xref: /openbmc/linux/arch/mips/kvm/mmu.c (revision 9eda7c1f)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS MMU handling in the KVM module.
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11 
12 #include <linux/highmem.h>
13 #include <linux/kvm_host.h>
14 #include <linux/uaccess.h>
15 #include <asm/mmu_context.h>
16 #include <asm/pgalloc.h>
17 
18 /*
19  * KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels
20  * for which pages need to be cached.
21  */
22 #if defined(__PAGETABLE_PMD_FOLDED)
23 #define KVM_MMU_CACHE_MIN_PAGES 1
24 #else
25 #define KVM_MMU_CACHE_MIN_PAGES 2
26 #endif
27 
28 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
29 {
30 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
31 }
32 
33 /**
34  * kvm_pgd_init() - Initialise KVM GPA page directory.
35  * @page:	Pointer to page directory (PGD) for KVM GPA.
36  *
37  * Initialise a KVM GPA page directory with pointers to the invalid table, i.e.
38  * representing no mappings. This is similar to pgd_init(), however it
39  * initialises all the page directory pointers, not just the ones corresponding
40  * to the userland address space (since it is for the guest physical address
41  * space rather than a virtual address space).
42  */
43 static void kvm_pgd_init(void *page)
44 {
45 	unsigned long *p, *end;
46 	unsigned long entry;
47 
48 #ifdef __PAGETABLE_PMD_FOLDED
49 	entry = (unsigned long)invalid_pte_table;
50 #else
51 	entry = (unsigned long)invalid_pmd_table;
52 #endif
53 
54 	p = (unsigned long *)page;
55 	end = p + PTRS_PER_PGD;
56 
57 	do {
58 		p[0] = entry;
59 		p[1] = entry;
60 		p[2] = entry;
61 		p[3] = entry;
62 		p[4] = entry;
63 		p += 8;
64 		p[-3] = entry;
65 		p[-2] = entry;
66 		p[-1] = entry;
67 	} while (p != end);
68 }
69 
70 /**
71  * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory.
72  *
73  * Allocate a blank KVM GPA page directory (PGD) for representing guest physical
74  * to host physical page mappings.
75  *
76  * Returns:	Pointer to new KVM GPA page directory.
77  *		NULL on allocation failure.
78  */
79 pgd_t *kvm_pgd_alloc(void)
80 {
81 	pgd_t *ret;
82 
83 	ret = (pgd_t *)__get_free_pages(GFP_KERNEL, PGD_ORDER);
84 	if (ret)
85 		kvm_pgd_init(ret);
86 
87 	return ret;
88 }
89 
90 /**
91  * kvm_mips_walk_pgd() - Walk page table with optional allocation.
92  * @pgd:	Page directory pointer.
93  * @addr:	Address to index page table using.
94  * @cache:	MMU page cache to allocate new page tables from, or NULL.
95  *
96  * Walk the page tables pointed to by @pgd to find the PTE corresponding to the
97  * address @addr. If page tables don't exist for @addr, they will be created
98  * from the MMU cache if @cache is not NULL.
99  *
100  * Returns:	Pointer to pte_t corresponding to @addr.
101  *		NULL if a page table doesn't exist for @addr and !@cache.
102  *		NULL if a page table allocation failed.
103  */
104 static pte_t *kvm_mips_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache,
105 				unsigned long addr)
106 {
107 	p4d_t *p4d;
108 	pud_t *pud;
109 	pmd_t *pmd;
110 
111 	pgd += pgd_index(addr);
112 	if (pgd_none(*pgd)) {
113 		/* Not used on MIPS yet */
114 		BUG();
115 		return NULL;
116 	}
117 	p4d = p4d_offset(pgd, addr);
118 	pud = pud_offset(p4d, addr);
119 	if (pud_none(*pud)) {
120 		pmd_t *new_pmd;
121 
122 		if (!cache)
123 			return NULL;
124 		new_pmd = kvm_mmu_memory_cache_alloc(cache);
125 		pmd_init((unsigned long)new_pmd,
126 			 (unsigned long)invalid_pte_table);
127 		pud_populate(NULL, pud, new_pmd);
128 	}
129 	pmd = pmd_offset(pud, addr);
130 	if (pmd_none(*pmd)) {
131 		pte_t *new_pte;
132 
133 		if (!cache)
134 			return NULL;
135 		new_pte = kvm_mmu_memory_cache_alloc(cache);
136 		clear_page(new_pte);
137 		pmd_populate_kernel(NULL, pmd, new_pte);
138 	}
139 	return pte_offset_kernel(pmd, addr);
140 }
141 
142 /* Caller must hold kvm->mm_lock */
143 static pte_t *kvm_mips_pte_for_gpa(struct kvm *kvm,
144 				   struct kvm_mmu_memory_cache *cache,
145 				   unsigned long addr)
146 {
147 	return kvm_mips_walk_pgd(kvm->arch.gpa_mm.pgd, cache, addr);
148 }
149 
150 /*
151  * kvm_mips_flush_gpa_{pte,pmd,pud,pgd,pt}.
152  * Flush a range of guest physical address space from the VM's GPA page tables.
