_op:
383 			case mm_mthc1_op:
384 				if (insn.mm_fp1_format.op == mm_mfc1_op)
385 					op = mfc_op;
386 				else if (insn.mm_fp1_format.op == mm_mtc1_op)
387 					op = mtc_op;
388 				else if (insn.mm_fp1_format.op == mm_cfc1_op)
389 					op = cfc_op;
390 				else if (insn.mm_fp1_format.op == mm_ctc1_op)
391 					op = ctc_op;
392 				else if (insn.mm_fp1_format.op == mm_mfhc1_op)
393 					op = mfhc_op;
394 				else
395 					op = mthc_op;
396 				mips32_insn.fp1_format.opcode = cop1_op;
397 				mips32_insn.fp1_format.op = op;
398 				mips32_insn.fp1_format.rt =
399 					insn.mm_fp1_format.rt;
400 				mips32_insn.fp1_format.fs =
401 					insn.mm_fp1_format.fs;
402 				mips32_insn.fp1_format.fd = 0;
403 				mips32_insn.fp1_format.func = 0;
404 				break;
405 			default:
406 				return SIGILL;
407 			}
408 			break;
409 		case mm_32f_74_op:	/* c.cond.fmt */
410 			mips32_insn.fp0_format.opcode = cop1_op;
411 			mips32_insn.fp0_format.fmt =
412 				sdps_format[insn.mm_fp4_format.fmt];
413 			mips32_insn.fp0_format.ft = insn.mm_fp4_format.rt;
414 			mips32_insn.fp0_format.fs = insn.mm_fp4_format.fs;
415 			mips32_insn.fp0_format.fd = insn.mm_fp4_format.cc << 2;
416 			mips32_insn.fp0_format.func =
417 				insn.mm_fp4_format.cond | MM_MIPS32_COND_FC;
418 			break;
419 		default:
420 			return SIGILL;
421 		}
422 		break;
423 	default:
424 		return SIGILL;
425 	}
426 
427 	*insn_ptr = mips32_insn;
428 	return 0;
429 }
430 
431 /*
432  * Redundant with logic already in kernel/branch.c,
433  * embedded in compute_return_epc.  At some point,
434  * a single subroutine should be used across both
435  * modules.
436  */
437 static int isBranchInstr(struct pt_regs *regs, struct mm_decoded_insn dec_insn,
438 			 unsigned long *contpc)
439 {
440 	union mips_instruction insn = (union mips_instruction)dec_insn.insn;
441 	unsigned int fcr31;
442 	unsigned int bit = 0;
443 
444 	switch (insn.i_format.opcode) {
445 	case spec_op:
446 		switch (insn.r_format.func) {
447 		case jalr_op:
448 			regs->regs[insn.r_format.rd] =
449 				regs->cp0_epc + dec_insn.pc_inc +
450 				dec_insn.next_pc_inc;
451 			/* Fall through */
452 		case jr_op:
453 			/* For R6, JR already emulated in jalr_op */
454 			if (NO_R6EMU && insn.r_format.opcode == jr_op)
455 				break;
456 			*contpc = regs->regs[insn.r_format.rs];
457 			return 1;
458 		}
459 		break;
460 	case bcond_op:
461 		switch (insn.i_format.rt) {
462 		case bltzal_op:
463 		case bltzall_op:
464 			if (NO_R6EMU && (insn.i_format.rs ||
465 			    insn.i_format.rt == bltzall_op))
466 				break;
467 
468 			regs->regs[31] = regs->cp0_epc +
469 				dec_insn.pc_inc +
470 				dec_insn.next_pc_inc;
471 			/* Fall through */
472 		case bltzl_op:
473 			if (NO_R6EMU)
474 				break;
475 		case bltz_op:
476 			if ((long)regs->regs[insn.i_format.rs] < 0)
477 				*contpc = regs->cp0_epc +
478 					dec_insn.pc_inc +
479 					(insn.i_format.simmediate << 2);
480 			else
481 				*contpc = regs->cp0_epc +
482 					dec_insn.pc_inc +
483 					dec_insn.next_pc_inc;
484 			return 1;
485 		case bgezal_op:
486 		case bgezall_op:
487 			if (NO_R6EMU && (insn.i_format.rs ||
488 			    insn.i_format.rt == bgezall_op))
489 				break;
490 
491 			regs->regs[31] = regs->cp0_epc +
492 				dec_insn.pc_inc +
493 				dec_insn.next_pc_inc;
494 			/* Fall through */
495 		case bgezl_op:
496 			if (NO_R6EMU)
497 				break;
498 		case bgez_op:
499 			if ((long)regs->regs[insn.i_format.rs] >= 0)
500 				*contpc = regs->cp0_epc +
501 					dec_insn.pc_inc +
502 					(insn.i_format.simmediate << 2);
503 			else
504 				*contpc = regs->cp0_epc +
505 					dec_insn.pc_inc +
506 					dec_insn.next_pc_inc;
507 			return 1;
508 		}
509 		break;
510 	case jalx_op:
511 		set_isa16_mode(bit);
512 	case jal_op:
513 		regs->regs[31] = regs->cp0_epc +
514 			dec_insn.pc_inc +
515 			dec_insn.next_pc_inc;
516 		/* Fall through */
517 	case j_op:
518 		*contpc = regs->cp0_epc + dec_insn.pc_inc;
519 		*contpc >>= 28;
520 		*contpc <<= 28;
521 		*contpc |= (insn.j_format.target << 2);
522 		/* Set microMIPS mode bit: XOR for jalx. */
523 		*contpc ^= bit;
524 		return 1;
525 	case beql_op:
526 		if (NO_R6EMU)
527 			break;
528 	case beq_op:
529 		if (regs->regs[insn.i_format.rs] ==
530 		    regs->regs[insn.i_format.rt])
531 			*contpc = regs->cp0_epc +
532 				dec_insn.pc_inc +
533 				(insn.i_format.simmediate << 2);
534 		else
535 			*contpc = regs->cp0_epc +
536 				dec_insn.pc_inc +
537 				dec_insn.next_pc_inc;
538 		return 1;
539 	case bnel_op:
540 		if (NO_R6EMU)
541 			break;
542 	case bne_op:
543 		if (regs->regs[insn.i_format.rs] !=
544 		    regs->regs[insn.i_format.rt])
545 			*contpc = regs->cp0_epc +
546 				dec_insn.pc_inc +
547 				(insn.i_format.simmediate << 2);
548 		else
549 			*contpc = regs->cp0_epc +
550 				dec_insn.pc_inc +
551 				dec_insn.next_pc_inc;
552 		return 1;
553 	case blezl_op:
554 		if (NO_R6EMU)
555 			break;
556 	case blez_op:
557 
558 		/*
559 		 * Compact branches for R6 for the
560 		 * blez and blezl opcodes.
561 		 * BLEZ  | rs = 0 | rt != 0  == BLEZALC
562 		 * BLEZ  | rs = rt != 0      == BGEZALC
563 		 * BLEZ  | rs != 0 | rt != 0 == BGEUC
564 		 * BLEZL | rs = 0 | rt != 0  == BLEZC
565 		 * BLEZL | rs = rt != 0      == BGEZC
566 		 * BLEZL | rs != 0 | rt != 0 == BGEC
567 		 *
568 		 * For real BLEZ{,L}, rt is always 0.
569 		 */
570 		if (cpu_has_mips_r6 && insn.i_format.rt) {
571 			if ((insn.i_format.opcode == blez_op) &&
572 			    ((!insn.i_format.rs && insn.i_format.rt) ||
573 			     (insn.i_format.rs == insn.i_format.rt)))
574 				regs->regs[31] = regs->cp0_epc +
575 					dec_insn.pc_inc;
576 			*contpc = regs->cp0_epc + dec_insn.pc_inc +
577 				dec_insn.next_pc_inc;
578 
579 			return 1;
580 		}
581 		if ((long)regs->regs[insn.i_format.rs] <= 0)
582 			*contpc = regs->cp0_epc +
583 				dec_insn.pc_inc +
584 				(insn.i_format.simmediate << 2);
585 		else
586 			*contpc = regs->cp0_epc +
587 				dec_insn.pc_inc +
588 				dec_insn.next_pc_inc;
589 		return 1;
590 	case bgtzl_op:
591 		if (NO_R6EMU)
592 			break;
593 	case bgtz_op:
594 		/*
595 		 * Compact branches for R6 for the
596 		 * bgtz and bgtzl opcodes.
