1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * KVM/MIPS MMU handling in the KVM module. 7 * 8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved. 9 * Authors: Sanjay Lal <sanjayl@kymasys.com> 10 */ 11 12 #include <linux/highmem.h> 13 #include <linux/kvm_host.h> 14 #include <linux/uaccess.h> 15 #include <asm/mmu_context.h> 16 #include <asm/pgalloc.h> 17 18 /* 19 * KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels 20 * for which pages need to be cached. 21 */ 22 #if defined(__PAGETABLE_PMD_FOLDED) 23 #define KVM_MMU_CACHE_MIN_PAGES 1 24 #else 25 #define KVM_MMU_CACHE_MIN_PAGES 2 26 #endif 27 28 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache, 29 int min, int max) 30 { 31 void *page; 32 33 BUG_ON(max > KVM_NR_MEM_OBJS); 34 if (cache->nobjs >= min) 35 return 0; 36 while (cache->nobjs < max) { 37 page = (void *)__get_free_page(GFP_KERNEL); 38 if (!page) 39 return -ENOMEM; 40 cache->objects[cache->nobjs++] = page; 41 } 42 return 0; 43 } 44 45 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 46 { 47 while (mc->nobjs) 48 free_page((unsigned long)mc->objects[--mc->nobjs]); 49 } 50 51 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 52 { 53 void *p; 54 55 BUG_ON(!mc || !mc->nobjs); 56 p = mc->objects[--mc->nobjs]; 57 return p; 58 } 59 60 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu) 61 { 62 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); 63 } 64 65 /** 66 * kvm_pgd_init() - Initialise KVM GPA page directory. 67 * @page: Pointer to page directory (PGD) for KVM GPA. 68 * 69 * Initialise a KVM GPA page directory with pointers to the invalid table, i.e. 70 * representing no mappings. This is similar to pgd_init(), however it 71 * initialises all the page directory pointers, not just the ones corresponding 72 * to the userland address space (since it is for the guest physical address 73 * space rather than a virtual address space). 74 */ 75 static void kvm_pgd_init(void *page) 76 { 77 unsigned long *p, *end; 78 unsigned long entry; 79 80 #ifdef __PAGETABLE_PMD_FOLDED 81 entry = (unsigned long)invalid_pte_table; 82 #else 83 entry = (unsigned long)invalid_pmd_table; 84 #endif 85 86 p = (unsigned long *)page; 87 end = p + PTRS_PER_PGD; 88 89 do { 90 p[0] = entry; 91 p[1] = entry; 92 p[2] = entry; 93 p[3] = entry; 94 p[4] = entry; 95 p += 8; 96 p[-3] = entry; 97 p[-2] = entry; 98 p[-1] = entry; 99 } while (p != end); 100 } 101 102 /** 103 * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory. 104 * 105 * Allocate a blank KVM GPA page directory (PGD) for representing guest physical 106 * to host physical page mappings. 107 * 108 * Returns: Pointer to new KVM GPA page directory. 109 * NULL on allocation failure. 110 */ 111 pgd_t *kvm_pgd_alloc(void) 112 { 113 pgd_t *ret; 114 115 ret = (pgd_t *)__get_free_pages(GFP_KERNEL, PGD_ORDER); 116 if (ret) 117 kvm_pgd_init(ret); 118 119 return ret; 120 } 121 122 /** 123 * kvm_mips_walk_pgd() - Walk page table with optional allocation. 124 * @pgd: Page directory pointer. 125 * @addr: Address to index page table using. 126 * @cache: MMU page cache to allocate new page tables from, or NULL. 127 * 128 * Walk the page tables pointed to by @pgd to find the PTE corresponding to the 129 * address @addr. If page tables don't exist for @addr, they will be created 130 * from the MMU cache if @cache is not NULL. 131 * 132 * Returns: Pointer to pte_t corresponding to @addr. 133 * NULL if a page table doesn't exist for @addr and !@cache. 134 * NULL if a page table allocation failed. 135 */ 136 static pte_t *kvm_mips_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache, 137 unsigned long addr) 138 { 139 pud_t *pud; 140 pmd_t *pmd; 141 142 pgd += pgd_index(addr); 143 if (pgd_none(*pgd)) { 144 /* Not used on MIPS yet */ 145 BUG(); 146 return NULL; 147 } 148 pud = pud_offset(pgd, addr); 149 if (pud_none(*pud)) { 150 pmd_t *new_pmd; 151 152 if (!cache) 153 return NULL; 154 new_pmd = mmu_memory_cache_alloc(cache); 155 pmd_init((unsigned long)new_pmd, 156 (unsigned long)invalid_pte_table); 157 pud_populate(NULL, pud, new_pmd); 158 } 159 pmd = pmd_offset(pud, addr); 160 if (pmd_none(*pmd)) { 161 pte_t *new_pte; 162 163 if (!cache) 164 return NULL; 165 new_pte = mmu_memory_cache_alloc(cache); 166 clear_page(new_pte); 167 pmd_populate_kernel(NULL, pmd, new_pte); 168 } 169 return pte_offset(pmd, addr); 170 } 171 172 /* Caller must hold kvm->mm_lock */ 173 static pte_t *kvm_mips_pte_for_gpa(struct kvm *kvm, 174 struct kvm_mmu_memory_cache *cache, 175 unsigned long addr) 176 { 177 return kvm_mips_walk_pgd(kvm->arch.gpa_mm.pgd, cache, addr); 178 } 179 180 /* 181 * kvm_mips_flush_gpa_{pte,pmd,pud,pgd,pt}. 