153  */
154 
155 static bool kvm_mips_flush_gpa_pte(pte_t *pte, unsigned long start_gpa,
156 				   unsigned long end_gpa)
157 {
158 	int i_min = pte_index(start_gpa);
159 	int i_max = pte_index(end_gpa);
160 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
161 	int i;
162 
163 	for (i = i_min; i <= i_max; ++i) {
164 		if (!pte_present(pte[i]))
165 			continue;
166 
167 		set_pte(pte + i, __pte(0));
168 	}
169 	return safe_to_remove;
170 }
171 
172 static bool kvm_mips_flush_gpa_pmd(pmd_t *pmd, unsigned long start_gpa,
173 				   unsigned long end_gpa)
174 {
175 	pte_t *pte;
176 	unsigned long end = ~0ul;
177 	int i_min = pmd_index(start_gpa);
178 	int i_max = pmd_index(end_gpa);
179 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
180 	int i;
181 
182 	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
183 		if (!pmd_present(pmd[i]))
184 			continue;
185 
186 		pte = pte_offset_kernel(pmd + i, 0);
187 		if (i == i_max)
188 			end = end_gpa;
189 
190 		if (kvm_mips_flush_gpa_pte(pte, start_gpa, end)) {
191 			pmd_clear(pmd + i);
192 			pte_free_kernel(NULL, pte);
193 		} else {
194 			safe_to_remove = false;
195 		}
196 	}
197 	return safe_to_remove;
198 }
199 
200 static bool kvm_mips_flush_gpa_pud(pud_t *pud, unsigned long start_gpa,
201 				   unsigned long end_gpa)
202 {
203 	pmd_t *pmd;
204 	unsigned long end = ~0ul;
205 	int i_min = pud_index(start_gpa);
206 	int i_max = pud_index(end_gpa);
207 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
208 	int i;
209 
210 	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
211 		if (!pud_present(pud[i]))
212 			continue;
213 
214 		pmd = pmd_offset(pud + i, 0);
215 		if (i == i_max)
216 			end = end_gpa;
217 
218 		if (kvm_mips_flush_gpa_pmd(pmd, start_gpa, end)) {
219 			pud_clear(pud + i);
220 			pmd_free(NULL, pmd);
221 		} else {
222 			safe_to_remove = false;
223 		}
224 	}
225 	return safe_to_remove;
226 }
227 
228 static bool kvm_mips_flush_gpa_pgd(pgd_t *pgd, unsigned long start_gpa,
229 				   unsigned long end_gpa)
230 {
231 	p4d_t *p4d;
232 	pud_t *pud;
233 	unsigned long end = ~0ul;
234 	int i_min = pgd_index(start_gpa);
235 	int i_max = pgd_index(end_gpa);
236 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
237 	int i;
238 
239 	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
240 		if (!pgd_present(pgd[i]))
241 			continue;
242 
243 		p4d = p4d_offset(pgd, 0);
244 		pud = pud_offset(p4d + i, 0);
245 		if (i == i_max)
246 			end = end_gpa;
247 
248 		if (kvm_mips_flush_gpa_pud(pud, start_gpa, end)) {
249 			pgd_clear(pgd + i);
250 			pud_free(NULL, pud);
251 		} else {
252 			safe_to_remove = false;
253 		}
254 	}
255 	return safe_to_remove;
256 }
257 
258 /**
259  * kvm_mips_flush_gpa_pt() - Flush a range of guest physical addresses.
260  * @kvm:	KVM pointer.
261  * @start_gfn:	Guest frame number of first page in GPA range to flush.
262  * @end_gfn:	Guest frame number of last page in GPA range to flush.
263  *
264  * Flushes a range of GPA mappings from the GPA page tables.
265  *
266  * The caller must hold the @kvm->mmu_lock spinlock.
267  *
268  * Returns:	Whether its safe to remove the top level page directory because
269  *		all lower levels have been removed.
270  */
271 bool kvm_mips_flush_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
272 {
273 	return kvm_mips_flush_gpa_pgd(kvm->arch.gpa_mm.pgd,
274 				      start_gfn << PAGE_SHIFT,
275 				      end_gfn << PAGE_SHIFT);
276 }
277 
278 #define BUILD_PTE_RANGE_OP(name, op)					\
279 static int kvm_mips_##name##_pte(pte_t *pte, unsigned long start,	\
280 				 unsigned long end)			\
281 {									\
282 	int ret = 0;							\
283 	int i_min = pte_index(start);				\
284 	int i_max = pte_index(end);					\
285 	int i;								\
286 	pte_t old, new;							\
287 									\
288 	for (i = i_min; i <= i_max; ++i) {				\
289 		if (!pte_present(pte[i]))				\
290 			continue;					\
291 									\
292 		old = pte[i];						\
293 		new = op(old);						\
294 		if (pte_val(new) == pte_val(old))			\
295 			continue;					\
296 		set_pte(pte + i, new);					\
297 		ret = 1;						\
298 	}								\
299 	return ret;							\
300 }									\
301 									\
302 /* returns true if anything was done */					\
303 static int kvm_mips_##name##_pmd(pmd_t *pmd, unsigned long start,	\
304 				 unsigned long end)			\
305 {									\
306 	int ret = 0;							\
307 	pte_t *pte;							\
308 	unsigned long cur_end = ~0ul;					\
309 	int i_min = pmd_index(start);				\
310 	int i_max = pmd_index(end);					\
311 	int i;								\
312 									\
313 	for (i = i_min; i <= i_max; ++i, start = 0) {			\
314 		if (!pmd_present(pmd[i]))				\
315 			continue;					\
316 									\
317 		pte = pte_offset_kernel(pmd + i, 0);				\
318 		if (i == i_max)						\
319 			cur_end = end;					\
320 									\
321 		ret |= kvm_mips_##name##_pte(pte, start, cur_end);	\
322 	}								\
323 	return ret;							\
324 }									\
325 									\
326 static int kvm_mips_##name##_pud(pud_t *pud, unsigned long start,	\
327 				 unsigned long end)			\
328 {									\
329 	int ret = 0;							\
330 	pmd_t *pmd;							\
331 	unsigned long cur_end = ~0ul;					\
332 	int i_min = pud_index(start);				\
333 	int i_max = pud_index(end);					\
334 	int i;								\
335 									\
336 	for (i = i_min; i <= i_max; ++i, start = 0) {			\
337 		if (!pud_present(pud[i]))				\
338 			continue;					\
339 									\
340 		pmd = pmd_offset(pud + i, 0);				\
341 		if (i == i_max)						\
342 			cur_end = end;					\
343 									\
344 		ret |= kvm_mips_##name##_pmd(pmd, start, cur_end);	\
345 	}								\
346 	return ret;							\
347 }									\
348 									\
349 static int kvm_mips_##name##_pgd(pgd_t *pgd, unsigned long start,	\
350 				 unsigned long end)			\
351 {									\
352 	int ret = 0;							\
353 	p4d_t *p4d;							\
354 	pud_t *pud;							\
355 	unsigned long cur_end = ~0ul;					\
356 	int i_min = pgd_index(start);					\
357 	int i_max = pgd_index(end);					\
358 	int i;								\
359 									\
360 	for (i = i_min; i <= i_max; ++i, start = 0) {			\
361 		if (!pgd_present(pgd[i]))				\
362 			continue;					\
363 									\
364 		p4d = p4d_offset(pgd, 0);				\
365 		pud = pud_offset(p4d + i, 0);				\
366 		if (i == i_max)						\
367 			cur_end = end;					\
368 									\
369 		ret |= kvm_mips_##name##_pud(pud, start, cur_end);	\
370 	}								\
371 	return ret;							\
372 }
373 
374 /*
375  * kvm_mips_mkclean_gpa_pt.
