xref: /openbmc/linux/arch/mips/math-emu/cp1emu.c (revision 3d9b448b)
1 /*
2  * cp1emu.c: a MIPS coprocessor 1 (FPU) instruction emulator
3  *
4  * MIPS floating point support
5  * Copyright (C) 1994-2000 Algorithmics Ltd.
6  *
7  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
8  * Copyright (C) 2000  MIPS Technologies, Inc.
9  *
10  *  This program is free software; you can distribute it and/or modify it
11  *  under the terms of the GNU General Public License (Version 2) as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope it will be useful, but WITHOUT
15  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17  *  for more details.
18  *
19  *  You should have received a copy of the GNU General Public License along
20  *  with this program; if not, write to the Free Software Foundation, Inc.,
21  *  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA.
22  *
23  * A complete emulator for MIPS coprocessor 1 instructions.  This is
24  * required for #float(switch) or #float(trap), where it catches all
25  * COP1 instructions via the "CoProcessor Unusable" exception.
26  *
27  * More surprisingly it is also required for #float(ieee), to help out
28  * the hardware FPU at the boundaries of the IEEE-754 representation
29  * (denormalised values, infinities, underflow, etc).  It is made
30  * quite nasty because emulation of some non-COP1 instructions is
31  * required, e.g. in branch delay slots.
32  *
33  * Note if you know that you won't have an FPU, then you'll get much
34  * better performance by compiling with -msoft-float!
35  */
36 #include <linux/sched.h>
37 #include <linux/debugfs.h>
38 #include <linux/kconfig.h>
39 #include <linux/percpu-defs.h>
40 #include <linux/perf_event.h>
41 
42 #include <asm/branch.h>
43 #include <asm/inst.h>
44 #include <asm/ptrace.h>
45 #include <asm/signal.h>
46 #include <asm/uaccess.h>
47 
48 #include <asm/processor.h>
49 #include <asm/fpu_emulator.h>
50 #include <asm/fpu.h>
51 #include <asm/mips-r2-to-r6-emul.h>
52 
53 #include "ieee754.h"
54 
55 /* Function which emulates a floating point instruction. */
56 
57 static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *,
58 	mips_instruction);
59 
60 static int fpux_emu(struct pt_regs *,
61 	struct mips_fpu_struct *, mips_instruction, void *__user *);
62 
63 /* Control registers */
64 
65 #define FPCREG_RID	0	/* $0  = revision id */
66 #define FPCREG_CSR	31	/* $31 = csr */
67 
68 /* Determine rounding mode from the RM bits of the FCSR */
69 #define modeindex(v) ((v) & FPU_CSR_RM)
70 
71 /* convert condition code register number to csr bit */
72 const unsigned int fpucondbit[8] = {
73 	FPU_CSR_COND0,
74 	FPU_CSR_COND1,
75 	FPU_CSR_COND2,
76 	FPU_CSR_COND3,
77 	FPU_CSR_COND4,
78 	FPU_CSR_COND5,
79 	FPU_CSR_COND6,
80 	FPU_CSR_COND7
81 };
82 
83 /* (microMIPS) Convert certain microMIPS instructions to MIPS32 format. */
84 static const int sd_format[] = {16, 17, 0, 0, 0, 0, 0, 0};
85 static const int sdps_format[] = {16, 17, 22, 0, 0, 0, 0, 0};
86 static const int dwl_format[] = {17, 20, 21, 0, 0, 0, 0, 0};
87 static const int swl_format[] = {16, 20, 21, 0, 0, 0, 0, 0};
88 
89 /*
90  * This functions translates a 32-bit microMIPS instruction
91  * into a 32-bit MIPS32 instruction. Returns 0 on success
92  * and SIGILL otherwise.
93  */
94 static int microMIPS32_to_MIPS32(union mips_instruction *insn_ptr)
95 {
96 	union mips_instruction insn = *insn_ptr;
97 	union mips_instruction mips32_insn = insn;
98 	int func, fmt, op;
99 
100 	switch (insn.mm_i_format.opcode) {
101 	case mm_ldc132_op:
102 		mips32_insn.mm_i_format.opcode = ldc1_op;
103 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
104 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
105 		break;
106 	case mm_lwc132_op:
107 		mips32_insn.mm_i_format.opcode = lwc1_op;
108 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
109 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
110 		break;
111 	case mm_sdc132_op:
112 		mips32_insn.mm_i_format.opcode = sdc1_op;
113 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
114 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
115 		break;
116 	case mm_swc132_op:
117 		mips32_insn.mm_i_format.opcode = swc1_op;
118 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
119 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
120 		break;
121 	case mm_pool32i_op:
122 		/* NOTE: offset is << by 1 if in microMIPS mode. */
123 		if ((insn.mm_i_format.rt == mm_bc1f_op) ||
124 		    (insn.mm_i_format.rt == mm_bc1t_op)) {
125 			mips32_insn.fb_format.opcode = cop1_op;
126 			mips32_insn.fb_format.bc = bc_op;
127 			mips32_insn.fb_format.flag =
128 				(insn.mm_i_format.rt == mm_bc1t_op) ? 1 : 0;
129 		} else
130 			return SIGILL;
131 		break;
132 	case mm_pool32f_op:
133 		switch (insn.mm_fp0_format.func) {
134 		case mm_32f_01_op:
135 		case mm_32f_11_op:
136 		case mm_32f_02_op:
137 		case mm_32f_12_op:
138 		case mm_32f_41_op:
139 		case mm_32f_51_op:
140 		case mm_32f_42_op:
141 		case mm_32f_52_op:
142 			op = insn.mm_fp0_format.func;
143 			if (op == mm_32f_01_op)
144 				func = madd_s_op;
145 			else if (op == mm_32f_11_op)
146 				func = madd_d_op;
147 			else if (op == mm_32f_02_op)
148 				func = nmadd_s_op;
149 			else if (op == mm_32f_12_op)
150 				func = nmadd_d_op;
151 			else if (op == mm_32f_41_op)
152 				func = msub_s_op;
153 			else if (op == mm_32f_51_op)
154 				func = msub_d_op;
155 			else if (op == mm_32f_42_op)
156 				func = nmsub_s_op;
157 			else
158 				func = nmsub_d_op;
159 			mips32_insn.fp6_format.opcode = cop1x_op;
160 			mips32_insn.fp6_format.fr = insn.mm_fp6_format.fr;
161 			mips32_insn.fp6_format.ft = insn.mm_fp6_format.ft;
162 			mips32_insn.fp6_format.fs = insn.mm_fp6_format.fs;
163 			mips32_insn.fp6_format.fd = insn.mm_fp6_format.fd;
164 			mips32_insn.fp6_format.func = func;
165 			break;
166 		case mm_32f_10_op:
167 			func = -1;	/* Invalid */
168 			op = insn.mm_fp5_format.op & 0x7;
169 			if (op == mm_ldxc1_op)
170 				func = ldxc1_op;
171 			else if (op == mm_sdxc1_op)
172 				func = sdxc1_op;
173 			else if (op == mm_lwxc1_op)
174 				func = lwxc1_op;
175 			else if (op == mm_swxc1_op)
176 				func = swxc1_op;
177 
178 			if (func != -1) {
179 				mips32_insn.r_format.opcode = cop1x_op;
180 				mips32_insn.r_format.rs =
181 					insn.mm_fp5_format.base;
182 				mips32_insn.r_format.rt =
183 					insn.mm_fp5_format.index;
184 				mips32_insn.r_format.rd = 0;
185 				mips32_insn.r_format.re = insn.mm_fp5_format.fd;
186 				mips32_insn.r_format.func = func;
187 			} else
188 				return SIGILL;
189 			break;
190 		case mm_32f_40_op:
191 			op = -1;	/* Invalid */
192 			if (insn.mm_fp2_format.op == mm_fmovt_op)
193 				op = 1;
194 			else if (insn.mm_fp2_format.op == mm_fmovf_op)
195 				op = 0;
196 			if (op != -1) {
197 				mips32_insn.fp0_format.opcode = cop1_op;
198 				mips32_insn.fp0_format.fmt =
199 					sdps_format[insn.mm_fp2_format.fmt];
200 				mips32_insn.fp0_format.ft =
201 					(insn.mm_fp2_format.cc<<2) + op;
202 				mips32_insn.fp0_format.fs =
203 					insn.mm_fp2_format.fs;
204 				mips32_insn.fp0_format.fd =
205 					insn.mm_fp2_format.fd;
206 				mips32_insn.fp0_format.func = fmovc_op;
207 			} else
208 				return SIGILL;
209 			break;
210 		case mm_32f_60_op:
211 			func = -1;	/* Invalid */