597 		 * BGTZ  | rs = 0 | rt != 0  == BGTZALC
598 		 * BGTZ  | rs = rt != 0      == BLTZALC
599 		 * BGTZ  | rs != 0 | rt != 0 == BLTUC
600 		 * BGTZL | rs = 0 | rt != 0  == BGTZC
601 		 * BGTZL | rs = rt != 0      == BLTZC
602 		 * BGTZL | rs != 0 | rt != 0 == BLTC
603 		 *
604 		 * *ZALC varint for BGTZ &&& rt != 0
605 		 * For real GTZ{,L}, rt is always 0.
606 		 */
607 		if (cpu_has_mips_r6 && insn.i_format.rt) {
608 			if ((insn.i_format.opcode == blez_op) &&
609 			    ((!insn.i_format.rs && insn.i_format.rt) ||
610 			     (insn.i_format.rs == insn.i_format.rt)))
611 				regs->regs[31] = regs->cp0_epc +
612 					dec_insn.pc_inc;
613 			*contpc = regs->cp0_epc + dec_insn.pc_inc +
614 				dec_insn.next_pc_inc;
615 
616 			return 1;
617 		}
618 
619 		if ((long)regs->regs[insn.i_format.rs] > 0)
620 			*contpc = regs->cp0_epc +
621 				dec_insn.pc_inc +
622 				(insn.i_format.simmediate << 2);
623 		else
624 			*contpc = regs->cp0_epc +
625 				dec_insn.pc_inc +
626 				dec_insn.next_pc_inc;
627 		return 1;
628 	case cbcond0_op:
629 	case cbcond1_op:
630 		if (!cpu_has_mips_r6)
631 			break;
632 		if (insn.i_format.rt && !insn.i_format.rs)
633 			regs->regs[31] = regs->cp0_epc + 4;
634 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
635 			dec_insn.next_pc_inc;
636 
637 		return 1;
638 #ifdef CONFIG_CPU_CAVIUM_OCTEON
639 	case lwc2_op: /* This is bbit0 on Octeon */
640 		if ((regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt)) == 0)
641 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
642 		else
643 			*contpc = regs->cp0_epc + 8;
644 		return 1;
645 	case ldc2_op: /* This is bbit032 on Octeon */
646 		if ((regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32))) == 0)
647 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
648 		else
649 			*contpc = regs->cp0_epc + 8;
650 		return 1;
651 	case swc2_op: /* This is bbit1 on Octeon */
652 		if (regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt))
653 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
654 		else
655 			*contpc = regs->cp0_epc + 8;
656 		return 1;
657 	case sdc2_op: /* This is bbit132 on Octeon */
658 		if (regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32)))
659 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
660 		else
661 			*contpc = regs->cp0_epc + 8;
662 		return 1;
663 #else
664 	case bc6_op:
665 		/*
666 		 * Only valid for MIPS R6 but we can still end up
667 		 * here from a broken userland so just tell emulator
668 		 * this is not a branch and let it break later on.
669 		 */
670 		if  (!cpu_has_mips_r6)
671 			break;
672 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
673 			dec_insn.next_pc_inc;
674 
675 		return 1;
676 	case balc6_op:
677 		if (!cpu_has_mips_r6)
678 			break;
679 		regs->regs[31] = regs->cp0_epc + 4;
680 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
681 			dec_insn.next_pc_inc;
682 
683 		return 1;
684 	case beqzcjic_op:
685 		if (!cpu_has_mips_r6)
686 			break;
687 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
688 			dec_insn.next_pc_inc;
689 
690 		return 1;
691 	case bnezcjialc_op:
692 		if (!cpu_has_mips_r6)
693 			break;
694 		if (!insn.i_format.rs)
695 			regs->regs[31] = regs->cp0_epc + 4;
696 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
697 			dec_insn.next_pc_inc;
698 
699 		return 1;
700 #endif
701 	case cop0_op:
702 	case cop1_op:
703 		/* Need to check for R6 bc1nez and bc1eqz branches */
704 		if (cpu_has_mips_r6 &&
705 		    ((insn.i_format.rs == bc1eqz_op) ||
706 		     (insn.i_format.rs == bc1nez_op))) {
707 			bit = 0;
708 			switch (insn.i_format.rs) {
709 			case bc1eqz_op:
710 				if (get_fpr32(&current->thread.fpu.fpr[insn.i_format.rt], 0) & 0x1)
711 				    bit = 1;
712 				break;
713 			case bc1nez_op:
714 				if (!(get_fpr32(&current->thread.fpu.fpr[insn.i_format.rt], 0) & 0x1))
715 				    bit = 1;
716 				break;
717 			}
718 			if (bit)
719 				*contpc = regs->cp0_epc +
720 					dec_insn.pc_inc +
721 					(insn.i_format.simmediate << 2);
722 			else
723 				*contpc = regs->cp0_epc +
724 					dec_insn.pc_inc +
725 					dec_insn.next_pc_inc;
726 
727 			return 1;
728 		}
729 		/* R2/R6 compatible cop1 instruction. Fall through */
730 	case cop2_op:
731 	case cop1x_op:
732 		if (insn.i_format.rs == bc_op) {
733 			preempt_disable();
734 			if (is_fpu_owner())
735 			        fcr31 = read_32bit_cp1_register(CP1_STATUS);
736 			else
737 				fcr31 = current->thread.fpu.fcr31;
738 			preempt_enable();
739 
740 			bit = (insn.i_format.rt >> 2);
741 			bit += (bit != 0);
742 			bit += 23;
743 			switch (insn.i_format.rt & 3) {
744 			case 0:	/* bc1f */
745 			case 2:	/* bc1fl */
746 				if (~fcr31 & (1 << bit))
747 					*contpc = regs->cp0_epc +
748 						dec_insn.pc_inc +
749 						(insn.i_format.simmediate << 2);
750 				else
751 					*contpc = regs->cp0_epc +
752 						dec_insn.pc_inc +
753 						dec_insn.next_pc_inc;
754 				return 1;
755 			case 1:	/* bc1t */
756 			case 3:	/* bc1tl */
757 				if (fcr31 & (1 << bit))
758 					*contpc = regs->cp0_epc +
759 						dec_insn.pc_inc +
760 						(insn.i_format.simmediate << 2);
761 				else
762 					*contpc = regs->cp0_epc +
763 						dec_insn.pc_inc +
764 						dec_insn.next_pc_inc;
765 				return 1;
766 			}
767 		}
768 		break;
769 	}
770 	return 0;
771 }
772 
773 /*
774  * In the Linux kernel, we support selection of FPR format on the
775  * basis of the Status.FR bit.	If an FPU is not present, the FR bit
776  * is hardwired to zero, which would imply a 32-bit FPU even for
777  * 64-bit CPUs so we rather look at TIF_32BIT_FPREGS.
778  * FPU emu is slow and bulky and optimizing this function offers fairly
779  * sizeable benefits so we try to be clever and make this function return
780  * a constant whenever possible, that is on 64-bit kernels without O32
781  * compatibility enabled and on 32-bit without 64-bit FPU support.
782  */
783 static inline int cop1_64bit(struct pt_regs *xcp)
784 {
785 	if (config_enabled(CONFIG_64BIT) && !config_enabled(CONFIG_MIPS32_O32))
786 		return 1;
787 	else if (config_enabled(CONFIG_32BIT) &&
788 		 !config_enabled(CONFIG_MIPS_O32_FP64_SUPPORT))
789 		return 0;
790 
791 	return !test_thread_flag(TIF_32BIT_FPREGS);
792 }
793 
794 static inline bool hybrid_fprs(void)
795 {
796 	return test_thread_flag(TIF_HYBRID_FPREGS);
797 }
798 
799 #define SIFROMREG(si, x)						\
800 do {									\
801 	if (cop1_64bit(xcp) && !hybrid_fprs())				\
802 		(si) = (int)get_fpr32(&ctx->fpr[x], 0);			\
803 	else								\
804 		(si) = (int)get_fpr32(&ctx->fpr[(x) & ~1], (x) & 1);	\
805 } while (0)
806 
807 #define SITOREG(si, x)							\
808 do {									\
809 	if (cop1_64bit(xcp) && !hybrid_fprs()) {			\
810 		unsigned i;						\
811 		set_fpr32(&ctx->fpr[x], 0, si);				\
812 		for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val32); i++)	\
813 			set_fpr32(&ctx->fpr[x], i, 0);			\
814 	} else {							\
815 		set_fpr32(&ctx->fpr[(x) & ~1], (x) & 1, si);		\
816 	}								\
817 } while (0)
818 
819 #define SIFROMHREG(si, x)	((si) = (int)get_fpr32(&ctx->fpr[x], 1))
820 
821 #define SITOHREG(si, x)							\
822 do {									\
823 	unsigned i;							\
824 	set_fpr32(&ctx->fpr[x], 1, si);					\
825 	for (i = 2; i < ARRAY_SIZE(ctx->fpr[x].val32); i++)		\
826 		set_fpr32(&ctx->fpr[x], i, 0);				\
827 } while (0)
828 
829 #define DIFROMREG(di, x)						\
830 	((di) = get_fpr64(&ctx->fpr[(x) & ~(cop1_64bit(xcp) == 0)], 0))
831 
832 #define DITOREG(di, x)							\
833 do {									\
834 	unsigned fpr, i;						\
835 	fpr = (x) & ~(cop1_64bit(xcp) == 0);				\
836 	set_fpr64(&ctx->fpr[fpr], 0, di);				\
837 	for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val64); i++)		\
838 		set_fpr64(&ctx->fpr[fpr], i, 0);			\
839 } while (0)
840 
841 #define SPFROMREG(sp, x) SIFROMREG((sp).bits, x)
842 #define SPTOREG(sp, x)	SITOREG((sp).bits, x)
843 #define DPFROMREG(dp, x)	DIFROMREG((dp).bits, x)
844 #define DPTOREG(dp, x)	DITOREG((dp).bits, x)
845 
846 /*
847  * Emulate a CFC1 instruction.
