1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * KVM/MIPS MMU handling in the KVM module. 7 * 8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved. 9 * Authors: Sanjay Lal <sanjayl@kymasys.com> 10 */ 11 12 #include <linux/highmem.h> 13 #include <linux/kvm_host.h> 14 #include <linux/uaccess.h> 15 #include <asm/mmu_context.h> 16 #include <asm/pgalloc.h> 17 18 /* 19 * KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels 20 * for which pages need to be cached. 21 */ 22 #if defined(__PAGETABLE_PMD_FOLDED) 23 #define KVM_MMU_CACHE_MIN_PAGES 1 24 #else 25 #define KVM_MMU_CACHE_MIN_PAGES 2 26 #endif 27 28 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache, 29 int min, int max) 30 { 31 void *page; 32 33 BUG_ON(max > KVM_NR_MEM_OBJS); 34 if (cache->nobjs >= min) 35 return 0; 36 while (cache->nobjs < max) { 37 page = (void *)__get_free_page(GFP_KERNEL); 38 if (!page) 39 return -ENOMEM; 40 cache->objects[cache->nobjs++] = page; 41 } 42 return 0; 43 } 44 45 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 46 { 47 while (mc->nobjs) 48 free_page((unsigned long)mc->objects[--mc->nobjs]); 49 } 50 51 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 52 { 53 void *p; 54 55 BUG_ON(!mc || !mc->nobjs); 56 p = mc->objects[--mc->nobjs]; 57 return p; 58 } 59 60 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu) 61 { 62 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); 63 } 64 65 /** 66 * kvm_pgd_init() - Initialise KVM GPA page directory. 67 * @page: Pointer to page directory (PGD) for KVM GPA. 68 * 69 * Initialise a KVM GPA page directory with pointers to the invalid table, i.e. 70 * representing no mappings. This is similar to pgd_init(), however it 71 * initialises all the page directory pointers, not just the ones corresponding 72 * to the userland address space (since it is for the guest physical address 73 * space rather than a virtual address space). 74 */ 75 static void kvm_pgd_init(void *page) 76 { 77 unsigned long *p, *end; 78 unsigned long entry; 79 80 #ifdef __PAGETABLE_PMD_FOLDED 81 entry = (unsigned long)invalid_pte_table; 82 #else 83 entry = (unsigned long)invalid_pmd_table; 84 #endif 85 86 p = (unsigned long *)page; 87 end = p + PTRS_PER_PGD; 88 89 do { 90 p[0] = entry; 91 p[1] = entry; 92 p[2] = entry; 93 p[3] = entry; 94 p[4] = entry; 95 p += 8; 96 p[-3] = entry; 97 p[-2] = entry; 98 p[-1] = entry; 99 } while (p != end); 100 } 101 102 /** 103 * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory. 104 * 105 * Allocate a blank KVM GPA page directory (PGD) for representing guest physical 106 * to host physical page mappings. 107 * 108 * Returns: Pointer to new KVM GPA page directory. 109 * NULL on allocation failure. 110 */ 111 pgd_t *kvm_pgd_alloc(void) 112 { 113 pgd_t *ret; 114 115 ret = (pgd_t *)__get_free_pages(GFP_KERNEL, PGD_ORDER); 116 if (ret) 117 kvm_pgd_init(ret); 118 119 return ret; 120 } 121 122 /** 123 * kvm_mips_walk_pgd() - Walk page table with optional allocation. 124 * @pgd: Page directory pointer. 125 * @addr: Address to index page table using. 126 * @cache: MMU page cache to allocate new page tables from, or NULL. 127 * 128 * Walk the page tables pointed to by @pgd to find the PTE corresponding to the 129 * address @addr. If page tables don't exist for @addr, they will be created 130 * from the MMU cache if @cache is not NULL. 131 * 132 * Returns: Pointer to pte_t corresponding to @addr. 133 * NULL if a page table doesn't exist for @addr and !@cache. 134 * NULL if a page table allocation failed. 