xref: /openbmc/linux/arch/mips/lantiq/xway/sysctrl.c (revision f40e1f9d)
1 /*
2  *  This program is free software; you can redistribute it and/or modify it
3  *  under the terms of the GNU General Public License version 2 as published
4  *  by the Free Software Foundation.
5  *
6  *  Copyright (C) 2011-2012 John Crispin <blogic@openwrt.org>
7  */
8 
9 #include <linux/ioport.h>
10 #include <linux/export.h>
11 #include <linux/clkdev.h>
12 #include <linux/of.h>
13 #include <linux/of_platform.h>
14 #include <linux/of_address.h>
15 
16 #include <lantiq_soc.h>
17 
18 #include "../clk.h"
19 #include "../prom.h"
20 
21 /* clock control register */
22 #define CGU_IFCCR	0x0018
23 #define CGU_IFCCR_VR9	0x0024
24 /* system clock register */
25 #define CGU_SYS		0x0010
26 /* pci control register */
27 #define CGU_PCICR	0x0034
28 #define CGU_PCICR_VR9	0x0038
29 /* ephy configuration register */
30 #define CGU_EPHY	0x10
31 /* power control register */
32 #define PMU_PWDCR	0x1C
33 /* power status register */
34 #define PMU_PWDSR	0x20
35 /* power control register */
36 #define PMU_PWDCR1	0x24
37 /* power status register */
38 #define PMU_PWDSR1	0x28
39 /* power control register */
40 #define PWDCR(x) ((x) ? (PMU_PWDCR1) : (PMU_PWDCR))
41 /* power status register */
42 #define PWDSR(x) ((x) ? (PMU_PWDSR1) : (PMU_PWDSR))
43 
44 /* clock gates that we can en/disable */
45 #define PMU_USB0_P	BIT(0)
46 #define PMU_PCI		BIT(4)
47 #define PMU_DMA		BIT(5)
48 #define PMU_USB0	BIT(6)
49 #define PMU_ASC0	BIT(7)
50 #define PMU_EPHY	BIT(7)	/* ase */
51 #define PMU_SPI		BIT(8)
52 #define PMU_DFE		BIT(9)
53 #define PMU_EBU		BIT(10)
54 #define PMU_STP		BIT(11)
55 #define PMU_GPT		BIT(12)
56 #define PMU_AHBS	BIT(13) /* vr9 */
57 #define PMU_FPI		BIT(14)
58 #define PMU_AHBM	BIT(15)
59 #define PMU_ASC1	BIT(17)
60 #define PMU_PPE_QSB	BIT(18)
61 #define PMU_PPE_SLL01	BIT(19)
62 #define PMU_PPE_TC	BIT(21)
63 #define PMU_PPE_EMA	BIT(22)
64 #define PMU_PPE_DPLUM	BIT(23)
65 #define PMU_PPE_DPLUS	BIT(24)
66 #define PMU_USB1_P	BIT(26)
67 #define PMU_USB1	BIT(27)
68 #define PMU_SWITCH	BIT(28)
69 #define PMU_PPE_TOP	BIT(29)
70 #define PMU_GPHY	BIT(30)
71 #define PMU_PCIE_CLK	BIT(31)
72 
73 #define PMU1_PCIE_PHY	BIT(0)
74 #define PMU1_PCIE_CTL	BIT(1)
75 #define PMU1_PCIE_PDI	BIT(4)
76 #define PMU1_PCIE_MSI	BIT(5)
77 
78 #define pmu_w32(x, y)	ltq_w32((x), pmu_membase + (y))
79 #define pmu_r32(x)	ltq_r32(pmu_membase + (x))
80 
81 static void __iomem *pmu_membase;
82 void __iomem *ltq_cgu_membase;
83 void __iomem *ltq_ebu_membase;
84 
85 static u32 ifccr = CGU_IFCCR;
86 static u32 pcicr = CGU_PCICR;
87 
88 /* legacy function kept alive to ease clkdev transition */
89 void ltq_pmu_enable(unsigned int module)
90 {
91 	int err = 1000000;
92 
93 	pmu_w32(pmu_r32(PMU_PWDCR) & ~module, PMU_PWDCR);
94 	do {} while (--err && (pmu_r32(PMU_PWDSR) & module));
95 
96 	if (!err)
97 		panic("activating PMU module failed!");
98 }
99 EXPORT_SYMBOL(ltq_pmu_enable);
100 
101 /* legacy function kept alive to ease clkdev transition */