376  * Mark a range of guest physical address space clean (writes fault) in the VM's
377  * GPA page table to allow dirty page tracking.
378  */
379 
380 BUILD_PTE_RANGE_OP(mkclean, pte_mkclean)
381 
382 /**
383  * kvm_mips_mkclean_gpa_pt() - Make a range of guest physical addresses clean.
384  * @kvm:	KVM pointer.
385  * @start_gfn:	Guest frame number of first page in GPA range to flush.
386  * @end_gfn:	Guest frame number of last page in GPA range to flush.
387  *
388  * Make a range of GPA mappings clean so that guest writes will fault and
389  * trigger dirty page logging.
390  *
391  * The caller must hold the @kvm->mmu_lock spinlock.
392  *
393  * Returns:	Whether any GPA mappings were modified, which would require
394  *		derived mappings (GVA page tables & TLB enties) to be
395  *		invalidated.
396  */
397 int kvm_mips_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
398 {
399 	return kvm_mips_mkclean_pgd(kvm->arch.gpa_mm.pgd,
400 				    start_gfn << PAGE_SHIFT,
401 				    end_gfn << PAGE_SHIFT);
402 }
403 
404 /**
405  * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages
406  * @kvm:	The KVM pointer
407  * @slot:	The memory slot associated with mask
408  * @gfn_offset:	The gfn offset in memory slot
409  * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
410  *		slot to be write protected
411  *
412  * Walks bits set in mask write protects the associated pte's. Caller must
413  * acquire @kvm->mmu_lock.
414  */
415 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
416 		struct kvm_memory_slot *slot,
417 		gfn_t gfn_offset, unsigned long mask)
418 {
419 	gfn_t base_gfn = slot->base_gfn + gfn_offset;
420 	gfn_t start = base_gfn +  __ffs(mask);
421 	gfn_t end = base_gfn + __fls(mask);
422 
423 	kvm_mips_mkclean_gpa_pt(kvm, start, end);
424 }
425 
426 /*
427  * kvm_mips_mkold_gpa_pt.
428  * Mark a range of guest physical address space old (all accesses fault) in the
429  * VM's GPA page table to allow detection of commonly used pages.
430  */
431 
432 BUILD_PTE_RANGE_OP(mkold, pte_mkold)
433 
434 static int kvm_mips_mkold_gpa_pt(struct kvm *kvm, gfn_t start_gfn,
435 				 gfn_t end_gfn)
436 {
437 	return kvm_mips_mkold_pgd(kvm->arch.gpa_mm.pgd,
438 				  start_gfn << PAGE_SHIFT,
439 				  end_gfn << PAGE_SHIFT);
440 }
441 
442 static int handle_hva_to_gpa(struct kvm *kvm,
443 			     unsigned long start,
444 			     unsigned long end,
445 			     int (*handler)(struct kvm *kvm, gfn_t gfn,
446 					    gpa_t gfn_end,
447 					    struct kvm_memory_slot *memslot,
448 					    void *data),
449 			     void *data)
450 {
451 	struct kvm_memslots *slots;
452 	struct kvm_memory_slot *memslot;
453 	int ret = 0;
454 
455 	slots = kvm_memslots(kvm);
456 
457 	/* we only care about the pages that the guest sees */
458 	kvm_for_each_memslot(memslot, slots) {
459 		unsigned long hva_start, hva_end;
460 		gfn_t gfn, gfn_end;
461 
462 		hva_start = max(start, memslot->userspace_addr);
463 		hva_end = min(end, memslot->userspace_addr +
464 					(memslot->npages << PAGE_SHIFT));
465 		if (hva_start >= hva_end)
466 			continue;
467 
468 		/*
469 		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
470 		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
471 		 */
472 		gfn = hva_to_gfn_memslot(hva_start, memslot);
473 		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
474 
475 		ret |= handler(kvm, gfn, gfn_end, memslot, data);
476 	}
477 
478 	return ret;
479 }
480 
481 
482 static int kvm_unmap_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
483 				 struct kvm_memory_slot *memslot, void *data)
484 {
485 	kvm_mips_flush_gpa_pt(kvm, gfn, gfn_end);
486 	return 1;
487 }
488 
489 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
490 {
491 	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
492 
493 	kvm_mips_callbacks->flush_shadow_all(kvm);
494 	return 0;
495 }
496 
497 static int kvm_set_spte_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
498 				struct kvm_memory_slot *memslot, void *data)
499 {
500 	gpa_t gpa = gfn << PAGE_SHIFT;
501 	pte_t hva_pte = *(pte_t *)data;
502 	pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
503 	pte_t old_pte;
504 
505 	if (!gpa_pte)
506 		return 0;
507 
508 	/* Mapping may need adjusting depending on memslot flags */
509 	old_pte = *gpa_pte;
510 	if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES && !pte_dirty(old_pte))
511 		hva_pte = pte_mkclean(hva_pte);
512 	else if (memslot->flags & KVM_MEM_READONLY)
513 		hva_pte = pte_wrprotect(hva_pte);
514 
515 	set_pte(gpa_pte, hva_pte);
516 
517 	/* Replacing an absent or old page doesn't need flushes */
518 	if (!pte_present(old_pte) || !pte_young(old_pte))
519 		return 0;