212 			if (insn.mm_fp0_format.op == mm_fadd_op)
213 				func = fadd_op;
214 			else if (insn.mm_fp0_format.op == mm_fsub_op)
215 				func = fsub_op;
216 			else if (insn.mm_fp0_format.op == mm_fmul_op)
217 				func = fmul_op;
218 			else if (insn.mm_fp0_format.op == mm_fdiv_op)
219 				func = fdiv_op;
220 			if (func != -1) {
221 				mips32_insn.fp0_format.opcode = cop1_op;
222 				mips32_insn.fp0_format.fmt =
223 					sdps_format[insn.mm_fp0_format.fmt];
224 				mips32_insn.fp0_format.ft =
225 					insn.mm_fp0_format.ft;
226 				mips32_insn.fp0_format.fs =
227 					insn.mm_fp0_format.fs;
228 				mips32_insn.fp0_format.fd =
229 					insn.mm_fp0_format.fd;
230 				mips32_insn.fp0_format.func = func;
231 			} else
232 				return SIGILL;
233 			break;
234 		case mm_32f_70_op:
235 			func = -1;	/* Invalid */
236 			if (insn.mm_fp0_format.op == mm_fmovn_op)
237 				func = fmovn_op;
238 			else if (insn.mm_fp0_format.op == mm_fmovz_op)
239 				func = fmovz_op;
240 			if (func != -1) {
241 				mips32_insn.fp0_format.opcode = cop1_op;
242 				mips32_insn.fp0_format.fmt =
243 					sdps_format[insn.mm_fp0_format.fmt];
244 				mips32_insn.fp0_format.ft =
245 					insn.mm_fp0_format.ft;
246 				mips32_insn.fp0_format.fs =
247 					insn.mm_fp0_format.fs;
248 				mips32_insn.fp0_format.fd =
249 					insn.mm_fp0_format.fd;
250 				mips32_insn.fp0_format.func = func;
251 			} else
252 				return SIGILL;
253 			break;
254 		case mm_32f_73_op:    /* POOL32FXF */
255 			switch (insn.mm_fp1_format.op) {
256 			case mm_movf0_op:
257 			case mm_movf1_op:
258 			case mm_movt0_op:
259 			case mm_movt1_op:
260 				if ((insn.mm_fp1_format.op & 0x7f) ==
261 				    mm_movf0_op)
262 					op = 0;
263 				else
264 					op = 1;
265 				mips32_insn.r_format.opcode = spec_op;
266 				mips32_insn.r_format.rs = insn.mm_fp4_format.fs;
267 				mips32_insn.r_format.rt =
268 					(insn.mm_fp4_format.cc << 2) + op;
269 				mips32_insn.r_format.rd = insn.mm_fp4_format.rt;
270 				mips32_insn.r_format.re = 0;
271 				mips32_insn.r_format.func = movc_op;
272 				break;
273 			case mm_fcvtd0_op:
274 			case mm_fcvtd1_op:
275 			case mm_fcvts0_op:
276 			case mm_fcvts1_op:
277 				if ((insn.mm_fp1_format.op & 0x7f) ==
278 				    mm_fcvtd0_op) {
279 					func = fcvtd_op;
280 					fmt = swl_format[insn.mm_fp3_format.fmt];
281 				} else {
282 					func = fcvts_op;
283 					fmt = dwl_format[insn.mm_fp3_format.fmt];
284 				}
285 				mips32_insn.fp0_format.opcode = cop1_op;
286 				mips32_insn.fp0_format.fmt = fmt;
287 				mips32_insn.fp0_format.ft = 0;
288 				mips32_insn.fp0_format.fs =
289 					insn.mm_fp3_format.fs;
290 				mips32_insn.fp0_format.fd =
291 					insn.mm_fp3_format.rt;
292 				mips32_insn.fp0_format.func = func;
293 				break;
294 			case mm_fmov0_op:
295 			case mm_fmov1_op:
296 			case mm_fabs0_op:
297 			case mm_fabs1_op:
298 			case mm_fneg0_op:
299 			case mm_fneg1_op:
300 				if ((insn.mm_fp1_format.op & 0x7f) ==
301 				    mm_fmov0_op)
302 					func = fmov_op;
303 				else if ((insn.mm_fp1_format.op & 0x7f) ==
304 					 mm_fabs0_op)
305 					func = fabs_op;
306 				else
307 					func = fneg_op;
308 				mips32_insn.fp0_format.opcode = cop1_op;
309 				mips32_insn.fp0_format.fmt =
310 					sdps_format[insn.mm_fp3_format.fmt];
311 				mips32_insn.fp0_format.ft = 0;
312 				mips32_insn.fp0_format.fs =
313 					insn.mm_fp3_format.fs;
314 				mips32_insn.fp0_format.fd =
315 					insn.mm_fp3_format.rt;
316 				mips32_insn.fp0_format.func = func;
317 				break;
318 			case mm_ffloorl_op:
319 			case mm_ffloorw_op:
320 			case mm_fceill_op:
321 			case mm_fceilw_op:
322 			case mm_ftruncl_op:
323 			case mm_ftruncw_op:
324 			case mm_froundl_op:
325 			case mm_froundw_op:
326 			case mm_fcvtl_op:
327 			case mm_fcvtw_op:
328 				if (insn.mm_fp1_format.op == mm_ffloorl_op)
329 					func = ffloorl_op;
330 				else if (insn.mm_fp1_format.op == mm_ffloorw_op)
331 					func = ffloor_op;
332 				else if (insn.mm_fp1_format.op == mm_fceill_op)
333 					func = fceill_op;
334 				else if (insn.mm_fp1_format.op == mm_fceilw_op)
335 					func = fceil_op;
336 				else if (insn.mm_fp1_format.op == mm_ftruncl_op)
337 					func = ftruncl_op;
338 				else if (insn.mm_fp1_format.op == mm_ftruncw_op)
339 					func = ftrunc_op;
340 				else if (insn.mm_fp1_format.op == mm_froundl_op)
341 					func = froundl_op;
342 				else if (insn.mm_fp1_format.op == mm_froundw_op)
343 					func = fround_op;
344 				else if (insn.mm_fp1_format.op == mm_fcvtl_op)
345 					func = fcvtl_op;
346 				else
347 					func = fcvtw_op;
348 				mips32_insn.fp0_format.opcode = cop1_op;
349 				mips32_insn.fp0_format.fmt =
350 					sd_format[insn.mm_fp1_format.fmt];
351 				mips32_insn.fp0_format.ft = 0;
352 				mips32_insn.fp0_format.fs =
353 					insn.mm_fp1_format.fs;
354 				mips32_insn.fp0_format.fd =
355 					insn.mm_fp1_format.rt;
356 				mips32_insn.fp0_format.func = func;
357 				break;
358 			case mm_frsqrt_op:
359 			case mm_fsqrt_op:
360 			case mm_frecip_op:
361 				if (insn.mm_fp1_format.op == mm_frsqrt_op)
362 					func = frsqrt_op;
363 				else if (insn.mm_fp1_format.op == mm_fsqrt_op)
364 					func = fsqrt_op;
365 				else
366 					func = frecip_op;
367 				mips32_insn.fp0_format.opcode = cop1_op;
368 				mips32_insn.fp0_format.fmt =
369 					sdps_format[insn.mm_fp1_format.fmt];
370 				mips32_insn.fp0_format.ft = 0;
371 				mips32_insn.fp0_format.fs =
372 					insn.mm_fp1_format.fs;
373 				mips32_insn.fp0_format.fd =
374 					insn.mm_fp1_format.rt;
375 				mips32_insn.fp0_format.func = func;
376 				break;
377 			case mm_mfc1_op:
378 			case mm_mtc1_op:
379 			case mm_cfc1_op:
380 			case mm_ctc1_op:
381 			case mm_mfhc1_op:
382 			case mm_mthc1_op:
383 				if (insn.mm_fp1_format.op == mm_mfc1_op)
384 					op = mfc_op;
385 				else if (insn.mm_fp1_format.op == mm_mtc1_op)
386 					op = mtc_op;
387 				else if (insn.mm_fp1_format.op == mm_cfc1_op)
388 					op = cfc_op;
389 				else if (insn.mm_fp1_format.op == mm_ctc1_op)
390 					op = ctc_op;
391 				else if (insn.mm_fp1_format.op == mm_mfhc1_op)
392 					op = mfhc_op;
393 				else
394 					op = mthc_op;
395 				mips32_insn.fp1_format.opcode = cop1_op;
396 				mips32_insn.fp1_format.op = op;
397 				mips32_insn.fp1_format.rt =
398 					insn.mm_fp1_format.rt;
399 				mips32_insn.fp1_format.fs =
400 					insn.mm_fp1_format.fs;
401 				mips32_insn.fp1_format.fd = 0;
402 				mips32_insn.fp1_format.func = 0;
403 				break;
404 			default:
405 				return SIGILL;
406 			}
407 			break;
408 		case mm_32f_74_op:	/* c.cond.fmt */
409 			mips32_insn.fp0_format.opcode = cop1_op;
410 			mips32_insn.fp0_format.fmt =
411 				sdps_format[insn.mm_fp4_format.fmt];
412 			mips32_insn.fp0_format.ft = insn.mm_fp4_format.rt;
413 			mips32_insn.fp0_format.fs = insn.mm_fp4_format.fs;
414 			mips32_insn.fp0_format.fd = insn.mm_fp4_format.cc << 2;
415 			mips32_insn.fp0_format.func =
416 				insn.mm_fp4_format.cond | MM_MIPS32_COND_FC;
417 			break;
418 		default:
419 			return SIGILL;
420 		}
421 		break;
422 	default:
423 		return SIGILL;
424 	}
425 
426 	*insn_ptr = mips32_insn;
427 	return 0;
428 }
429 
430 /*
431  * Redundant with logic already in kernel/branch.c,
432  * embedded in compute_return_epc.  At some point,
433  * a single subroutine should be used across both
434  * modules.
