1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * KVM/MIPS MMU handling in the KVM module. 7 * 8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved. 9 * Authors: Sanjay Lal <sanjayl@kymasys.com> 10 */ 11 12 #include <linux/highmem.h> 13 #include <linux/kvm_host.h> 14 #include <linux/uaccess.h> 15 #include <asm/mmu_context.h> 16 #include <asm/pgalloc.h> 17 18 /* 19 * KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels 20 * for which pages need to be cached. 21 */ 22 #if defined(__PAGETABLE_PMD_FOLDED) 23 #define KVM_MMU_CACHE_MIN_PAGES 1 24 #else 25 #define KVM_MMU_CACHE_MIN_PAGES 2 26 #endif 27 28 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache, 29 int min, int max) 30 { 31 void *page; 32 33 BUG_ON(max > KVM_NR_MEM_OBJS); 34 if (cache->nobjs >= min) 35 return 0; 36 while (cache->nobjs < max) { 37 page = (void *)__get_free_page(GFP_KERNEL); 38 if (!page) 39 return -ENOMEM; 40 cache->objects[cache->nobjs++] = page; 41 } 42 return 0; 43 } 44 45 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 46 { 47 while (mc->nobjs) 48 free_page((unsigned long)mc->objects[--mc->nobjs]); 49 } 50 51 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 52 { 53 void *p; 54 55 BUG_ON(!mc || !mc->nobjs); 56 p = mc->objects[--mc->nobjs]; 57 return p; 58 } 59 60 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu) 61 { 62 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); 63 } 64 65 /** 66 * kvm_pgd_init() - Initialise KVM GPA page directory. 67 * @page: Pointer to page directory (PGD) for KVM GPA. 68 * 69 * Initialise a KVM GPA page directory with pointers to the invalid table, i.e. 70 * representing no mappings. This is similar to pgd_init(), however it 71 * initialises all the page directory pointers, not just the ones corresponding 72 * to the userland address space (since it is for the guest physical address 73 * space rather than a virtual address space). 74 */ 75 static void kvm_pgd_init(void *page) 76 { 77 unsigned long *p, *end; 78 unsigned long entry; 79 80 #ifdef __PAGETABLE_PMD_FOLDED 81 entry = (unsigned long)invalid_pte_table; 82 #else 83 entry = (unsigned long)invalid_pmd_table; 84 #endif 85 86 p = (unsigned long *)page; 87 end = p + PTRS_PER_PGD; 88 89 do { 90 p[0] = entry; 91 p[1] = entry; 92 p[2] = entry; 93 p[3] = entry; 94 p[4] = entry; 95 p += 8; 96 p[-3] = entry; 97 p[-2] = entry; 98 p[-1] = entry; 99 } while (p != end); 100 } 101 102 /** 103 * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory. 104 * 105 * Allocate a blank KVM GPA page directory (PGD) for representing guest physical 106 * to host physical page mappings. 107 * 108 * Returns: Pointer to new KVM GPA page directory. 109 * NULL on allocation failure. 110 */ 111 pgd_t *kvm_pgd_alloc(void) 112 { 113 pgd_t *ret; 114 115 ret = (pgd_t *)__get_free_pages(GFP_KERNEL, PGD_ORDER); 116 if (ret) 117 kvm_pgd_init(ret); 118 119 return ret; 120 } 121 122 /** 123 * kvm_mips_walk_pgd() - Walk page table with optional allocation. 124 * @pgd: Page directory pointer. 125 * @addr: Address to index page table using. 126 * @cache: MMU page cache to allocate new page tables from, or NULL. 127 * 128 * Walk the page tables pointed to by @pgd to find the PTE corresponding to the 129 * address @addr. If page tables don't exist for @addr, they will be created 130 * from the MMU cache if @cache is not NULL. 131 * 132 * Returns: Pointer to pte_t corresponding to @addr. 133 * NULL if a page table doesn't exist for @addr and !@cache. 134 * NULL if a page table allocation failed. 135 */ 136 static pte_t *kvm_mips_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache, 137 unsigned long addr) 138 { 139 p4d_t *p4d; 140 pud_t *pud; 141 pmd_t *pmd; 142 143 pgd += pgd_index(addr); 144 if (pgd_none(*pgd)) { 145 /* Not used on MIPS yet */ 146 BUG(); 147 return NULL; 148 } 149 p4d = p4d_offset(pgd, addr); 150 pud = pud_offset(p4d, addr); 151 if (pud_none(*pud)) { 152 pmd_t *new_pmd; 153 154 if (!cache) 155 return NULL; 156 new_pmd = mmu_memory_cache_alloc(cache); 157 pmd_init((unsigned long)new_pmd, 158 (unsigned long)invalid_pte_table); 159 pud_populate(NULL, pud, new_pmd); 160 } 161 pmd = pmd_offset(pud, addr); 162 if (pmd_none(*pmd)) { 163 pte_t *new_pte; 164 165 if (!cache) 166 return NULL; 167 new_pte = mmu_memory_cache_alloc(cache); 168 clear_page(new_pte); 169 pmd_populate_kernel(NULL, pmd, new_pte); 170 } 171 return pte_offset(pmd, addr); 172 } 173 174 /* Caller must hold kvm->mm_lock */ 175 static pte_t *kvm_mips_pte_for_gpa(struct kvm *kvm, 176 struct kvm_mmu_memory_cache *cache, 177 unsigned long addr) 178 { 179 return kvm_mips_walk_pgd(kvm->arch.gpa_mm.pgd, cache, addr); 180 } 181 182 /* 183 * kvm_mips_flush_gpa_{pte,pmd,pud,pgd,pt}. 