520 
521 	/* Pages swapped, aged, moved, or cleaned require flushes */
522 	return !pte_present(hva_pte) ||
523 	       !pte_young(hva_pte) ||
524 	       pte_pfn(old_pte) != pte_pfn(hva_pte) ||
525 	       (pte_dirty(old_pte) && !pte_dirty(hva_pte));
526 }
527 
528 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
529 {
530 	unsigned long end = hva + PAGE_SIZE;
531 	int ret;
532 
533 	ret = handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &pte);
534 	if (ret)
535 		kvm_mips_callbacks->flush_shadow_all(kvm);
536 	return 0;
537 }
538 
539 static int kvm_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
540 			       struct kvm_memory_slot *memslot, void *data)
541 {
542 	return kvm_mips_mkold_gpa_pt(kvm, gfn, gfn_end);
543 }
544 
545 static int kvm_test_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
546 				    struct kvm_memory_slot *memslot, void *data)
547 {
548 	gpa_t gpa = gfn << PAGE_SHIFT;
549 	pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
550 
551 	if (!gpa_pte)
552 		return 0;
553 	return pte_young(*gpa_pte);
554 }
555 
556 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
557 {
558 	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
559 }
560 
561 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
562 {
563 	return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
564 }
565 
566 /**
567  * _kvm_mips_map_page_fast() - Fast path GPA fault handler.
568  * @vcpu:		VCPU pointer.
569  * @gpa:		Guest physical address of fault.
570  * @write_fault:	Whether the fault was due to a write.
571  * @out_entry:		New PTE for @gpa (written on success unless NULL).
572  * @out_buddy:		New PTE for @gpa's buddy (written on success unless
573  *			NULL).
574  *
575  * Perform fast path GPA fault handling, doing all that can be done without
576  * calling into KVM. This handles marking old pages young (for idle page
577  * tracking), and dirtying of clean pages (for dirty page logging).
578  *
579  * Returns:	0 on success, in which case we can update derived mappings and
580  *		resume guest execution.
581  *		-EFAULT on failure due to absent GPA mapping or write to
582  *		read-only page, in which case KVM must be consulted.
583  */
584 static int _kvm_mips_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa,
585 				   bool write_fault,
586 				   pte_t *out_entry, pte_t *out_buddy)
587 {
588 	struct kvm *kvm = vcpu->kvm;
589 	gfn_t gfn = gpa >> PAGE_SHIFT;
590 	pte_t *ptep;
591 	kvm_pfn_t pfn = 0;	/* silence bogus GCC warning */
592 	bool pfn_valid = false;
593 	int ret = 0;
594 
595 	spin_lock(&kvm->mmu_lock);
596 
597 	/* Fast path - just check GPA page table for an existing entry */
598 	ptep = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
599 	if (!ptep || !pte_present(*ptep)) {
600 		ret = -EFAULT;
601 		goto out;
602 	}
603 
604 	/* Track access to pages marked old */
605 	if (!pte_young(*ptep)) {
606 		set_pte(ptep, pte_mkyoung(*ptep));
607 		pfn = pte_pfn(*ptep);
608 		pfn_valid = true;
609 		/* call kvm_set_pfn_accessed() after unlock */
610 	}
611 	if (write_fault && !pte_dirty(*ptep)) {
612 		if (!pte_write(*ptep)) {
613 			ret = -EFAULT;
614 			goto out;
615 		}
616 
617 		/* Track dirtying of writeable pages */
618 		set_pte(ptep, pte_mkdirty(*ptep));
619 		pfn = pte_pfn(*ptep);
620 		mark_page_dirty(kvm, gfn);
621 		kvm_set_pfn_dirty(pfn);
622 	}
623 
624 	if (out_entry)
625 		*out_entry = *ptep;
626 	if (out_buddy)
627 		*out_buddy = *ptep_buddy(ptep);
628 
629 out:
630 	spin_unlock(&kvm->mmu_lock);
631 	if (pfn_valid)
632 		kvm_set_pfn_accessed(pfn);
633 	return ret;
634 }
635 
636 /**
637  * kvm_mips_map_page() - Map a guest physical page.
638  * @vcpu:		VCPU pointer.
639  * @gpa:		Guest physical address of fault.
640  * @write_fault:	Whether the fault was due to a write.
641  * @out_entry:		New PTE for @gpa (written on success unless NULL).
642  * @out_buddy:		New PTE for @gpa's buddy (written on success unless
643  *			NULL).
644  *
645  * Handle GPA faults by creating a new GPA mapping (or updating an existing
646  * one).
647  *
648  * This takes care of marking pages young or dirty (idle/dirty page tracking),
649  * asking KVM for the corresponding PFN, and creating a mapping in the GPA page
650  * tables. Derived mappings (GVA page tables and TLBs) must be handled by the
651  * caller.
652  *
653  * Returns:	0 on success, in which case the caller may use the @out_entry
654  *		and @out_buddy PTEs to update derived mappings and resume guest
655  *		execution.
656  *		-EFAULT if there is no memory region at @gpa or a write was
657  *		attempted to a read-only memory region. This is usually handled
658  *		as an MMIO access.