102 void ltq_pmu_disable(unsigned int module)
103 {
104 	pmu_w32(pmu_r32(PMU_PWDCR) | module, PMU_PWDCR);
105 }
106 EXPORT_SYMBOL(ltq_pmu_disable);
107 
108 /* enable a hw clock */
109 static int cgu_enable(struct clk *clk)
110 {
111 	ltq_cgu_w32(ltq_cgu_r32(ifccr) | clk->bits, ifccr);
112 	return 0;
113 }
114 
115 /* disable a hw clock */
116 static void cgu_disable(struct clk *clk)
117 {
118 	ltq_cgu_w32(ltq_cgu_r32(ifccr) & ~clk->bits, ifccr);
119 }
120 
121 /* enable a clock gate */
122 static int pmu_enable(struct clk *clk)
123 {
124 	int retry = 1000000;
125 
126 	pmu_w32(pmu_r32(PWDCR(clk->module)) & ~clk->bits,
127 		PWDCR(clk->module));
128 	do {} while (--retry && (pmu_r32(PWDSR(clk->module)) & clk->bits));
129 
130 	if (!retry)
131 		panic("activating PMU module failed!\n");
132 
133 	return 0;
134 }
135 
136 /* disable a clock gate */
137 static void pmu_disable(struct clk *clk)
138 {
139 	pmu_w32(pmu_r32(PWDCR(clk->module)) | clk->bits,
140 		PWDCR(clk->module));
141 }
142 
143 /* the pci enable helper */
144 static int pci_enable(struct clk *clk)
145 {
146 	unsigned int val = ltq_cgu_r32(ifccr);
147 	/* set bus clock speed */
148 	if (of_machine_is_compatible("lantiq,ar9") ||
149 			of_machine_is_compatible("lantiq,vr9")) {
150 		val &= ~0x1f00000;
151 		if (clk->rate == CLOCK_33M)
152 			val |= 0xe00000;
153 		else
154 			val |= 0x700000; /* 62.5M */
155 	} else {
156 		val &= ~0xf00000;
157 		if (clk->rate == CLOCK_33M)
158 			val |= 0x800000;
159 		else
160 			val |= 0x400000; /* 62.5M */
161 	}
162 	ltq_cgu_w32(val, ifccr);
163 	pmu_enable(clk);
164 	return 0;
165 }
166 
167 /* enable the external clock as a source */
168 static int pci_ext_enable(struct clk *clk)
169 {
170 	ltq_cgu_w32(ltq_cgu_r32(ifccr) & ~(1 << 16), ifccr);
171 	ltq_cgu_w32((1 << 30), pcicr);
172 	return 0;
173 }
174 
175 /* disable the external clock as a source */
176 static void pci_ext_disable(struct clk *clk)
177 {
178 	ltq_cgu_w32(ltq_cgu_r32(ifccr) | (1 << 16), ifccr);
179 	ltq_cgu_w32((1 << 31) | (1 << 30), pcicr);
180 }
181 
182 /* enable a clockout source */
183 static int clkout_enable(struct clk *clk)
184 {
185 	int i;
186 
187 	/* get the correct rate */
188 	for (i = 0; i < 4; i++) {
189 		if (clk->rates[i] == clk->rate) {
190 			int shift = 14 - (2 * clk->module);
191 			unsigned int val = ltq_cgu_r32(ifccr);
192 
193 			val &= ~(3 << shift);
194 			val |= i << shift;
195 			ltq_cgu_w32(val, ifccr);
196 			return 0;
197 		}
198 	}
199 	return -1;
200 }
201 
202 /* manage the clock gates via PMU */
203 static void clkdev_add_pmu(const char *dev, const char *con,
204 					unsigned int module, unsigned int bits)
205 {
206 	struct clk *clk = kzalloc(sizeof(struct clk), GFP_KERNEL);
207 
208 	clk->cl.dev_id = dev;
209 	clk->cl.con_id = con;
210 	clk->cl.clk = clk;
211 	clk->enable = pmu_enable;
212 	clk->disable = pmu_disable;
213 	clk->module = module;
214 	clk->bits = bits;
215 	clkdev_add(&clk->cl);
216 }
217 
