xref: /openbmc/linux/arch/mips/kvm/mmu.c (revision 5ace6934)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS MMU handling in the KVM module.
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11 
12 #include <linux/highmem.h>
13 #include <linux/kvm_host.h>
14 #include <linux/uaccess.h>
15 #include <asm/mmu_context.h>
16 #include <asm/pgalloc.h>
17 
18 /*
19  * KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels
20  * for which pages need to be cached.
21  */
22 #if defined(__PAGETABLE_PMD_FOLDED)
23 #define KVM_MMU_CACHE_MIN_PAGES 1
24 #else
25 #define KVM_MMU_CACHE_MIN_PAGES 2
26 #endif
27 
28 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
29 				  int min, int max)
30 {
31 	void *page;
32 
33 	BUG_ON(max > KVM_NR_MEM_OBJS);
34 	if (cache->nobjs >= min)
35 		return 0;
36 	while (cache->nobjs < max) {
37 		page = (void *)__get_free_page(GFP_KERNEL);
38 		if (!page)
39 			return -ENOMEM;
40 		cache->objects[cache->nobjs++] = page;
41 	}
42 	return 0;
43 }
44 
45 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
46 {
47 	while (mc->nobjs)
48 		free_page((unsigned long)mc->objects[--mc->nobjs]);
49 }
50 
51 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
52 {
53 	void *p;
54 
55 	BUG_ON(!mc || !mc->nobjs);
56 	p = mc->objects[--mc->nobjs];
57 	return p;
58 }
59 
60 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
61 {
62 	mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
63 }
64 
65 /**
66  * kvm_pgd_init() - Initialise KVM GPA page directory.
67  * @page:	Pointer to page directory (PGD) for KVM GPA.
68  *
69  * Initialise a KVM GPA page directory with pointers to the invalid table, i.e.
70  * representing no mappings. This is similar to pgd_init(), however it
71  * initialises all the page directory pointers, not just the ones corresponding
72  * to the userland address space (since it is for the guest physical address
73  * space rather than a virtual address space).
74  */
75 static void kvm_pgd_init(void *page)
76 {
77 	unsigned long *p, *end;
78 	unsigned long entry;
79 
80 #ifdef __PAGETABLE_PMD_FOLDED
81 	entry = (unsigned long)invalid_pte_table;
82 #else
83 	entry = (unsigned long)invalid_pmd_table;
84 #endif
85 
86 	p = (unsigned long *)page;
87 	end = p + PTRS_PER_PGD;
88 
89 	do {
90 		p[0] = entry;
91 		p[1] = entry;
92 		p[2] = entry;
93 		p[3] = entry;
94 		p[4] = entry;
95 		p += 8;
96 		p[-3] = entry;
97 		p[-2] = entry;
98 		p[-1] = entry;
99 	} while (p != end);
100 }
101 
102 /**
103  * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory.
104  *
105  * Allocate a blank KVM GPA page directory (PGD) for representing guest physical
106  * to host physical page mappings.
107  *
108  * Returns:	Pointer to new KVM GPA page directory.
109  *		NULL on allocation failure.
110  */
111 pgd_t *kvm_pgd_alloc(void)
112 {
113 	pgd_t *ret;
114 
115 	ret = (pgd_t *)__get_free_pages(GFP_KERNEL, PGD_ORDER);
116 	if (ret)
117 		kvm_pgd_init(ret);
118 
119 	return ret;
120 }
121 
122 /**
123  * kvm_mips_walk_pgd() - Walk page table with optional allocation.
124  * @pgd:	Page directory pointer.
125  * @addr:	Address to index page table using.
126  * @cache:	MMU page cache to allocate new page tables from, or NULL.
127  *
128  * Walk the page tables pointed to by @pgd to find the PTE corresponding to the
129  * address @addr. If page tables don't exist for @addr, they will be created
130  * from the MMU cache if @cache is not NULL.
131  *
132  * Returns:	Pointer to pte_t corresponding to @addr.
133  *		NULL if a page table doesn't exist for @addr and !@cache.
134  *		NULL if a page table allocation failed.
135  */
136 static pte_t *kvm_mips_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache,
137 				unsigned long addr)
138 {
139 	pud_t *pud;
140 	pmd_t *pmd;
141 
142 	pgd += pgd_index(addr);
143 	if (pgd_none(*pgd)) {
144 		/* Not used on MIPS yet */
145 		BUG();
146 		return NULL;
147 	}
148 	pud = pud_offset(pgd, addr);
149 	if (pud_none(*pud)) {
150 		pmd_t *new_pmd;
151 
152 		if (!cache)
153 			return NULL;
154 		new_pmd = mmu_memory_cache_alloc(cache);
155 		pmd_init((unsigned long)new_pmd,
156 			 (unsigned long)invalid_pte_table);
157 		pud_populate(NULL, pud, new_pmd);
158 	}
159 	pmd = pmd_offset(pud, addr);
160 	if (pmd_none(*pmd)) {
161 		pte_t *new_pte;
162 
163 		if (!cache)
164 			return NULL;
165 		new_pte = mmu_memory_cache_alloc(cache);
166 		clear_page(new_pte);
167 		pmd_populate_kernel(NULL, pmd, new_pte);
168 	}
169 	return pte_offset(pmd, addr);
170 }
171 
172 /* Caller must hold kvm->mm_lock */
173 static pte_t *kvm_mips_pte_for_gpa(struct kvm *kvm,
174 				   struct kvm_mmu_memory_cache *cache,
175 				   unsigned long addr)
176 {
177 	return kvm_mips_walk_pgd(kvm->arch.gpa_mm.pgd, cache, addr);
178 }
179 
180 /*
181  * kvm_mips_flush_gpa_{pte,pmd,pud,pgd,pt}.
182  * Flush a range of guest physical address space from the VM's GPA page tables.