184 * Flush a range of guest physical address space from the VM's GPA page tables. 185 */ 186 187 static bool kvm_mips_flush_gpa_pte(pte_t *pte, unsigned long start_gpa, 188 unsigned long end_gpa) 189 { 190 int i_min = __pte_offset(start_gpa); 191 int i_max = __pte_offset(end_gpa); 192 bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1); 193 int i; 194 195 for (i = i_min; i <= i_max; ++i) { 196 if (!pte_present(pte[i])) 197 continue; 198 199 set_pte(pte + i, __pte(0)); 200 } 201 return safe_to_remove; 202 } 203 204 static bool kvm_mips_flush_gpa_pmd(pmd_t *pmd, unsigned long start_gpa, 205 unsigned long end_gpa) 206 { 207 pte_t *pte; 208 unsigned long end = ~0ul; 209 int i_min = pmd_index(start_gpa); 210 int i_max = pmd_index(end_gpa); 211 bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1); 212 int i; 213 214 for (i = i_min; i <= i_max; ++i, start_gpa = 0) { 215 if (!pmd_present(pmd[i])) 216 continue; 217 218 pte = pte_offset(pmd + i, 0); 219 if (i == i_max) 220 end = end_gpa; 221 222 if (kvm_mips_flush_gpa_pte(pte, start_gpa, end)) { 223 pmd_clear(pmd + i); 224 pte_free_kernel(NULL, pte); 225 } else { 226 safe_to_remove = false; 227 } 228 } 229 return safe_to_remove; 230 } 231 232 static bool kvm_mips_flush_gpa_pud(pud_t *pud, unsigned long start_gpa, 233 unsigned long end_gpa) 234 { 235 pmd_t *pmd; 236 unsigned long end = ~0ul; 237 int i_min = pud_index(start_gpa); 238 int i_max = pud_index(end_gpa); 239 bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1); 240 int i; 241 242 for (i = i_min; i <= i_max; ++i, start_gpa = 0) { 243 if (!pud_present(pud[i])) 244 continue; 245 246 pmd = pmd_offset(pud + i, 0); 247 if (i == i_max) 248 end = end_gpa; 249 250 if (kvm_mips_flush_gpa_pmd(pmd, start_gpa, end)) { 251 pud_clear(pud + i); 252 pmd_free(NULL, pmd); 253 } else { 254 safe_to_remove = false; 255 } 256 } 257 return safe_to_remove; 258 } 259 260 static bool kvm_mips_flush_gpa_pgd(pgd_t *pgd, unsigned long start_gpa, 261 unsigned long end_gpa) 262 { 263 p4d_t *p4d; 264 pud_t *pud; 265 unsigned long end = ~0ul; 266 int i_min = pgd_index(start_gpa); 267 int i_max = pgd_index(end_gpa); 268 bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1); 269 int i; 270 271 for (i = i_min; i <= i_max; ++i, start_gpa = 0) { 272 if (!pgd_present(pgd[i])) 273 continue; 274 275 p4d = p4d_offset(pgd, 0); 276 pud = pud_offset(p4d + i, 0); 277 if (i == i_max) 278 end = end_gpa; 279 280 if (kvm_mips_flush_gpa_pud(pud, start_gpa, end)) { 281 pgd_clear(pgd + i); 282 pud_free(NULL, pud); 283 } else { 284 safe_to_remove = false; 285 } 286 } 287 return safe_to_remove; 288 } 289 290 /** 291 * kvm_mips_flush_gpa_pt() - Flush a range of guest physical addresses. 292 * @kvm: KVM pointer. 293 * @start_gfn: Guest frame number of first page in GPA range to flush. 294 * @end_gfn: Guest frame number of last page in GPA range to flush. 295 * 296 * Flushes a range of GPA mappings from the GPA page tables. 297 * 298 * The caller must hold the @kvm->mmu_lock spinlock. 299 * 300 * Returns: Whether its safe to remove the top level page directory because 301 * all lower levels have been removed. 302 */ 303 bool kvm_mips_flush_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn) 304 { 305 return kvm_mips_flush_gpa_pgd(kvm->arch.gpa_mm.pgd, 306 start_gfn << PAGE_SHIFT, 307 end_gfn << PAGE_SHIFT); 308 } 309 310 #define BUILD_PTE_RANGE_OP(name, op) \ 311 static int kvm_mips_##name##_pte(pte_t *pte, unsigned long start, \ 312 unsigned long end) \ 313 { \ 314 int ret = 0; \ 315 int i_min = __pte_offset(start); \ 316 int i_max = __pte_offset(end); \ 317 int i; \ 318 pte_t old, new; \ 319 \ 320 for (i = i_min; i <= i_max; ++i) { \ 321 if (!pte_present(pte[i])) \ 322 continue; \ 323 \ 324 old = pte[i]; \ 325 new = op(old); \ 326 if (pte_val(new) == pte_val(old)) \ 327 continue; \ 328 set_pte(pte + i, new); \ 329 ret = 1; \ 330 } \ 331 return ret; \ 332 } \ 333 \ 334 /* returns true if anything was done */ \ 335 static int kvm_mips_##name##_pmd(pmd_t *pmd, unsigned long start, \ 336 unsigned long end) \ 337 { \ 338 int ret = 0; \ 339 pte_t *pte; \ 340 unsigned long cur_end = ~0ul; \ 341 int i_min = pmd_index(start); \ 342 int i_max = pmd_index(end); \ 343 int i; \ 344 \ 345 for (i = i_min; i <= i_max; ++i, start = 0) { \ 346 if (!pmd_present(pmd[i])) \ 347 continue; \ 348 \ 349 pte = pte_offset(pmd + i, 0); \ 350 if (i == i_max) \ 351 cur_end = end; \ 352 \ 353 ret |= kvm_mips_##name##_pte(pte, start, cur_end); \ 354 } \ 355 return ret; \ 356 } \ 357 \ 358 static int kvm_mips_##name##_pud(pud_t *pud, unsigned long start, \ 359 unsigned long end) \ 360 { \ 361 int ret = 0; \ 362 pmd_t *pmd; \ 363 unsigned long cur_end = ~0ul; \ 364 int i_min = pud_index(start); \ 365 int i_max = pud_index(end); \ 366 int i; \ 367 \ 368 for (i = i_min; i <= i_max; ++i, start = 0) { \ 369 if (!pud_present(pud[i])) \ 370 continue; \ 371 \ 372 pmd = pmd_offset(pud + i, 0); \ 373 if (i == i_max) \ 374 cur_end = end; \ 375 \ 376 ret |= kvm_mips_##name##_pmd(pmd, start, cur_end); \ 377 } \ 378 return ret; \ 379 } \ 380 \ 381 static int kvm_mips_##name##_pgd(pgd_t *pgd, unsigned long start, \ 382 unsigned long end) \ 383 { \ 384 int ret = 0; \ 385 p4d_t *p4d; \ 386 pud_t *pud; \ 387 unsigned long cur_end = ~0ul; \ 388 int i_min = pgd_index(start); \ 389 int i_max = pgd_index(end); \ 390 int i; \ 391 \ 392 for (i = i_min; i <= i_max; ++i, start = 0) { \ 393 if (!pgd_present(pgd[i])) \ 394 continue; \ 395 \ 396 p4d = p4d_offset(pgd, 0); \ 397 pud = pud_offset(p4d + i, 0); \ 398 if (i == i_max) \ 399 cur_end = end; \ 400 \ 401 ret |= kvm_mips_##name##_pud(pud, start, cur_end); \ 402 } \ 403 return ret; \ 404 } 405 406 /* 407 * kvm_mips_mkclean_gpa_pt. 408 * Mark a range of guest physical address space clean (writes fault) in the VM's 409 * GPA page table to allow dirty page tracking. 410 */ 411 412 BUILD_PTE_RANGE_OP(mkclean, pte_mkclean) 413 414 /** 415 * kvm_mips_mkclean_gpa_pt() - Make a range of guest physical addresses clean. 416 * @kvm: KVM pointer. 417 * @start_gfn: Guest frame number of first page in GPA range to flush. 418 * @end_gfn: Guest frame number of last page in GPA range to flush. 419 * 420 * Make a range of GPA mappings clean so that guest writes will fault and 421 * trigger dirty page logging. 422 * 423 * The caller must hold the @kvm->mmu_lock spinlock. 424 * 425 * Returns: Whether any GPA mappings were modified, which would require 426 * derived mappings (GVA page tables & TLB enties) to be 427 * invalidated. 428 */ 429 int kvm_mips_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn) 430 { 431 return kvm_mips_mkclean_pgd(kvm->arch.gpa_mm.pgd, 432 start_gfn << PAGE_SHIFT, 433 end_gfn << PAGE_SHIFT); 434 } 435 436 /** 437 * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages 438 * @kvm: The KVM pointer 439 * @slot: The memory slot associated with mask 440 * @gfn_offset: The gfn offset in memory slot 441 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory 442 * slot to be write protected 443 * 444 * Walks bits set in mask write protects the associated pte's. Caller must 445 * acquire @kvm->mmu_lock. 446 */ 447 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 448 struct kvm_memory_slot *slot, 449 gfn_t gfn_offset, unsigned long mask) 450 { 451 gfn_t base_gfn = slot->base_gfn + gfn_offset; 452 gfn_t start = base_gfn + __ffs(mask); 453 gfn_t end = base_gfn + __fls(mask); 454 455 kvm_mips_mkclean_gpa_pt(kvm, start, end); 456 } 457 458 /* 459 * kvm_mips_mkold_gpa_pt. 460 * Mark a range of guest physical address space old (all accesses fault) in the 461 * VM's GPA page table to allow detection of commonly used pages. 462 */ 463 464 BUILD_PTE_RANGE_OP(mkold, pte_mkold) 465 466 static int kvm_mips_mkold_gpa_pt(struct kvm *kvm, gfn_t start_gfn, 467 gfn_t end_gfn) 468 { 469 return kvm_mips_mkold_pgd(kvm->arch.gpa_mm.pgd, 470 start_gfn << PAGE_SHIFT, 471 end_gfn << PAGE_SHIFT); 472 } 473 474 static int handle_hva_to_gpa(struct kvm *kvm, 475 unsigned long start, 476 unsigned long end, 477 int (*handler)(struct kvm *kvm, gfn_t gfn, 478 gpa_t gfn_end, 479 struct kvm_memory_slot *memslot, 480 void *data), 481 void *data) 482 { 483 struct kvm_memslots *slots; 484 struct kvm_memory_slot *memslot; 485 int ret = 0; 486 487 slots = kvm_memslots(kvm); 488 489 /* we only care about the pages that the guest sees */ 490 kvm_for_each_memslot(memslot, slots) { 491 unsigned long hva_start, hva_end; 492 gfn_t gfn, gfn_end; 493 494 hva_start = max(start, memslot->userspace_addr); 495 hva_end = min(end, memslot->userspace_addr + 496 (memslot->npages << PAGE_SHIFT)); 497 if (hva_start >= hva_end) 498 continue; 499 500 /* 501 * {gfn(page) | page intersects with [hva_start, hva_end)} = 502 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 503 */ 504 gfn = hva_to_gfn_memslot(hva_start, memslot); 505 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); 506 507 ret |= handler(kvm, gfn, gfn_end, memslot, data); 508 } 509 510 return ret; 511 } 512 513 514 static