435  */
436 static int isBranchInstr(struct pt_regs *regs, struct mm_decoded_insn dec_insn,
437 			 unsigned long *contpc)
438 {
439 	union mips_instruction insn = (union mips_instruction)dec_insn.insn;
440 	unsigned int fcr31;
441 	unsigned int bit = 0;
442 
443 	switch (insn.i_format.opcode) {
444 	case spec_op:
445 		switch (insn.r_format.func) {
446 		case jalr_op:
447 			regs->regs[insn.r_format.rd] =
448 				regs->cp0_epc + dec_insn.pc_inc +
449 				dec_insn.next_pc_inc;
450 			/* Fall through */
451 		case jr_op:
452 			/* For R6, JR already emulated in jalr_op */
453 			if (NO_R6EMU && insn.r_format.opcode == jr_op)
454 				break;
455 			*contpc = regs->regs[insn.r_format.rs];
456 			return 1;
457 		}
458 		break;
459 	case bcond_op:
460 		switch (insn.i_format.rt) {
461 		case bltzal_op:
462 		case bltzall_op:
463 			if (NO_R6EMU && (insn.i_format.rs ||
464 			    insn.i_format.rt == bltzall_op))
465 				break;
466 
467 			regs->regs[31] = regs->cp0_epc +
468 				dec_insn.pc_inc +
469 				dec_insn.next_pc_inc;
470 			/* Fall through */
471 		case bltzl_op:
472 			if (NO_R6EMU)
473 				break;
474 		case bltz_op:
475 			if ((long)regs->regs[insn.i_format.rs] < 0)
476 				*contpc = regs->cp0_epc +
477 					dec_insn.pc_inc +
478 					(insn.i_format.simmediate << 2);
479 			else
480 				*contpc = regs->cp0_epc +
481 					dec_insn.pc_inc +
482 					dec_insn.next_pc_inc;
483 			return 1;
484 		case bgezal_op:
485 		case bgezall_op:
486 			if (NO_R6EMU && (insn.i_format.rs ||
487 			    insn.i_format.rt == bgezall_op))
488 				break;
489 
490 			regs->regs[31] = regs->cp0_epc +
491 				dec_insn.pc_inc +
492 				dec_insn.next_pc_inc;
493 			/* Fall through */
494 		case bgezl_op:
495 			if (NO_R6EMU)
496 				break;
497 		case bgez_op:
498 			if ((long)regs->regs[insn.i_format.rs] >= 0)
499 				*contpc = regs->cp0_epc +
500 					dec_insn.pc_inc +
501 					(insn.i_format.simmediate << 2);
502 			else
503 				*contpc = regs->cp0_epc +
504 					dec_insn.pc_inc +
505 					dec_insn.next_pc_inc;
506 			return 1;
507 		}
508 		break;
509 	case jalx_op:
510 		set_isa16_mode(bit);
511 	case jal_op:
512 		regs->regs[31] = regs->cp0_epc +
513 			dec_insn.pc_inc +
514 			dec_insn.next_pc_inc;
515 		/* Fall through */
516 	case j_op:
517 		*contpc = regs->cp0_epc + dec_insn.pc_inc;
518 		*contpc >>= 28;
519 		*contpc <<= 28;
520 		*contpc |= (insn.j_format.target << 2);
521 		/* Set microMIPS mode bit: XOR for jalx. */
522 		*contpc ^= bit;
523 		return 1;
524 	case beql_op:
525 		if (NO_R6EMU)
526 			break;
527 	case beq_op:
528 		if (regs->regs[insn.i_format.rs] ==
529 		    regs->regs[insn.i_format.rt])
530 			*contpc = regs->cp0_epc +
531 				dec_insn.pc_inc +
532 				(insn.i_format.simmediate << 2);
533 		else
534 			*contpc = regs->cp0_epc +
535 				dec_insn.pc_inc +
536 				dec_insn.next_pc_inc;
537 		return 1;
538 	case bnel_op:
539 		if (NO_R6EMU)
540 			break;
541 	case bne_op:
542 		if (regs->regs[insn.i_format.rs] !=
543 		    regs->regs[insn.i_format.rt])
544 			*contpc = regs->cp0_epc +
545 				dec_insn.pc_inc +
546 				(insn.i_format.simmediate << 2);
547 		else
548 			*contpc = regs->cp0_epc +
549 				dec_insn.pc_inc +
550 				dec_insn.next_pc_inc;
551 		return 1;
552 	case blezl_op:
553 		if (NO_R6EMU)
554 			break;
555 	case blez_op:
556 
557 		/*
558 		 * Compact branches for R6 for the
559 		 * blez and blezl opcodes.
560 		 * BLEZ  | rs = 0 | rt != 0  == BLEZALC
561 		 * BLEZ  | rs = rt != 0      == BGEZALC
562 		 * BLEZ  | rs != 0 | rt != 0 == BGEUC
563 		 * BLEZL | rs = 0 | rt != 0  == BLEZC
564 		 * BLEZL | rs = rt != 0      == BGEZC
565 		 * BLEZL | rs != 0 | rt != 0 == BGEC
566 		 *
567 		 * For real BLEZ{,L}, rt is always 0.
568 		 */
569 		if (cpu_has_mips_r6 && insn.i_format.rt) {
570 			if ((insn.i_format.opcode == blez_op) &&
571 			    ((!insn.i_format.rs && insn.i_format.rt) ||
572 			     (insn.i_format.rs == insn.i_format.rt)))
573 				regs->regs[31] = regs->cp0_epc +
574 					dec_insn.pc_inc;
575 			*contpc = regs->cp0_epc + dec_insn.pc_inc +
576 				dec_insn.next_pc_inc;
577 
578 			return 1;
579 		}
580 		if ((long)regs->regs[insn.i_format.rs] <= 0)
581 			*contpc = regs->cp0_epc +
582 				dec_insn.pc_inc +
583 				(insn.i_format.simmediate << 2);
584 		else
585 			*contpc = regs->cp0_epc +
586 				dec_insn.pc_inc +
587 				dec_insn.next_pc_inc;
588 		return 1;
589 	case bgtzl_op:
590 		if (NO_R6EMU)
591 			break;
592 	case bgtz_op:
593 		/*
594 		 * Compact branches for R6 for the
595 		 * bgtz and bgtzl opcodes.
596 		 * BGTZ  | rs = 0 | rt != 0  == BGTZALC
597 		 * BGTZ  | rs = rt != 0      == BLTZALC
598 		 * BGTZ  | rs != 0 | rt != 0 == BLTUC
599 		 * BGTZL | rs = 0 | rt != 0  == BGTZC
600 		 * BGTZL | rs = rt != 0      == BLTZC
601 		 * BGTZL | rs != 0 | rt != 0 == BLTC
602 		 *
603 		 * *ZALC varint for BGTZ &&& rt != 0
604 		 * For real GTZ{,L}, rt is always 0.
605 		 */
606 		if (cpu_has_mips_r6 && insn.i_format.rt) {
607 			if ((insn.i_format.opcode == blez_op) &&
608 			    ((!insn.i_format.rs && insn.i_format.rt) ||
609 			     (insn.i_format.rs == insn.i_format.rt)))
610 				regs->regs[31] = regs->cp0_epc +
611 					dec_insn.pc_inc;
612 			*contpc = regs->cp0_epc + dec_insn.pc_inc +
613 				dec_insn.next_pc_inc;
614 
615 			return 1;
616 		}
617 
618 		if ((long)regs->regs[insn.i_format.rs] > 0)
619 			*contpc = regs->cp0_epc +
620 				dec_insn.pc_inc +
621 				(insn.i_format.simmediate << 2);
622 		else
623 			*contpc = regs->cp0_epc +
624 				dec_insn.pc_inc +
625 				dec_insn.next_pc_inc;
626 		return 1;
627 	case cbcond0_op:
628 	case cbcond1_op:
629 		if (!cpu_has_mips_r6)
630 			break;
631 		if (insn.i_format.rt && !insn.i_format.rs)
632 			regs->regs[31] = regs->cp0_epc + 4;
633 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
634 			dec_insn.next_pc_inc;
635 
636 		return 1;
637 #ifdef CONFIG_CPU_CAVIUM_OCTEON
638 	case lwc2_op: /* This is bbit0 on Octeon */
639 		if ((regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt)) == 0)
640 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
641 		else
642 			*contpc = regs->cp0_epc + 8;
643 		return 1;
644 	case ldc2_op: /* This is bbit032 on Octeon */
645 		if ((regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32))) == 0)
646 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
647 		else
648 			*contpc = regs->cp0_epc + 8;
649 		return 1;
650 	case swc2_op: /* This is bbit1 on Octeon */
651 		if (regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt))
652 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
653 		else
654 			*contpc = regs->cp0_epc + 8;
655 		return 1;
656 	case sdc2_op: /* This is bbit132 on Octeon */
657 		if (regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32)))
658 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
659 		else
660 			*contpc = regs->cp0_epc + 8;
661 		return 1;
662 #else
663 	case bc6_op:
664 		/*
665 		 * Only valid for MIPS R6 but we can still end up
666 		 * here from a broken userland so just tell emulator
667 		 * this is not a branch and let it break later on.
668 		 */
669 		if  (!cpu_has_mips_r6)
670 			break;
671 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
672 			dec_insn.next_pc_inc;
673 
674 		return 1;
675 	case balc6_op:
676 		if (!cpu_has_mips_r6)
677 			break;
678 		regs->regs[31] = regs->cp0_epc + 4;
679 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
680 			dec_insn.next_pc_inc;
681 
682 		return 1;
683 	case beqzcjic_op:
684 		if (!cpu_has_mips_r6)
685 			break;
686 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
687 			dec_insn.next_pc_inc;
688 
689 		return 1;
690 	case bnezcjialc_op:
691 		if (!cpu_has_mips_r6)
692 			break;
693 		if (!insn.i_format.rs)
694 			regs->regs[31] = regs->cp0_epc + 4;
695 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
696 			dec_insn.next_pc_inc;
697 
698 		return 1;
699 #endif
700 	case cop0_op:
701 	case cop1_op:
702 		/* Need to check for R6 bc1nez and bc1eqz branches */
703 		if (cpu_has_mips_r6 &&
704 		    ((insn.i_format.rs == bc1eqz_op) ||
705 		     (insn.i_format.rs == bc1nez_op))) {
706 			bit = 0;
707 			switch (insn.i_format.rs) {
708 			case bc1eqz_op:
709 				if (get_fpr32(&current->thread.fpu.fpr[insn.i_format.rt], 0) & 0x1)
710 				    bit = 1;
711 				break;
712 			case bc1nez_op:
713 				if (!(get_fpr32(&current->thread.fpu.fpr[insn.i_format.rt], 0) & 0x1))
714 				    bit = 1;
715 				break;
716 			}
717 			if (bit)
718 				*contpc = regs->cp0_epc +
719 					dec_insn.pc_inc +
720 					(insn.i_format.simmediate << 2);
721 			else
722 				*contpc = regs->cp0_epc +
723 					dec_insn.pc_inc +
724 					dec_insn.next_pc_inc;
725 
726 			return 1;
727 		}
728 		/* R2/R6 compatible cop1 instruction. Fall through */
729 	case cop2_op:
730 	case cop1x_op:
731 		if (insn.i_format.rs == bc_op) {
732 			preempt_disable();
733 			if (is_fpu_owner())
734 			        fcr31 = read_32bit_cp1_register(CP1_STATUS);
735 			else
736 				fcr31 = current->thread.fpu.fcr31;
737 			preempt_enable();
738 
739 			bit = (insn.i_format.rt >> 2);
740 			bit += (bit != 0);
741 			bit += 23;
742 			switch (insn.i_format.rt & 3) {
743 			case 0:	/* bc1f */
744 			case 2:	/* bc1fl */
745 				if (~fcr31 & (1 << bit))
746 					*contpc = regs->cp0_epc +
747 						dec_insn.pc_inc +
748 						(insn.i_format.simmediate << 2);
749 				else
750 					*contpc = regs->cp0_epc +
751 						dec_insn.pc_inc +
752 						dec_insn.next_pc_inc;
753 				return 1;
754 			case 1:	/* bc1t */
755 			case 3:	/* bc1tl */
756 				if (fcr31 & (1 << bit))
757 					*contpc = regs->cp0_epc +
758 						dec_insn.pc_inc +
759 						(insn.i_format.simmediate << 2);
760 				else
761 					*contpc = regs->cp0_epc +
762 						dec_insn.pc_inc +
763 						dec_insn.next_pc_inc;
764 				return 1;
765 			}
766 		}
767 		break;
768 	}
769 	return 0;
770 }
771 
772 /*
773  * In the Linux kernel, we support selection of FPR format on the
774  * basis of the Status.FR bit.	If an FPU is not present, the FR bit
775  * is hardwired to zero, which would imply a 32-bit FPU even for
776  * 64-bit CPUs so we rather look at TIF_32BIT_FPREGS.