183  */
184 
185 static bool kvm_mips_flush_gpa_pte(pte_t *pte, unsigned long start_gpa,
186 				   unsigned long end_gpa)
187 {
188 	int i_min = __pte_offset(start_gpa);
189 	int i_max = __pte_offset(end_gpa);
190 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
191 	int i;
192 
193 	for (i = i_min; i <= i_max; ++i) {
194 		if (!pte_present(pte[i]))
195 			continue;
196 
197 		set_pte(pte + i, __pte(0));
198 	}
199 	return safe_to_remove;
200 }
201 
202 static bool kvm_mips_flush_gpa_pmd(pmd_t *pmd, unsigned long start_gpa,
203 				   unsigned long end_gpa)
204 {
205 	pte_t *pte;
206 	unsigned long end = ~0ul;
207 	int i_min = __pmd_offset(start_gpa);
208 	int i_max = __pmd_offset(end_gpa);
209 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
210 	int i;
211 
212 	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
213 		if (!pmd_present(pmd[i]))
214 			continue;
215 
216 		pte = pte_offset(pmd + i, 0);
217 		if (i == i_max)
218 			end = end_gpa;
219 
220 		if (kvm_mips_flush_gpa_pte(pte, start_gpa, end)) {
221 			pmd_clear(pmd + i);
222 			pte_free_kernel(NULL, pte);
223 		} else {
224 			safe_to_remove = false;
225 		}
226 	}
227 	return safe_to_remove;
228 }
229 
230 static bool kvm_mips_flush_gpa_pud(pud_t *pud, unsigned long start_gpa,
231 				   unsigned long end_gpa)
232 {
233 	pmd_t *pmd;
234 	unsigned long end = ~0ul;
235 	int i_min = __pud_offset(start_gpa);
236 	int i_max = __pud_offset(end_gpa);
237 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
238 	int i;
239 
240 	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
241 		if (!pud_present(pud[i]))
242 			continue;
243 
244 		pmd = pmd_offset(pud + i, 0);
245 		if (i == i_max)
246 			end = end_gpa;
247 
248 		if (kvm_mips_flush_gpa_pmd(pmd, start_gpa, end)) {
249 			pud_clear(pud + i);
250 			pmd_free(NULL, pmd);
251 		} else {
252 			safe_to_remove = false;
253 		}
254 	}
255 	return safe_to_remove;
256 }
257 
258 static bool kvm_mips_flush_gpa_pgd(pgd_t *pgd, unsigned long start_gpa,
259 				   unsigned long end_gpa)
260 {
261 	pud_t *pud;
262 	unsigned long end = ~0ul;
263 	int i_min = pgd_index(start_gpa);
264 	int i_max = pgd_index(end_gpa);
265 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
266 	int i;
267 
268 	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
269 		if (!pgd_present(pgd[i]))
270 			continue;
271 
272 		pud = pud_offset(pgd + i, 0);
273 		if (i == i_max)
274 			end = end_gpa;
275 
276 		if (kvm_mips_flush_gpa_pud(pud, start_gpa, end)) {
277 			pgd_clear(pgd + i);
278 			pud_free(NULL, pud);
279 		} else {
280 			safe_to_remove = false;
281 		}
282 	}
283 	return safe_to_remove;
284 }
285 
286 /**
287  * kvm_mips_flush_gpa_pt() - Flush a range of guest physical addresses.
288  * @kvm:	KVM pointer.
289  * @start_gfn:	Guest frame number of first page in GPA range to flush.
290  * @end_gfn:	Guest frame number of last page in GPA range to flush.
291  *
292  * Flushes a range of GPA mappings from the GPA page tables.
293  *
294  * The caller must hold the @kvm->mmu_lock spinlock.
295  *
296  * Returns:	Whether its safe to remove the top level page directory because
297  *		all lower levels have been removed.
298  */
299 bool kvm_mips_flush_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
300 {
301 	return kvm_mips_flush_gpa_pgd(kvm->arch.gpa_mm.pgd,
302 				      start_gfn << PAGE_SHIFT,
303 				      end_gfn << PAGE_SHIFT);
304 }
305 
306 #define BUILD_PTE_RANGE_OP(name, op)					\
307 static int kvm_mips_##name##_pte(pte_t *pte, unsigned long start,	\
308 				 unsigned long end)			\
309 {									\
310 	int ret = 0;							\
311 	int i_min = __pte_offset(start);				\
312 	int i_max = __pte_offset(end);					\
313 	int i;								\
314 	pte_t old, new;							\
315 									\
316 	for (i = i_min; i <= i_max; ++i) {				\
317 		if (!pte_present(pte[i]))				\
318 			continue;					\
319 									\
320 		old = pte[i];						\
321 		new = op(old);						\
322 		if (pte_val(new) == pte_val(old))			\
323 			continue;					\
324 		set_pte(pte + i, new);					\
325 		ret = 1;						\
326 	}								\
327 	return ret;							\
328 }									\
329 									\
330 /* returns true if anything was done */					\
331 static int kvm_mips_##name##_pmd(pmd_t *pmd, unsigned long start,	\
332 				 unsigned long end)			\
333 {									\
334 	int ret = 0;							\
335 	pte_t *pte;							\
336 	unsigned long cur_end = ~0ul;					\
337 	int i_min = __pmd_offset(start);				\
338 	int i_max = __pmd_offset(end);					\
339 	int i;								\
340 									\
341 	for (i = i_min; i <= i_max; ++i, start = 0) {			\
342 		if (!pmd_present(pmd[i]))				\
343 			continue;					\
344 									\
345 		pte = pte_offset(pmd + i, 0);				\
346 		if (i == i_max)						\
347 			cur_end = end;					\
348 									\
349 		ret |= kvm_mips_##name##_pte(pte, start, cur_end);	\
350 	}								\
351 	return ret;							\
352 }									\
353 									\
354 static int kvm_mips_##name##_pud(pud_t *pud, unsigned long start,	\
355 				 unsigned long end)			\
356 {									\
357 	int ret = 0;							\