int kvm_unmap_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end, 515 struct kvm_memory_slot *memslot, void *data) 516 { 517 kvm_mips_flush_gpa_pt(kvm, gfn, gfn_end); 518 return 1; 519 } 520 521 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end) 522 { 523 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL); 524 525 kvm_mips_callbacks->flush_shadow_all(kvm); 526 return 0; 527 } 528 529 static int kvm_set_spte_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end, 530 struct kvm_memory_slot *memslot, void *data) 531 { 532 gpa_t gpa = gfn << PAGE_SHIFT; 533 pte_t hva_pte = *(pte_t *)data; 534 pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa); 535 pte_t old_pte; 536 537 if (!gpa_pte) 538 return 0; 539 540 /* Mapping may need adjusting depending on memslot flags */ 541 old_pte = *gpa_pte; 542 if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES && !pte_dirty(old_pte)) 543 hva_pte = pte_mkclean(hva_pte); 544 else if (memslot->flags & KVM_MEM_READONLY) 545 hva_pte = pte_wrprotect(hva_pte); 546 547 set_pte(gpa_pte, hva_pte); 548 549 /* Replacing an absent or old page doesn't need flushes */ 550 if (!pte_present(old_pte) || !pte_young(old_pte)) 551 return 0; 552 553 /* Pages swapped, aged, moved, or cleaned require flushes */ 554 return !pte_present(hva_pte) || 555 !pte_young(hva_pte) || 556 pte_pfn(old_pte) != pte_pfn(hva_pte) || 557 (pte_dirty(old_pte) && !pte_dirty(hva_pte)); 558 } 559 560 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) 561 { 562 unsigned long end = hva + PAGE_SIZE; 563 int ret; 564 565 ret = handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &pte); 566 if (ret) 567 kvm_mips_callbacks->flush_shadow_all(kvm); 568 return 0; 569 } 570 571 static int kvm_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end, 572 struct kvm_memory_slot *memslot, void *data) 573 { 574 return kvm_mips_mkold_gpa_pt(kvm, gfn, gfn_end); 575 } 576 577 static int kvm_test_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end, 578 struct kvm_memory_slot *memslot, void *data) 579 { 580 gpa_t gpa = gfn << PAGE_SHIFT; 581 pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa); 582 583 if (!gpa_pte) 584 return 0; 585 return pte_young(*gpa_pte); 586 } 587 588 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end) 589 { 590 return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL); 591 } 592 593 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) 594 { 595 return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL); 596 } 597 598 /** 599 * _kvm_mips_map_page_fast() - Fast path GPA fault handler. 600 * @vcpu: VCPU pointer. 601 * @gpa: Guest physical address of fault. 602 * @write_fault: Whether the fault was due to a write. 603 * @out_entry: New PTE for @gpa (written on success unless NULL). 604 * @out_buddy: New PTE for @gpa's buddy (written on success unless 605 * NULL). 606 * 607 * Perform fast path GPA fault handling, doing all that can be done without 608 * calling into KVM. This handles marking old pages young (for idle page 609 * tracking), and dirtying of clean pages (for dirty page logging). 610 * 611 * Returns: 0 on success, in which case we can update derived mappings and 612 * resume guest execution. 613 * -EFAULT on failure due to absent GPA mapping or write to 614 * read-only page, in which case KVM must be consulted. 615 */ 616 static int _kvm_mips_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa, 617 bool write_fault, 618 pte_t *out_entry, pte_t *out_buddy) 619 { 620 struct kvm *kvm = vcpu->kvm; 621 gfn_t gfn = gpa >> PAGE_SHIFT; 622 pte_t *ptep; 623 kvm_pfn_t pfn = 0; /* silence bogus GCC warning */ 624 bool pfn_valid = false; 625 int ret = 0; 626 627 spin_lock(&kvm->mmu_lock); 628 629 /* Fast path - just check GPA page table for an existing entry */ 630 ptep = kvm_mips_pte_for_gpa(kvm, NULL, gpa); 631 if (!ptep || !pte_present(*ptep)) { 632 ret = -EFAULT; 633 goto out; 634 } 635 636 /* Track access to pages marked old */ 637 if (!pte_young(*ptep)) { 638 set_pte(ptep, pte_mkyoung(*ptep)); 639 pfn = pte_pfn(*ptep); 640 pfn_valid = true; 641 /* call kvm_set_pfn_accessed() after unlock */ 642 } 643 if (write_fault && !pte_dirty(*ptep)) { 644 if (!pte_write(*ptep)) { 645 ret = -EFAULT; 646 goto out; 647 } 648 649 /* Track dirtying of writeable pages */ 650 set_pte(ptep, pte_mkdirty(*ptep)); 651 pfn = pte_pfn(*ptep); 652 mark_page_dirty(kvm, gfn); 653 kvm_set_pfn_dirty(pfn); 654 } 655 656 if (out_entry) 657 *out_entry = *ptep; 658 if (out_buddy) 659 *out_buddy = *ptep_buddy(ptep); 660 661 out: 662 spin_unlock(&kvm->mmu_lock); 663 if (pfn_valid) 664 kvm_set_pfn_accessed(pfn); 665 return ret; 666 } 667 668 /** 669 * kvm_mips_map_page() - Map a guest physical page. 670 * @vcpu: VCPU pointer. 