848  */
849 static inline void cop1_cfc(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
850 			    mips_instruction ir)
851 {
852 	u32 fcr31 = ctx->fcr31;
853 	u32 value = 0;
854 
855 	switch (MIPSInst_RD(ir)) {
856 	case FPCREG_CSR:
857 		value = fcr31;
858 		pr_debug("%p gpr[%d]<-csr=%08x\n",
859 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
860 		break;
861 
862 	case FPCREG_FENR:
863 		if (!cpu_has_mips_r)
864 			break;
865 		value = (fcr31 >> (FPU_CSR_FS_S - MIPS_FENR_FS_S)) &
866 			MIPS_FENR_FS;
867 		value |= fcr31 & (FPU_CSR_ALL_E | FPU_CSR_RM);
868 		pr_debug("%p gpr[%d]<-enr=%08x\n",
869 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
870 		break;
871 
872 	case FPCREG_FEXR:
873 		if (!cpu_has_mips_r)
874 			break;
875 		value = fcr31 & (FPU_CSR_ALL_X | FPU_CSR_ALL_S);
876 		pr_debug("%p gpr[%d]<-exr=%08x\n",
877 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
878 		break;
879 
880 	case FPCREG_FCCR:
881 		if (!cpu_has_mips_r)
882 			break;
883 		value = (fcr31 >> (FPU_CSR_COND_S - MIPS_FCCR_COND0_S)) &
884 			MIPS_FCCR_COND0;
885 		value |= (fcr31 >> (FPU_CSR_COND1_S - MIPS_FCCR_COND1_S)) &
886 			 (MIPS_FCCR_CONDX & ~MIPS_FCCR_COND0);
887 		pr_debug("%p gpr[%d]<-ccr=%08x\n",
888 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
889 		break;
890 
891 	case FPCREG_RID:
892 		value = current_cpu_data.fpu_id;
893 		break;
894 
895 	default:
896 		break;
897 	}
898 
899 	if (MIPSInst_RT(ir))
900 		xcp->regs[MIPSInst_RT(ir)] = value;
901 }
902 
903 /*
904  * Emulate a CTC1 instruction.
905  */
906 static inline void cop1_ctc(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
907 			    mips_instruction ir)
908 {
909 	u32 fcr31 = ctx->fcr31;
910 	u32 value;
911 	u32 mask;
912 
913 	if (MIPSInst_RT(ir) == 0)
914 		value = 0;
915 	else
916 		value = xcp->regs[MIPSInst_RT(ir)];
917 
918 	switch (MIPSInst_RD(ir)) {
919 	case FPCREG_CSR:
920 		pr_debug("%p gpr[%d]->csr=%08x\n",
921 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
922 
923 		/* Preserve read-only bits.  */
924 		mask = current_cpu_data.fpu_msk31;
925 		fcr31 = (value & ~mask) | (fcr31 & mask);
926 		break;
927 
928 	case FPCREG_FENR:
929 		if (!cpu_has_mips_r)
930 			break;
931 		pr_debug("%p gpr[%d]->enr=%08x\n",
932 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
933 		fcr31 &= ~(FPU_CSR_FS | FPU_CSR_ALL_E | FPU_CSR_RM);
934 		fcr31 |= (value << (FPU_CSR_FS_S - MIPS_FENR_FS_S)) &
935 			 FPU_CSR_FS;
936 		fcr31 |= value & (FPU_CSR_ALL_E | FPU_CSR_RM);
937 		break;
938 
939 	case FPCREG_FEXR:
940 		if (!cpu_has_mips_r)
941 			break;
942 		pr_debug("%p gpr[%d]->exr=%08x\n",
943 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
944 		fcr31 &= ~(FPU_CSR_ALL_X | FPU_CSR_ALL_S);
945 		fcr31 |= value & (FPU_CSR_ALL_X | FPU_CSR_ALL_S);
946 		break;
947 
948 	case FPCREG_FCCR:
949 		if (!cpu_has_mips_r)
950 			break;
951 		pr_debug("%p gpr[%d]->ccr=%08x\n",
952 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
953 		fcr31 &= ~(FPU_CSR_CONDX | FPU_CSR_COND);
954 		fcr31 |= (value << (FPU_CSR_COND_S - MIPS_FCCR_COND0_S)) &
955 			 FPU_CSR_COND;
956 		fcr31 |= (value << (FPU_CSR_COND1_S - MIPS_FCCR_COND1_S)) &
957 			 FPU_CSR_CONDX;
958 		break;
959 
960 	default:
961 		break;
962 	}
963 
964 	ctx->fcr31 = fcr31;
965 }
966 
967 /*
968  * Emulate the single floating point instruction pointed at by EPC.
969  * Two instructions if the instruction is in a branch delay slot.
970  */
971 
972 static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
973 		struct mm_decoded_insn dec_insn, void *__user *fault_addr)
974 {
975 	unsigned long contpc = xcp->cp0_epc + dec_insn.pc_inc;
976 	unsigned int cond, cbit;
977 	mips_instruction ir;
978 	int likely, pc_inc;
979 	u32 __user *wva;
980 	u64 __user *dva;
981 	u32 wval;
982 	u64 dval;
983 	int sig;
984 
985 	/*
986 	 * These are giving gcc a gentle hint about what to expect in
987 	 * dec_inst in order to do better optimization.
988 	 */
989 	if (!cpu_has_mmips && dec_insn.micro_mips_mode)
990 		unreachable();
991 
992 	/* XXX NEC Vr54xx bug workaround */
993 	if (delay_slot(xcp)) {
994 		if (dec_insn.micro_mips_mode) {
995 			if (!mm_isBranchInstr(xcp, dec_insn, &contpc))
996 				clear_delay_slot(xcp);
997 		} else {
998 			if (!isBranchInstr(xcp, dec_insn, &contpc))
999 				clear_delay_slot(xcp);
1000 		}
1001 	}
1002 
1003 	if (delay_slot(xcp)) {
1004 		/*
1005 		 * The instruction to be emulated is in a branch delay slot
1006 		 * which means that we have to	emulate the branch instruction
1007 		 * BEFORE we do the cop1 instruction.
1008 		 *
1009 		 * This branch could be a COP1 branch, but in that case we
1010 		 * would have had a trap for that instruction, and would not
1011 		 * come through this route.
1012 		 *
1013 		 * Linux MIPS branch emulator operates on context, updating the
1014 		 * cp0_epc.
1015 		 */
1016 		ir = dec_insn.next_insn;  /* process delay slot instr */
1017 		pc_inc = dec_insn.next_pc_inc;
1018 	} else {
1019 		ir = dec_insn.insn;       /* process current instr */
1020 		pc_inc = dec_insn.pc_inc;
1021 	}
1022 
1023 	/*
1024 	 * Since microMIPS FPU instructios are a subset of MIPS32 FPU
1025 	 * instructions, we want to convert microMIPS FPU instructions
1026 	 * into MIPS32 instructions so that we could reuse all of the
1027 	 * FPU emulation code.
1028 	 *
1029 	 * NOTE: We cannot do this for branch instructions since they
1030 	 *       are not a subset. Example: Cannot emulate a 16-bit
1031 	 *       aligned target address with a MIPS32 instruction.
1032 	 */
1033 	if (dec_insn.micro_mips_mode) {
1034 		/*
1035 		 * If next instruction is a 16-bit instruction, then it
1036 		 * it cannot be a FPU instruction. This could happen
1037 		 * since we can be called for non-FPU instructions.