358 	pmd_t *pmd;							\
359 	unsigned long cur_end = ~0ul;					\
360 	int i_min = __pud_offset(start);				\
361 	int i_max = __pud_offset(end);					\
362 	int i;								\
363 									\
364 	for (i = i_min; i <= i_max; ++i, start = 0) {			\
365 		if (!pud_present(pud[i]))				\
366 			continue;					\
367 									\
368 		pmd = pmd_offset(pud + i, 0);				\
369 		if (i == i_max)						\
370 			cur_end = end;					\
371 									\
372 		ret |= kvm_mips_##name##_pmd(pmd, start, cur_end);	\
373 	}								\
374 	return ret;							\
375 }									\
376 									\
377 static int kvm_mips_##name##_pgd(pgd_t *pgd, unsigned long start,	\
378 				 unsigned long end)			\
379 {									\
380 	int ret = 0;							\
381 	pud_t *pud;							\
382 	unsigned long cur_end = ~0ul;					\
383 	int i_min = pgd_index(start);					\
384 	int i_max = pgd_index(end);					\
385 	int i;								\
386 									\
387 	for (i = i_min; i <= i_max; ++i, start = 0) {			\
388 		if (!pgd_present(pgd[i]))				\
389 			continue;					\
390 									\
391 		pud = pud_offset(pgd + i, 0);				\
392 		if (i == i_max)						\
393 			cur_end = end;					\
394 									\
395 		ret |= kvm_mips_##name##_pud(pud, start, cur_end);	\
396 	}								\
397 	return ret;							\
398 }
399 
400 /*
401  * kvm_mips_mkclean_gpa_pt.
402  * Mark a range of guest physical address space clean (writes fault) in the VM's
403  * GPA page table to allow dirty page tracking.
404  */
405 
406 BUILD_PTE_RANGE_OP(mkclean, pte_mkclean)
407 
408 /**
409  * kvm_mips_mkclean_gpa_pt() - Make a range of guest physical addresses clean.
410  * @kvm:	KVM pointer.
411  * @start_gfn:	Guest frame number of first page in GPA range to flush.
412  * @end_gfn:	Guest frame number of last page in GPA range to flush.
413  *
414  * Make a range of GPA mappings clean so that guest writes will fault and
415  * trigger dirty page logging.
416  *
417  * The caller must hold the @kvm->mmu_lock spinlock.
418  *
419  * Returns:	Whether any GPA mappings were modified, which would require
420  *		derived mappings (GVA page tables & TLB enties) to be
421  *		invalidated.
422  */
423 int kvm_mips_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
424 {
425 	return kvm_mips_mkclean_pgd(kvm->arch.gpa_mm.pgd,
426 				    start_gfn << PAGE_SHIFT,
427 				    end_gfn << PAGE_SHIFT);
428 }
429 
430 /**
431  * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages
432  * @kvm:	The KVM pointer
433  * @slot:	The memory slot associated with mask
434  * @gfn_offset:	The gfn offset in memory slot
435  * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
436  *		slot to be write protected
437  *
438  * Walks bits set in mask write protects the associated pte's. Caller must
439  * acquire @kvm->mmu_lock.
440  */
441 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
442 		struct kvm_memory_slot *slot,
443 		gfn_t gfn_offset, unsigned long mask)
444 {
445 	gfn_t base_gfn = slot->base_gfn + gfn_offset;
446 	gfn_t start = base_gfn +  __ffs(mask);
447 	gfn_t end = base_gfn + __fls(mask);
448 
449 	kvm_mips_mkclean_gpa_pt(kvm, start, end);
450 }
451 
452 /*
453  * kvm_mips_mkold_gpa_pt.
454  * Mark a range of guest physical address space old (all accesses fault) in the
455  * VM's GPA page table to allow detection of commonly used pages.
456  */
457 
458 BUILD_PTE_RANGE_OP(mkold, pte_mkold)
459 
460 static int kvm_mips_mkold_gpa_pt(struct kvm *kvm, gfn_t start_gfn,
461 				 gfn_t end_gfn)
462 {
463 	return kvm_mips_mkold_pgd(kvm->arch.gpa_mm.pgd,
464 				  start_gfn << PAGE_SHIFT,
465 				  end_gfn << PAGE_SHIFT);
466 }
467 
468 static int handle_hva_to_gpa(struct kvm *kvm,
469 			     unsigned long start,
470 			     unsigned long end,
471 			     int (*handler)(struct kvm *kvm, gfn_t gfn,
472 					    gpa_t gfn_end,
473 					    struct kvm_memory_slot *memslot,
474 					    void *data),
475 			     void *data)
476 {
477 	struct kvm_memslots *slots;
478 	struct kvm_memory_slot *memslot;
479 	int ret = 0;
480 
481 	slots = kvm_memslots(kvm);
482 
483 	/* we only care about the pages that the guest sees */
484 	kvm_for_each_memslot(memslot, slots) {
485 		unsigned long hva_start, hva_end;
486 		gfn_t gfn, gfn_end;
487 
488 		hva_start = max(start, memslot->userspace_addr);
489 		hva_end = min(end, memslot->userspace_addr +
490 					(memslot->npages << PAGE_SHIFT));
491 		if (hva_start >= hva_end)
492 			continue;
493 
494 		/*
495 		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
496 		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
497 		 */
498 		gfn = hva_to_gfn_memslot(hva_start, memslot);
499 		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
500 
501 		ret |= handler(kvm, gfn, gfn_end, memslot, data);
502 	}
503 
504 	return ret;
505 }
506 
507 
508 static int kvm_unmap_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
509 				 struct kvm_memory_slot *memslot, void *data)
510 {
511 	kvm_mips_flush_gpa_pt(kvm, gfn, gfn_end);
512 	return 1;
513 }
514 
515 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
516 {
517 	unsigned long end = hva + PAGE_SIZE;