182 * Flush a range of guest physical address space from the VM's GPA page tables. 183 */ 184 185 static bool kvm_mips_flush_gpa_pte(pte_t *pte, unsigned long start_gpa, 186 unsigned long end_gpa) 187 { 188 int i_min = __pte_offset(start_gpa); 189 int i_max = __pte_offset(end_gpa); 190 bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1); 191 int i; 192 193 for (i = i_min; i <= i_max; ++i) { 194 if (!pte_present(pte[i])) 195 continue; 196 197 set_pte(pte + i, __pte(0)); 198 } 199 return safe_to_remove; 200 } 201 202 static bool kvm_mips_flush_gpa_pmd(pmd_t *pmd, unsigned long start_gpa, 203 unsigned long end_gpa) 204 { 205 pte_t *pte; 206 unsigned long end = ~0ul; 207 int i_min = __pmd_offset(start_gpa); 208 int i_max = __pmd_offset(end_gpa); 209 bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1); 210 int i; 211 212 for (i = i_min; i <= i_max; ++i, start_gpa = 0) { 213 if (!pmd_present(pmd[i])) 214 continue; 215 216 pte = pte_offset(pmd + i, 0); 217 if (i == i_max) 218 end = end_gpa; 219 220 if (kvm_mips_flush_gpa_pte(pte, start_gpa, end)) { 221 pmd_clear(pmd + i); 222 pte_free_kernel(NULL, pte); 223 } else { 224 safe_to_remove = false; 225 } 226 } 227 return safe_to_remove; 228 } 229 230 static bool kvm_mips_flush_gpa_pud(pud_t *pud, unsigned long start_gpa, 231 unsigned long end_gpa) 232 { 233 pmd_t *pmd; 234 unsigned long end = ~0ul; 235 int i_min = __pud_offset(start_gpa); 236 int i_max = __pud_offset(end_gpa); 237 bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1); 238 int i; 239 240 for (i = i_min; i <= i_max; ++i, start_gpa = 0) { 241 if (!pud_present(pud[i])) 242 continue; 243 244 pmd = pmd_offset(pud + i, 0); 245 if (i == i_max) 246 end = end_gpa; 247 248 if (kvm_mips_flush_gpa_pmd(pmd, start_gpa, end)) { 249 pud_clear(pud + i); 250 pmd_free(NULL, pmd); 251 } else { 252 safe_to_remove = false; 253 } 254 } 255 return safe_to_remove; 256 } 257 258 static bool kvm_mips_flush_gpa_pgd(pgd_t *pgd, unsigned long start_gpa, 259 unsigned long end_gpa) 260 { 261 pud_t *pud; 262 unsigned long end = ~0ul; 263 int i_min = pgd_index(start_gpa); 264 int i_max = pgd_index(end_gpa); 265 bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1); 266 int i; 267 268 for (i = i_min; i <= i_max; ++i, start_gpa = 0) { 269 if (!pgd_present(pgd[i])) 270 continue; 271 272 pud = pud_offset(pgd + i, 0); 273 if (i == i_max) 274 end = end_gpa; 275 276 if (kvm_mips_flush_gpa_pud(pud, start_gpa, end)) { 277 pgd_clear(pgd + i); 278 pud_free(NULL, pud); 279 } else { 280 safe_to_remove = false; 281 } 282 } 283 return safe_to_remove; 284 } 285 286 /** 287 * kvm_mips_flush_gpa_pt() - Flush a range of guest physical addresses. 288 * @kvm: KVM pointer. 289 * @start_gfn: Guest frame number of first page in GPA range to flush. 290 * @end_gfn: Guest frame number of last page in GPA range to flush. 291 * 292 * Flushes a range of GPA mappings from the GPA page tables. 293 * 294 * The caller must hold the @kvm->mmu_lock spinlock. 295 * 296 * Returns: Whether its safe to remove the top level page directory because 297 * all lower levels have been removed. 298 */ 299 bool kvm_mips_flush_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn) 300 { 301 return kvm_mips_flush_gpa_pgd(kvm->arch.gpa_mm.pgd, 302 start_gfn << PAGE_SHIFT, 303 end_gfn << PAGE_SHIFT); 304 } 305 306 #define BUILD_PTE_RANGE_OP(name, op) \ 307 static int kvm_mips_##name##_pte(pte_t *pte, unsigned long start, \ 308 unsigned long end) \ 309 { \ 310 int ret = 0; \ 311 int i_min = __pte_offset(start); \ 312 int i_max = __pte_offset(end); \ 313 int i; \ 314 pte_t old, new; \ 315 \ 316 for (i = i_min; i <= i_max; ++i) { \ 317 if (!pte_present(pte[i])) \ 318 continue; \ 319 \ 320 old = pte[i]; \ 321 new = op(old); \ 322 if (pte_val(new) == pte_val(old)) \ 323 continue; \ 324 set_pte(pte + i, new); \ 325 ret = 1; \ 326 } \ 327 return ret; \ 328 } \ 329 \ 330 /* returns true if anything was done */ \ 331 static int kvm_mips_##name##_pmd(pmd_t *pmd, unsigned long start, \ 332 unsigned long end) \ 333 { \ 334 int ret = 0; \ 335 pte_t *pte; \ 336 unsigned long cur_end = ~0ul; \ 337 int i_min = __pmd_offset(start); \ 338 int i_max = __pmd_offset(end); \ 339 int i; \ 340 \ 341 for (i = i_min; i <= i_max; ++i, start = 0) { \ 342 if (!pmd_present(pmd[i])) \ 343 continue; \ 344 \ 345 pte = pte_offset(pmd + i, 0); \ 346 if (i == i_max) \ 347 cur_end = end; \ 348 \ 349 ret |= kvm_mips_##name##_pte(pte, start, cur_end); \ 