671 * @gpa: Guest physical address of fault. 672 * @write_fault: Whether the fault was due to a write. 673 * @out_entry: New PTE for @gpa (written on success unless NULL). 674 * @out_buddy: New PTE for @gpa's buddy (written on success unless 675 * NULL). 676 * 677 * Handle GPA faults by creating a new GPA mapping (or updating an existing 678 * one). 679 * 680 * This takes care of marking pages young or dirty (idle/dirty page tracking), 681 * asking KVM for the corresponding PFN, and creating a mapping in the GPA page 682 * tables. Derived mappings (GVA page tables and TLBs) must be handled by the 683 * caller. 684 * 685 * Returns: 0 on success, in which case the caller may use the @out_entry 686 * and @out_buddy PTEs to update derived mappings and resume guest 687 * execution. 688 * -EFAULT if there is no memory region at @gpa or a write was 689 * attempted to a read-only memory region. This is usually handled 690 * as an MMIO access. 691 */ 692 static int kvm_mips_map_page(struct kvm_vcpu *vcpu, unsigned long gpa, 693 bool write_fault, 694 pte_t *out_entry, pte_t *out_buddy) 695 { 696 struct kvm *kvm = vcpu->kvm; 697 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; 698 gfn_t gfn = gpa >> PAGE_SHIFT; 699 int srcu_idx, err; 700 kvm_pfn_t pfn; 701 pte_t *ptep, entry, old_pte; 702 bool writeable; 703 unsigned long prot_bits; 704 unsigned long mmu_seq; 705 706 /* Try the fast path to handle old / clean pages */ 707 srcu_idx = srcu_read_lock(&kvm->srcu); 708 err = _kvm_mips_map_page_fast(vcpu, gpa, write_fault, out_entry, 709 out_buddy); 710 if (!err) 711 goto out; 712 713 /* We need a minimum of cached pages ready for page table creation */ 714 err = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES, 715 KVM_NR_MEM_OBJS); 716 if (err) 717 goto out; 718 719 retry: 720 /* 721 * Used to check for invalidations in progress, of the pfn that is 722 * returned by pfn_to_pfn_prot below. 723 */ 724 mmu_seq = kvm->mmu_notifier_seq; 725 /* 726 * Ensure the read of mmu_notifier_seq isn't reordered with PTE reads in 727 * gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't 728 * risk the page we get a reference to getting unmapped before we have a 729 * chance to grab the mmu_lock without mmu_notifier_retry() noticing. 730 * 731 * This smp_rmb() pairs with the effective smp_wmb() of the combination 732 * of the pte_unmap_unlock() after the PTE is zapped, and the 733 * spin_lock() in kvm_mmu_notifier_invalidate_<page|range_end>() before 734 * mmu_notifier_seq is incremented. 735 */ 736 smp_rmb(); 737 738 /* Slow path - ask KVM core whether we can access this GPA */ 739 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writeable); 740 if (is_error_noslot_pfn(pfn)) { 741 err = -EFAULT; 742 goto out; 743 } 744 745 spin_lock(&kvm->mmu_lock); 746 /* Check if an invalidation has taken place since we got pfn */ 747 if (mmu_notifier_retry(kvm, mmu_seq)) { 748 /* 749 * This can happen when mappings are changed asynchronously, but 750 * also synchronously if a COW is triggered by 751 * gfn_to_pfn_prot(). 752 */ 753 spin_unlock(&kvm->mmu_lock); 754 kvm_release_pfn_clean(pfn); 755 goto retry; 756 } 757 758 /* Ensure page tables are allocated */ 759 ptep = kvm_mips_pte_for_gpa(kvm, memcache, gpa); 760 761 /* Set up the PTE */ 762 prot_bits = _PAGE_PRESENT | __READABLE | _page_cachable_default; 763 if (writeable) { 764 prot_bits |= _PAGE_WRITE; 765 if (write_fault) { 766 prot_bits |= __WRITEABLE; 767 mark_page_dirty(kvm, gfn); 768 kvm_set_pfn_dirty(pfn); 769 } 770 } 771 entry = pfn_pte(pfn, __pgprot(prot_bits)); 772 773 /* Write the PTE */ 774 old_pte = *ptep; 775 set_pte(ptep, entry); 776 777 err = 0; 778 if (out_entry) 779 *out_entry = *ptep; 780 if (out_buddy) 781 *out_buddy = *ptep_buddy(ptep); 782 783 spin_unlock(&kvm->mmu_lock); 784 kvm_release_pfn_clean(pfn); 785 kvm_set_pfn_accessed(pfn); 786 out: 787 srcu_read_unlock(&kvm->srcu, srcu_idx); 788 return err; 789 } 790 791 static pte_t *kvm_trap_emul_pte_for_gva(struct kvm_vcpu *vcpu, 792 unsigned long addr) 793 { 794 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; 795 pgd_t *pgdp; 796 int ret; 797 798 /* We need a minimum of cached pages ready for page table creation */ 799 ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES, 800 KVM_NR_MEM_OBJS); 801 if (ret) 802 return NULL; 803 804 if (KVM_GUEST_KERNEL_MODE(vcpu)) 805 pgdp = vcpu->arch.guest_kernel_mm.pgd; 