518 
519 	handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
520 
521 	kvm_mips_callbacks->flush_shadow_all(kvm);
522 	return 0;
523 }
524 
525 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
526 {
527 	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
528 
529 	kvm_mips_callbacks->flush_shadow_all(kvm);
530 	return 0;
531 }
532 
533 static int kvm_set_spte_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
534 				struct kvm_memory_slot *memslot, void *data)
535 {
536 	gpa_t gpa = gfn << PAGE_SHIFT;
537 	pte_t hva_pte = *(pte_t *)data;
538 	pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
539 	pte_t old_pte;
540 
541 	if (!gpa_pte)
542 		return 0;
543 
544 	/* Mapping may need adjusting depending on memslot flags */
545 	old_pte = *gpa_pte;
546 	if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES && !pte_dirty(old_pte))
547 		hva_pte = pte_mkclean(hva_pte);
548 	else if (memslot->flags & KVM_MEM_READONLY)
549 		hva_pte = pte_wrprotect(hva_pte);
550 
551 	set_pte(gpa_pte, hva_pte);
552 
553 	/* Replacing an absent or old page doesn't need flushes */
554 	if (!pte_present(old_pte) || !pte_young(old_pte))
555 		return 0;
556 
557 	/* Pages swapped, aged, moved, or cleaned require flushes */
558 	return !pte_present(hva_pte) ||
559 	       !pte_young(hva_pte) ||
560 	       pte_pfn(old_pte) != pte_pfn(hva_pte) ||
561 	       (pte_dirty(old_pte) && !pte_dirty(hva_pte));
562 }
563 
564 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
565 {
566 	unsigned long end = hva + PAGE_SIZE;
567 	int ret;
568 
569 	ret = handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &pte);
570 	if (ret)
571 		kvm_mips_callbacks->flush_shadow_all(kvm);
572 }
573 
574 static int kvm_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
575 			       struct kvm_memory_slot *memslot, void *data)
576 {
577 	return kvm_mips_mkold_gpa_pt(kvm, gfn, gfn_end);
578 }
579 
580 static int kvm_test_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
581 				    struct kvm_memory_slot *memslot, void *data)
582 {
583 	gpa_t gpa = gfn << PAGE_SHIFT;
584 	pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
585 
586 	if (!gpa_pte)
587 		return 0;
588 	return pte_young(*gpa_pte);
589 }
590 
591 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
592 {
593 	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
594 }
595 
596 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
597 {
598 	return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
599 }
600 
601 /**
602  * _kvm_mips_map_page_fast() - Fast path GPA fault handler.
603  * @vcpu:		VCPU pointer.
604  * @gpa:		Guest physical address of fault.
605  * @write_fault:	Whether the fault was due to a write.
606  * @out_entry:		New PTE for @gpa (written on success unless NULL).
607  * @out_buddy:		New PTE for @gpa's buddy (written on success unless
608  *			NULL).
609  *
610  * Perform fast path GPA fault handling, doing all that can be done without
611  * calling into KVM. This handles marking old pages young (for idle page
612  * tracking), and dirtying of clean pages (for dirty page logging).
613  *
614  * Returns:	0 on success, in which case we can update derived mappings and
615  *		resume guest execution.
616  *		-EFAULT on failure due to absent GPA mapping or write to
617  *		read-only page, in which case KVM must be consulted.
618  */
619 static int _kvm_mips_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa,
620 				   bool write_fault,
621 				   pte_t *out_entry, pte_t *out_buddy)
622 {
623 	struct kvm *kvm = vcpu->kvm;
624 	gfn_t gfn = gpa >> PAGE_SHIFT;
625 	pte_t *ptep;
626 	kvm_pfn_t pfn = 0;	/* silence bogus GCC warning */
627 	bool pfn_valid = false;
628 	int ret = 0;
629 
630 	spin_lock(&kvm->mmu_lock);
631 
632 	/* Fast path - just check GPA page table for an existing entry */
633 	ptep = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
634 	if (!ptep || !pte_present(*ptep)) {
635 		ret = -EFAULT;
636 		goto out;
637 	}
638 
639 	/* Track access to pages marked old */
640 	if (!pte_young(*ptep)) {
641 		set_pte(ptep, pte_mkyoung(*ptep));
642 		pfn = pte_pfn(*ptep);
643 		pfn_valid = true;
644 		/* call kvm_set_pfn_accessed() after unlock */
645 	}
646 	if (write_fault && !pte_dirty(*ptep)) {
647 		if (!pte_write(*ptep)) {
648 			ret = -EFAULT;
649 			goto out;
650 		}
651 
652 		/* Track dirtying of writeable pages */
653 		set_pte(ptep, pte_mkdirty(*ptep));
654 		pfn = pte_pfn(*ptep);
655 		mark_page_dirty(kvm, gfn);
656 		kvm_set_pfn_dirty(pfn);
657 	}
658 
659 	if (out_entry)
660 		*out_entry = *ptep;
661 	if (out_buddy)
662 		*out_buddy = *ptep_buddy(ptep);
663 
664 out:
665 	spin_unlock(&kvm->mmu_lock);
666 	if (pfn_valid)
667 		kvm_set_pfn_accessed(pfn);
668 	return ret;
669 }
670 
671 /**
672  * kvm_mips_map_page() - Map a guest physical page.
673  * @vcpu:		VCPU pointer.
674  * @gpa:		Guest physical address of fault.
675  * @write_fault:	Whether the fault was due to a write.
676  * @out_entry:		New PTE for @gpa (written on success unless NULL).