350 } \ 351 return ret; \ 352 } \ 353 \ 354 static int kvm_mips_##name##_pud(pud_t *pud, unsigned long start, \ 355 unsigned long end) \ 356 { \ 357 int ret = 0; \ 358 pmd_t *pmd; \ 359 unsigned long cur_end = ~0ul; \ 360 int i_min = __pud_offset(start); \ 361 int i_max = __pud_offset(end); \ 362 int i; \ 363 \ 364 for (i = i_min; i <= i_max; ++i, start = 0) { \ 365 if (!pud_present(pud[i])) \ 366 continue; \ 367 \ 368 pmd = pmd_offset(pud + i, 0); \ 369 if (i == i_max) \ 370 cur_end = end; \ 371 \ 372 ret |= kvm_mips_##name##_pmd(pmd, start, cur_end); \ 373 } \ 374 return ret; \ 375 } \ 376 \ 377 static int kvm_mips_##name##_pgd(pgd_t *pgd, unsigned long start, \ 378 unsigned long end) \ 379 { \ 380 int ret = 0; \ 381 pud_t *pud; \ 382 unsigned long cur_end = ~0ul; \ 383 int i_min = pgd_index(start); \ 384 int i_max = pgd_index(end); \ 385 int i; \ 386 \ 387 for (i = i_min; i <= i_max; ++i, start = 0) { \ 388 if (!pgd_present(pgd[i])) \ 389 continue; \ 390 \ 391 pud = pud_offset(pgd + i, 0); \ 392 if (i == i_max) \ 393 cur_end = end; \ 394 \ 395 ret |= kvm_mips_##name##_pud(pud, start, cur_end); \ 396 } \ 397 return ret; \ 398 } 399 400 /* 401 * kvm_mips_mkclean_gpa_pt. 402 * Mark a range of guest physical address space clean (writes fault) in the VM's 403 * GPA page table to allow dirty page tracking. 404 */ 405 406 BUILD_PTE_RANGE_OP(mkclean, pte_mkclean) 407 408 /** 409 * kvm_mips_mkclean_gpa_pt() - Make a range of guest physical addresses clean. 410 * @kvm: KVM pointer. 411 * @start_gfn: Guest frame number of first page in GPA range to flush. 412 * @end_gfn: Guest frame number of last page in GPA range to flush. 413 * 414 * Make a range of GPA mappings clean so that guest writes will fault and 415 * trigger dirty page logging. 416 * 417 * The caller must hold the @kvm->mmu_lock spinlock. 418 * 419 * Returns: Whether any GPA mappings were modified, which would require 420 * derived mappings (GVA page tables & TLB enties) to be 421 * invalidated. 422 */ 423 int kvm_mips_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn) 424 { 425 return kvm_mips_mkclean_pgd(kvm->arch.gpa_mm.pgd, 426 start_gfn << PAGE_SHIFT, 427 end_gfn << PAGE_SHIFT); 428 } 429 430 /** 431 * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages 432 * @kvm: The KVM pointer 433 * @slot: The memory slot associated with mask 434 * @gfn_offset: The gfn offset in memory slot 435 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory 436 * slot to be write protected 437 * 438 * Walks bits set in mask write protects the associated pte's. Caller must 439 * acquire @kvm->mmu_lock. 440 */ 441 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 442 struct kvm_memory_slot *slot, 443 gfn_t gfn_offset, unsigned long mask) 444 { 445 gfn_t base_gfn = slot->base_gfn + gfn_offset; 446 gfn_t start = base_gfn + __ffs(mask); 447 gfn_t end = base_gfn + __fls(mask); 448 449 kvm_mips_mkclean_gpa_pt(kvm, start, end); 450 } 451 452 /* 453 * kvm_mips_mkold_gpa_pt. 454 * Mark a range of guest physical address space old (all accesses fault) in the 455 * VM's GPA page table to allow detection of commonly used pages. 456 */ 457 458 BUILD_PTE_RANGE_OP(mkold, pte_mkold) 459 460 static int kvm_mips_mkold_gpa_pt(struct kvm *kvm, gfn_t start_gfn, 461 gfn_t end_gfn) 462 { 463 return kvm_mips_mkold_pgd(kvm->arch.gpa_mm.pgd, 464 start_gfn << PAGE_SHIFT, 465 end_gfn << PAGE_SHIFT); 466 } 467 468 static int handle_hva_to_gpa(struct kvm *kvm, 469 unsigned long start, 470 unsigned long end, 471 int (*handler)(struct kvm *kvm, gfn_t gfn, 472 gpa_t gfn_end, 473 struct kvm_memory_slot *memslot, 474 void *data), 475 void *data) 476 { 477 struct kvm_memslots *slots; 478 struct kvm_memory_slot *memslot; 479 int ret = 0; 480 481 slots = kvm_memslots(kvm); 482 483 /* we only care about the pages that the guest sees */ 484 kvm_for_each_memslot(memslot, slots) { 485 unsigned long hva_start, hva_end; 486 gfn_t gfn, gfn_end; 487 488 hva_start = max(start, memslot->userspace_addr); 489 hva_end = min(end, memslot->userspace_addr + 490 (memslot->npages << PAGE_SHIFT)); 491 if (hva_start >= hva_end) 492 continue; 493 494 /* 495 * {gfn(page) | page intersects with [hva_start, hva_end)} = 496 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 497 */ 498 gfn = hva_to_gfn_memslot(hva_start, memslot); 499 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); 500 501 ret |= handler(kvm, gfn, gfn_end, memslot, data); 502 } 503 504 return ret; 505 } 506 507 508 static int kvm_unmap_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end, 