806 else 807 pgdp = vcpu->arch.guest_user_mm.pgd; 808 809 return kvm_mips_walk_pgd(pgdp, memcache, addr); 810 } 811 812 void kvm_trap_emul_invalidate_gva(struct kvm_vcpu *vcpu, unsigned long addr, 813 bool user) 814 { 815 pgd_t *pgdp; 816 pte_t *ptep; 817 818 addr &= PAGE_MASK << 1; 819 820 pgdp = vcpu->arch.guest_kernel_mm.pgd; 821 ptep = kvm_mips_walk_pgd(pgdp, NULL, addr); 822 if (ptep) { 823 ptep[0] = pfn_pte(0, __pgprot(0)); 824 ptep[1] = pfn_pte(0, __pgprot(0)); 825 } 826 827 if (user) { 828 pgdp = vcpu->arch.guest_user_mm.pgd; 829 ptep = kvm_mips_walk_pgd(pgdp, NULL, addr); 830 if (ptep) { 831 ptep[0] = pfn_pte(0, __pgprot(0)); 832 ptep[1] = pfn_pte(0, __pgprot(0)); 833 } 834 } 835 } 836 837 /* 838 * kvm_mips_flush_gva_{pte,pmd,pud,pgd,pt}. 839 * Flush a range of guest physical address space from the VM's GPA page tables. 840 */ 841 842 static bool kvm_mips_flush_gva_pte(pte_t *pte, unsigned long start_gva, 843 unsigned long end_gva) 844 { 845 int i_min = __pte_offset(start_gva); 846 int i_max = __pte_offset(end_gva); 847 bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1); 848 int i; 849 850 /* 851 * There's no freeing to do, so there's no point clearing individual 852 * entries unless only part of the last level page table needs flushing. 853 */ 854 if (safe_to_remove) 855 return true; 856 857 for (i = i_min; i <= i_max; ++i) { 858 if (!pte_present(pte[i])) 859 continue; 860 861 set_pte(pte + i, __pte(0)); 862 } 863 return false; 864 } 865 866 static bool kvm_mips_flush_gva_pmd(pmd_t *pmd, unsigned long start_gva, 867 unsigned long end_gva) 868 { 869 pte_t *pte; 870 unsigned long end = ~0ul; 871 int i_min = pmd_index(start_gva); 872 int i_max = pmd_index(end_gva); 873 bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1); 874 int i; 875 876 for (i = i_min; i <= i_max; ++i, start_gva = 0) { 877 if (!pmd_present(pmd[i])) 878 continue; 879 880 pte = pte_offset(pmd + i, 0); 881 if (i == i_max) 882 end = end_gva; 883 884 if (kvm_mips_flush_gva_pte(pte, start_gva, end)) { 885 pmd_clear(pmd + i); 886 pte_free_kernel(NULL, pte); 887 } else { 888 safe_to_remove = false; 889 } 890 } 891 return safe_to_remove; 892 } 893 894 static bool kvm_mips_flush_gva_pud(pud_t *pud, unsigned long start_gva, 895 unsigned long end_gva) 896 { 897 pmd_t *pmd; 898 unsigned long end = ~0ul; 899 int i_min = pud_index(start_gva); 900 int i_max = pud_index(end_gva); 901 bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1); 902 int i; 903 904 for (i = i_min; i <= i_max; ++i, start_gva = 0) { 905 if (!pud_present(pud[i])) 906 continue; 907 908 pmd = pmd_offset(pud + i, 0); 909 if (i == i_max) 910 end = end_gva; 911 912 if (kvm_mips_flush_gva_pmd(pmd, start_gva, end)) { 913 pud_clear(pud + i); 914 pmd_free(NULL, pmd); 915 } else { 916 safe_to_remove = false; 917 } 918 } 919 return safe_to_remove; 920 } 921 922 static bool kvm_mips_flush_gva_pgd(pgd_t *pgd, unsigned long start_gva, 923 unsigned long end_gva) 924 { 925 p4d_t *p4d; 926 pud_t *pud; 927 unsigned long end = ~0ul; 928 int i_min = pgd_index(start_gva); 929 int i_max = pgd_index(end_gva); 930 bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1); 931 int i; 932 933 for (i = i_min; i <= i_max; ++i, start_gva = 0) { 934 if (!pgd_present(pgd[i])) 935 continue; 936 937 p4d = p4d_offset(pgd, 0); 938 pud = pud_offset(p4d + i, 0); 939 if (i == i_max) 940 end = end_gva; 941 942 if (kvm_mips_flush_gva_pud(pud, start_gva, end)) { 943 pgd_clear(pgd + i); 944 pud_free(NULL, pud); 945 } else { 946 safe_to_remove = false; 947 } 948 } 949 return safe_to_remove; 950 } 951 952 void kvm_mips_flush_gva_pt(pgd_t *pgd, enum kvm_mips_flush flags) 953 { 954 if (flags & KMF_GPA) { 955 /* all of guest virtual address space could be affected */ 956 if (flags & KMF_KERN) 957 /* useg, kseg0, seg2/3 */ 958 kvm_mips_flush_gva_pgd(pgd, 0, 0x7fffffff); 959 else 960 /* useg */ 961 kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff); 962 } else { 963 /* useg */ 964 kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff); 965 966 /* kseg2/3 */ 967 if (flags & KMF_KERN) 968 kvm_mips_flush_gva_pgd(pgd, 0x60000000, 0x7fffffff); 969 } 970 } 971 972 static pte_t kvm_mips_gpa_pte_to_gva_unmapped(pte_t pte) 973 { 974 /* 975 * Don't leak writeable but clean entries from GPA page tables. We don't 976 * want the normal Linux tlbmod handler to handle dirtying when KVM 977 * accesses guest memory. 978 */ 979 if (!pte_dirty(pte)) 980 pte = pte_wrprotect(pte); 981 982 return pte; 983 } 984 985 static pte_t kvm_mips_gpa_pte_to_gva_mapped(pte_t pte, long entrylo) 986 { 987 /* Guest EntryLo overrides host EntryLo */ 988 if (!