677  * @out_buddy:		New PTE for @gpa's buddy (written on success unless
678  *			NULL).
679  *
680  * Handle GPA faults by creating a new GPA mapping (or updating an existing
681  * one).
682  *
683  * This takes care of marking pages young or dirty (idle/dirty page tracking),
684  * asking KVM for the corresponding PFN, and creating a mapping in the GPA page
685  * tables. Derived mappings (GVA page tables and TLBs) must be handled by the
686  * caller.
687  *
688  * Returns:	0 on success, in which case the caller may use the @out_entry
689  *		and @out_buddy PTEs to update derived mappings and resume guest
690  *		execution.
691  *		-EFAULT if there is no memory region at @gpa or a write was
692  *		attempted to a read-only memory region. This is usually handled
693  *		as an MMIO access.
694  */
695 static int kvm_mips_map_page(struct kvm_vcpu *vcpu, unsigned long gpa,
696 			     bool write_fault,
697 			     pte_t *out_entry, pte_t *out_buddy)
698 {
699 	struct kvm *kvm = vcpu->kvm;
700 	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
701 	gfn_t gfn = gpa >> PAGE_SHIFT;
702 	int srcu_idx, err;
703 	kvm_pfn_t pfn;
704 	pte_t *ptep, entry, old_pte;
705 	bool writeable;
706 	unsigned long prot_bits;
707 	unsigned long mmu_seq;
708 
709 	/* Try the fast path to handle old / clean pages */
710 	srcu_idx = srcu_read_lock(&kvm->srcu);
711 	err = _kvm_mips_map_page_fast(vcpu, gpa, write_fault, out_entry,
712 				      out_buddy);
713 	if (!err)
714 		goto out;
715 
716 	/* We need a minimum of cached pages ready for page table creation */
717 	err = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
718 				     KVM_NR_MEM_OBJS);
719 	if (err)
720 		goto out;
721 
722 retry:
723 	/*
724 	 * Used to check for invalidations in progress, of the pfn that is
725 	 * returned by pfn_to_pfn_prot below.
726 	 */
727 	mmu_seq = kvm->mmu_notifier_seq;
728 	/*
729 	 * Ensure the read of mmu_notifier_seq isn't reordered with PTE reads in
730 	 * gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't
731 	 * risk the page we get a reference to getting unmapped before we have a
732 	 * chance to grab the mmu_lock without mmu_notifier_retry() noticing.
733 	 *
734 	 * This smp_rmb() pairs with the effective smp_wmb() of the combination
735 	 * of the pte_unmap_unlock() after the PTE is zapped, and the
736 	 * spin_lock() in kvm_mmu_notifier_invalidate_<page|range_end>() before
737 	 * mmu_notifier_seq is incremented.
738 	 */
739 	smp_rmb();
740 
741 	/* Slow path - ask KVM core whether we can access this GPA */
742 	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writeable);
743 	if (is_error_noslot_pfn(pfn)) {
744 		err = -EFAULT;
745 		goto out;
746 	}
747 
748 	spin_lock(&kvm->mmu_lock);
749 	/* Check if an invalidation has taken place since we got pfn */
750 	if (mmu_notifier_retry(kvm, mmu_seq)) {
751 		/*
752 		 * This can happen when mappings are changed asynchronously, but
753 		 * also synchronously if a COW is triggered by
754 		 * gfn_to_pfn_prot().
755 		 */
756 		spin_unlock(&kvm->mmu_lock);
757 		kvm_release_pfn_clean(pfn);
758 		goto retry;
759 	}
760 
761 	/* Ensure page tables are allocated */
762 	ptep = kvm_mips_pte_for_gpa(kvm, memcache, gpa);
763 
764 	/* Set up the PTE */
765 	prot_bits = _PAGE_PRESENT | __READABLE | _page_cachable_default;
766 	if (writeable) {
767 		prot_bits |= _PAGE_WRITE;
768 		if (write_fault) {
769 			prot_bits |= __WRITEABLE;
770 			mark_page_dirty(kvm, gfn);
771 			kvm_set_pfn_dirty(pfn);
772 		}
773 	}
774 	entry = pfn_pte(pfn, __pgprot(prot_bits));
775 
776 	/* Write the PTE */
777 	old_pte = *ptep;
778 	set_pte(ptep, entry);
779 
780 	err = 0;
781 	if (out_entry)
782 		*out_entry = *ptep;
783 	if (out_buddy)
784 		*out_buddy = *ptep_buddy(ptep);
785 
786 	spin_unlock(&kvm->mmu_lock);
787 	kvm_release_pfn_clean(pfn);
788 	kvm_set_pfn_accessed(pfn);
789 out:
790 	srcu_read_unlock(&kvm->srcu, srcu_idx);
791 	return err;
792 }
793 
794 static pte_t *kvm_trap_emul_pte_for_gva(struct kvm_vcpu *vcpu,
795 					unsigned long addr)
796 {
797 	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
798 	pgd_t *pgdp;
799 	int ret;
800 
801 	/* We need a minimum of cached pages ready for page table creation */
802 	ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
803 				     KVM_NR_MEM_OBJS);
804 	if (ret)
805 		return NULL;
806 
807 	if (KVM_GUEST_KERNEL_MODE(vcpu))
808 		pgdp = vcpu->arch.guest_kernel_mm.pgd;
809 	else
810 		pgdp = vcpu->arch.guest_user_mm.pgd;
811 
812 	return kvm_mips_walk_pgd(pgdp, memcache, addr);
813 }
814 
815 void kvm_trap_emul_invalidate_gva(struct kvm_vcpu *vcpu, unsigned long addr,
816 				  bool user)
817 {
818 	pgd_t *pgdp;
819 	pte_t *ptep;
820 
821 	addr &= PAGE_MASK << 1;
822 
823 	pgdp = vcpu->arch.guest_kernel_mm.pgd;
824 	ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
825 	if (ptep) {
826 		ptep[0] = pfn_pte(0, __pgprot(0));
827 		ptep[1] = pfn_pte(0, __pgprot(0));
828 	}
829 
830 	if (user) {
831 		pgdp = vcpu->arch.guest_user_mm.pgd;
832 		ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
833 		if (ptep) {
834 			ptep[0] = pfn_pte(0, __pgprot(0));
835 			ptep[1] = pfn_pte(0, __pgprot(0));
836 		}
837 	}
838 }
839 
840 /*
841  * kvm_mips_flush_gva_{pte,pmd,pud,pgd,pt}.