218 /* manage the clock generator */
219 static void clkdev_add_cgu(const char *dev, const char *con,
220 					unsigned int bits)
221 {
222 	struct clk *clk = kzalloc(sizeof(struct clk), GFP_KERNEL);
223 
224 	clk->cl.dev_id = dev;
225 	clk->cl.con_id = con;
226 	clk->cl.clk = clk;
227 	clk->enable = cgu_enable;
228 	clk->disable = cgu_disable;
229 	clk->bits = bits;
230 	clkdev_add(&clk->cl);
231 }
232 
233 /* pci needs its own enable function as the setup is a bit more complex */
234 static unsigned long valid_pci_rates[] = {CLOCK_33M, CLOCK_62_5M, 0};
235 
236 static void clkdev_add_pci(void)
237 {
238 	struct clk *clk = kzalloc(sizeof(struct clk), GFP_KERNEL);
239 	struct clk *clk_ext = kzalloc(sizeof(struct clk), GFP_KERNEL);
240 
241 	/* main pci clock */
242 	clk->cl.dev_id = "17000000.pci";
243 	clk->cl.con_id = NULL;
244 	clk->cl.clk = clk;
245 	clk->rate = CLOCK_33M;
246 	clk->rates = valid_pci_rates;
247 	clk->enable = pci_enable;
248 	clk->disable = pmu_disable;
249 	clk->module = 0;
250 	clk->bits = PMU_PCI;
251 	clkdev_add(&clk->cl);
252 
253 	/* use internal/external bus clock */
254 	clk_ext->cl.dev_id = "17000000.pci";
255 	clk_ext->cl.con_id = "external";
256 	clk_ext->cl.clk = clk_ext;
257 	clk_ext->enable = pci_ext_enable;
258 	clk_ext->disable = pci_ext_disable;
259 	clkdev_add(&clk_ext->cl);
260 }
261 
262 /* xway socs can generate clocks on gpio pins */
263 static unsigned long valid_clkout_rates[4][5] = {
264 	{CLOCK_32_768K, CLOCK_1_536M, CLOCK_2_5M, CLOCK_12M, 0},
265 	{CLOCK_40M, CLOCK_12M, CLOCK_24M, CLOCK_48M, 0},
266 	{CLOCK_25M, CLOCK_40M, CLOCK_30M, CLOCK_60M, 0},
267 	{CLOCK_12M, CLOCK_50M, CLOCK_32_768K, CLOCK_25M, 0},
268 };
269 
270 static void clkdev_add_clkout(void)
271 {
272 	int i;
273 
274 	for (i = 0; i < 4; i++) {
275 		struct clk *clk;
276 		char *name;
277 
278 		name = kzalloc(sizeof("clkout0"), GFP_KERNEL);
279 		sprintf(name, "clkout%d", i);
280 
281 		clk = kzalloc(sizeof(struct clk), GFP_KERNEL);
282 		clk->cl.dev_id = "1f103000.cgu";
283 		clk->cl.con_id = name;
284 		clk->cl.clk = clk;
285 		clk->rate = 0;
286 		clk->rates = valid_clkout_rates[i];
287 		clk->enable = clkout_enable;
288 		clk->module = i;
289 		clkdev_add(&clk->cl);
290 	}
291 }
292 
293 /* bring up all register ranges that we need for basic system control */
294 void __init ltq_soc_init(void)
295 {
296 	struct resource res_pmu, res_cgu, res_ebu;
297 	struct device_node *np_pmu =
298 			of_find_compatible_node(NULL, NULL, "lantiq,pmu-xway");
299 	struct device_node *np_cgu =
300 			of_find_compatible_node(NULL, NULL, "lantiq,cgu-xway");
301 	struct device_node *np_ebu =
302 			of_find_compatible_node(NULL, NULL, "lantiq,ebu-xway");
303 
304 	/* check if all the core register ranges are available */
305 	if (!np_pmu || !np_cgu || !np_ebu)
306 		panic("Failed to load core nodess from devicetree");
307 
308 	if (of_address_to_resource(np_pmu, 0, &res_pmu) ||
309 			of_address_to_resource(np_cgu, 0, &res_cgu) ||
310 			of_address_to_resource(np_ebu, 0, &res_ebu))