1038 		 */
1039 		if ((pc_inc == 2) ||
1040 			(microMIPS32_to_MIPS32((union mips_instruction *)&ir)
1041 			 == SIGILL))
1042 			return SIGILL;
1043 	}
1044 
1045 emul:
1046 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, xcp, 0);
1047 	MIPS_FPU_EMU_INC_STATS(emulated);
1048 	switch (MIPSInst_OPCODE(ir)) {
1049 	case ldc1_op:
1050 		dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1051 				     MIPSInst_SIMM(ir));
1052 		MIPS_FPU_EMU_INC_STATS(loads);
1053 
1054 		if (!access_ok(VERIFY_READ, dva, sizeof(u64))) {
1055 			MIPS_FPU_EMU_INC_STATS(errors);
1056 			*fault_addr = dva;
1057 			return SIGBUS;
1058 		}
1059 		if (__get_user(dval, dva)) {
1060 			MIPS_FPU_EMU_INC_STATS(errors);
1061 			*fault_addr = dva;
1062 			return SIGSEGV;
1063 		}
1064 		DITOREG(dval, MIPSInst_RT(ir));
1065 		break;
1066 
1067 	case sdc1_op:
1068 		dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1069 				      MIPSInst_SIMM(ir));
1070 		MIPS_FPU_EMU_INC_STATS(stores);
1071 		DIFROMREG(dval, MIPSInst_RT(ir));
1072 		if (!access_ok(VERIFY_WRITE, dva, sizeof(u64))) {
1073 			MIPS_FPU_EMU_INC_STATS(errors);
1074 			*fault_addr = dva;
1075 			return SIGBUS;
1076 		}
1077 		if (__put_user(dval, dva)) {
1078 			MIPS_FPU_EMU_INC_STATS(errors);
1079 			*fault_addr = dva;
1080 			return SIGSEGV;
1081 		}
1082 		break;
1083 
1084 	case lwc1_op:
1085 		wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1086 				      MIPSInst_SIMM(ir));
1087 		MIPS_FPU_EMU_INC_STATS(loads);
1088 		if (!access_ok(VERIFY_READ, wva, sizeof(u32))) {
1089 			MIPS_FPU_EMU_INC_STATS(errors);
1090 			*fault_addr = wva;
1091 			return SIGBUS;
1092 		}
1093 		if (__get_user(wval, wva)) {
1094 			MIPS_FPU_EMU_INC_STATS(errors);
1095 			*fault_addr = wva;
1096 			return SIGSEGV;
1097 		}
1098 		SITOREG(wval, MIPSInst_RT(ir));
1099 		break;
1100 
1101 	case swc1_op:
1102 		wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1103 				      MIPSInst_SIMM(ir));
1104 		MIPS_FPU_EMU_INC_STATS(stores);
1105 		SIFROMREG(wval, MIPSInst_RT(ir));
1106 		if (!access_ok(VERIFY_WRITE, wva, sizeof(u32))) {
1107 			MIPS_FPU_EMU_INC_STATS(errors);
1108 			*fault_addr = wva;
1109 			return SIGBUS;
1110 		}
1111 		if (__put_user(wval, wva)) {
1112 			MIPS_FPU_EMU_INC_STATS(errors);
1113 			*fault_addr = wva;
1114 			return SIGSEGV;
1115 		}
1116 		break;
1117 
1118 	case cop1_op:
1119 		switch (MIPSInst_RS(ir)) {
1120 		case dmfc_op:
1121 			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1122 				return SIGILL;
1123 
1124 			/* copregister fs -> gpr[rt] */
1125 			if (MIPSInst_RT(ir) != 0) {
1126 				DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
1127 					MIPSInst_RD(ir));
1128 			}
1129 			break;
1130 
1131 		case dmtc_op:
1132 			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1133 				return SIGILL;
1134 
1135 			/* copregister fs <- rt */
1136 			DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1137 			break;
1138 
1139 		case mfhc_op:
1140 			if (!cpu_has_mips_r2)
1141 				goto sigill;
1142 
1143 			/* copregister rd -> gpr[rt] */
1144 			if (MIPSInst_RT(ir) != 0) {
1145 				SIFROMHREG(xcp->regs[MIPSInst_RT(ir)],
1146 					MIPSInst_RD(ir));
1147 			}
1148 			break;
1149 
1150 		case mthc_op:
1151 			if (!cpu_has_mips_r2)
1152 				goto sigill;
1153 
1154 			/* copregister rd <- gpr[rt] */
1155 			SITOHREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1156 			break;
1157 
1158 		case mfc_op:
1159 			/* copregister rd -> gpr[rt] */
1160 			if (MIPSInst_RT(ir) != 0) {
1161 				SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
1162 					MIPSInst_RD(ir));
1163 			}
1164 			break;
1165 
1166 		case mtc_op:
1167 			/* copregister rd <- rt */
1168 			SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1169 			break;
1170 
1171 		case cfc_op:
1172 			/* cop control register rd -> gpr[rt] */
1173 			cop1_cfc(xcp, ctx, ir);
1174 			break;
1175 
1176 		case ctc_op:
1177 			/* copregister rd <- rt */
1178 			cop1_ctc(xcp, ctx, ir);
1179 			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1180 				return SIGFPE;
1181 			}
1182 			break;
1183 
1184 		case bc_op:
1185 			if (delay_slot(xcp))
1186 				return SIGILL;
1187 
1188 			if (cpu_has_mips_4_5_r)
1189 				cbit = fpucondbit[MIPSInst_RT(ir) >> 2];
1190 			else
1191 				cbit = FPU_CSR_COND;
1192 			cond = ctx->fcr31 & cbit;
1193 
1194 			likely = 0;
1195 			switch (MIPSInst_RT(ir) & 3) {
1196 			case bcfl_op:
1197 				if (cpu_has_mips_2_3_4_5_r)
1198 					likely = 1;
1199 				/* Fall through */
1200 			case bcf_op:
1201 				cond = !cond;
1202 				break;
1203 			case bctl_op:
1204 				if (cpu_has_mips_2_3_4_5_r)
1205 					likely = 1;
1206 				/* Fall through */
1207 			case bct_op:
1208 				break;
1209 			}
1210 
1211 			set_delay_slot(xcp);
1212 			if (cond) {
1213 				/*
1214 				 * Branch taken: emulate dslot instruction
1215 				 */
1216 				unsigned long bcpc;
1217 
1218 				/*
1219 				 * Remember EPC at the branch to point back
1220 				 * at so that any delay-slot instruction
1221 				 * signal is not silently ignored.
1222 				 */
1223 				bcpc = xcp->cp0_epc;
1224 				xcp->cp0_epc += dec_insn.pc_inc;
1225 
1226 				contpc = MIPSInst_SIMM(ir);
1227 				ir = dec_insn.next_insn;
1228 				if (dec_insn.micro_mips_mode) {
1229 					contpc = (xcp->cp0_epc + (contpc << 1));
1230 
1231 					/* If 16-bit instruction, not FPU. */
1232 					if ((dec_insn.next_pc_inc == 2) ||
1233 						(microMIPS32_to_MIPS32((union mips_instruction *)&ir) == SIGILL)) {
1234 
1235 						/*
1236 						 * Since this instruction will
1237 						 * be put on the stack with
1238 						 * 32-bit words, get around
1239 						 * this problem by putting a
1240 						 * NOP16 as the second one.
1241 						 */
1242 						if (dec_insn.next_pc_inc == 2)
1243 							ir = (ir & (~0xffff)) | MM_NOP16;
1244 
1245 						/*
1246 						 * Single step the non-CP1
1247 						 * instruction in the dslot.
1248 						 */
1249 						sig = mips_dsemul(xcp, ir,
1250 								  contpc);
1251 						if (sig)
1252 							xcp->cp0_epc = bcpc;
1253 						/*
1254 						 * SIGILL forces out of
1255 						 * the emulation loop.