842  * Flush a range of guest physical address space from the VM's GPA page tables.
843  */
844 
845 static bool kvm_mips_flush_gva_pte(pte_t *pte, unsigned long start_gva,
846 				   unsigned long end_gva)
847 {
848 	int i_min = __pte_offset(start_gva);
849 	int i_max = __pte_offset(end_gva);
850 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
851 	int i;
852 
853 	/*
854 	 * There's no freeing to do, so there's no point clearing individual
855 	 * entries unless only part of the last level page table needs flushing.
856 	 */
857 	if (safe_to_remove)
858 		return true;
859 
860 	for (i = i_min; i <= i_max; ++i) {
861 		if (!pte_present(pte[i]))
862 			continue;
863 
864 		set_pte(pte + i, __pte(0));
865 	}
866 	return false;
867 }
868 
869 static bool kvm_mips_flush_gva_pmd(pmd_t *pmd, unsigned long start_gva,
870 				   unsigned long end_gva)
871 {
872 	pte_t *pte;
873 	unsigned long end = ~0ul;
874 	int i_min = __pmd_offset(start_gva);
875 	int i_max = __pmd_offset(end_gva);
876 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
877 	int i;
878 
879 	for (i = i_min; i <= i_max; ++i, start_gva = 0) {
880 		if (!pmd_present(pmd[i]))
881 			continue;
882 
883 		pte = pte_offset(pmd + i, 0);
884 		if (i == i_max)
885 			end = end_gva;
886 
887 		if (kvm_mips_flush_gva_pte(pte, start_gva, end)) {
888 			pmd_clear(pmd + i);
889 			pte_free_kernel(NULL, pte);
890 		} else {
891 			safe_to_remove = false;
892 		}
893 	}
894 	return safe_to_remove;
895 }
896 
897 static bool kvm_mips_flush_gva_pud(pud_t *pud, unsigned long start_gva,
898 				   unsigned long end_gva)
899 {
900 	pmd_t *pmd;
901 	unsigned long end = ~0ul;
902 	int i_min = __pud_offset(start_gva);
903 	int i_max = __pud_offset(end_gva);
904 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
905 	int i;
906 
907 	for (i = i_min; i <= i_max; ++i, start_gva = 0) {
908 		if (!pud_present(pud[i]))
909 			continue;
910 
911 		pmd = pmd_offset(pud + i, 0);
912 		if (i == i_max)
913 			end = end_gva;
914 
915 		if (kvm_mips_flush_gva_pmd(pmd, start_gva, end)) {
916 			pud_clear(pud + i);
917 			pmd_free(NULL, pmd);
918 		} else {
919 			safe_to_remove = false;
920 		}
921 	}
922 	return safe_to_remove;
923 }
924 
925 static bool kvm_mips_flush_gva_pgd(pgd_t *pgd, unsigned long start_gva,
926 				   unsigned long end_gva)
927 {
928 	pud_t *pud;
929 	unsigned long end = ~0ul;
930 	int i_min = pgd_index(start_gva);
931 	int i_max = pgd_index(end_gva);
932 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
933 	int i;
934 
935 	for (i = i_min; i <= i_max; ++i, start_gva = 0) {
936 		if (!pgd_present(pgd[i]))
937 			continue;
938 
939 		pud = pud_offset(pgd + i, 0);
940 		if (i == i_max)
941 			end = end_gva;
942 
943 		if (kvm_mips_flush_gva_pud(pud, start_gva, end)) {
944 			pgd_clear(pgd + i);
945 			pud_free(NULL, pud);
946 		} else {
947 			safe_to_remove = false;
948 		}
949 	}
950 	return safe_to_remove;
951 }
952 
953 void kvm_mips_flush_gva_pt(pgd_t *pgd, enum kvm_mips_flush flags)
954 {
955 	if (flags & KMF_GPA) {
956 		/* all of guest virtual address space could be affected */
957 		if (flags & KMF_KERN)
958 			/* useg, kseg0, seg2/3 */
959 			kvm_mips_flush_gva_pgd(pgd, 0, 0x7fffffff);
960 		else
961 			/* useg */
962 			kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
963 	} else {
964 		/* useg */
965 		kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
966 
967 		/* kseg2/3 */
968 		if (flags & KMF_KERN)
969 			kvm_mips_flush_gva_pgd(pgd, 0x60000000, 0x7fffffff);
970 	}
971 }
972 
973 static pte_t kvm_mips_gpa_pte_to_gva_unmapped(pte_t pte)
974 {
975 	/*
976 	 * Don't leak writeable but clean entries from GPA page tables. We don't
977 	 * want the normal Linux tlbmod handler to handle dirtying when KVM
978 	 * accesses guest memory.