777  * FPU emu is slow and bulky and optimizing this function offers fairly
778  * sizeable benefits so we try to be clever and make this function return
779  * a constant whenever possible, that is on 64-bit kernels without O32
780  * compatibility enabled and on 32-bit without 64-bit FPU support.
781  */
782 static inline int cop1_64bit(struct pt_regs *xcp)
783 {
784 	if (config_enabled(CONFIG_64BIT) && !config_enabled(CONFIG_MIPS32_O32))
785 		return 1;
786 	else if (config_enabled(CONFIG_32BIT) &&
787 		 !config_enabled(CONFIG_MIPS_O32_FP64_SUPPORT))
788 		return 0;
789 
790 	return !test_thread_flag(TIF_32BIT_FPREGS);
791 }
792 
793 static inline bool hybrid_fprs(void)
794 {
795 	return test_thread_flag(TIF_HYBRID_FPREGS);
796 }
797 
798 #define SIFROMREG(si, x)						\
799 do {									\
800 	if (cop1_64bit(xcp) && !hybrid_fprs())				\
801 		(si) = (int)get_fpr32(&ctx->fpr[x], 0);			\
802 	else								\
803 		(si) = (int)get_fpr32(&ctx->fpr[(x) & ~1], (x) & 1);	\
804 } while (0)
805 
806 #define SITOREG(si, x)							\
807 do {									\
808 	if (cop1_64bit(xcp) && !hybrid_fprs()) {			\
809 		unsigned i;						\
810 		set_fpr32(&ctx->fpr[x], 0, si);				\
811 		for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val32); i++)	\
812 			set_fpr32(&ctx->fpr[x], i, 0);			\
813 	} else {							\
814 		set_fpr32(&ctx->fpr[(x) & ~1], (x) & 1, si);		\
815 	}								\
816 } while (0)
817 
818 #define SIFROMHREG(si, x)	((si) = (int)get_fpr32(&ctx->fpr[x], 1))
819 
820 #define SITOHREG(si, x)							\
821 do {									\
822 	unsigned i;							\
823 	set_fpr32(&ctx->fpr[x], 1, si);					\
824 	for (i = 2; i < ARRAY_SIZE(ctx->fpr[x].val32); i++)		\
825 		set_fpr32(&ctx->fpr[x], i, 0);				\
826 } while (0)
827 
828 #define DIFROMREG(di, x)						\
829 	((di) = get_fpr64(&ctx->fpr[(x) & ~(cop1_64bit(xcp) == 0)], 0))
830 
831 #define DITOREG(di, x)							\
832 do {									\
833 	unsigned fpr, i;						\
834 	fpr = (x) & ~(cop1_64bit(xcp) == 0);				\
835 	set_fpr64(&ctx->fpr[fpr], 0, di);				\
836 	for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val64); i++)		\
837 		set_fpr64(&ctx->fpr[fpr], i, 0);			\
838 } while (0)
839 
840 #define SPFROMREG(sp, x) SIFROMREG((sp).bits, x)
841 #define SPTOREG(sp, x)	SITOREG((sp).bits, x)
842 #define DPFROMREG(dp, x)	DIFROMREG((dp).bits, x)
843 #define DPTOREG(dp, x)	DITOREG((dp).bits, x)
844 
845 /*
846  * Emulate the single floating point instruction pointed at by EPC.
847  * Two instructions if the instruction is in a branch delay slot.
848  */
849 
850 static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
851 		struct mm_decoded_insn dec_insn, void *__user *fault_addr)
852 {
853 	unsigned long contpc = xcp->cp0_epc + dec_insn.pc_inc;
854 	unsigned int cond, cbit;
855 	mips_instruction ir;
856 	int likely, pc_inc;
857 	u32 __user *wva;
858 	u64 __user *dva;
859 	u32 value;
860 	u32 wval;
861 	u64 dval;
862 	int sig;
863 
864 	/*
865 	 * These are giving gcc a gentle hint about what to expect in
866 	 * dec_inst in order to do better optimization.
867 	 */
868 	if (!cpu_has_mmips && dec_insn.micro_mips_mode)
869 		unreachable();
870 
871 	/* XXX NEC Vr54xx bug workaround */
872 	if (delay_slot(xcp)) {
873 		if (dec_insn.micro_mips_mode) {
874 			if (!mm_isBranchInstr(xcp, dec_insn, &contpc))
875 				clear_delay_slot(xcp);
876 		} else {
877 			if (!isBranchInstr(xcp, dec_insn, &contpc))
878 				clear_delay_slot(xcp);
879 		}
880 	}
881 
882 	if (delay_slot(xcp)) {
883 		/*
884 		 * The instruction to be emulated is in a branch delay slot
885 		 * which means that we have to	emulate the branch instruction
886 		 * BEFORE we do the cop1 instruction.
887 		 *
888 		 * This branch could be a COP1 branch, but in that case we
889 		 * would have had a trap for that instruction, and would not
890 		 * come through this route.
891 		 *
892 		 * Linux MIPS branch emulator operates on context, updating the
893 		 * cp0_epc.
894 		 */
895 		ir = dec_insn.next_insn;  /* process delay slot instr */
896 		pc_inc = dec_insn.next_pc_inc;
897 	} else {
898 		ir = dec_insn.insn;       /* process current instr */
899 		pc_inc = dec_insn.pc_inc;
900 	}
901 
902 	/*
903 	 * Since microMIPS FPU instructios are a subset of MIPS32 FPU
904 	 * instructions, we want to convert microMIPS FPU instructions
905 	 * into MIPS32 instructions so that we could reuse all of the
906 	 * FPU emulation code.
907 	 *
908 	 * NOTE: We cannot do this for branch instructions since they
909 	 *       are not a subset. Example: Cannot emulate a 16-bit
910 	 *       aligned target address with a MIPS32 instruction.
911 	 */
912 	if (dec_insn.micro_mips_mode) {
913 		/*
914 		 * If next instruction is a 16-bit instruction, then it
915 		 * it cannot be a FPU instruction. This could happen
916 		 * since we can be called for non-FPU instructions.