509 struct kvm_memory_slot *memslot, void *data) 510 { 511 kvm_mips_flush_gpa_pt(kvm, gfn, gfn_end); 512 return 1; 513 } 514 515 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end) 516 { 517 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL); 518 519 kvm_mips_callbacks->flush_shadow_all(kvm); 520 return 0; 521 } 522 523 static int kvm_set_spte_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end, 524 struct kvm_memory_slot *memslot, void *data) 525 { 526 gpa_t gpa = gfn << PAGE_SHIFT; 527 pte_t hva_pte = *(pte_t *)data; 528 pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa); 529 pte_t old_pte; 530 531 if (!gpa_pte) 532 return 0; 533 534 /* Mapping may need adjusting depending on memslot flags */ 535 old_pte = *gpa_pte; 536 if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES && !pte_dirty(old_pte)) 537 hva_pte = pte_mkclean(hva_pte); 538 else if (memslot->flags & KVM_MEM_READONLY) 539 hva_pte = pte_wrprotect(hva_pte); 540 541 set_pte(gpa_pte, hva_pte); 542 543 /* Replacing an absent or old page doesn't need flushes */ 544 if (!pte_present(old_pte) || !pte_young(old_pte)) 545 return 0; 546 547 /* Pages swapped, aged, moved, or cleaned require flushes */ 548 return !pte_present(hva_pte) || 549 !pte_young(hva_pte) || 550 pte_pfn(old_pte) != pte_pfn(hva_pte) || 551 (pte_dirty(old_pte) && !pte_dirty(hva_pte)); 552 } 553 554 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) 555 { 556 unsigned long end = hva + PAGE_SIZE; 557 int ret; 558 559 ret = handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &pte); 560 if (ret) 561 kvm_mips_callbacks->flush_shadow_all(kvm); 562 return 0; 563 } 564 565 static int kvm_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end, 566 struct kvm_memory_slot *memslot, void *data) 567 { 568 return kvm_mips_mkold_gpa_pt(kvm, gfn, gfn_end); 569 } 570 571 static int kvm_test_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end, 572 struct kvm_memory_slot *memslot, void *data) 573 { 574 gpa_t gpa = gfn << PAGE_SHIFT; 575 pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa); 576 577 if (!gpa_pte) 578 return 0; 579 return pte_young(*gpa_pte); 580 } 581 582 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end) 583 { 584 return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL); 585 } 586 587 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) 588 { 589 return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL); 590 } 591 592 /** 593 * _kvm_mips_map_page_fast() - Fast path GPA fault handler. 594 * @vcpu: VCPU pointer. 595 * @gpa: Guest physical address of fault. 596 * @write_fault: Whether the fault was due to a write. 597 * @out_entry: New PTE for @gpa (written on success unless NULL). 598 * @out_buddy: New PTE for @gpa's buddy (written on success unless 599 * NULL). 600 * 601 * Perform fast path GPA fault handling, doing all that can be done without 602 * calling into KVM. This handles marking old pages young (for idle page 603 * tracking), and dirtying of clean pages (for dirty page logging). 604 * 605 * Returns: 0 on success, in which case we can update derived mappings and 606 * resume guest execution. 607 * -EFAULT on failure due to absent GPA mapping or write to 608 * read-only page, in which case KVM must be consulted. 609 */ 610 static int _kvm_mips_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa, 611 bool write_fault, 612 pte_t *out_entry, pte_t *out_buddy) 613 { 614 struct kvm *kvm = vcpu->kvm; 615 gfn_t gfn = gpa >> PAGE_SHIFT; 616 pte_t *ptep; 617 kvm_pfn_t pfn = 0; /* silence bogus GCC warning */ 618 bool pfn_valid = false; 619 int ret = 0; 620 621 spin_lock(&kvm->mmu_lock); 622 623 /* Fast path - just check GPA page table for an existing entry */ 624 ptep = kvm_mips_pte_for_gpa(kvm, NULL, gpa); 625 if (!ptep || !pte_present(*ptep)) { 626 ret = -EFAULT; 627 goto out; 628 } 629 630 /* Track access to pages marked old */ 631 if (!pte_young(*ptep)) { 632 set_pte(ptep, pte_mkyoung(*ptep)); 633 pfn = pte_pfn(*ptep); 634 pfn_valid = true; 635 /* call kvm_set_pfn_accessed() after unlock */ 636 } 637 if (write_fault && !pte_dirty(*ptep)) { 638 if (!pte_write(*ptep)) { 639 ret = -EFAULT; 640 goto out; 641 } 642 643 /* Track dirtying of writeable pages */ 644 set_pte(ptep, pte_mkdirty(*ptep)); 645 pfn = pte_pfn(*ptep); 646 mark_page_dirty(kvm, gfn); 647 kvm_set_pfn_dirty(pfn); 648 } 649 650 if (out_entry) 651 *out_entry = *ptep; 652 if (out_buddy) 653 *out_buddy = *ptep_buddy(ptep); 654 655 out: 656 spin_unlock(&kvm->mmu_lock); 657 if (pfn_valid) 658 kvm_set_pfn_accessed(pfn); 659 return ret; 660 } 661 662 /** 663 * kvm_mips_map_page() - Map a guest physical page. 664 * @vcpu: VCPU pointer. 