659  */
660 static int kvm_mips_map_page(struct kvm_vcpu *vcpu, unsigned long gpa,
661 			     bool write_fault,
662 			     pte_t *out_entry, pte_t *out_buddy)
663 {
664 	struct kvm *kvm = vcpu->kvm;
665 	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
666 	gfn_t gfn = gpa >> PAGE_SHIFT;
667 	int srcu_idx, err;
668 	kvm_pfn_t pfn;
669 	pte_t *ptep, entry, old_pte;
670 	bool writeable;
671 	unsigned long prot_bits;
672 	unsigned long mmu_seq;
673 
674 	/* Try the fast path to handle old / clean pages */
675 	srcu_idx = srcu_read_lock(&kvm->srcu);
676 	err = _kvm_mips_map_page_fast(vcpu, gpa, write_fault, out_entry,
677 				      out_buddy);
678 	if (!err)
679 		goto out;
680 
681 	/* We need a minimum of cached pages ready for page table creation */
682 	err = kvm_mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES);
683 	if (err)
684 		goto out;
685 
686 retry:
687 	/*
688 	 * Used to check for invalidations in progress, of the pfn that is
689 	 * returned by pfn_to_pfn_prot below.
690 	 */
691 	mmu_seq = kvm->mmu_notifier_seq;
692 	/*
693 	 * Ensure the read of mmu_notifier_seq isn't reordered with PTE reads in
694 	 * gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't
695 	 * risk the page we get a reference to getting unmapped before we have a
696 	 * chance to grab the mmu_lock without mmu_notifier_retry() noticing.
697 	 *
698 	 * This smp_rmb() pairs with the effective smp_wmb() of the combination
699 	 * of the pte_unmap_unlock() after the PTE is zapped, and the
700 	 * spin_lock() in kvm_mmu_notifier_invalidate_<page|range_end>() before
701 	 * mmu_notifier_seq is incremented.
702 	 */
703 	smp_rmb();
704 
705 	/* Slow path - ask KVM core whether we can access this GPA */
706 	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writeable);
707 	if (is_error_noslot_pfn(pfn)) {
708 		err = -EFAULT;
709 		goto out;
710 	}
711 
712 	spin_lock(&kvm->mmu_lock);
713 	/* Check if an invalidation has taken place since we got pfn */
714 	if (mmu_notifier_retry(kvm, mmu_seq)) {
715 		/*
716 		 * This can happen when mappings are changed asynchronously, but
717 		 * also synchronously if a COW is triggered by
718 		 * gfn_to_pfn_prot().
719 		 */
720 		spin_unlock(&kvm->mmu_lock);
721 		kvm_release_pfn_clean(pfn);
722 		goto retry;
723 	}
724 
725 	/* Ensure page tables are allocated */
726 	ptep = kvm_mips_pte_for_gpa(kvm, memcache, gpa);
727 
728 	/* Set up the PTE */
729 	prot_bits = _PAGE_PRESENT | __READABLE | _page_cachable_default;
730 	if (writeable) {
731 		prot_bits |= _PAGE_WRITE;
732 		if (write_fault) {
733 			prot_bits |= __WRITEABLE;
734 			mark_page_dirty(kvm, gfn);
735 			kvm_set_pfn_dirty(pfn);
736 		}
737 	}
738 	entry = pfn_pte(pfn, __pgprot(prot_bits));
739 
740 	/* Write the PTE */
741 	old_pte = *ptep;
742 	set_pte(ptep, entry);
743 
744 	err = 0;
745 	if (out_entry)
746 		*out_entry = *ptep;
747 	if (out_buddy)
748 		*out_buddy = *ptep_buddy(ptep);
749 
750 	spin_unlock(&kvm->mmu_lock);
751 	kvm_release_pfn_clean(pfn);
752 	kvm_set_pfn_accessed(pfn);
753 out:
754 	srcu_read_unlock(&kvm->srcu, srcu_idx);
755 	return err;
756 }
757 
758 static pte_t *kvm_trap_emul_pte_for_gva(struct kvm_vcpu *vcpu,
759 					unsigned long addr)
760 {
761 	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
762 	pgd_t *pgdp;
763 	int ret;
764 
765 	/* We need a minimum of cached pages ready for page table creation */
766 	ret = kvm_mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES);
767 	if (ret)
768 		return NULL;
769 
770 	if (KVM_GUEST_KERNEL_MODE(vcpu))
771 		pgdp = vcpu->arch.guest_kernel_mm.pgd;
772 	else
773 		pgdp = vcpu->arch.guest_user_mm.pgd;
774 
775 	return kvm_mips_walk_pgd(pgdp, memcache, addr);
776 }
777 
778 void kvm_trap_emul_invalidate_gva(struct kvm_vcpu *vcpu, unsigned long addr,
779 				  bool user)
780 {
781 	pgd_t *pgdp;
782 	pte_t *ptep;
783 
784 	addr &= PAGE_MASK << 1;
785 
786 	pgdp = vcpu->arch.guest_kernel_mm.pgd;
787 	ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
788 	if (ptep) {
789 		ptep[0] = pfn_pte(0, __pgprot(0));
790 		ptep[1] = pfn_pte(0, __pgprot(0));
791 	}
792 
793 	if (user) {
794 		pgdp = vcpu->arch.guest_user_mm.pgd;
795 		ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
796 		if (ptep) {
797 			ptep[0] = pfn_pte(0, __pgprot(0));
798 			ptep[1] = pfn_pte(0, __pgprot(0));
799 		}
800 	}
801 }
802 
803 /*
804  * kvm_mips_flush_gva_{pte,pmd,pud,pgd,pt}.
805  * Flush a range of guest physical address space from the VM's GPA page tables.