1256 						 */
1257 						return sig ? sig : SIGILL;
1258 					}
1259 				} else
1260 					contpc = (xcp->cp0_epc + (contpc << 2));
1261 
1262 				switch (MIPSInst_OPCODE(ir)) {
1263 				case lwc1_op:
1264 				case swc1_op:
1265 					goto emul;
1266 
1267 				case ldc1_op:
1268 				case sdc1_op:
1269 					if (cpu_has_mips_2_3_4_5_r)
1270 						goto emul;
1271 
1272 					goto bc_sigill;
1273 
1274 				case cop1_op:
1275 					goto emul;
1276 
1277 				case cop1x_op:
1278 					if (cpu_has_mips_4_5_64_r2_r6)
1279 						/* its one of ours */
1280 						goto emul;
1281 
1282 					goto bc_sigill;
1283 
1284 				case spec_op:
1285 					switch (MIPSInst_FUNC(ir)) {
1286 					case movc_op:
1287 						if (cpu_has_mips_4_5_r)
1288 							goto emul;
1289 
1290 						goto bc_sigill;
1291 					}
1292 					break;
1293 
1294 				bc_sigill:
1295 					xcp->cp0_epc = bcpc;
1296 					return SIGILL;
1297 				}
1298 
1299 				/*
1300 				 * Single step the non-cp1
1301 				 * instruction in the dslot
1302 				 */
1303 				sig = mips_dsemul(xcp, ir, contpc);
1304 				if (sig)
1305 					xcp->cp0_epc = bcpc;
1306 				/* SIGILL forces out of the emulation loop.  */
1307 				return sig ? sig : SIGILL;
1308 			} else if (likely) {	/* branch not taken */
1309 				/*
1310 				 * branch likely nullifies
1311 				 * dslot if not taken
1312 				 */
1313 				xcp->cp0_epc += dec_insn.pc_inc;
1314 				contpc += dec_insn.pc_inc;
1315 				/*
1316 				 * else continue & execute
1317 				 * dslot as normal insn
1318 				 */
1319 			}
1320 			break;
1321 
1322 		default:
1323 			if (!(MIPSInst_RS(ir) & 0x10))
1324 				return SIGILL;
1325 
1326 			/* a real fpu computation instruction */
1327 			if ((sig = fpu_emu(xcp, ctx, ir)))
1328 				return sig;
1329 		}
1330 		break;
1331 
1332 	case cop1x_op:
1333 		if (!cpu_has_mips_4_5_64_r2_r6)
1334 			return SIGILL;
1335 
1336 		sig = fpux_emu(xcp, ctx, ir, fault_addr);
1337 		if (sig)
1338 			return sig;
1339 		break;
1340 
1341 	case spec_op:
1342 		if (!cpu_has_mips_4_5_r)
1343 			return SIGILL;
1344 
1345 		if (MIPSInst_FUNC(ir) != movc_op)
1346 			return SIGILL;
1347 		cond = fpucondbit[MIPSInst_RT(ir) >> 2];
1348 		if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
1349 			xcp->regs[MIPSInst_RD(ir)] =
1350 				xcp->regs[MIPSInst_RS(ir)];
1351 		break;
1352 	default:
1353 sigill:
1354 		return SIGILL;
1355 	}
1356 
1357 	/* we did it !! */
1358 	xcp->cp0_epc = contpc;
1359 	clear_delay_slot(xcp);
1360 
1361 	return 0;
1362 }
1363 
1364 /*
1365  * Conversion table from MIPS compare ops 48-63
1366  * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
1367  */
1368 static const unsigned char cmptab[8] = {
1369 	0,			/* cmp_0 (sig) cmp_sf */
1370 	IEEE754_CUN,		/* cmp_un (sig) cmp_ngle */
1371 	IEEE754_CEQ,		/* cmp_eq (sig) cmp_seq */
1372 	IEEE754_CEQ | IEEE754_CUN,	/* cmp_ueq (sig) cmp_ngl  */
1373 	IEEE754_CLT,		/* cmp_olt (sig) cmp_lt */
1374 	IEEE754_CLT | IEEE754_CUN,	/* cmp_ult (sig) cmp_nge */
1375 	IEEE754_CLT | IEEE754_CEQ,	/* cmp_ole (sig) cmp_le */
1376 	IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN,	/* cmp_ule (sig) cmp_ngt */
1377 };
1378 
1379 
1380 /*
1381  * Additional MIPS4 instructions
1382  */
1383 
1384 #define DEF3OP(name, p, f1, f2, f3)					\
1385 static union ieee754##p fpemu_##p##_##name(union ieee754##p r,		\
1386 	union ieee754##p s, union ieee754##p t)				\
1387 {									\
1388 	struct _ieee754_csr ieee754_csr_save;				\
1389 	s = f1(s, t);							\
1390 	ieee754_csr_save = ieee754_csr;					\
1391 	s = f2(s, r);							\
1392 	ieee754_csr_save.cx |= ieee754_csr.cx;				\
1393 	ieee754_csr_save.sx |= ieee754_csr.sx;				\
1394 	s = f3(s);							\
1395 	ieee754_csr.cx |= ieee754_csr_save.cx;				\
1396 	ieee754_csr.sx |= ieee754_csr_save.sx;				\
1397 	return s;							\
1398 }
1399 
1400 static union ieee754dp fpemu_dp_recip(union ieee754dp d)
1401 {
1402 	return ieee754dp_div(ieee754dp_one(0), d);
1403 }
1404 
1405 static union ieee754dp fpemu_dp_rsqrt(union ieee754dp d)
1406 {
1407 	return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d));
1408 }
1409 
1410 static union ieee754sp fpemu_sp_recip(union ieee754sp s)
1411 {
1412 	return ieee754sp_div(ieee754sp_one(0), s);
1413 }
1414 
1415 static union ieee754sp fpemu_sp_rsqrt(union ieee754sp s)
1416 {
1417 	return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s));
1418 }
1419 
1420 DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add, );
1421 DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub, );
1422 DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg);
1423 DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg);
1424 DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add, );
1425 DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub, );
1426 DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg);
1427 DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg);
1428 
1429 static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1430 	mips_instruction ir, void *__user *fault_addr)
1431 {
1432 	unsigned rcsr = 0;	/* resulting csr */
1433 
1434 	MIPS_FPU_EMU_INC_STATS(cp1xops);
1435 
1436 	switch (MIPSInst_FMA_FFMT(ir)) {
1437 	case s_fmt:{		/* 0 */
1438 
1439 		union ieee754sp(*handler) (union ieee754sp, union ieee754sp, union ieee754sp);
1440 		union ieee754sp fd, fr, fs, ft;
1441 		u32 __user *va;
1442 		u32 val;
1443 
1444 		switch (MIPSInst_FUNC(ir)) {
1445 		case lwxc1_op:
1446 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1447 				xcp->regs[MIPSInst_FT(ir)]);
1448 
1449 			MIPS_FPU_EMU_INC_STATS(loads);
1450 			if (!access_ok(VERIFY_READ, va, sizeof(u32))) {
1451 				MIPS_FPU_EMU_INC_STATS(errors);
1452 				*fault_addr = va;
1453 				return SIGBUS;
1454 			}
1455 			if (__get_user(val, va)) {
1456 				MIPS_FPU_EMU_INC_STATS(errors);
1457 				*fault_addr = va;
1458 				return SIGSEGV;
1459 			}
1460 			SITOREG(val, MIPSInst_FD(ir));
1461 			break;
1462 
1463 		case swxc1_op:
1464 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1465 				xcp->regs[MIPSInst_FT(ir)]);
1466 
1467 			MIPS_FPU_EMU_INC_STATS(stores);
1468 
1469 			SIFROMREG(val, MIPSInst_FS(ir));
1470 			if (!access_ok(VERIFY_WRITE, va, sizeof(u32))) {
1471 				MIPS_FPU_EMU_INC_STATS(errors);
1472 				*fault_addr = va;
1473 				return SIGBUS;
1474 			}
1475 			if (put_user(val, va)) {
1476 				MIPS_FPU_EMU_INC_STATS(errors);
1477 				*fault_addr = va;
1478 				return SIGSEGV;
1479 			}
1480 			break;
1481 
1482 		case madd_s_op:
1483 			handler = fpemu_sp_madd;
1484 			goto scoptop;
1485 		case msub_s_op:
1486 			handler = fpemu_sp_msub;
1487 			goto scoptop;
1488 		case nmadd_s_op:
1489 			handler = fpemu_sp_nmadd;
1490 			goto scoptop;