(entrylo & ENTRYLO_D)) 989 pte = pte_mkclean(pte); 990 991 return kvm_mips_gpa_pte_to_gva_unmapped(pte); 992 } 993 994 #ifdef CONFIG_KVM_MIPS_VZ 995 int kvm_mips_handle_vz_root_tlb_fault(unsigned long badvaddr, 996 struct kvm_vcpu *vcpu, 997 bool write_fault) 998 { 999 int ret; 1000 1001 ret = kvm_mips_map_page(vcpu, badvaddr, write_fault, NULL, NULL); 1002 if (ret) 1003 return ret; 1004 1005 /* Invalidate this entry in the TLB */ 1006 return kvm_vz_host_tlb_inv(vcpu, badvaddr); 1007 } 1008 #endif 1009 1010 /* XXXKYMA: Must be called with interrupts disabled */ 1011 int kvm_mips_handle_kseg0_tlb_fault(unsigned long badvaddr, 1012 struct kvm_vcpu *vcpu, 1013 bool write_fault) 1014 { 1015 unsigned long gpa; 1016 pte_t pte_gpa[2], *ptep_gva; 1017 int idx; 1018 1019 if (KVM_GUEST_KSEGX(badvaddr) != KVM_GUEST_KSEG0) { 1020 kvm_err("%s: Invalid BadVaddr: %#lx\n", __func__, badvaddr); 1021 kvm_mips_dump_host_tlbs(); 1022 return -1; 1023 } 1024 1025 /* Get the GPA page table entry */ 1026 gpa = KVM_GUEST_CPHYSADDR(badvaddr); 1027 idx = (badvaddr >> PAGE_SHIFT) & 1; 1028 if (kvm_mips_map_page(vcpu, gpa, write_fault, &pte_gpa[idx], 1029 &pte_gpa[!idx]) < 0) 1030 return -1; 1031 1032 /* Get the GVA page table entry */ 1033 ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, badvaddr & ~PAGE_SIZE); 1034 if (!ptep_gva) { 1035 kvm_err("No ptep for gva %lx\n", badvaddr); 1036 return -1; 1037 } 1038 1039 /* Copy a pair of entries from GPA page table to GVA page table */ 1040 ptep_gva[0] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[0]); 1041 ptep_gva[1] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[1]); 1042 1043 /* Invalidate this entry in the TLB, guest kernel ASID only */ 1044 kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true); 1045 return 0; 1046 } 1047 1048 int kvm_mips_handle_mapped_seg_tlb_fault(struct kvm_vcpu *vcpu, 1049 struct kvm_mips_tlb *tlb, 1050 unsigned long gva, 1051 bool write_fault) 1052 { 1053 struct kvm *kvm = vcpu->kvm; 1054 long tlb_lo[2]; 1055 pte_t pte_gpa[2], *ptep_buddy, *ptep_gva; 1056 unsigned int idx = TLB_LO_IDX(*tlb, gva); 1057 bool kernel = KVM_GUEST_KERNEL_MODE(vcpu); 1058 1059 tlb_lo[0] = tlb->tlb_lo[0]; 1060 tlb_lo[1] = tlb->tlb_lo[1]; 1061 1062 /* 1063 * The commpage address must not be mapped to anything else if the guest 1064 * TLB contains entries nearby, or commpage accesses will break. 1065 */ 1066 if (!((gva ^ KVM_GUEST_COMMPAGE_ADDR) & VPN2_MASK & (PAGE_MASK << 1))) 1067 tlb_lo[TLB_LO_IDX(*tlb, KVM_GUEST_COMMPAGE_ADDR)] = 0; 1068 1069 /* Get the GPA page table entry */ 1070 if (kvm_mips_map_page(vcpu, mips3_tlbpfn_to_paddr(tlb_lo[idx]), 1071 write_fault, &pte_gpa[idx], NULL) < 0) 1072 return -1; 1073 1074 /* And its GVA buddy's GPA page table entry if it also exists */ 1075 pte_gpa[!idx] = pfn_pte(0, __pgprot(0)); 1076 if (tlb_lo[!idx] & ENTRYLO_V) { 1077 spin_lock(&kvm->mmu_lock); 1078 ptep_buddy = kvm_mips_pte_for_gpa(kvm, NULL, 1079 mips3_tlbpfn_to_paddr(tlb_lo[!idx])); 1080 if (ptep_buddy) 1081 pte_gpa[!idx] = *ptep_buddy; 1082 spin_unlock(&kvm->mmu_lock); 1083 } 1084 1085 /* Get the GVA page table entry pair */ 1086 ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, gva & ~PAGE_SIZE); 1087 if (!ptep_gva) { 1088 kvm_err("No ptep for gva %lx\n", gva); 1089 return -1; 1090 } 1091 1092 /* Copy a pair of entries from GPA page table to GVA page table */ 1093 ptep_gva[0] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[0], tlb_lo[0]); 1094 ptep_gva[1] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[1], tlb_lo[1]); 1095 1096 /* Invalidate this entry in the TLB, current guest mode ASID only */ 1097 kvm_mips_host_tlb_inv(vcpu, gva, !kernel, kernel); 1098 1099 kvm_debug("@ %#lx tlb_lo0: 0x%08lx tlb_lo1: 0x%08lx\n", vcpu->arch.pc, 1100 tlb->tlb_lo[0], tlb->tlb_lo[1]); 1101 1102 return 0; 1103 } 1104 1105 int kvm_mips_handle_commpage_tlb_fault(unsigned long badvaddr, 1106 struct kvm_vcpu *vcpu) 1107 { 1108 kvm_pfn_t pfn; 1109 pte_t *ptep; 1110 1111 ptep = kvm_trap_emul_pte_for_gva(vcpu, badvaddr); 1112 if (!ptep) { 1113 kvm_err("No ptep for commpage %lx\n", badvaddr); 1114 return -1; 1115 } 1116 1117 pfn = PFN_DOWN(virt_to_phys(vcpu->arch.kseg0_commpage)); 1118 /* Also set valid and dirty, so refill handler doesn't have to */ 1119 *ptep = pte_mkyoung(pte_mkdirty(pfn_pte(pfn, PAGE_SHARED))); 1120 1121 /* Invalidate this entry in the TLB, guest kernel ASID only */ 1122 kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true); 1123 return 0; 1124 } 1125 1126 /** 1127 * kvm_mips_migrate_count() - Migrate timer. 