806  */
807 
808 static bool kvm_mips_flush_gva_pte(pte_t *pte, unsigned long start_gva,
809 				   unsigned long end_gva)
810 {
811 	int i_min = pte_index(start_gva);
812 	int i_max = pte_index(end_gva);
813 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
814 	int i;
815 
816 	/*
817 	 * There's no freeing to do, so there's no point clearing individual
818 	 * entries unless only part of the last level page table needs flushing.
819 	 */
820 	if (safe_to_remove)
821 		return true;
822 
823 	for (i = i_min; i <= i_max; ++i) {
824 		if (!pte_present(pte[i]))
825 			continue;
826 
827 		set_pte(pte + i, __pte(0));
828 	}
829 	return false;
830 }
831 
832 static bool kvm_mips_flush_gva_pmd(pmd_t *pmd, unsigned long start_gva,
833 				   unsigned long end_gva)
834 {
835 	pte_t *pte;
836 	unsigned long end = ~0ul;
837 	int i_min = pmd_index(start_gva);
838 	int i_max = pmd_index(end_gva);
839 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
840 	int i;
841 
842 	for (i = i_min; i <= i_max; ++i, start_gva = 0) {
843 		if (!pmd_present(pmd[i]))
844 			continue;
845 
846 		pte = pte_offset_kernel(pmd + i, 0);
847 		if (i == i_max)
848 			end = end_gva;
849 
850 		if (kvm_mips_flush_gva_pte(pte, start_gva, end)) {
851 			pmd_clear(pmd + i);
852 			pte_free_kernel(NULL, pte);
853 		} else {
854 			safe_to_remove = false;
855 		}
856 	}
857 	return safe_to_remove;
858 }
859 
860 static bool kvm_mips_flush_gva_pud(pud_t *pud, unsigned long start_gva,
861 				   unsigned long end_gva)
862 {
863 	pmd_t *pmd;
864 	unsigned long end = ~0ul;
865 	int i_min = pud_index(start_gva);
866 	int i_max = pud_index(end_gva);
867 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
868 	int i;
869 
870 	for (i = i_min; i <= i_max; ++i, start_gva = 0) {
871 		if (!pud_present(pud[i]))
872 			continue;
873 
874 		pmd = pmd_offset(pud + i, 0);
875 		if (i == i_max)
876 			end = end_gva;
877 
878 		if (kvm_mips_flush_gva_pmd(pmd, start_gva, end)) {
879 			pud_clear(pud + i);
880 			pmd_free(NULL, pmd);
881 		} else {
882 			safe_to_remove = false;
883 		}
884 	}
885 	return safe_to_remove;
886 }
887 
888 static bool kvm_mips_flush_gva_pgd(pgd_t *pgd, unsigned long start_gva,
889 				   unsigned long end_gva)
890 {
891 	p4d_t *p4d;
892 	pud_t *pud;
893 	unsigned long end = ~0ul;
894 	int i_min = pgd_index(start_gva);
895 	int i_max = pgd_index(end_gva);
896 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
897 	int i;
898 
899 	for (i = i_min; i <= i_max; ++i, start_gva = 0) {
900 		if (!pgd_present(pgd[i]))
901 			continue;
902 
903 		p4d = p4d_offset(pgd, 0);
904 		pud = pud_offset(p4d + i, 0);
905 		if (i == i_max)
906 			end = end_gva;
907 
908 		if (kvm_mips_flush_gva_pud(pud, start_gva, end)) {
909 			pgd_clear(pgd + i);
910 			pud_free(NULL, pud);
911 		} else {
912 			safe_to_remove = false;
913 		}
914 	}
915 	return safe_to_remove;
916 }
917 
918 void kvm_mips_flush_gva_pt(pgd_t *pgd, enum kvm_mips_flush flags)
919 {
920 	if (flags & KMF_GPA) {
921 		/* all of guest virtual address space could be affected */
922 		if (flags & KMF_KERN)
923 			/* useg, kseg0, seg2/3 */
924 			kvm_mips_flush_gva_pgd(pgd, 0, 0x7fffffff);
925 		else
926 			/* useg */
927 			kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
928 	} else {
929 		/* useg */
930 		kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
931 
932 		/* kseg2/3 */
933 		if (flags & KMF_KERN)
934 			kvm_mips_flush_gva_pgd(pgd, 0x60000000, 0x7fffffff);
935 	}
936 }
937 
938 static pte_t kvm_mips_gpa_pte_to_gva_unmapped(pte_t pte)
939 {
940 	/*
941 	 * Don't leak writeable but clean entries from GPA page tables. We don't
942 	 * want the normal Linux tlbmod handler to handle dirtying when KVM
943 	 * accesses guest memory.