1491 		case nmsub_s_op:
1492 			handler = fpemu_sp_nmsub;
1493 			goto scoptop;
1494 
1495 		      scoptop:
1496 			SPFROMREG(fr, MIPSInst_FR(ir));
1497 			SPFROMREG(fs, MIPSInst_FS(ir));
1498 			SPFROMREG(ft, MIPSInst_FT(ir));
1499 			fd = (*handler) (fr, fs, ft);
1500 			SPTOREG(fd, MIPSInst_FD(ir));
1501 
1502 		      copcsr:
1503 			if (ieee754_cxtest(IEEE754_INEXACT)) {
1504 				MIPS_FPU_EMU_INC_STATS(ieee754_inexact);
1505 				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1506 			}
1507 			if (ieee754_cxtest(IEEE754_UNDERFLOW)) {
1508 				MIPS_FPU_EMU_INC_STATS(ieee754_underflow);
1509 				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1510 			}
1511 			if (ieee754_cxtest(IEEE754_OVERFLOW)) {
1512 				MIPS_FPU_EMU_INC_STATS(ieee754_overflow);
1513 				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1514 			}
1515 			if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) {
1516 				MIPS_FPU_EMU_INC_STATS(ieee754_invalidop);
1517 				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1518 			}
1519 
1520 			ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1521 			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1522 				/*printk ("SIGFPE: FPU csr = %08x\n",
1523 				   ctx->fcr31); */
1524 				return SIGFPE;
1525 			}
1526 
1527 			break;
1528 
1529 		default:
1530 			return SIGILL;
1531 		}
1532 		break;
1533 	}
1534 
1535 	case d_fmt:{		/* 1 */
1536 		union ieee754dp(*handler) (union ieee754dp, union ieee754dp, union ieee754dp);
1537 		union ieee754dp fd, fr, fs, ft;
1538 		u64 __user *va;
1539 		u64 val;
1540 
1541 		switch (MIPSInst_FUNC(ir)) {
1542 		case ldxc1_op:
1543 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1544 				xcp->regs[MIPSInst_FT(ir)]);
1545 
1546 			MIPS_FPU_EMU_INC_STATS(loads);
1547 			if (!access_ok(VERIFY_READ, va, sizeof(u64))) {
1548 				MIPS_FPU_EMU_INC_STATS(errors);
1549 				*fault_addr = va;
1550 				return SIGBUS;
1551 			}
1552 			if (__get_user(val, va)) {
1553 				MIPS_FPU_EMU_INC_STATS(errors);
1554 				*fault_addr = va;
1555 				return SIGSEGV;
1556 			}
1557 			DITOREG(val, MIPSInst_FD(ir));
1558 			break;
1559 
1560 		case sdxc1_op:
1561 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1562 				xcp->regs[MIPSInst_FT(ir)]);
1563 
1564 			MIPS_FPU_EMU_INC_STATS(stores);
1565 			DIFROMREG(val, MIPSInst_FS(ir));
1566 			if (!access_ok(VERIFY_WRITE, va, sizeof(u64))) {
1567 				MIPS_FPU_EMU_INC_STATS(errors);
1568 				*fault_addr = va;
1569 				return SIGBUS;
1570 			}
1571 			if (__put_user(val, va)) {
1572 				MIPS_FPU_EMU_INC_STATS(errors);
1573 				*fault_addr = va;
1574 				return SIGSEGV;
1575 			}
1576 			break;
1577 
1578 		case madd_d_op:
1579 			handler = fpemu_dp_madd;
1580 			goto dcoptop;
1581 		case msub_d_op:
1582 			handler = fpemu_dp_msub;
1583 			goto dcoptop;
1584 		case nmadd_d_op:
1585 			handler = fpemu_dp_nmadd;
1586 			goto dcoptop;
1587 		case nmsub_d_op:
1588 			handler = fpemu_dp_nmsub;
1589 			goto dcoptop;
1590 
1591 		      dcoptop:
1592 			DPFROMREG(fr, MIPSInst_FR(ir));
1593 			DPFROMREG(fs, MIPSInst_FS(ir));
1594 			DPFROMREG(ft, MIPSInst_FT(ir));
1595 			fd = (*handler) (fr, fs, ft);
1596 			DPTOREG(fd, MIPSInst_FD(ir));
1597 			goto copcsr;
1598 
1599 		default:
1600 			return SIGILL;
1601 		}
1602 		break;
1603 	}
1604 
1605 	case 0x3:
1606 		if (MIPSInst_FUNC(ir) != pfetch_op)
1607 			return SIGILL;
1608 
1609 		/* ignore prefx operation */
1610 		break;
1611 
1612 	default:
1613 		return SIGILL;
1614 	}
1615 
1616 	return 0;
1617 }
1618 
1619 
1620 
1621 /*
1622  * Emulate a single COP1 arithmetic instruction.
1623  */
1624 static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1625 	mips_instruction ir)
1626 {
1627 	int rfmt;		/* resulting format */
1628 	unsigned rcsr = 0;	/* resulting csr */
1629 	unsigned int oldrm;
1630 	unsigned int cbit;
1631 	unsigned cond;
1632 	union {
1633 		union ieee754dp d;
1634 		union ieee754sp s;
1635 		int w;
1636 		s64 l;
1637 	} rv;			/* resulting value */
1638 	u64 bits;
1639 
1640 	MIPS_FPU_EMU_INC_STATS(cp1ops);
1641 	switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) {
1642 	case s_fmt: {		/* 0 */
1643 		union {
1644 			union ieee754sp(*b) (union ieee754sp, union ieee754sp);
1645 			union ieee754sp(*u) (union ieee754sp);
1646 		} handler;
1647 		union ieee754sp fs, ft;
1648 
1649 		switch (MIPSInst_FUNC(ir)) {
1650 			/* binary ops */
1651 		case fadd_op:
1652 			handler.b = ieee754sp_add;
1653 			goto scopbop;
1654 		case fsub_op:
1655 			handler.b = ieee754sp_sub;
1656 			goto scopbop;
1657 		case fmul_op:
1658 			handler.b = ieee754sp_mul;
1659 			goto scopbop;
1660 		case fdiv_op:
1661 			handler.b = ieee754sp_div;
1662 			goto scopbop;
1663 
1664 			/* unary  ops */
1665 		case fsqrt_op:
1666 			if (!cpu_has_mips_2_3_4_5_r)
1667 				return SIGILL;
1668 
1669 			handler.u = ieee754sp_sqrt;
1670 			goto scopuop;
1671 
1672 		/*
1673 		 * Note that on some MIPS IV implementations such as the
1674 		 * R5000 and R8000 the FSQRT and FRECIP instructions do not
1675 		 * achieve full IEEE-754 accuracy - however this emulator does.
1676 		 */
1677 		case frsqrt_op:
1678 			if (!cpu_has_mips_4_5_64_r2_r6)
1679 				return SIGILL;
1680 
1681 			handler.u = fpemu_sp_rsqrt;
1682 			goto scopuop;
1683 
1684 		case frecip_op:
1685 			if (!cpu_has_mips_4_5_64_r2_r6)
1686 				return SIGILL;
1687 
1688 			handler.u = fpemu_sp_recip;
1689 			goto scopuop;
1690 
1691 		case fmovc_op:
1692 			if (!cpu_has_mips_4_5_r)
1693 				return SIGILL;
1694 
1695 			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1696 			if (((ctx->fcr31 & cond) != 0) !=
1697 				((MIPSInst_FT(ir) & 1) != 0))
1698 				return 0;
1699 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1700 			break;
1701 
1702 		case fmovz_op:
1703 			if (!cpu_has_mips_4_5_r)
1704 				return SIGILL;
1705 
1706 			if (xcp->regs[MIPSInst_FT(ir)] != 0)
1707 				return 0;
1708 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1709 			break;
1710 
1711 		case fmovn_op:
1712 			if (!cpu_has_mips_4_5_r)
1713 				return SIGILL;
1714 
1715 			if (xcp->regs[MIPSInst_FT(ir)] == 0)
1716 				return 0;
1717 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1718 			break;
1719 
1720 		case fabs_op:
1721 			handler.u = ieee754sp_abs;
1722 			goto scopuop;
1723 
1724 		case fneg_op:
1725 			handler.u = ieee754sp_neg;
1726 			goto scopuop;
1727 
1728 		case fmov_op:
1729 			/* an easy one */
1730 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1731 			goto copcsr;
1732 
1733 			/* binary op on handler */
1734 scopbop:
1735 			SPFROMREG(fs, MIPSInst_FS(ir));
1736 			SPFROMREG(ft, MIPSInst_FT(ir));
1737 
1738 			rv.s = (*handler.b) (fs, ft);