665 * @gpa: Guest physical address of fault. 666 * @write_fault: Whether the fault was due to a write. 667 * @out_entry: New PTE for @gpa (written on success unless NULL). 668 * @out_buddy: New PTE for @gpa's buddy (written on success unless 669 * NULL). 670 * 671 * Handle GPA faults by creating a new GPA mapping (or updating an existing 672 * one). 673 * 674 * This takes care of marking pages young or dirty (idle/dirty page tracking), 675 * asking KVM for the corresponding PFN, and creating a mapping in the GPA page 676 * tables. Derived mappings (GVA page tables and TLBs) must be handled by the 677 * caller. 678 * 679 * Returns: 0 on success, in which case the caller may use the @out_entry 680 * and @out_buddy PTEs to update derived mappings and resume guest 681 * execution. 682 * -EFAULT if there is no memory region at @gpa or a write was 683 * attempted to a read-only memory region. This is usually handled 684 * as an MMIO access. 685 */ 686 static int kvm_mips_map_page(struct kvm_vcpu *vcpu, unsigned long gpa, 687 bool write_fault, 688 pte_t *out_entry, pte_t *out_buddy) 689 { 690 struct kvm *kvm = vcpu->kvm; 691 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; 692 gfn_t gfn = gpa >> PAGE_SHIFT; 693 int srcu_idx, err; 694 kvm_pfn_t pfn; 695 pte_t *ptep, entry, old_pte; 696 bool writeable; 697 unsigned long prot_bits; 698 unsigned long mmu_seq; 699 700 /* Try the fast path to handle old / clean pages */ 701 srcu_idx = srcu_read_lock(&kvm->srcu); 702 err = _kvm_mips_map_page_fast(vcpu, gpa, write_fault, out_entry, 703 out_buddy); 704 if (!err) 705 goto out; 706 707 /* We need a minimum of cached pages ready for page table creation */ 708 err = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES, 709 KVM_NR_MEM_OBJS); 710 if (err) 711 goto out; 712 713 retry: 714 /* 715 * Used to check for invalidations in progress, of the pfn that is 716 * returned by pfn_to_pfn_prot below. 717 */ 718 mmu_seq = kvm->mmu_notifier_seq; 719 /* 720 * Ensure the read of mmu_notifier_seq isn't reordered with PTE reads in 721 * gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't 722 * risk the page we get a reference to getting unmapped before we have a 723 * chance to grab the mmu_lock without mmu_notifier_retry() noticing. 724 * 725 * This smp_rmb() pairs with the effective smp_wmb() of the combination 726 * of the pte_unmap_unlock() after the PTE is zapped, and the 727 * spin_lock() in kvm_mmu_notifier_invalidate_<page|range_end>() before 728 * mmu_notifier_seq is incremented. 729 */ 730 smp_rmb(); 731 732 /* Slow path - ask KVM core whether we can access this GPA */ 733 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writeable); 734 if (is_error_noslot_pfn(pfn)) { 735 err = -EFAULT; 736 goto out; 737 } 738 739 spin_lock(&kvm->mmu_lock); 740 /* Check if an invalidation has taken place since we got pfn */ 741 if (mmu_notifier_retry(kvm, mmu_seq)) { 742 /* 743 * This can happen when mappings are changed asynchronously, but 744 * also synchronously if a COW is triggered by 745 * gfn_to_pfn_prot(). 746 */ 747 spin_unlock(&kvm->mmu_lock); 748 kvm_release_pfn_clean(pfn); 749 goto retry; 750 } 751 752 /* Ensure page tables are allocated */ 753 ptep = kvm_mips_pte_for_gpa(kvm, memcache, gpa); 754 755 /* Set up the PTE */ 756 prot_bits = _PAGE_PRESENT | __READABLE | _page_cachable_default; 757 if (writeable) { 758 prot_bits |= _PAGE_WRITE; 759 if (write_fault) { 760 prot_bits |= __WRITEABLE; 761 mark_page_dirty(kvm, gfn); 762 kvm_set_pfn_dirty(pfn); 763 } 764 } 765 entry = pfn_pte(pfn, __pgprot(prot_bits)); 766 767 /* Write the PTE */ 768 old_pte = *ptep; 769 set_pte(ptep, entry); 770 771 err = 0; 772 if (out_entry) 773 *out_entry = *ptep; 774 if (out_buddy) 775 *out_buddy = *ptep_buddy(ptep); 776 777 spin_unlock(&kvm->mmu_lock); 778 kvm_release_pfn_clean(pfn); 779 kvm_set_pfn_accessed(pfn); 780 out: 781 srcu_read_unlock(&kvm->srcu, srcu_idx); 782 return err; 783 } 784 785 static pte_t *kvm_trap_emul_pte_for_gva(struct kvm_vcpu *vcpu, 786 unsigned long addr) 787 { 788 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; 789 pgd_t *pgdp; 790 int ret; 791 792 /* We need a minimum of cached pages ready for page table creation */ 793 ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES, 794 KVM_NR_MEM_OBJS); 795 if (ret) 796 return NULL; 797 798 if (KVM_GUEST_KERNEL_MODE(vcpu)) 799 pgdp = vcpu->arch.guest_kernel_mm.pgd; 800 else 