979 	 */
980 	if (!pte_dirty(pte))
981 		pte = pte_wrprotect(pte);
982 
983 	return pte;
984 }
985 
986 static pte_t kvm_mips_gpa_pte_to_gva_mapped(pte_t pte, long entrylo)
987 {
988 	/* Guest EntryLo overrides host EntryLo */
989 	if (!(entrylo & ENTRYLO_D))
990 		pte = pte_mkclean(pte);
991 
992 	return kvm_mips_gpa_pte_to_gva_unmapped(pte);
993 }
994 
995 /* XXXKYMA: Must be called with interrupts disabled */
996 int kvm_mips_handle_kseg0_tlb_fault(unsigned long badvaddr,
997 				    struct kvm_vcpu *vcpu,
998 				    bool write_fault)
999 {
1000 	unsigned long gpa;
1001 	pte_t pte_gpa[2], *ptep_gva;
1002 	int idx;
1003 
1004 	if (KVM_GUEST_KSEGX(badvaddr) != KVM_GUEST_KSEG0) {
1005 		kvm_err("%s: Invalid BadVaddr: %#lx\n", __func__, badvaddr);
1006 		kvm_mips_dump_host_tlbs();
1007 		return -1;
1008 	}
1009 
1010 	/* Get the GPA page table entry */
1011 	gpa = KVM_GUEST_CPHYSADDR(badvaddr);
1012 	idx = (badvaddr >> PAGE_SHIFT) & 1;
1013 	if (kvm_mips_map_page(vcpu, gpa, write_fault, &pte_gpa[idx],
1014 			      &pte_gpa[!idx]) < 0)
1015 		return -1;
1016 
1017 	/* Get the GVA page table entry */
1018 	ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, badvaddr & ~PAGE_SIZE);
1019 	if (!ptep_gva) {
1020 		kvm_err("No ptep for gva %lx\n", badvaddr);
1021 		return -1;
1022 	}
1023 
1024 	/* Copy a pair of entries from GPA page table to GVA page table */
1025 	ptep_gva[0] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[0]);
1026 	ptep_gva[1] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[1]);
1027 
1028 	/* Invalidate this entry in the TLB, guest kernel ASID only */
1029 	kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true);
1030 	return 0;
1031 }
1032 
1033 int kvm_mips_handle_mapped_seg_tlb_fault(struct kvm_vcpu *vcpu,
1034 					 struct kvm_mips_tlb *tlb,
1035 					 unsigned long gva,
1036 					 bool write_fault)
1037 {
1038 	struct kvm *kvm = vcpu->kvm;
1039 	long tlb_lo[2];
1040 	pte_t pte_gpa[2], *ptep_buddy, *ptep_gva;
1041 	unsigned int idx = TLB_LO_IDX(*tlb, gva);
1042 	bool kernel = KVM_GUEST_KERNEL_MODE(vcpu);
1043 
1044 	tlb_lo[0] = tlb->tlb_lo[0];
1045 	tlb_lo[1] = tlb->tlb_lo[1];
1046 
1047 	/*
1048 	 * The commpage address must not be mapped to anything else if the guest
1049 	 * TLB contains entries nearby, or commpage accesses will break.
1050 	 */
1051 	if (!((gva ^ KVM_GUEST_COMMPAGE_ADDR) & VPN2_MASK & (PAGE_MASK << 1)))
1052 		tlb_lo[TLB_LO_IDX(*tlb, KVM_GUEST_COMMPAGE_ADDR)] = 0;
1053 
1054 	/* Get the GPA page table entry */
1055 	if (kvm_mips_map_page(vcpu, mips3_tlbpfn_to_paddr(tlb_lo[idx]),
1056 			      write_fault, &pte_gpa[idx], NULL) < 0)
1057 		return -1;
1058 
1059 	/* And its GVA buddy's GPA page table entry if it also exists */
1060 	pte_gpa[!idx] = pfn_pte(0, __pgprot(0));
1061 	if (tlb_lo[!idx] & ENTRYLO_V) {
1062 		spin_lock(&kvm->mmu_lock);
1063 		ptep_buddy = kvm_mips_pte_for_gpa(kvm, NULL,
1064 					mips3_tlbpfn_to_paddr(tlb_lo[!idx]));
1065 		if (ptep_buddy)
1066 			pte_gpa[!idx] = *ptep_buddy;
1067 		spin_unlock(&kvm->mmu_lock);
1068 	}
1069 
1070 	/* Get the GVA page table entry pair */
1071 	ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, gva & ~PAGE_SIZE);
1072 	if (!ptep_gva) {
1073 		kvm_err("No ptep for gva %lx\n", gva);
1074 		return -1;
1075 	}
1076 
1077 	/* Copy a pair of entries from GPA page table to GVA page table */
1078 	ptep_gva[0] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[0], tlb_lo[0]);
1079 	ptep_gva[1] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[1], tlb_lo[1]);
1080 
1081 	/* Invalidate this entry in the TLB, current guest mode ASID only */
1082 	kvm_mips_host_tlb_inv(vcpu, gva, !kernel, kernel);
1083 
1084 	kvm_debug("@ %#lx tlb_lo0: 0x%08lx tlb_lo1: 0x%08lx\n", vcpu->arch.pc,
1085 		  tlb->tlb_lo[0], tlb->tlb_lo[1]);
1086 
1087 	return 0;
1088 }
1089 
1090 int kvm_mips_handle_commpage_tlb_fault(unsigned long badvaddr,
1091 				       struct kvm_vcpu *vcpu)
1092 {
1093 	kvm_pfn_t pfn;
1094 	pte_t *ptep;
1095 
1096 	ptep = kvm_trap_emul_pte_for_gva(vcpu, badvaddr);
1097 	if (!ptep) {
1098 		kvm_err("No ptep for commpage %lx\n", badvaddr);
1099 		return -1;
1100 	}
1101 
1102 	pfn = PFN_DOWN(virt_to_phys(vcpu->arch.kseg0_commpage));
1103 	/* Also set valid and dirty, so refill handler doesn't have to */
1104 	*ptep = pte_mkyoung(pte_mkdirty(pfn_pte(pfn, PAGE_SHARED)));
1105 
1106 	/* Invalidate this entry in the TLB, guest kernel ASID only */
1107 	kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true);
1108 	return 0;
1109 }
1110 
1111 /**
1112  * kvm_mips_migrate_count() - Migrate timer.