917 		 */
918 		if ((pc_inc == 2) ||
919 			(microMIPS32_to_MIPS32((union mips_instruction *)&ir)
920 			 == SIGILL))
921 			return SIGILL;
922 	}
923 
924 emul:
925 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, xcp, 0);
926 	MIPS_FPU_EMU_INC_STATS(emulated);
927 	switch (MIPSInst_OPCODE(ir)) {
928 	case ldc1_op:
929 		dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
930 				     MIPSInst_SIMM(ir));
931 		MIPS_FPU_EMU_INC_STATS(loads);
932 
933 		if (!access_ok(VERIFY_READ, dva, sizeof(u64))) {
934 			MIPS_FPU_EMU_INC_STATS(errors);
935 			*fault_addr = dva;
936 			return SIGBUS;
937 		}
938 		if (__get_user(dval, dva)) {
939 			MIPS_FPU_EMU_INC_STATS(errors);
940 			*fault_addr = dva;
941 			return SIGSEGV;
942 		}
943 		DITOREG(dval, MIPSInst_RT(ir));
944 		break;
945 
946 	case sdc1_op:
947 		dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
948 				      MIPSInst_SIMM(ir));
949 		MIPS_FPU_EMU_INC_STATS(stores);
950 		DIFROMREG(dval, MIPSInst_RT(ir));
951 		if (!access_ok(VERIFY_WRITE, dva, sizeof(u64))) {
952 			MIPS_FPU_EMU_INC_STATS(errors);
953 			*fault_addr = dva;
954 			return SIGBUS;
955 		}
956 		if (__put_user(dval, dva)) {
957 			MIPS_FPU_EMU_INC_STATS(errors);
958 			*fault_addr = dva;
959 			return SIGSEGV;
960 		}
961 		break;
962 
963 	case lwc1_op:
964 		wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
965 				      MIPSInst_SIMM(ir));
966 		MIPS_FPU_EMU_INC_STATS(loads);
967 		if (!access_ok(VERIFY_READ, wva, sizeof(u32))) {
968 			MIPS_FPU_EMU_INC_STATS(errors);
969 			*fault_addr = wva;
970 			return SIGBUS;
971 		}
972 		if (__get_user(wval, wva)) {
973 			MIPS_FPU_EMU_INC_STATS(errors);
974 			*fault_addr = wva;
975 			return SIGSEGV;
976 		}
977 		SITOREG(wval, MIPSInst_RT(ir));
978 		break;
979 
980 	case swc1_op:
981 		wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
982 				      MIPSInst_SIMM(ir));
983 		MIPS_FPU_EMU_INC_STATS(stores);
984 		SIFROMREG(wval, MIPSInst_RT(ir));
985 		if (!access_ok(VERIFY_WRITE, wva, sizeof(u32))) {
986 			MIPS_FPU_EMU_INC_STATS(errors);
987 			*fault_addr = wva;
988 			return SIGBUS;
989 		}
990 		if (__put_user(wval, wva)) {
991 			MIPS_FPU_EMU_INC_STATS(errors);
992 			*fault_addr = wva;
993 			return SIGSEGV;
994 		}
995 		break;
996 
997 	case cop1_op:
998 		switch (MIPSInst_RS(ir)) {
999 		case dmfc_op:
1000 			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1001 				return SIGILL;
1002 
1003 			/* copregister fs -> gpr[rt] */
1004 			if (MIPSInst_RT(ir) != 0) {
1005 				DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
1006 					MIPSInst_RD(ir));
1007 			}
1008 			break;
1009 
1010 		case dmtc_op:
1011 			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1012 				return SIGILL;
1013 
1014 			/* copregister fs <- rt */
1015 			DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1016 			break;
1017 
1018 		case mfhc_op:
1019 			if (!cpu_has_mips_r2)
1020 				goto sigill;
1021 
1022 			/* copregister rd -> gpr[rt] */
1023 			if (MIPSInst_RT(ir) != 0) {
1024 				SIFROMHREG(xcp->regs[MIPSInst_RT(ir)],
1025 					MIPSInst_RD(ir));
1026 			}
1027 			break;
1028 
1029 		case mthc_op:
1030 			if (!cpu_has_mips_r2)
1031 				goto sigill;
1032 
1033 			/* copregister rd <- gpr[rt] */
1034 			SITOHREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1035 			break;
1036 
1037 		case mfc_op:
1038 			/* copregister rd -> gpr[rt] */
1039 			if (MIPSInst_RT(ir) != 0) {
1040 				SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
1041 					MIPSInst_RD(ir));
1042 			}
1043 			break;
1044 
1045 		case mtc_op:
1046 			/* copregister rd <- rt */
1047 			SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1048 			break;
1049 
1050 		case cfc_op:
1051 			/* cop control register rd -> gpr[rt] */
1052 			if (MIPSInst_RD(ir) == FPCREG_CSR) {
1053 				value = ctx->fcr31;
1054 				value = (value & ~FPU_CSR_RM) | modeindex(value);
1055 				pr_debug("%p gpr[%d]<-csr=%08x\n",
1056 					 (void *) (xcp->cp0_epc),
1057 					 MIPSInst_RT(ir), value);
1058 			}
1059 			else if (MIPSInst_RD(ir) == FPCREG_RID)
1060 				value = 0;
1061 			else
1062 				value = 0;
1063 			if (MIPSInst_RT(ir))
1064 				xcp->regs[MIPSInst_RT(ir)] = value;
1065 			break;
1066 
1067 		case ctc_op:
1068 			/* copregister rd <- rt */
1069 			if (MIPSInst_RT(ir) == 0)
1070 				value = 0;
1071 			else
1072 				value = xcp->regs[MIPSInst_RT(ir)];
1073 
1074 			/* we only have one writable control reg
1075 			 */
1076 			if (MIPSInst_RD(ir) == FPCREG_CSR) {
1077 				pr_debug("%p gpr[%d]->csr=%08x\n",
1078 					 (void *) (xcp->cp0_epc),
1079 					 MIPSInst_RT(ir), value);
1080 
1081 				/*
1082 				 * Don't write reserved bits,
1083 				 * and convert to ieee library modes
1084 				 */
1085 				ctx->fcr31 = (value & ~(FPU_CSR_RSVD | FPU_CSR_RM)) |
1086 					     modeindex(value);
1087 			}
1088 			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1089 				return SIGFPE;
1090 			}
1091 			break;
1092 
1093 		case bc_op:
1094 			if (delay_slot(xcp))
1095 				return SIGILL;
1096 
1097 			if (cpu_has_mips_4_5_r)
1098 				cbit = fpucondbit[MIPSInst_RT(ir) >> 2];
1099 			else
1100 				cbit = FPU_CSR_COND;
1101 			cond = ctx->fcr31 & cbit;
1102 
1103 			likely = 0;
1104 			switch (MIPSInst_RT(ir) & 3) {
1105 			case bcfl_op:
1106 				likely = 1;
1107 			case bcf_op:
1108 				cond = !cond;
1109 				break;
1110 			case bctl_op:
1111 				likely = 1;
1112 			case bct_op:
1113 				break;
1114 			default:
1115 				/* thats an illegal instruction */
1116 				return SIGILL;
1117 			}
1118 
1119 			set_delay_slot(xcp);
1120 			if (cond) {
1121 				/*
1122 				 * Branch taken: emulate dslot instruction
1123 				 */
1124 				xcp->cp0_epc += dec_insn.pc_inc;
1125 
1126 				contpc = MIPSInst_SIMM(ir);
1127 				ir = dec_insn.next_insn;
1128 				if (dec_insn.micro_mips_mode) {
1129 					contpc = (xcp->cp0_epc + (contpc << 1));
1130 
1131 					/* If 16-bit instruction, not FPU. */
1132 					if ((dec_insn.next_pc_inc == 2) ||
1133 						(microMIPS32_to_MIPS32((union mips_instruction *)&ir) == SIGILL)) {
1134 
1135 						/*
1136 						 * Since this instruction will
1137 						 * be put on the stack with
1138 						 * 32-bit words, get around
1139 						 * this problem by putting a
1140 						 * NOP16 as the second one.
1141 						 */
1142 						if (dec_insn.next_pc_inc == 2)
1143 							ir = (ir & (~0xffff)) | MM_NOP16;
1144 
1145 						/*
1146 						 * Single step the non-CP1
1147 						 * instruction in the dslot.
1148 						 */
1149 						return mips_dsemul(xcp, ir, contpc);
1150 					}
1151 				} else
1152 					contpc = (xcp->cp0_epc + (contpc << 2));
1153 
1154 				switch (MIPSInst_OPCODE(ir)) {
1155 				case lwc1_op:
1156 					goto emul;
1157 
1158 				case swc1_op:
1159 					goto emul;
1160 
1161 				case ldc1_op:
1162 				case sdc1_op:
1163 					if (cpu_has_mips_2_3_4_5 ||
1164 					    cpu_has_mips64)
1165 						goto emul;
1166 
1167 					return SIGILL;
1168 					goto emul;
1169 
1170 				case cop1_op:
1171 					goto emul;
1172 
1173 				case cop1x_op:
1174 					if (cpu_has_mips_4_5 || cpu_has_mips64 || cpu_has_mips32r2)
1175 						/* its one of ours */
1176 						goto emul;
1177 
1178 					return SIGILL;
1179 
1180 				case spec_op:
1181 					if (!cpu_has_mips_4_5_r)
1182 						return SIGILL;
1183 
1184 					if (MIPSInst_FUNC(ir) == movc_op)
1185 						goto emul;
1186 					break;
1187 				}
1188 
1189 				/*
1190 				 * Single step the non-cp1
1191 				 * instruction in the dslot
1192 				 */
1193 				return mips_dsemul(xcp, ir, contpc);
1194 			} else if (likely) {	/* branch not taken */
1195 					/*
1196 					 * branch likely nullifies
1197 					 * dslot if not taken
1198 					 */
1199 					xcp->cp0_epc += dec_insn.pc_inc;
1200 					contpc += dec_insn.pc_inc;
1201 					/*
1202 					 * else continue & execute
1203 					 * dslot as normal insn
1204 					 */
1205 				}
1206 			break;
1207 
1208 		default:
1209 			if (!(MIPSInst_RS(ir) & 0x10))
1210 				return SIGILL;
1211 
1212 			/* a real fpu computation instruction */
1213 			if ((sig = fpu_emu(xcp, ctx, ir)))
1214 				return sig;
1215 		}
1216 		break;
1217 
1218 	case cop1x_op:
1219 		if (!cpu_has_mips_4_5 && !cpu_has_mips64 && !cpu_has_mips32r2)
1220 			return SIGILL;
1221 
1222 		sig = fpux_emu(xcp, ctx, ir, fault_addr);
1223 		if (sig)
1224 			return sig;
1225 		break;
1226 
1227 	case spec_op:
1228 		if (!cpu_has_mips_4_5_r)
1229 			return SIGILL;
1230 
1231 		if (MIPSInst_FUNC(ir) != movc_op)
1232 			return SIGILL;
1233 		cond = fpucondbit[MIPSInst_RT(ir) >> 2];
1234 		if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
1235 			xcp->regs[MIPSInst_RD(ir)] =
1236 				xcp->regs[MIPSInst_RS(ir)];
1237 		break;
1238 	default:
1239 sigill:
1240 		return SIGILL;
1241 	}
1242 
1243 	/* we did it !! */
1244 	xcp->cp0_epc = contpc;
1245 	clear_delay_slot(xcp);
1246 
1247 	return 0;
1248 }
1249 
1250 /*
1251  * Conversion table from MIPS compare ops 48-63
1252  * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
1253  */
1254 static const unsigned char cmptab[8] = {
1255 	0,			/* cmp_0 (sig) cmp_sf */