944 	 */
945 	if (!pte_dirty(pte))
946 		pte = pte_wrprotect(pte);
947 
948 	return pte;
949 }
950 
951 static pte_t kvm_mips_gpa_pte_to_gva_mapped(pte_t pte, long entrylo)
952 {
953 	/* Guest EntryLo overrides host EntryLo */
954 	if (!(entrylo & ENTRYLO_D))
955 		pte = pte_mkclean(pte);
956 
957 	return kvm_mips_gpa_pte_to_gva_unmapped(pte);
958 }
959 
960 #ifdef CONFIG_KVM_MIPS_VZ
961 int kvm_mips_handle_vz_root_tlb_fault(unsigned long badvaddr,
962 				      struct kvm_vcpu *vcpu,
963 				      bool write_fault)
964 {
965 	int ret;
966 
967 	ret = kvm_mips_map_page(vcpu, badvaddr, write_fault, NULL, NULL);
968 	if (ret)
969 		return ret;
970 
971 	/* Invalidate this entry in the TLB */
972 	return kvm_vz_host_tlb_inv(vcpu, badvaddr);
973 }
974 #endif
975 
976 /* XXXKYMA: Must be called with interrupts disabled */
977 int kvm_mips_handle_kseg0_tlb_fault(unsigned long badvaddr,
978 				    struct kvm_vcpu *vcpu,
979 				    bool write_fault)
980 {
981 	unsigned long gpa;
982 	pte_t pte_gpa[2], *ptep_gva;
983 	int idx;
984 
985 	if (KVM_GUEST_KSEGX(badvaddr) != KVM_GUEST_KSEG0) {
986 		kvm_err("%s: Invalid BadVaddr: %#lx\n", __func__, badvaddr);
987 		kvm_mips_dump_host_tlbs();
988 		return -1;
989 	}
990 
991 	/* Get the GPA page table entry */
992 	gpa = KVM_GUEST_CPHYSADDR(badvaddr);
993 	idx = (badvaddr >> PAGE_SHIFT) & 1;
994 	if (kvm_mips_map_page(vcpu, gpa, write_fault, &pte_gpa[idx],
995 			      &pte_gpa[!idx]) < 0)
996 		return -1;
997 
998 	/* Get the GVA page table entry */
999 	ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, badvaddr & ~PAGE_SIZE);
1000 	if (!ptep_gva) {
1001 		kvm_err("No ptep for gva %lx\n", badvaddr);
1002 		return -1;
1003 	}
1004 
1005 	/* Copy a pair of entries from GPA page table to GVA page table */
1006 	ptep_gva[0] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[0]);
1007 	ptep_gva[1] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[1]);
1008 
1009 	/* Invalidate this entry in the TLB, guest kernel ASID only */
1010 	kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true);
1011 	return 0;
1012 }
1013 
1014 int kvm_mips_handle_mapped_seg_tlb_fault(struct kvm_vcpu *vcpu,
1015 					 struct kvm_mips_tlb *tlb,
1016 					 unsigned long gva,
1017 					 bool write_fault)
1018 {
1019 	struct kvm *kvm = vcpu->kvm;
1020 	long tlb_lo[2];
1021 	pte_t pte_gpa[2], *ptep_buddy, *ptep_gva;
1022 	unsigned int idx = TLB_LO_IDX(*tlb, gva);
1023 	bool kernel = KVM_GUEST_KERNEL_MODE(vcpu);
1024 
1025 	tlb_lo[0] = tlb->tlb_lo[0];
1026 	tlb_lo[1] = tlb->tlb_lo[1];
1027 
1028 	/*
1029 	 * The commpage address must not be mapped to anything else if the guest
1030 	 * TLB contains entries nearby, or commpage accesses will break.
1031 	 */
1032 	if (!((gva ^ KVM_GUEST_COMMPAGE_ADDR) & VPN2_MASK & (PAGE_MASK << 1)))
1033 		tlb_lo[TLB_LO_IDX(*tlb, KVM_GUEST_COMMPAGE_ADDR)] = 0;
1034 
1035 	/* Get the GPA page table entry */
1036 	if (kvm_mips_map_page(vcpu, mips3_tlbpfn_to_paddr(tlb_lo[idx]),
1037 			      write_fault, &pte_gpa[idx], NULL) < 0)
1038 		return -1;
1039 
1040 	/* And its GVA buddy's GPA page table entry if it also exists */
1041 	pte_gpa[!idx] = pfn_pte(0, __pgprot(0));
1042 	if (tlb_lo[!idx] & ENTRYLO_V) {
1043 		spin_lock(&kvm->mmu_lock);
1044 		ptep_buddy = kvm_mips_pte_for_gpa(kvm, NULL,
1045 					mips3_tlbpfn_to_paddr(tlb_lo[!idx]));
1046 		if (ptep_buddy)
1047 			pte_gpa[!idx] = *ptep_buddy;
1048 		spin_unlock(&kvm->mmu_lock);
1049 	}
1050 
1051 	/* Get the GVA page table entry pair */
1052 	ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, gva & ~PAGE_SIZE);
1053 	if (!ptep_gva) {
1054 		kvm_err("No ptep for gva %lx\n", gva);
1055 		return -1;
1056 	}
1057 
1058 	/* Copy a pair of entries from GPA page table to GVA page table */
1059 	ptep_gva[0] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[0], tlb_lo[0]);
1060 	ptep_gva[1] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[1], tlb_lo[1]);
1061 
1062 	/* Invalidate this entry in the TLB, current guest mode ASID only */
1063 	kvm_mips_host_tlb_inv(vcpu, gva, !kernel, kernel);
1064 
1065 	kvm_debug("@ %#lx tlb_lo0: 0x%08lx tlb_lo1: 0x%08lx\n", vcpu->arch.pc,
1066 		  tlb->tlb_lo[0], tlb->tlb_lo[1]);
1067 
1068 	return 0;
1069 }
1070 
1071 int kvm_mips_handle_commpage_tlb_fault(unsigned long badvaddr,
1072 				       struct kvm_vcpu *vcpu)
1073 {
1074 	kvm_pfn_t pfn;
1075 	pte_t *ptep;
1076 
1077 	ptep = kvm_trap_emul_pte_for_gva(vcpu, badvaddr);
1078 	if (!ptep) {
1079 		kvm_err("No ptep for commpage %lx\n", badvaddr);
1080 		return -1;
1081 	}
1082 
1083 	pfn = PFN_DOWN(virt_to_phys(vcpu->arch.kseg0_commpage));
1084 	/* Also set valid and dirty, so refill handler doesn't have to */
1085 	*ptep = pte_mkyoung(pte_mkdirty(pfn_pte(pfn, PAGE_SHARED)));
1086 
1087 	/* Invalidate this entry in the TLB, guest kernel ASID only */
1088 	kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true);
1089 	return 0;
1090 }
1091 
1092 /**
1093  * kvm_mips_migrate_count() - Migrate timer.
1094  * @vcpu:	Virtual CPU.