1113  * @vcpu:	Virtual CPU.
1114  *
1115  * Migrate CP0_Count hrtimer to the current CPU by cancelling and restarting it
1116  * if it was running prior to being cancelled.
1117  *
1118  * Must be called when the VCPU is migrated to a different CPU to ensure that
1119  * timer expiry during guest execution interrupts the guest and causes the
1120  * interrupt to be delivered in a timely manner.
1121  */
1122 static void kvm_mips_migrate_count(struct kvm_vcpu *vcpu)
1123 {
1124 	if (hrtimer_cancel(&vcpu->arch.comparecount_timer))
1125 		hrtimer_restart(&vcpu->arch.comparecount_timer);
1126 }
1127 
1128 /* Restore ASID once we are scheduled back after preemption */
1129 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1130 {
1131 	unsigned long flags;
1132 
1133 	kvm_debug("%s: vcpu %p, cpu: %d\n", __func__, vcpu, cpu);
1134 
1135 	local_irq_save(flags);
1136 
1137 	vcpu->cpu = cpu;
1138 	if (vcpu->arch.last_sched_cpu != cpu) {
1139 		kvm_debug("[%d->%d]KVM VCPU[%d] switch\n",
1140 			  vcpu->arch.last_sched_cpu, cpu, vcpu->vcpu_id);
1141 		/*
1142 		 * Migrate the timer interrupt to the current CPU so that it
1143 		 * always interrupts the guest and synchronously triggers a
1144 		 * guest timer interrupt.
1145 		 */
1146 		kvm_mips_migrate_count(vcpu);
1147 	}
1148 
1149 	/* restore guest state to registers */
1150 	kvm_mips_callbacks->vcpu_load(vcpu, cpu);
1151 
1152 	local_irq_restore(flags);
1153 }
1154 
1155 /* ASID can change if another task is scheduled during preemption */
1156 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1157 {
1158 	unsigned long flags;
1159 	int cpu;
1160 
1161 	local_irq_save(flags);
1162 
1163 	cpu = smp_processor_id();
1164 	vcpu->arch.last_sched_cpu = cpu;
1165 	vcpu->cpu = -1;
1166 
1167 	/* save guest state in registers */
1168 	kvm_mips_callbacks->vcpu_put(vcpu, cpu);
1169 
1170 	local_irq_restore(flags);
1171 }
1172 
1173 /**
1174  * kvm_trap_emul_gva_fault() - Safely attempt to handle a GVA access fault.
1175  * @vcpu:	Virtual CPU.
1176  * @gva:	Guest virtual address to be accessed.
1177  * @write:	True if write attempted (must be dirtied and made writable).
1178  *
1179  * Safely attempt to handle a GVA fault, mapping GVA pages if necessary, and
1180  * dirtying the page if @write so that guest instructions can be modified.
1181  *
1182  * Returns:	KVM_MIPS_MAPPED on success.
1183  *		KVM_MIPS_GVA if bad guest virtual address.
1184  *		KVM_MIPS_GPA if bad guest physical address.
1185  *		KVM_MIPS_TLB if guest TLB not present.
1186  *		KVM_MIPS_TLBINV if guest TLB present but not valid.
1187  *		KVM_MIPS_TLBMOD if guest TLB read only.
1188  */
1189 enum kvm_mips_fault_result kvm_trap_emul_gva_fault(struct kvm_vcpu *vcpu,
1190 						   unsigned long gva,
1191 						   bool write)
1192 {
1193 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1194 	struct kvm_mips_tlb *tlb;
1195 	int index;
1196 
1197 	if (KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG0) {
1198 		if (kvm_mips_handle_kseg0_tlb_fault(gva, vcpu, write) < 0)
1199 			return KVM_MIPS_GPA;
1200 	} else if ((KVM_GUEST_KSEGX(gva) < KVM_GUEST_KSEG0) ||
1201 		   KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG23) {
1202 		/* Address should be in the guest TLB */
1203 		index = kvm_mips_guest_tlb_lookup(vcpu, (gva & VPN2_MASK) |
1204 			  (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID));
1205 		if (index < 0)
1206 			return KVM_MIPS_TLB;
1207 		tlb = &vcpu->arch.guest_tlb[index];
1208 
1209 		/* Entry should be valid, and dirty for writes */
1210 		if (!TLB_IS_VALID(*tlb, gva))
1211 			return KVM_MIPS_TLBINV;
1212 		if (write && !TLB_IS_DIRTY(*tlb, gva))
1213 			return KVM_MIPS_TLBMOD;
1214 
1215 		if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, gva, write))
1216 			return KVM_MIPS_GPA;
1217 	} else {
1218 		return KVM_MIPS_GVA;
1219 	}
1220 
1221 	return KVM_MIPS_MAPPED;
1222 }
1223 
1224 int kvm_get_inst(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
1225 {
1226 	int err;
1227 
1228 retry:
1229 	kvm_trap_emul_gva_lockless_begin(vcpu);
1230 	err = get_user(*out, opc);
1231 	kvm_trap_emul_gva_lockless_end(vcpu);
1232 
1233 	if (unlikely(err)) {
1234 		/*
1235 		 * Try to handle the fault, maybe we just raced with a GVA
1236 		 * invalidation.
1237 		 */
1238 		err = kvm_trap_emul_gva_fault(vcpu, (unsigned long)opc,
1239 					      false);
1240 		if (unlikely(err)) {
1241 			kvm_err("%s: illegal address: %p\n",
1242 				__func__, opc);
1243 			return -EFAULT;
1244 		}
1245 
1246 		/* Hopefully it'll work now */
1247 		goto retry;
1248 	}
1249 	return 0;
1250 }
1251