1739 			goto copcsr;
1740 scopuop:
1741 			SPFROMREG(fs, MIPSInst_FS(ir));
1742 			rv.s = (*handler.u) (fs);
1743 			goto copcsr;
1744 copcsr:
1745 			if (ieee754_cxtest(IEEE754_INEXACT)) {
1746 				MIPS_FPU_EMU_INC_STATS(ieee754_inexact);
1747 				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1748 			}
1749 			if (ieee754_cxtest(IEEE754_UNDERFLOW)) {
1750 				MIPS_FPU_EMU_INC_STATS(ieee754_underflow);
1751 				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1752 			}
1753 			if (ieee754_cxtest(IEEE754_OVERFLOW)) {
1754 				MIPS_FPU_EMU_INC_STATS(ieee754_overflow);
1755 				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1756 			}
1757 			if (ieee754_cxtest(IEEE754_ZERO_DIVIDE)) {
1758 				MIPS_FPU_EMU_INC_STATS(ieee754_zerodiv);
1759 				rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S;
1760 			}
1761 			if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) {
1762 				MIPS_FPU_EMU_INC_STATS(ieee754_invalidop);
1763 				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1764 			}
1765 			break;
1766 
1767 			/* unary conv ops */
1768 		case fcvts_op:
1769 			return SIGILL;	/* not defined */
1770 
1771 		case fcvtd_op:
1772 			SPFROMREG(fs, MIPSInst_FS(ir));
1773 			rv.d = ieee754dp_fsp(fs);
1774 			rfmt = d_fmt;
1775 			goto copcsr;
1776 
1777 		case fcvtw_op:
1778 			SPFROMREG(fs, MIPSInst_FS(ir));
1779 			rv.w = ieee754sp_tint(fs);
1780 			rfmt = w_fmt;
1781 			goto copcsr;
1782 
1783 		case fround_op:
1784 		case ftrunc_op:
1785 		case fceil_op:
1786 		case ffloor_op:
1787 			if (!cpu_has_mips_2_3_4_5_r)
1788 				return SIGILL;
1789 
1790 			oldrm = ieee754_csr.rm;
1791 			SPFROMREG(fs, MIPSInst_FS(ir));
1792 			ieee754_csr.rm = MIPSInst_FUNC(ir);
1793 			rv.w = ieee754sp_tint(fs);
1794 			ieee754_csr.rm = oldrm;
1795 			rfmt = w_fmt;
1796 			goto copcsr;
1797 
1798 		case fcvtl_op:
1799 			if (!cpu_has_mips_3_4_5_64_r2_r6)
1800 				return SIGILL;
1801 
1802 			SPFROMREG(fs, MIPSInst_FS(ir));
1803 			rv.l = ieee754sp_tlong(fs);
1804 			rfmt = l_fmt;
1805 			goto copcsr;
1806 
1807 		case froundl_op:
1808 		case ftruncl_op:
1809 		case fceill_op:
1810 		case ffloorl_op:
1811 			if (!cpu_has_mips_3_4_5_64_r2_r6)
1812 				return SIGILL;
1813 
1814 			oldrm = ieee754_csr.rm;
1815 			SPFROMREG(fs, MIPSInst_FS(ir));
1816 			ieee754_csr.rm = MIPSInst_FUNC(ir);
1817 			rv.l = ieee754sp_tlong(fs);
1818 			ieee754_csr.rm = oldrm;
1819 			rfmt = l_fmt;
1820 			goto copcsr;
1821 
1822 		default:
1823 			if (MIPSInst_FUNC(ir) >= fcmp_op) {
1824 				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1825 				union ieee754sp fs, ft;
1826 
1827 				SPFROMREG(fs, MIPSInst_FS(ir));
1828 				SPFROMREG(ft, MIPSInst_FT(ir));
1829 				rv.w = ieee754sp_cmp(fs, ft,
1830 					cmptab[cmpop & 0x7], cmpop & 0x8);
1831 				rfmt = -1;
1832 				if ((cmpop & 0x8) && ieee754_cxtest
1833 					(IEEE754_INVALID_OPERATION))
1834 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1835 				else
1836 					goto copcsr;
1837 
1838 			} else
1839 				return SIGILL;
1840 			break;
1841 		}
1842 		break;
1843 	}
1844 
1845 	case d_fmt: {
1846 		union ieee754dp fs, ft;
1847 		union {
1848 			union ieee754dp(*b) (union ieee754dp, union ieee754dp);
1849 			union ieee754dp(*u) (union ieee754dp);
1850 		} handler;
1851 
1852 		switch (MIPSInst_FUNC(ir)) {
1853 			/* binary ops */
1854 		case fadd_op:
1855 			handler.b = ieee754dp_add;
1856 			goto dcopbop;
1857 		case fsub_op:
1858 			handler.b = ieee754dp_sub;
1859 			goto dcopbop;
1860 		case fmul_op:
1861 			handler.b = ieee754dp_mul;
1862 			goto dcopbop;
1863 		case fdiv_op:
1864 			handler.b = ieee754dp_div;
1865 			goto dcopbop;
1866 
1867 			/* unary  ops */
1868 		case fsqrt_op:
1869 			if (!cpu_has_mips_2_3_4_5_r)
1870 				return SIGILL;
1871 
1872 			handler.u = ieee754dp_sqrt;
1873 			goto dcopuop;
1874 		/*
1875 		 * Note that on some MIPS IV implementations such as the
1876 		 * R5000 and R8000 the FSQRT and FRECIP instructions do not
1877 		 * achieve full IEEE-754 accuracy - however this emulator does.
1878 		 */
1879 		case frsqrt_op:
1880 			if (!cpu_has_mips_4_5_64_r2_r6)
1881 				return SIGILL;
1882 
1883 			handler.u = fpemu_dp_rsqrt;
1884 			goto dcopuop;
1885 		case frecip_op:
1886 			if (!cpu_has_mips_4_5_64_r2_r6)
1887 				return SIGILL;
1888 
1889 			handler.u = fpemu_dp_recip;
1890 			goto dcopuop;
1891 		case fmovc_op:
1892 			if (!cpu_has_mips_4_5_r)
1893 				return SIGILL;
1894 
1895 			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1896 			if (((ctx->fcr31 & cond) != 0) !=
1897 				((MIPSInst_FT(ir) & 1) != 0))
1898 				return 0;
1899 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1900 			break;
1901 		case fmovz_op:
1902 			if (!cpu_has_mips_4_5_r)
1903 				return SIGILL;
1904 
1905 			if (xcp->regs[MIPSInst_FT(ir)] != 0)
1906 				return 0;
1907 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1908 			break;
1909 		case fmovn_op:
1910 			if (!cpu_has_mips_4_5_r)
1911 				return SIGILL;
1912 
1913 			if (xcp->regs[MIPSInst_FT(ir)] == 0)
1914 				return 0;
1915 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1916 			break;
1917 		case fabs_op:
1918 			handler.u = ieee754dp_abs;
1919 			goto dcopuop;
1920 
1921 		case fneg_op:
1922 			handler.u = ieee754dp_neg;
1923 			goto dcopuop;
1924 
1925 		case fmov_op:
1926 			/* an easy one */
1927 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1928 			goto copcsr;
1929 
1930 			/* binary op on handler */
1931 dcopbop:
1932 			DPFROMREG(fs, MIPSInst_FS(ir));
1933 			DPFROMREG(ft, MIPSInst_FT(ir));
1934 
1935 			rv.d = (*handler.b) (fs, ft);
1936 			goto copcsr;
1937 dcopuop:
1938 			DPFROMREG(fs, MIPSInst_FS(ir));
1939 			rv.d = (*handler.u) (fs);
1940 			goto copcsr;
1941 
1942 		/*
1943 		 * unary conv ops
1944 		 */
1945 		case fcvts_op:
1946 			DPFROMREG(fs, MIPSInst_FS(ir));
1947 			rv.s = ieee754sp_fdp(fs);
1948 			rfmt = s_fmt;
1949 			goto copcsr;
1950 
1951 		case fcvtd_op:
1952 			return SIGILL;	/* not defined */
1953 
1954 		case fcvtw_op:
1955 			DPFROMREG(fs, MIPSInst_FS(ir));
1956 			rv.w = ieee754dp_tint(fs);	/* wrong */
1957 			rfmt = w_fmt;
1958 			goto copcsr;
1959 
1960 		case fround_op:
1961 		case ftrunc_op:
1962 		case fceil_op:
1963 		case ffloor_op:
1964 			if (!cpu_has_mips_2_3_4_5_r)
1965 				return SIGILL;
1966 
1967 			oldrm = ieee754_csr.rm;
1968 			DPFROMREG(fs, MIPSInst_FS(ir));
1969 			ieee754_csr.rm = MIPSInst_FUNC(ir);
1970 			rv.w = ieee754dp_tint(fs);
1971 			ieee754_csr.rm = oldrm;
1972 			rfmt = w_fmt;
1973 			goto copcsr;
1974 
1975 		case fcvtl_op:
1976 			if (!cpu_has_mips_3_4_5_64_r2_r6)
1977 				return SIGILL;
1978 
1979 			DPFROMREG(fs, MIPSInst_FS(ir));