1256 	IEEE754_CUN,		/* cmp_un (sig) cmp_ngle */
1257 	IEEE754_CEQ,		/* cmp_eq (sig) cmp_seq */
1258 	IEEE754_CEQ | IEEE754_CUN,	/* cmp_ueq (sig) cmp_ngl  */
1259 	IEEE754_CLT,		/* cmp_olt (sig) cmp_lt */
1260 	IEEE754_CLT | IEEE754_CUN,	/* cmp_ult (sig) cmp_nge */
1261 	IEEE754_CLT | IEEE754_CEQ,	/* cmp_ole (sig) cmp_le */
1262 	IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN,	/* cmp_ule (sig) cmp_ngt */
1263 };
1264 
1265 
1266 /*
1267  * Additional MIPS4 instructions
1268  */
1269 
1270 #define DEF3OP(name, p, f1, f2, f3)					\
1271 static union ieee754##p fpemu_##p##_##name(union ieee754##p r,		\
1272 	union ieee754##p s, union ieee754##p t)				\
1273 {									\
1274 	struct _ieee754_csr ieee754_csr_save;				\
1275 	s = f1(s, t);							\
1276 	ieee754_csr_save = ieee754_csr;					\
1277 	s = f2(s, r);							\
1278 	ieee754_csr_save.cx |= ieee754_csr.cx;				\
1279 	ieee754_csr_save.sx |= ieee754_csr.sx;				\
1280 	s = f3(s);							\
1281 	ieee754_csr.cx |= ieee754_csr_save.cx;				\
1282 	ieee754_csr.sx |= ieee754_csr_save.sx;				\
1283 	return s;							\
1284 }
1285 
1286 static union ieee754dp fpemu_dp_recip(union ieee754dp d)
1287 {
1288 	return ieee754dp_div(ieee754dp_one(0), d);
1289 }
1290 
1291 static union ieee754dp fpemu_dp_rsqrt(union ieee754dp d)
1292 {
1293 	return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d));
1294 }
1295 
1296 static union ieee754sp fpemu_sp_recip(union ieee754sp s)
1297 {
1298 	return ieee754sp_div(ieee754sp_one(0), s);
1299 }
1300 
1301 static union ieee754sp fpemu_sp_rsqrt(union ieee754sp s)
1302 {
1303 	return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s));
1304 }
1305 
1306 DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add, );
1307 DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub, );
1308 DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg);
1309 DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg);
1310 DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add, );
1311 DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub, );
1312 DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg);
1313 DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg);
1314 
1315 static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1316 	mips_instruction ir, void *__user *fault_addr)
1317 {
1318 	unsigned rcsr = 0;	/* resulting csr */
1319 
1320 	MIPS_FPU_EMU_INC_STATS(cp1xops);
1321 
1322 	switch (MIPSInst_FMA_FFMT(ir)) {
1323 	case s_fmt:{		/* 0 */
1324 
1325 		union ieee754sp(*handler) (union ieee754sp, union ieee754sp, union ieee754sp);
1326 		union ieee754sp fd, fr, fs, ft;
1327 		u32 __user *va;
1328 		u32 val;
1329 
1330 		switch (MIPSInst_FUNC(ir)) {
1331 		case lwxc1_op:
1332 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1333 				xcp->regs[MIPSInst_FT(ir)]);
1334 
1335 			MIPS_FPU_EMU_INC_STATS(loads);
1336 			if (!access_ok(VERIFY_READ, va, sizeof(u32))) {
1337 				MIPS_FPU_EMU_INC_STATS(errors);
1338 				*fault_addr = va;
1339 				return SIGBUS;
1340 			}
1341 			if (__get_user(val, va)) {
1342 				MIPS_FPU_EMU_INC_STATS(errors);
1343 				*fault_addr = va;
1344 				return SIGSEGV;
1345 			}
1346 			SITOREG(val, MIPSInst_FD(ir));
1347 			break;
1348 
1349 		case swxc1_op:
1350 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1351 				xcp->regs[MIPSInst_FT(ir)]);
1352 
1353 			MIPS_FPU_EMU_INC_STATS(stores);
1354 
1355 			SIFROMREG(val, MIPSInst_FS(ir));
1356 			if (!access_ok(VERIFY_WRITE, va, sizeof(u32))) {
1357 				MIPS_FPU_EMU_INC_STATS(errors);
1358 				*fault_addr = va;
1359 				return SIGBUS;
1360 			}
1361 			if (put_user(val, va)) {
1362 				MIPS_FPU_EMU_INC_STATS(errors);
1363 				*fault_addr = va;
1364 				return SIGSEGV;
1365 			}
1366 			break;
1367 
1368 		case madd_s_op:
1369 			handler = fpemu_sp_madd;
1370 			goto scoptop;
1371 		case msub_s_op:
1372 			handler = fpemu_sp_msub;
1373 			goto scoptop;
1374 		case nmadd_s_op:
1375 			handler = fpemu_sp_nmadd;
1376 			goto scoptop;
1377 		case nmsub_s_op:
1378 			handler = fpemu_sp_nmsub;
1379 			goto scoptop;
1380 
1381 		      scoptop:
1382 			SPFROMREG(fr, MIPSInst_FR(ir));
1383 			SPFROMREG(fs, MIPSInst_FS(ir));
1384 			SPFROMREG(ft, MIPSInst_FT(ir));
1385 			fd = (*handler) (fr, fs, ft);
1386 			SPTOREG(fd, MIPSInst_FD(ir));
1387 
1388 		      copcsr:
1389 			if (ieee754_cxtest(IEEE754_INEXACT)) {
1390 				MIPS_FPU_EMU_INC_STATS(ieee754_inexact);
1391 				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1392 			}
1393 			if (ieee754_cxtest(IEEE754_UNDERFLOW)) {
1394 				MIPS_FPU_EMU_INC_STATS(ieee754_underflow);
1395 				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1396 			}
1397 			if (ieee754_cxtest(IEEE754_OVERFLOW)) {
1398 				MIPS_FPU_EMU_INC_STATS(ieee754_overflow);
1399 				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1400 			}
1401 			if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) {
1402 				MIPS_FPU_EMU_INC_STATS(ieee754_invalidop);
1403 				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1404 			}
1405 
1406 			ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1407 			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1408 				/*printk ("SIGFPE: FPU csr = %08x\n",
1409 				   ctx->fcr31); */
1410 				return SIGFPE;
1411 			}
1412 
1413 			break;
1414 
1415 		default:
1416 			return SIGILL;
1417 		}
1418 		break;
1419 	}
1420 
1421 	case d_fmt:{		/* 1 */
1422 		union ieee754dp(*handler) (union ieee754dp, union ieee754dp, union ieee754dp);
1423 		union ieee754dp fd, fr, fs, ft;
1424 		u64 __user *va;
1425 		u64 val;
1426 
1427 		switch (MIPSInst_FUNC(ir)) {
1428 		case ldxc1_op:
1429 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1430 				xcp->regs[MIPSInst_FT(ir)]);
1431 
1432 			MIPS_FPU_EMU_INC_STATS(loads);
1433 			if (!access_ok(VERIFY_READ, va, sizeof(u64))) {
1434 				MIPS_FPU_EMU_INC_STATS(errors);
1435 				*fault_addr = va;
1436 				return SIGBUS;
1437 			}
1438 			if (__get_user(val, va)) {
1439 				MIPS_FPU_EMU_INC_STATS(errors);
1440 				*fault_addr = va;
1441 				return SIGSEGV;
1442 			}
1443 			DITOREG(val, MIPSInst_FD(ir));
1444 			break;
1445 
1446 		case sdxc1_op:
1447 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1448 				xcp->regs[MIPSInst_FT(ir)]);
1449 
1450 			MIPS_FPU_EMU_INC_STATS(stores);
1451 			DIFROMREG(val, MIPSInst_FS(ir));
1452 			if (!access_ok(VERIFY_WRITE, va, sizeof(u64))) {
1453 				MIPS_FPU_EMU_INC_STATS(errors);
1454 				*fault_addr = va;
1455 				return SIGBUS;
1456 			}
1457 			if (__put_user(val, va)) {
1458 				MIPS_FPU_EMU_INC_STATS(errors);
1459 				*fault_addr = va;
1460 				return SIGSEGV;
1461 			}
1462 			break;
1463 
1464 		case madd_d_op:
1465 			handler = fpemu_dp_madd;
1466 			goto dcoptop;
1467 		case msub_d_op:
1468 			handler = fpemu_dp_msub;
1469 			goto dcoptop;
1470 		case nmadd_d_op:
1471 			handler = fpemu_dp_nmadd;
1472 			goto dcoptop;
1473 		case nmsub_d_op:
1474 			handler = fpemu_dp_nmsub;
1475 			goto dcoptop;
1476 
1477 		      dcoptop:
1478 			DPFROMREG(fr, MIPSInst_FR(ir));
1479 			DPFROMREG(fs, MIPSInst_FS(ir));
1480 			DPFROMREG(ft, MIPSInst_FT(ir));
1481 			fd = (*handler) (fr, fs, ft);
1482 			DPTOREG(fd, MIPSInst_FD(ir));
1483 			goto copcsr;
1484 
1485 		default:
1486 			return SIGILL;
1487 		}
1488 		break;
1489 	}
1490 
1491 	case 0x3:
1492 		if (MIPSInst_FUNC(ir) != pfetch_op)
1493 			return SIGILL;
1494 
1495 		/* ignore prefx operation */
1496 		break;
1497 
1498 	default:
1499 		return SIGILL;
1500 	}
1501 
1502 	return 0;
1503 }
1504 
1505 
1506 
1507 /*
1508  * Emulate a single COP1 arithmetic instruction.
1509  */
1510 static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1511 	mips_instruction ir)
1512 {
1513 	int rfmt;		/* resulting format */
1514 	unsigned rcsr = 0;	/* resulting csr */
1515 	unsigned int oldrm;
1516 	unsigned int cbit;
1517 	unsigned cond;
1518 	union {
1519 		union ieee754dp d;
1520 		union ieee754sp s;
1521 		int w;
1522 		s64 l;
1523 	} rv;			/* resulting value */
1524 	u64 bits;
1525 
1526 	MIPS_FPU_EMU_INC_STATS(cp1ops);
1527 	switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) {
1528 	case s_fmt: {		/* 0 */
1529 		union {
1530 			union ieee754sp(*b) (union ieee754sp, union ieee754sp);
1531 			union ieee754sp(*u) (union ieee754sp);
1532 		} handler;
1533 		union ieee754sp fs, ft;
1534 
1535 		switch (MIPSInst_FUNC(ir)) {
1536 			/* binary ops */
1537 		case fadd_op:
1538 			handler.b = ieee754sp_add;
1539 			goto scopbop;
1540 		case fsub_op:
1541 			handler.b = ieee754sp_sub;
1542 			goto scopbop;
1543 		case fmul_op:
1544 			handler.b = ieee754sp_mul;
1545 			goto scopbop;
1546 		case fdiv_op:
1547 			handler.b = ieee754sp_div;
1548 			goto scopbop;
1549 
1550 			/* unary  ops */
1551 		case fsqrt_op:
1552 			if (!cpu_has_mips_4_5_r)
1553 				return SIGILL;
1554 
1555 			handler.u = ieee754sp_sqrt;
1556 			goto scopuop;
1557 
1558 		/*
1559 		 * Note that on some MIPS IV implementations such as the
1560 		 * R5000 and R8000 the FSQRT and FRECIP instructions do not
1561 		 * achieve full IEEE-754 accuracy - however this emulator does.