801 pgdp = vcpu->arch.guest_user_mm.pgd; 802 803 return kvm_mips_walk_pgd(pgdp, memcache, addr); 804 } 805 806 void kvm_trap_emul_invalidate_gva(struct kvm_vcpu *vcpu, unsigned long addr, 807 bool user) 808 { 809 pgd_t *pgdp; 810 pte_t *ptep; 811 812 addr &= PAGE_MASK << 1; 813 814 pgdp = vcpu->arch.guest_kernel_mm.pgd; 815 ptep = kvm_mips_walk_pgd(pgdp, NULL, addr); 816 if (ptep) { 817 ptep[0] = pfn_pte(0, __pgprot(0)); 818 ptep[1] = pfn_pte(0, __pgprot(0)); 819 } 820 821 if (user) { 822 pgdp = vcpu->arch.guest_user_mm.pgd; 823 ptep = kvm_mips_walk_pgd(pgdp, NULL, addr); 824 if (ptep) { 825 ptep[0] = pfn_pte(0, __pgprot(0)); 826 ptep[1] = pfn_pte(0, __pgprot(0)); 827 } 828 } 829 } 830 831 /* 832 * kvm_mips_flush_gva_{pte,pmd,pud,pgd,pt}. 833 * Flush a range of guest physical address space from the VM's GPA page tables. 834 */ 835 836 static bool kvm_mips_flush_gva_pte(pte_t *pte, unsigned long start_gva, 837 unsigned long end_gva) 838 { 839 int i_min = __pte_offset(start_gva); 840 int i_max = __pte_offset(end_gva); 841 bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1); 842 int i; 843 844 /* 845 * There's no freeing to do, so there's no point clearing individual 846 * entries unless only part of the last level page table needs flushing. 847 */ 848 if (safe_to_remove) 849 return true; 850 851 for (i = i_min; i <= i_max; ++i) { 852 if (!pte_present(pte[i])) 853 continue; 854 855 set_pte(pte + i, __pte(0)); 856 } 857 return false; 858 } 859 860 static bool kvm_mips_flush_gva_pmd(pmd_t *pmd, unsigned long start_gva, 861 unsigned long end_gva) 862 { 863 pte_t *pte; 864 unsigned long end = ~0ul; 865 int i_min = __pmd_offset(start_gva); 866 int i_max = __pmd_offset(end_gva); 867 bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1); 868 int i; 869 870 for (i = i_min; i <= i_max; ++i, start_gva = 0) { 871 if (!pmd_present(pmd[i])) 872 continue; 873 874 pte = pte_offset(pmd + i, 0); 875 if (i == i_max) 876 end = end_gva; 877 878 if (kvm_mips_flush_gva_pte(pte, start_gva, end)) { 879 pmd_clear(pmd + i); 880 pte_free_kernel(NULL, pte); 881 } else { 882 safe_to_remove = false; 883 } 884 } 885 return safe_to_remove; 886 } 887 888 static bool kvm_mips_flush_gva_pud(pud_t *pud, unsigned long start_gva, 889 unsigned long end_gva) 890 { 891 pmd_t *pmd; 892 unsigned long end = ~0ul; 893 int i_min = __pud_offset(start_gva); 894 int i_max = __pud_offset(end_gva); 895 bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1); 896 int i; 897 898 for (i = i_min; i <= i_max; ++i, start_gva = 0) { 899 if (!pud_present(pud[i])) 900 continue; 901 902 pmd = pmd_offset(pud + i, 0); 903 if (i == i_max) 904 end = end_gva; 905 906 if (kvm_mips_flush_gva_pmd(pmd, start_gva, end)) { 907 pud_clear(pud + i); 908 pmd_free(NULL, pmd); 909 } else { 910 safe_to_remove = false; 911 } 912 } 913 return safe_to_remove; 914 } 915 916 static bool kvm_mips_flush_gva_pgd(pgd_t *pgd, unsigned long start_gva, 917 unsigned long end_gva) 918 { 919 pud_t *pud; 920 unsigned long end = ~0ul; 921 int i_min = pgd_index(start_gva); 922 int i_max = pgd_index(end_gva); 923 bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1); 924 int i; 925 926 for (i = i_min; i <= i_max; ++i, start_gva = 0) { 927 if (!pgd_present(pgd[i])) 928 continue; 929 930 pud = pud_offset(pgd + i, 0); 931 if (i == i_max) 932 end = end_gva; 933 934 if (kvm_mips_flush_gva_pud(pud, start_gva, end)) { 935 pgd_clear(pgd + i); 936 pud_free(NULL, pud); 937 } else { 938 safe_to_remove = false; 939 } 940 } 941 return safe_to_remove; 942 } 943 944 void kvm_mips_flush_gva_pt(pgd_t *pgd, enum kvm_mips_flush flags) 945 { 946 if (flags & KMF_GPA) { 947 /* all of guest virtual address space could be affected */ 948 if (flags & KMF_KERN) 949 /* useg, kseg0, seg2/3 */ 950 kvm_mips_flush_gva_pgd(pgd, 0, 0x7fffffff); 951 else 952 /* useg */ 953 kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff); 954 } else { 955 /* useg */ 956 kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff); 957 958 /* kseg2/3 */ 959 if (flags & KMF_KERN) 960 kvm_mips_flush_gva_pgd(pgd, 0x60000000, 0x7fffffff); 961 } 962 } 963 964 static pte_t kvm_mips_gpa_pte_to_gva_unmapped(pte_t pte) 965 { 966 /* 967 * Don't leak writeable but clean entries from GPA page tables. We don't 968 * want the normal Linux tlbmod handler to handle dirtying when KVM 969 * accesses guest memory. 970 */ 971 if (!pte_dirty(pte)) 972 pte = pte_wrprotect(pte); 973 974 return pte; 975 } 976 977 static pte_t kvm_mips_gpa_pte_to_gva_mapped(pte_t pte, long entrylo) 978 { 979 /* Guest EntryLo overrides host EntryLo */ 980 if (!