1980 			rv.l = ieee754dp_tlong(fs);
1981 			rfmt = l_fmt;
1982 			goto copcsr;
1983 
1984 		case froundl_op:
1985 		case ftruncl_op:
1986 		case fceill_op:
1987 		case ffloorl_op:
1988 			if (!cpu_has_mips_3_4_5_64_r2_r6)
1989 				return SIGILL;
1990 
1991 			oldrm = ieee754_csr.rm;
1992 			DPFROMREG(fs, MIPSInst_FS(ir));
1993 			ieee754_csr.rm = MIPSInst_FUNC(ir);
1994 			rv.l = ieee754dp_tlong(fs);
1995 			ieee754_csr.rm = oldrm;
1996 			rfmt = l_fmt;
1997 			goto copcsr;
1998 
1999 		default:
2000 			if (MIPSInst_FUNC(ir) >= fcmp_op) {
2001 				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
2002 				union ieee754dp fs, ft;
2003 
2004 				DPFROMREG(fs, MIPSInst_FS(ir));
2005 				DPFROMREG(ft, MIPSInst_FT(ir));
2006 				rv.w = ieee754dp_cmp(fs, ft,
2007 					cmptab[cmpop & 0x7], cmpop & 0x8);
2008 				rfmt = -1;
2009 				if ((cmpop & 0x8)
2010 					&&
2011 					ieee754_cxtest
2012 					(IEEE754_INVALID_OPERATION))
2013 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2014 				else
2015 					goto copcsr;
2016 
2017 			}
2018 			else {
2019 				return SIGILL;
2020 			}
2021 			break;
2022 		}
2023 		break;
2024 
2025 	case w_fmt:
2026 		switch (MIPSInst_FUNC(ir)) {
2027 		case fcvts_op:
2028 			/* convert word to single precision real */
2029 			SPFROMREG(fs, MIPSInst_FS(ir));
2030 			rv.s = ieee754sp_fint(fs.bits);
2031 			rfmt = s_fmt;
2032 			goto copcsr;
2033 		case fcvtd_op:
2034 			/* convert word to double precision real */
2035 			SPFROMREG(fs, MIPSInst_FS(ir));
2036 			rv.d = ieee754dp_fint(fs.bits);
2037 			rfmt = d_fmt;
2038 			goto copcsr;
2039 		default:
2040 			return SIGILL;
2041 		}
2042 		break;
2043 	}
2044 
2045 	case l_fmt:
2046 
2047 		if (!cpu_has_mips_3_4_5_64_r2_r6)
2048 			return SIGILL;
2049 
2050 		DIFROMREG(bits, MIPSInst_FS(ir));
2051 
2052 		switch (MIPSInst_FUNC(ir)) {
2053 		case fcvts_op:
2054 			/* convert long to single precision real */
2055 			rv.s = ieee754sp_flong(bits);
2056 			rfmt = s_fmt;
2057 			goto copcsr;
2058 		case fcvtd_op:
2059 			/* convert long to double precision real */
2060 			rv.d = ieee754dp_flong(bits);
2061 			rfmt = d_fmt;
2062 			goto copcsr;
2063 		default:
2064 			return SIGILL;
2065 		}
2066 		break;
2067 
2068 	default:
2069 		return SIGILL;
2070 	}
2071 
2072 	/*
2073 	 * Update the fpu CSR register for this operation.
2074 	 * If an exception is required, generate a tidy SIGFPE exception,
2075 	 * without updating the result register.
2076 	 * Note: cause exception bits do not accumulate, they are rewritten
2077 	 * for each op; only the flag/sticky bits accumulate.
2078 	 */
2079 	ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
2080 	if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
2081 		/*printk ("SIGFPE: FPU csr = %08x\n",ctx->fcr31); */
2082 		return SIGFPE;
2083 	}
2084 
2085 	/*
2086 	 * Now we can safely write the result back to the register file.
2087 	 */
2088 	switch (rfmt) {
2089 	case -1:
2090 
2091 		if (cpu_has_mips_4_5_r)
2092 			cbit = fpucondbit[MIPSInst_FD(ir) >> 2];
2093 		else
2094 			cbit = FPU_CSR_COND;
2095 		if (rv.w)
2096 			ctx->fcr31 |= cbit;
2097 		else
2098 			ctx->fcr31 &= ~cbit;
2099 		break;
2100 
2101 	case d_fmt:
2102 		DPTOREG(rv.d, MIPSInst_FD(ir));
2103 		break;
2104 	case s_fmt:
2105 		SPTOREG(rv.s, MIPSInst_FD(ir));
2106 		break;
2107 	case w_fmt:
2108 		SITOREG(rv.w, MIPSInst_FD(ir));
2109 		break;
2110 	case l_fmt:
2111 		if (!cpu_has_mips_3_4_5_64_r2_r6)
2112 			return SIGILL;
2113 
2114 		DITOREG(rv.l, MIPSInst_FD(ir));
2115 		break;
2116 	default:
2117 		return SIGILL;
2118 	}
2119 
2120 	return 0;
2121 }
2122 
2123 int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
2124 	int has_fpu, void *__user *fault_addr)
2125 {
2126 	unsigned long oldepc, prevepc;
2127 	struct mm_decoded_insn dec_insn;
2128 	u16 instr[4];
2129 	u16 *instr_ptr;
2130 	int sig = 0;
2131 
2132 	oldepc = xcp->cp0_epc;
2133 	do {
2134 		prevepc = xcp->cp0_epc;
2135 
2136 		if (get_isa16_mode(prevepc) && cpu_has_mmips) {
2137 			/*
2138 			 * Get next 2 microMIPS instructions and convert them
2139 			 * into 32-bit instructions.
2140 			 */
2141 			if ((get_user(instr[0], (u16 __user *)msk_isa16_mode(xcp->cp0_epc))) ||
2142 			    (get_user(instr[1], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 2))) ||
2143 			    (get_user(instr[2], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 4))) ||
2144 			    (get_user(instr[3], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 6)))) {
2145 				MIPS_FPU_EMU_INC_STATS(errors);
2146 				return SIGBUS;
2147 			}
2148 			instr_ptr = instr;
2149 
2150 			/* Get first instruction. */
2151 			if (mm_insn_16bit(*instr_ptr)) {
2152 				/* Duplicate the half-word. */
2153 				dec_insn.insn = (*instr_ptr << 16) |
2154 					(*instr_ptr);
2155 				/* 16-bit instruction. */
2156 				dec_insn.pc_inc = 2;
2157 				instr_ptr += 1;
2158 			} else {
2159 				dec_insn.insn = (*instr_ptr << 16) |
2160 					*(instr_ptr+1);
2161 				/* 32-bit instruction. */
2162 				dec_insn.pc_inc = 4;
2163 				instr_ptr += 2;
2164 			}
2165 			/* Get second instruction. */
2166 			if (mm_insn_16bit(*instr_ptr)) {
2167 				/* Duplicate the half-word. */
2168 				dec_insn.next_insn = (*instr_ptr << 16) |
2169 					(*instr_ptr);
2170 				/* 16-bit instruction. */
2171 				dec_insn.next_pc_inc = 2;
2172 			} else {
2173 				dec_insn.next_insn = (*instr_ptr << 16) |
2174 					*(instr_ptr+1);
2175 				/* 32-bit instruction. */
2176 				dec_insn.next_pc_inc = 4;
2177 			}
2178 			dec_insn.micro_mips_mode = 1;
2179 		} else {
2180 			if ((get_user(dec_insn.insn,
2181 			    (mips_instruction __user *) xcp->cp0_epc)) ||
2182 			    (get_user(dec_insn.next_insn,
2183 			    (mips_instruction __user *)(xcp->cp0_epc+4)))) {
2184 				MIPS_FPU_EMU_INC_STATS(errors);
2185 				return SIGBUS;
2186 			}
2187 			dec_insn.pc_inc = 4;
2188 			dec_insn.next_pc_inc = 4;
2189 			dec_insn.micro_mips_mode = 0;
2190 		}
2191 
2192 		if ((dec_insn.insn == 0) ||
2193 		   ((dec_insn.pc_inc == 2) &&
2194 		   ((dec_insn.insn & 0xffff) == MM_NOP16)))
2195 			xcp->cp0_epc += dec_insn.pc_inc;	/* Skip NOPs */
2196 		else {
2197 			/*
2198 			 * The 'ieee754_csr' is an alias of ctx->fcr31.
2199 			 * No need to copy ctx->fcr31 to ieee754_csr.
2200 			 */
2201 			sig = cop1Emulate(xcp, ctx, dec_insn, fault_addr);
2202 		}
2203 
2204 		if (has_fpu)
2205 			break;
2206 		if (sig)
2207 			break;
2208 
2209 		cond_resched();
2210 	} while (xcp->cp0_epc > prevepc);
2211 
2212 	/* SIGILL indicates a non-fpu instruction */
2213 	if (sig == SIGILL && xcp->cp0_epc != oldepc)
2214 		/* but if EPC has advanced, then ignore it */
2215 		sig = 0;
2216 
2217 	return sig;
2218 }
2219