1095  *
1096  * Migrate CP0_Count hrtimer to the current CPU by cancelling and restarting it
1097  * if it was running prior to being cancelled.
1098  *
1099  * Must be called when the VCPU is migrated to a different CPU to ensure that
1100  * timer expiry during guest execution interrupts the guest and causes the
1101  * interrupt to be delivered in a timely manner.
1102  */
1103 static void kvm_mips_migrate_count(struct kvm_vcpu *vcpu)
1104 {
1105 	if (hrtimer_cancel(&vcpu->arch.comparecount_timer))
1106 		hrtimer_restart(&vcpu->arch.comparecount_timer);
1107 }
1108 
1109 /* Restore ASID once we are scheduled back after preemption */
1110 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1111 {
1112 	unsigned long flags;
1113 
1114 	kvm_debug("%s: vcpu %p, cpu: %d\n", __func__, vcpu, cpu);
1115 
1116 	local_irq_save(flags);
1117 
1118 	vcpu->cpu = cpu;
1119 	if (vcpu->arch.last_sched_cpu != cpu) {
1120 		kvm_debug("[%d->%d]KVM VCPU[%d] switch\n",
1121 			  vcpu->arch.last_sched_cpu, cpu, vcpu->vcpu_id);
1122 		/*
1123 		 * Migrate the timer interrupt to the current CPU so that it
1124 		 * always interrupts the guest and synchronously triggers a
1125 		 * guest timer interrupt.
1126 		 */
1127 		kvm_mips_migrate_count(vcpu);
1128 	}
1129 
1130 	/* restore guest state to registers */
1131 	kvm_mips_callbacks->vcpu_load(vcpu, cpu);
1132 
1133 	local_irq_restore(flags);
1134 }
1135 
1136 /* ASID can change if another task is scheduled during preemption */
1137 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1138 {
1139 	unsigned long flags;
1140 	int cpu;
1141 
1142 	local_irq_save(flags);
1143 
1144 	cpu = smp_processor_id();
1145 	vcpu->arch.last_sched_cpu = cpu;
1146 	vcpu->cpu = -1;
1147 
1148 	/* save guest state in registers */
1149 	kvm_mips_callbacks->vcpu_put(vcpu, cpu);
1150 
1151 	local_irq_restore(flags);
1152 }
1153 
1154 /**
1155  * kvm_trap_emul_gva_fault() - Safely attempt to handle a GVA access fault.
1156  * @vcpu:	Virtual CPU.
1157  * @gva:	Guest virtual address to be accessed.
1158  * @write:	True if write attempted (must be dirtied and made writable).
1159  *
1160  * Safely attempt to handle a GVA fault, mapping GVA pages if necessary, and
1161  * dirtying the page if @write so that guest instructions can be modified.
1162  *
1163  * Returns:	KVM_MIPS_MAPPED on success.
1164  *		KVM_MIPS_GVA if bad guest virtual address.
1165  *		KVM_MIPS_GPA if bad guest physical address.
1166  *		KVM_MIPS_TLB if guest TLB not present.
1167  *		KVM_MIPS_TLBINV if guest TLB present but not valid.
1168  *		KVM_MIPS_TLBMOD if guest TLB read only.
1169  */
1170 enum kvm_mips_fault_result kvm_trap_emul_gva_fault(struct kvm_vcpu *vcpu,
1171 						   unsigned long gva,
1172 						   bool write)
1173 {
1174 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1175 	struct kvm_mips_tlb *tlb;
1176 	int index;
1177 
1178 	if (KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG0) {
1179 		if (kvm_mips_handle_kseg0_tlb_fault(gva, vcpu, write) < 0)
1180 			return KVM_MIPS_GPA;
1181 	} else if ((KVM_GUEST_KSEGX(gva) < KVM_GUEST_KSEG0) ||
1182 		   KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG23) {
1183 		/* Address should be in the guest TLB */
1184 		index = kvm_mips_guest_tlb_lookup(vcpu, (gva & VPN2_MASK) |
1185 			  (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID));
1186 		if (index < 0)
1187 			return KVM_MIPS_TLB;
1188 		tlb = &vcpu->arch.guest_tlb[index];
1189 
1190 		/* Entry should be valid, and dirty for writes */
1191 		if (!TLB_IS_VALID(*tlb, gva))
1192 			return KVM_MIPS_TLBINV;
1193 		if (write && !TLB_IS_DIRTY(*tlb, gva))
1194 			return KVM_MIPS_TLBMOD;
1195 
1196 		if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, gva, write))
1197 			return KVM_MIPS_GPA;
1198 	} else {
1199 		return KVM_MIPS_GVA;
1200 	}
1201 
1202 	return KVM_MIPS_MAPPED;
1203 }
1204 
1205 int kvm_get_inst(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
1206 {
1207 	int err;
1208 
1209 	if (WARN(IS_ENABLED(CONFIG_KVM_MIPS_VZ),
1210 		 "Expect BadInstr/BadInstrP registers to be used with VZ\n"))
1211 		return -EINVAL;
1212 
1213 retry:
1214 	kvm_trap_emul_gva_lockless_begin(vcpu);
1215 	err = get_user(*out, opc);
1216 	kvm_trap_emul_gva_lockless_end(vcpu);
1217 
1218 	if (unlikely(err)) {
1219 		/*
1220 		 * Try to handle the fault, maybe we just raced with a GVA
1221 		 * invalidation.
1222 		 */
1223 		err = kvm_trap_emul_gva_fault(vcpu, (unsigned long)opc,
1224 					      false);
1225 		if (unlikely(err)) {
1226 			kvm_err("%s: illegal address: %p\n",
1227 				__func__, opc);
1228 			return -EFAULT;
1229 		}
1230 
1231 		/* Hopefully it'll work now */
1232 		goto retry;
1233 	}
1234 	return 0;
1235 }
1236