(entrylo & ENTRYLO_D)) 981 pte = pte_mkclean(pte); 982 983 return kvm_mips_gpa_pte_to_gva_unmapped(pte); 984 } 985 986 #ifdef CONFIG_KVM_MIPS_VZ 987 int kvm_mips_handle_vz_root_tlb_fault(unsigned long badvaddr, 988 struct kvm_vcpu *vcpu, 989 bool write_fault) 990 { 991 int ret; 992 993 ret = kvm_mips_map_page(vcpu, badvaddr, write_fault, NULL, NULL); 994 if (ret) 995 return ret; 996 997 /* Invalidate this entry in the TLB */ 998 return kvm_vz_host_tlb_inv(vcpu, badvaddr); 999 } 1000 #endif 1001 1002 /* XXXKYMA: Must be called with interrupts disabled */ 1003 int kvm_mips_handle_kseg0_tlb_fault(unsigned long badvaddr, 1004 struct kvm_vcpu *vcpu, 1005 bool write_fault) 1006 { 1007 unsigned long gpa; 1008 pte_t pte_gpa[2], *ptep_gva; 1009 int idx; 1010 1011 if (KVM_GUEST_KSEGX(badvaddr) != KVM_GUEST_KSEG0) { 1012 kvm_err("%s: Invalid BadVaddr: %#lx\n", __func__, badvaddr); 1013 kvm_mips_dump_host_tlbs(); 1014 return -1; 1015 } 1016 1017 /* Get the GPA page table entry */ 1018 gpa = KVM_GUEST_CPHYSADDR(badvaddr); 1019 idx = (badvaddr >> PAGE_SHIFT) & 1; 1020 if (kvm_mips_map_page(vcpu, gpa, write_fault, &pte_gpa[idx], 1021 &pte_gpa[!idx]) < 0) 1022 return -1; 1023 1024 /* Get the GVA page table entry */ 1025 ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, badvaddr & ~PAGE_SIZE); 1026 if (!ptep_gva) { 1027 kvm_err("No ptep for gva %lx\n", badvaddr); 1028 return -1; 1029 } 1030 1031 /* Copy a pair of entries from GPA page table to GVA page table */ 1032 ptep_gva[0] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[0]); 1033 ptep_gva[1] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[1]); 1034 1035 /* Invalidate this entry in the TLB, guest kernel ASID only */ 1036 kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true); 1037 return 0; 1038 } 1039 1040 int kvm_mips_handle_mapped_seg_tlb_fault(struct kvm_vcpu *vcpu, 1041 struct kvm_mips_tlb *tlb, 1042 unsigned long gva, 1043 bool write_fault) 1044 { 1045 struct kvm *kvm = vcpu->kvm; 1046 long tlb_lo[2]; 1047 pte_t pte_gpa[2], *ptep_buddy, *ptep_gva; 1048 unsigned int idx = TLB_LO_IDX(*tlb, gva); 1049 bool kernel = KVM_GUEST_KERNEL_MODE(vcpu); 1050 1051 tlb_lo[0] = tlb->tlb_lo[0]; 1052 tlb_lo[1] = tlb->tlb_lo[1]; 1053 1054 /* 1055 * The commpage address must not be mapped to anything else if the guest 1056 * TLB contains entries nearby, or commpage accesses will break. 1057 */ 1058 if (!((gva ^ KVM_GUEST_COMMPAGE_ADDR) & VPN2_MASK & (PAGE_MASK << 1))) 1059 tlb_lo[TLB_LO_IDX(*tlb, KVM_GUEST_COMMPAGE_ADDR)] = 0; 1060 1061 /* Get the GPA page table entry */ 1062 if (kvm_mips_map_page(vcpu, mips3_tlbpfn_to_paddr(tlb_lo[idx]), 1063 write_fault, &pte_gpa[idx], NULL) < 0) 1064 return -1; 1065 1066 /* And its GVA buddy's GPA page table entry if it also exists */ 1067 pte_gpa[!idx] = pfn_pte(0, __pgprot(0)); 1068 if (tlb_lo[!idx] & ENTRYLO_V) { 1069 spin_lock(&kvm->mmu_lock); 1070 ptep_buddy = kvm_mips_pte_for_gpa(kvm, NULL, 1071 mips3_tlbpfn_to_paddr(tlb_lo[!idx])); 1072 if (ptep_buddy) 1073 pte_gpa[!idx] = *ptep_buddy; 1074 spin_unlock(&kvm->mmu_lock); 1075 } 1076 1077 /* Get the GVA page table entry pair */ 1078 ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, gva & ~PAGE_SIZE); 1079 if (!ptep_gva) { 1080 kvm_err("No ptep for gva %lx\n", gva); 1081 return -1; 1082 } 1083 1084 /* Copy a pair of entries from GPA page table to GVA page table */ 1085 ptep_gva[0] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[0], tlb_lo[0]); 1086 ptep_gva[1] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[1], tlb_lo[1]); 1087 1088 /* Invalidate this entry in the TLB, current guest mode ASID only */ 1089 kvm_mips_host_tlb_inv(vcpu, gva, !kernel, kernel); 1090 1091 kvm_debug("@ %#lx tlb_lo0: 0x%08lx tlb_lo1: 0x%08lx\n", vcpu->arch.pc, 1092 tlb->tlb_lo[0], tlb->tlb_lo[1]); 1093 1094 return 0; 1095 } 1096 1097 int kvm_mips_handle_commpage_tlb_fault(unsigned long badvaddr, 1098 struct kvm_vcpu *vcpu) 1099 { 1100 kvm_pfn_t pfn; 1101 pte_t *ptep; 1102 1103 ptep = kvm_trap_emul_pte_for_gva(vcpu, badvaddr); 1104 if (!ptep) { 1105 kvm_err("No ptep for commpage %lx\n", badvaddr); 1106 return -1; 1107 } 1108 1109 pfn = PFN_DOWN(virt_to_phys(vcpu->arch.kseg0_commpage)); 1110 /* Also set valid and dirty, so refill handler doesn't have to */ 1111 *ptep = pte_mkyoung(pte_mkdirty(pfn_pte(pfn, PAGE_SHARED))); 1112 1113 /* Invalidate this entry in the TLB, guest kernel ASID only */ 1114 kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true); 1115 return 0; 1116 } 1117 1118 /** 1119 * kvm_mips_migrate_count() - Migrate timer. 