311 		panic("Failed to get core resources");
312 
313 	if ((request_mem_region(res_pmu.start, resource_size(&res_pmu),
314 				res_pmu.name) < 0) ||
315 		(request_mem_region(res_cgu.start, resource_size(&res_cgu),
316 				res_cgu.name) < 0) ||
317 		(request_mem_region(res_ebu.start, resource_size(&res_ebu),
318 				res_ebu.name) < 0))
319 		pr_err("Failed to request core reources");
320 
321 	pmu_membase = ioremap_nocache(res_pmu.start, resource_size(&res_pmu));
322 	ltq_cgu_membase = ioremap_nocache(res_cgu.start,
323 						resource_size(&res_cgu));
324 	ltq_ebu_membase = ioremap_nocache(res_ebu.start,
325 						resource_size(&res_ebu));
326 	if (!pmu_membase || !ltq_cgu_membase || !ltq_ebu_membase)
327 		panic("Failed to remap core resources");
328 
329 	/* make sure to unprotect the memory region where flash is located */
330 	ltq_ebu_w32(ltq_ebu_r32(LTQ_EBU_BUSCON0) & ~EBU_WRDIS, LTQ_EBU_BUSCON0);
331 
332 	/* add our generic xway clocks */
333 	clkdev_add_pmu("10000000.fpi", NULL, 0, PMU_FPI);
334 	clkdev_add_pmu("1e100400.serial", NULL, 0, PMU_ASC0);
335 	clkdev_add_pmu("1e100a00.gptu", NULL, 0, PMU_GPT);
336 	clkdev_add_pmu("1e100bb0.stp", NULL, 0, PMU_STP);
337 	clkdev_add_pmu("1e104100.dma", NULL, 0, PMU_DMA);
338 	clkdev_add_pmu("1e100800.spi", NULL, 0, PMU_SPI);
339 	clkdev_add_pmu("1e105300.ebu", NULL, 0, PMU_EBU);
340 	clkdev_add_clkout();
341 
342 	/* add the soc dependent clocks */
343 	if (of_machine_is_compatible("lantiq,vr9")) {
344 		ifccr = CGU_IFCCR_VR9;
345 		pcicr = CGU_PCICR_VR9;
346 	} else {
347 		clkdev_add_pmu("1e180000.etop", NULL, 0, PMU_PPE);
348 	}
349 
350 	if (!of_machine_is_compatible("lantiq,ase")) {
351 		clkdev_add_pmu("1e100c00.serial", NULL, 0, PMU_ASC1);
352 		clkdev_add_pci();
353 	}
354 
355 	if (of_machine_is_compatible("lantiq,ase")) {
356 		if (ltq_cgu_r32(CGU_SYS) & (1 << 5))
357 			clkdev_add_static(CLOCK_266M, CLOCK_133M, CLOCK_133M);
358 		else
359 			clkdev_add_static(CLOCK_133M, CLOCK_133M, CLOCK_133M);
360 		clkdev_add_cgu("1e180000.etop", "ephycgu", CGU_EPHY),
361 		clkdev_add_pmu("1e180000.etop", "ephy", 0, PMU_EPHY);
362 	} else if (of_machine_is_compatible("lantiq,vr9")) {
363 		clkdev_add_static(ltq_vr9_cpu_hz(), ltq_vr9_fpi_hz(),
364 				ltq_vr9_fpi_hz());
365 		clkdev_add_pmu("1d900000.pcie", "phy", 1, PMU1_PCIE_PHY);
366 		clkdev_add_pmu("1d900000.pcie", "bus", 0, PMU_PCIE_CLK);
367 		clkdev_add_pmu("1d900000.pcie", "msi", 1, PMU1_PCIE_MSI);
368 		clkdev_add_pmu("1d900000.pcie", "pdi", 1, PMU1_PCIE_PDI);
369 		clkdev_add_pmu("1d900000.pcie", "ctl", 1, PMU1_PCIE_CTL);
370 		clkdev_add_pmu("1d900000.pcie", "ahb", 0, PMU_AHBM | PMU_AHBS);
371 	} else if (of_machine_is_compatible("lantiq,ar9")) {
372 		clkdev_add_static(ltq_ar9_cpu_hz(), ltq_ar9_fpi_hz(),
373 				ltq_ar9_fpi_hz());
374 		clkdev_add_pmu("1e180000.etop", "switch", 0, PMU_SWITCH);
375 	} else {
376 		clkdev_add_static(ltq_danube_cpu_hz(), ltq_danube_fpi_hz(),
377 				ltq_danube_fpi_hz());
378 	}
379 }
380