1562 		 */
1563 		case frsqrt_op:
1564 			if (!cpu_has_mips_4_5_r2_r6)
1565 				return SIGILL;
1566 
1567 			handler.u = fpemu_sp_rsqrt;
1568 			goto scopuop;
1569 
1570 		case frecip_op:
1571 			if (!cpu_has_mips_4_5_r2_r6)
1572 				return SIGILL;
1573 
1574 			handler.u = fpemu_sp_recip;
1575 			goto scopuop;
1576 
1577 		case fmovc_op:
1578 			if (!cpu_has_mips_4_5_r)
1579 				return SIGILL;
1580 
1581 			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1582 			if (((ctx->fcr31 & cond) != 0) !=
1583 				((MIPSInst_FT(ir) & 1) != 0))
1584 				return 0;
1585 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1586 			break;
1587 
1588 		case fmovz_op:
1589 			if (!cpu_has_mips_4_5_r)
1590 				return SIGILL;
1591 
1592 			if (xcp->regs[MIPSInst_FT(ir)] != 0)
1593 				return 0;
1594 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1595 			break;
1596 
1597 		case fmovn_op:
1598 			if (!cpu_has_mips_4_5_r)
1599 				return SIGILL;
1600 
1601 			if (xcp->regs[MIPSInst_FT(ir)] == 0)
1602 				return 0;
1603 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1604 			break;
1605 
1606 		case fabs_op:
1607 			handler.u = ieee754sp_abs;
1608 			goto scopuop;
1609 
1610 		case fneg_op:
1611 			handler.u = ieee754sp_neg;
1612 			goto scopuop;
1613 
1614 		case fmov_op:
1615 			/* an easy one */
1616 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1617 			goto copcsr;
1618 
1619 			/* binary op on handler */
1620 scopbop:
1621 			SPFROMREG(fs, MIPSInst_FS(ir));
1622 			SPFROMREG(ft, MIPSInst_FT(ir));
1623 
1624 			rv.s = (*handler.b) (fs, ft);
1625 			goto copcsr;
1626 scopuop:
1627 			SPFROMREG(fs, MIPSInst_FS(ir));
1628 			rv.s = (*handler.u) (fs);
1629 			goto copcsr;
1630 copcsr:
1631 			if (ieee754_cxtest(IEEE754_INEXACT)) {
1632 				MIPS_FPU_EMU_INC_STATS(ieee754_inexact);
1633 				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1634 			}
1635 			if (ieee754_cxtest(IEEE754_UNDERFLOW)) {
1636 				MIPS_FPU_EMU_INC_STATS(ieee754_underflow);
1637 				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1638 			}
1639 			if (ieee754_cxtest(IEEE754_OVERFLOW)) {
1640 				MIPS_FPU_EMU_INC_STATS(ieee754_overflow);
1641 				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1642 			}
1643 			if (ieee754_cxtest(IEEE754_ZERO_DIVIDE)) {
1644 				MIPS_FPU_EMU_INC_STATS(ieee754_zerodiv);
1645 				rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S;
1646 			}
1647 			if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) {
1648 				MIPS_FPU_EMU_INC_STATS(ieee754_invalidop);
1649 				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1650 			}
1651 			break;
1652 
1653 			/* unary conv ops */
1654 		case fcvts_op:
1655 			return SIGILL;	/* not defined */
1656 
1657 		case fcvtd_op:
1658 			SPFROMREG(fs, MIPSInst_FS(ir));
1659 			rv.d = ieee754dp_fsp(fs);
1660 			rfmt = d_fmt;
1661 			goto copcsr;
1662 
1663 		case fcvtw_op:
1664 			SPFROMREG(fs, MIPSInst_FS(ir));
1665 			rv.w = ieee754sp_tint(fs);
1666 			rfmt = w_fmt;
1667 			goto copcsr;
1668 
1669 		case fround_op:
1670 		case ftrunc_op:
1671 		case fceil_op:
1672 		case ffloor_op:
1673 			if (!cpu_has_mips_2_3_4_5 && !cpu_has_mips64)
1674 				return SIGILL;
1675 
1676 			oldrm = ieee754_csr.rm;
1677 			SPFROMREG(fs, MIPSInst_FS(ir));
1678 			ieee754_csr.rm = modeindex(MIPSInst_FUNC(ir));
1679 			rv.w = ieee754sp_tint(fs);
1680 			ieee754_csr.rm = oldrm;
1681 			rfmt = w_fmt;
1682 			goto copcsr;
1683 
1684 		case fcvtl_op:
1685 			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1686 				return SIGILL;
1687 
1688 			SPFROMREG(fs, MIPSInst_FS(ir));
1689 			rv.l = ieee754sp_tlong(fs);
1690 			rfmt = l_fmt;
1691 			goto copcsr;
1692 
1693 		case froundl_op:
1694 		case ftruncl_op:
1695 		case fceill_op:
1696 		case ffloorl_op:
1697 			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1698 				return SIGILL;
1699 
1700 			oldrm = ieee754_csr.rm;
1701 			SPFROMREG(fs, MIPSInst_FS(ir));
1702 			ieee754_csr.rm = modeindex(MIPSInst_FUNC(ir));
1703 			rv.l = ieee754sp_tlong(fs);
1704 			ieee754_csr.rm = oldrm;
1705 			rfmt = l_fmt;
1706 			goto copcsr;
1707 
1708 		default:
1709 			if (MIPSInst_FUNC(ir) >= fcmp_op) {
1710 				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1711 				union ieee754sp fs, ft;
1712 
1713 				SPFROMREG(fs, MIPSInst_FS(ir));
1714 				SPFROMREG(ft, MIPSInst_FT(ir));
1715 				rv.w = ieee754sp_cmp(fs, ft,
1716 					cmptab[cmpop & 0x7], cmpop & 0x8);
1717 				rfmt = -1;
1718 				if ((cmpop & 0x8) && ieee754_cxtest
1719 					(IEEE754_INVALID_OPERATION))
1720 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1721 				else
1722 					goto copcsr;
1723 
1724 			} else
1725 				return SIGILL;
1726 			break;
1727 		}
1728 		break;
1729 	}
1730 
1731 	case d_fmt: {
1732 		union ieee754dp fs, ft;
1733 		union {
1734 			union ieee754dp(*b) (union ieee754dp, union ieee754dp);
1735 			union ieee754dp(*u) (union ieee754dp);
1736 		} handler;
1737 
1738 		switch (MIPSInst_FUNC(ir)) {
1739 			/* binary ops */
1740 		case fadd_op:
1741 			handler.b = ieee754dp_add;
1742 			goto dcopbop;
1743 		case fsub_op:
1744 			handler.b = ieee754dp_sub;
1745 			goto dcopbop;
1746 		case fmul_op:
1747 			handler.b = ieee754dp_mul;
1748 			goto dcopbop;
1749 		case fdiv_op:
1750 			handler.b = ieee754dp_div;
1751 			goto dcopbop;
1752 
1753 			/* unary  ops */
1754 		case fsqrt_op:
1755 			if (!cpu_has_mips_2_3_4_5_r)
1756 				return SIGILL;
1757 
1758 			handler.u = ieee754dp_sqrt;
1759 			goto dcopuop;
1760 		/*
1761 		 * Note that on some MIPS IV implementations such as the
1762 		 * R5000 and R8000 the FSQRT and FRECIP instructions do not
1763 		 * achieve full IEEE-754 accuracy - however this emulator does.