1120 * @vcpu: Virtual CPU. 1121 * 1122 * Migrate CP0_Count hrtimer to the current CPU by cancelling and restarting it 1123 * if it was running prior to being cancelled. 1124 * 1125 * Must be called when the VCPU is migrated to a different CPU to ensure that 1126 * timer expiry during guest execution interrupts the guest and causes the 1127 * interrupt to be delivered in a timely manner. 1128 */ 1129 static void kvm_mips_migrate_count(struct kvm_vcpu *vcpu) 1130 { 1131 if (hrtimer_cancel(&vcpu->arch.comparecount_timer)) 1132 hrtimer_restart(&vcpu->arch.comparecount_timer); 1133 } 1134 1135 /* Restore ASID once we are scheduled back after preemption */ 1136 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1137 { 1138 unsigned long flags; 1139 1140 kvm_debug("%s: vcpu %p, cpu: %d\n", __func__, vcpu, cpu); 1141 1142 local_irq_save(flags); 1143 1144 vcpu->cpu = cpu; 1145 if (vcpu->arch.last_sched_cpu != cpu) { 1146 kvm_debug("[%d->%d]KVM VCPU[%d] switch\n", 1147 vcpu->arch.last_sched_cpu, cpu, vcpu->vcpu_id); 1148 /* 1149 * Migrate the timer interrupt to the current CPU so that it 1150 * always interrupts the guest and synchronously triggers a 1151 * guest timer interrupt. 1152 */ 1153 kvm_mips_migrate_count(vcpu); 1154 } 1155 1156 /* restore guest state to registers */ 1157 kvm_mips_callbacks->vcpu_load(vcpu, cpu); 1158 1159 local_irq_restore(flags); 1160 } 1161 1162 /* ASID can change if another task is scheduled during preemption */ 1163 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 1164 { 1165 unsigned long flags; 1166 int cpu; 1167 1168 local_irq_save(flags); 1169 1170 cpu = smp_processor_id(); 1171 vcpu->arch.last_sched_cpu = cpu; 1172 vcpu->cpu = -1; 1173 1174 /* save guest state in registers */ 1175 kvm_mips_callbacks->vcpu_put(vcpu, cpu); 1176 1177 local_irq_restore(flags); 1178 } 1179 1180 /** 1181 * kvm_trap_emul_gva_fault() - Safely attempt to handle a GVA access fault. 1182 * @vcpu: Virtual CPU. 1183 * @gva: Guest virtual address to be accessed. 1184 * @write: True if write attempted (must be dirtied and made writable). 1185 * 1186 * Safely attempt to handle a GVA fault, mapping GVA pages if necessary, and 1187 * dirtying the page if @write so that guest instructions can be modified. 1188 * 1189 * Returns: KVM_MIPS_MAPPED on success. 1190 * KVM_MIPS_GVA if bad guest virtual address. 1191 * KVM_MIPS_GPA if bad guest physical address. 1192 * KVM_MIPS_TLB if guest TLB not present. 1193 * KVM_MIPS_TLBINV if guest TLB present but not valid. 1194 * KVM_MIPS_TLBMOD if guest TLB read only. 1195 */ 1196 enum kvm_mips_fault_result kvm_trap_emul_gva_fault(struct kvm_vcpu *vcpu, 1197 unsigned long gva, 1198 bool write) 1199 { 1200 struct mips_coproc *cop0 = vcpu->arch.cop0; 1201 struct kvm_mips_tlb *tlb; 1202 int index; 1203 1204 if (KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG0) { 1205 if (kvm_mips_handle_kseg0_tlb_fault(gva, vcpu, write) < 0) 1206 return KVM_MIPS_GPA; 1207 } else if ((KVM_GUEST_KSEGX(gva) < KVM_GUEST_KSEG0) || 1208 KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG23) { 1209 /* Address should be in the guest TLB */ 1210 index = kvm_mips_guest_tlb_lookup(vcpu, (gva & VPN2_MASK) | 1211 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID)); 1212 if (index < 0) 1213 return KVM_MIPS_TLB; 1214 tlb = &vcpu->arch.guest_tlb[index]; 1215 1216 /* Entry should be valid, and dirty for writes */ 1217 if (!TLB_IS_VALID(*tlb, gva)) 1218 return KVM_MIPS_TLBINV; 1219 if (write && !TLB_IS_DIRTY(*tlb, gva)) 1220 return KVM_MIPS_TLBMOD; 1221 1222 if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, gva, write)) 1223 return KVM_MIPS_GPA; 1224 } else { 1225 return KVM_MIPS_GVA; 1226 } 1227 1228 return KVM_MIPS_MAPPED; 1229 } 1230 1231 int kvm_get_inst(u32 *opc, struct kvm_vcpu *vcpu, u32 *out) 1232 { 1233 int err; 1234 1235 if (WARN(IS_ENABLED(CONFIG_KVM_MIPS_VZ), 1236 "Expect BadInstr/BadInstrP registers to be used with VZ\n")) 1237 return -EINVAL; 1238 1239 retry: 1240 kvm_trap_emul_gva_lockless_begin(vcpu); 1241 err = get_user(*out, opc); 1242 kvm_trap_emul_gva_lockless_end(vcpu); 1243 1244 if (unlikely(err)) { 1245 /* 1246 * Try to handle the fault, maybe we just raced with a GVA 1247 * invalidation. 1248 */ 1249 err = kvm_trap_emul_gva_fault(vcpu, (unsigned long)opc, 1250 false); 1251 if (unlikely(err)) { 1252 kvm_err("%s: illegal address: %p\n", 1253 __func__, opc); 1254 return -EFAULT; 1255 } 1256 1257 /* Hopefully it'll work now */ 1258 goto retry; 1259 } 1260 return 0; 1261 } 1262