1128 * @vcpu: Virtual CPU. 1129 * 1130 * Migrate CP0_Count hrtimer to the current CPU by cancelling and restarting it 1131 * if it was running prior to being cancelled. 1132 * 1133 * Must be called when the VCPU is migrated to a different CPU to ensure that 1134 * timer expiry during guest execution interrupts the guest and causes the 1135 * interrupt to be delivered in a timely manner. 1136 */ 1137 static void kvm_mips_migrate_count(struct kvm_vcpu *vcpu) 1138 { 1139 if (hrtimer_cancel(&vcpu->arch.comparecount_timer)) 1140 hrtimer_restart(&vcpu->arch.comparecount_timer); 1141 } 1142 1143 /* Restore ASID once we are scheduled back after preemption */ 1144 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1145 { 1146 unsigned long flags; 1147 1148 kvm_debug("%s: vcpu %p, cpu: %d\n", __func__, vcpu, cpu); 1149 1150 local_irq_save(flags); 1151 1152 vcpu->cpu = cpu; 1153 if (vcpu->arch.last_sched_cpu != cpu) { 1154 kvm_debug("[%d->%d]KVM VCPU[%d] switch\n", 1155 vcpu->arch.last_sched_cpu, cpu, vcpu->vcpu_id); 1156 /* 1157 * Migrate the timer interrupt to the current CPU so that it 1158 * always interrupts the guest and synchronously triggers a 1159 * guest timer interrupt. 1160 */ 1161 kvm_mips_migrate_count(vcpu); 1162 } 1163 1164 /* restore guest state to registers */ 1165 kvm_mips_callbacks->vcpu_load(vcpu, cpu); 1166 1167 local_irq_restore(flags); 1168 } 1169 1170 /* ASID can change if another task is scheduled during preemption */ 1171 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 1172 { 1173 unsigned long flags; 1174 int cpu; 1175 1176 local_irq_save(flags); 1177 1178 cpu = smp_processor_id(); 1179 vcpu->arch.last_sched_cpu = cpu; 1180 vcpu->cpu = -1; 1181 1182 /* save guest state in registers */ 1183 kvm_mips_callbacks->vcpu_put(vcpu, cpu); 1184 1185 local_irq_restore(flags); 1186 } 1187 1188 /** 1189 * kvm_trap_emul_gva_fault() - Safely attempt to handle a GVA access fault. 1190 * @vcpu: Virtual CPU. 1191 * @gva: Guest virtual address to be accessed. 1192 * @write: True if write attempted (must be dirtied and made writable). 1193 * 1194 * Safely attempt to handle a GVA fault, mapping GVA pages if necessary, and 1195 * dirtying the page if @write so that guest instructions can be modified. 1196 * 1197 * Returns: KVM_MIPS_MAPPED on success. 1198 * KVM_MIPS_GVA if bad guest virtual address. 1199 * KVM_MIPS_GPA if bad guest physical address. 1200 * KVM_MIPS_TLB if guest TLB not present. 1201 * KVM_MIPS_TLBINV if guest TLB present but not valid. 1202 * KVM_MIPS_TLBMOD if guest TLB read only. 1203 */ 1204 enum kvm_mips_fault_result kvm_trap_emul_gva_fault(struct kvm_vcpu *vcpu, 1205 unsigned long gva, 1206 bool write) 1207 { 1208 struct mips_coproc *cop0 = vcpu->arch.cop0; 1209 struct kvm_mips_tlb *tlb; 1210 int index; 1211 1212 if (KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG0) { 1213 if (kvm_mips_handle_kseg0_tlb_fault(gva, vcpu, write) < 0) 1214 return KVM_MIPS_GPA; 1215 } else if ((KVM_GUEST_KSEGX(gva) < KVM_GUEST_KSEG0) || 1216 KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG23) { 1217 /* Address should be in the guest TLB */ 1218 index = kvm_mips_guest_tlb_lookup(vcpu, (gva & VPN2_MASK) | 1219 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID)); 1220 if (index < 0) 1221 return KVM_MIPS_TLB; 1222 tlb = &vcpu->arch.guest_tlb[index]; 1223 1224 /* Entry should be valid, and dirty for writes */ 1225 if (!TLB_IS_VALID(*tlb, gva)) 1226 return KVM_MIPS_TLBINV; 1227 if (write && !TLB_IS_DIRTY(*tlb, gva)) 1228 return KVM_MIPS_TLBMOD; 1229 1230 if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, gva, write)) 1231 return KVM_MIPS_GPA; 1232 } else { 1233 return KVM_MIPS_GVA; 1234 } 1235 1236 return KVM_MIPS_MAPPED; 1237 } 1238 1239 int kvm_get_inst(u32 *opc, struct kvm_vcpu *vcpu, u32 *out) 1240 { 1241 int err; 1242 1243 if (WARN(IS_ENABLED(CONFIG_KVM_MIPS_VZ), 1244 "Expect BadInstr/BadInstrP registers to be used with VZ\n")) 1245 return -EINVAL; 1246 1247 retry: 1248 kvm_trap_emul_gva_lockless_begin(vcpu); 1249 err = get_user(*out, opc); 1250 kvm_trap_emul_gva_lockless_end(vcpu); 1251 1252 if (unlikely(err)) { 1253 /* 1254 * Try to handle the fault, maybe we just raced with a GVA 1255 * invalidation. 1256 */ 1257 err = kvm_trap_emul_gva_fault(vcpu, (unsigned long)opc, 1258 false); 1259 if (unlikely(err)) { 1260 kvm_err("%s: illegal address: %p\n", 1261 __func__, opc); 1262 return -EFAULT; 1263 } 1264 1265 /* Hopefully it'll work now */ 1266 goto retry; 1267 } 1268 return 0; 1269 } 1270