1764 		 */
1765 		case frsqrt_op:
1766 			if (!cpu_has_mips_4_5_r2_r6)
1767 				return SIGILL;
1768 
1769 			handler.u = fpemu_dp_rsqrt;
1770 			goto dcopuop;
1771 		case frecip_op:
1772 			if (!cpu_has_mips_4_5_r2_r6)
1773 				return SIGILL;
1774 
1775 			handler.u = fpemu_dp_recip;
1776 			goto dcopuop;
1777 		case fmovc_op:
1778 			if (!cpu_has_mips_4_5_r)
1779 				return SIGILL;
1780 
1781 			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1782 			if (((ctx->fcr31 & cond) != 0) !=
1783 				((MIPSInst_FT(ir) & 1) != 0))
1784 				return 0;
1785 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1786 			break;
1787 		case fmovz_op:
1788 			if (!cpu_has_mips_4_5_r)
1789 				return SIGILL;
1790 
1791 			if (xcp->regs[MIPSInst_FT(ir)] != 0)
1792 				return 0;
1793 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1794 			break;
1795 		case fmovn_op:
1796 			if (!cpu_has_mips_4_5_r)
1797 				return SIGILL;
1798 
1799 			if (xcp->regs[MIPSInst_FT(ir)] == 0)
1800 				return 0;
1801 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1802 			break;
1803 		case fabs_op:
1804 			handler.u = ieee754dp_abs;
1805 			goto dcopuop;
1806 
1807 		case fneg_op:
1808 			handler.u = ieee754dp_neg;
1809 			goto dcopuop;
1810 
1811 		case fmov_op:
1812 			/* an easy one */
1813 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1814 			goto copcsr;
1815 
1816 			/* binary op on handler */
1817 dcopbop:
1818 			DPFROMREG(fs, MIPSInst_FS(ir));
1819 			DPFROMREG(ft, MIPSInst_FT(ir));
1820 
1821 			rv.d = (*handler.b) (fs, ft);
1822 			goto copcsr;
1823 dcopuop:
1824 			DPFROMREG(fs, MIPSInst_FS(ir));
1825 			rv.d = (*handler.u) (fs);
1826 			goto copcsr;
1827 
1828 		/*
1829 		 * unary conv ops
1830 		 */
1831 		case fcvts_op:
1832 			DPFROMREG(fs, MIPSInst_FS(ir));
1833 			rv.s = ieee754sp_fdp(fs);
1834 			rfmt = s_fmt;
1835 			goto copcsr;
1836 
1837 		case fcvtd_op:
1838 			return SIGILL;	/* not defined */
1839 
1840 		case fcvtw_op:
1841 			DPFROMREG(fs, MIPSInst_FS(ir));
1842 			rv.w = ieee754dp_tint(fs);	/* wrong */
1843 			rfmt = w_fmt;
1844 			goto copcsr;
1845 
1846 		case fround_op:
1847 		case ftrunc_op:
1848 		case fceil_op:
1849 		case ffloor_op:
1850 			if (!cpu_has_mips_2_3_4_5_r)
1851 				return SIGILL;
1852 
1853 			oldrm = ieee754_csr.rm;
1854 			DPFROMREG(fs, MIPSInst_FS(ir));
1855 			ieee754_csr.rm = modeindex(MIPSInst_FUNC(ir));
1856 			rv.w = ieee754dp_tint(fs);
1857 			ieee754_csr.rm = oldrm;
1858 			rfmt = w_fmt;
1859 			goto copcsr;
1860 
1861 		case fcvtl_op:
1862 			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1863 				return SIGILL;
1864 
1865 			DPFROMREG(fs, MIPSInst_FS(ir));
1866 			rv.l = ieee754dp_tlong(fs);
1867 			rfmt = l_fmt;
1868 			goto copcsr;
1869 
1870 		case froundl_op:
1871 		case ftruncl_op:
1872 		case fceill_op:
1873 		case ffloorl_op:
1874 			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1875 				return SIGILL;
1876 
1877 			oldrm = ieee754_csr.rm;
1878 			DPFROMREG(fs, MIPSInst_FS(ir));
1879 			ieee754_csr.rm = modeindex(MIPSInst_FUNC(ir));
1880 			rv.l = ieee754dp_tlong(fs);
1881 			ieee754_csr.rm = oldrm;
1882 			rfmt = l_fmt;
1883 			goto copcsr;
1884 
1885 		default:
1886 			if (MIPSInst_FUNC(ir) >= fcmp_op) {
1887 				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1888 				union ieee754dp fs, ft;
1889 
1890 				DPFROMREG(fs, MIPSInst_FS(ir));
1891 				DPFROMREG(ft, MIPSInst_FT(ir));
1892 				rv.w = ieee754dp_cmp(fs, ft,
1893 					cmptab[cmpop & 0x7], cmpop & 0x8);
1894 				rfmt = -1;
1895 				if ((cmpop & 0x8)
1896 					&&
1897 					ieee754_cxtest
1898 					(IEEE754_INVALID_OPERATION))
1899 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1900 				else
1901 					goto copcsr;
1902 
1903 			}
1904 			else {
1905 				return SIGILL;
1906 			}
1907 			break;
1908 		}
1909 		break;
1910 
1911 	case w_fmt:
1912 		switch (MIPSInst_FUNC(ir)) {
1913 		case fcvts_op:
1914 			/* convert word to single precision real */
1915 			SPFROMREG(fs, MIPSInst_FS(ir));
1916 			rv.s = ieee754sp_fint(fs.bits);
1917 			rfmt = s_fmt;
1918 			goto copcsr;
1919 		case fcvtd_op:
1920 			/* convert word to double precision real */
1921 			SPFROMREG(fs, MIPSInst_FS(ir));
1922 			rv.d = ieee754dp_fint(fs.bits);
1923 			rfmt = d_fmt;
1924 			goto copcsr;
1925 		default:
1926 			return SIGILL;
1927 		}
1928 		break;
1929 	}
1930 
1931 	case l_fmt:
1932 
1933 		if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1934 			return SIGILL;
1935 
1936 		DIFROMREG(bits, MIPSInst_FS(ir));
1937 
1938 		switch (MIPSInst_FUNC(ir)) {
1939 		case fcvts_op:
1940 			/* convert long to single precision real */
1941 			rv.s = ieee754sp_flong(bits);
1942 			rfmt = s_fmt;
1943 			goto copcsr;
1944 		case fcvtd_op:
1945 			/* convert long to double precision real */
1946 			rv.d = ieee754dp_flong(bits);
1947 			rfmt = d_fmt;
1948 			goto copcsr;
1949 		default:
1950 			return SIGILL;
1951 		}
1952 		break;
1953 
1954 	default:
1955 		return SIGILL;
1956 	}
1957 
1958 	/*
1959 	 * Update the fpu CSR register for this operation.
1960 	 * If an exception is required, generate a tidy SIGFPE exception,
1961 	 * without updating the result register.
1962 	 * Note: cause exception bits do not accumulate, they are rewritten
1963 	 * for each op; only the flag/sticky bits accumulate.
1964 	 */
1965 	ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1966 	if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1967 		/*printk ("SIGFPE: FPU csr = %08x\n",ctx->fcr31); */
1968 		return SIGFPE;
1969 	}
1970 
1971 	/*
1972 	 * Now we can safely write the result back to the register file.
1973 	 */
1974 	switch (rfmt) {
1975 	case -1:
1976 
1977 		if (cpu_has_mips_4_5_r)
1978 			cbit = fpucondbit[MIPSInst_FD(ir) >> 2];
1979 		else
1980 			cbit = FPU_CSR_COND;
1981 		if (rv.w)
1982 			ctx->fcr31 |= cbit;
1983 		else
1984 			ctx->fcr31 &= ~cbit;
1985 		break;
1986 
1987 	case d_fmt:
1988 		DPTOREG(rv.d, MIPSInst_FD(ir));
1989 		break;
1990 	case s_fmt:
1991 		SPTOREG(rv.s, MIPSInst_FD(ir));
1992 		break;
1993 	case w_fmt:
1994 		SITOREG(rv.w, MIPSInst_FD(ir));
1995 		break;
1996 	case l_fmt:
1997 		if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1998 			return SIGILL;
1999 
2000 		DITOREG(rv.l, MIPSInst_FD(ir));
2001 		break;
2002 	default:
2003 		return SIGILL;
2004 	}
2005 
2006 	return 0;
2007 }
2008 
2009 int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
2010 	int has_fpu, void *__user *fault_addr)
2011 {
2012 	unsigned long oldepc, prevepc;
2013 	struct mm_decoded_insn dec_insn;
2014 	u16 instr[4];
2015 	u16 *instr_ptr;
2016 	int sig = 0;
2017 
2018 	oldepc = xcp->cp0_epc;
2019 	do {
2020 		prevepc = xcp->cp0_epc;
2021 
2022 		if (get_isa16_mode(prevepc) && cpu_has_mmips) {
2023 			/*
2024 			 * Get next 2 microMIPS instructions and convert them
2025 			 * into 32-bit instructions.
2026 			 */
2027 			if ((get_user(instr[0], (u16 __user *)msk_isa16_mode(xcp->cp0_epc))) ||
2028 			    (get_user(instr[1], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 2))) ||
2029 			    (get_user(instr[2], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 4))) ||
2030 			    (get_user(instr[3], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 6)))) {
2031 				MIPS_FPU_EMU_INC_STATS(errors);
2032 				return SIGBUS;
2033 			}
2034 			instr_ptr = instr;
2035 
2036 			/* Get first instruction. */
2037 			if (mm_insn_16bit(*instr_ptr)) {
2038 				/* Duplicate the half-word. */
2039 				dec_insn.insn = (*instr_ptr << 16) |
2040 					(*instr_ptr);
2041 				/* 16-bit instruction. */
2042 				dec_insn.pc_inc = 2;
2043 				instr_ptr += 1;
2044 			} else {
2045 				dec_insn.insn = (*instr_ptr << 16) |
2046 					*(instr_ptr+1);
2047 				/* 32-bit instruction. */
2048 				dec_insn.pc_inc = 4;
2049 				instr_ptr += 2;
2050 			}
2051 			/* Get second instruction. */
2052 			if (mm_insn_16bit(*instr_ptr)) {
2053 				/* Duplicate the half-word. */
2054 				dec_insn.next_insn = (*instr_ptr << 16) |
2055 					(*instr_ptr);
2056 				/* 16-bit instruction. */
2057 				dec_insn.next_pc_inc = 2;
2058 			} else {
2059 				dec_insn.next_insn = (*instr_ptr << 16) |
2060 					*(instr_ptr+1);
2061 				/* 32-bit instruction. */
2062 				dec_insn.next_pc_inc = 4;
2063 			}
2064 			dec_insn.micro_mips_mode = 1;
2065 		} else {
2066 			if ((get_user(dec_insn.insn,
2067 			    (mips_instruction __user *) xcp->cp0_epc)) ||
2068 			    (get_user(dec_insn.next_insn,
2069 			    (mips_instruction __user *)(xcp->cp0_epc+4)))) {
2070 				MIPS_FPU_EMU_INC_STATS(errors);
2071 				return SIGBUS;
2072 			}
2073 			dec_insn.pc_inc = 4;
2074 			dec_insn.next_pc_inc = 4;
2075 			dec_insn.micro_mips_mode = 0;
2076 		}
2077 
2078 		if ((dec_insn.insn == 0) ||
2079 		   ((dec_insn.pc_inc == 2) &&
2080 		   ((dec_insn.insn & 0xffff) == MM_NOP16)))
2081 			xcp->cp0_epc += dec_insn.pc_inc;	/* Skip NOPs */
2082 		else {
2083 			/*
2084 			 * The 'ieee754_csr' is an alias of
2085 			 * ctx->fcr31.	No need to copy ctx->fcr31 to
2086 			 * ieee754_csr.	 But ieee754_csr.rm is ieee
2087 			 * library modes. (not mips rounding mode)
2088 			 */
2089 			sig = cop1Emulate(xcp, ctx, dec_insn, fault_addr);
2090 		}
2091 
2092 		if (has_fpu)
2093 			break;
2094 		if (sig)
2095 			break;
2096 
2097 		cond_resched();
2098 	} while (xcp->cp0_epc > prevepc);
2099 
2100 	/* SIGILL indicates a non-fpu instruction */
2101 	if (sig == SIGILL && xcp->cp0_epc != oldepc)
2102 		/* but if EPC has advanced, then ignore it */
2103 		sig = 0;
2104 
2105 	return sig;
2106 }
2107