135 */ 136 static pte_t *kvm_mips_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache, 137 unsigned long addr) 138 { 139 pud_t *pud; 140 pmd_t *pmd; 141 142 pgd += pgd_index(addr); 143 if (pgd_none(*pgd)) { 144 /* Not used on MIPS yet */ 145 BUG(); 146 return NULL; 147 } 148 pud = pud_offset(pgd, addr); 149 if (pud_none(*pud)) { 150 pmd_t *new_pmd; 151 152 if (!cache) 153 return NULL; 154 new_pmd = mmu_memory_cache_alloc(cache); 155 pmd_init((unsigned long)new_pmd, 156 (unsigned long)invalid_pte_table); 157 pud_populate(NULL, pud, new_pmd); 158 } 159 pmd = pmd_offset(pud, addr); 160 if (pmd_none(*pmd)) { 161 pte_t *new_pte; 162 163 if (!cache) 164 return NULL; 165 new_pte = mmu_memory_cache_alloc(cache); 166 clear_page(new_pte); 167 pmd_populate_kernel(NULL, pmd, new_pte); 168 } 169 return pte_offset(pmd, addr); 170 } 171 172 /* Caller must hold kvm->mm_lock */ 173 static pte_t *kvm_mips_pte_for_gpa(struct kvm *kvm, 174 struct kvm_mmu_memory_cache *cache, 175 unsigned long addr) 176 { 177 return kvm_mips_walk_pgd(kvm->arch.gpa_mm.pgd, cache, addr); 178 } 179 180 /* 181 * kvm_mips_flush_gpa_{pte,pmd,pud,pgd,pt}. 182 * Flush a range of guest physical address space from the VM's GPA page tables. 183 */ 184 185 static bool kvm_mips_flush_gpa_pte(pte_t *pte, unsigned long start_gpa, 186 unsigned long end_gpa) 187 { 188 int i_min = __pte_offset(start_gpa); 189 int i_max = __pte_offset(end_gpa); 190 bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1); 191 int i; 192 193 for (i = i_min; i <= i_max; ++i) { 194 if (!pte_present(pte[i])) 195 continue; 196 197 set_pte(pte + i, __pte(0)); 198 } 199 return safe_to_remove; 200 } 201 202 static bool kvm_mips_flush_gpa_pmd(pmd_t *pmd, unsigned long start_gpa, 203 unsigned long end_gpa) 204 { 205 pte_t *pte; 206 unsigned long end = ~0ul; 207 int i_min = __pmd_offset(start_gpa); 208 int i_max = __pmd_offset(end_gpa); 209 bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1); 210 int i; 211 212 for (i = i_min; i <= i_max; ++i, start_gpa = 0) { 213 if (!pmd_present(pmd[i])) 214 continue; 215 216 pte = pte_offset(pmd + i, 0); 217 if (i == i_max) 218 end = end_gpa; 219 220 if (kvm_mips_flush_gpa_pte(pte, start_gpa, end)) { 221 pmd_clear(pmd + i); 222 pte_free_kernel(NULL, pte); 223 } else { 224 safe_to_remove = false; 225 } 226 } 227 return safe_to_remove; 228 } 229 230 static bool kvm_mips_flush_gpa_pud(pud_t *pud, unsigned long start_gpa, 231 unsigned long end_gpa) 232 { 233 pmd_t *pmd; 234 unsigned long end = ~0ul; 235 int i_min = __pud_offset(start_gpa); 236 int i_max = __pud_offset(end_gpa); 237 bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1); 238 int i; 239 240 for (i = i_min; i <= i_max; ++i, start_gpa = 0) { 241 if (!pud_present(pud[i])) 242 continue; 243 244 pmd = pmd_offset(pud + i, 0); 245 if (i == i_max) 246 end = end_gpa; 247 248 if (kvm_mips_flush_gpa_pmd(pmd, start_gpa, end)) { 249 pud_clear(pud + i); 250 pmd_free(NULL, pmd); 251 } else { 252 safe_to_remove = false; 253 } 254 } 255 return safe_to_remove; 256 } 257 258 static bool kvm_mips_flush_gpa_pgd(pgd_t *pgd, unsigned long start_gpa, 259 unsigned long end_gpa) 260 { 261 pud_t *pud; 262 unsigned long end = ~0ul; 263 int i_min = pgd_index(start_gpa); 264 int i_max = pgd_index(end_gpa); 265 bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1); 266 int i; 267 268 for (i = i_min; i <= i_max; ++i, start_gpa = 0) { 269 if (!pgd_present(pgd[i])) 270 continue; 271 272 pud = pud_offset(pgd + i, 0); 273 if (i == i_max) 274 end = end_gpa; 275 276 if (kvm_mips_flush_gpa_pud(pud, start_gpa, end)) { 277 pgd_clear(pgd + i); 278 pud_free(NULL, pud); 279 } else { 280 safe_to_remove = false; 281 } 282 } 283 return safe_to_remove; 284 } 285 286 /** 287 * kvm_mips_flush_gpa_pt() - Flush a range of guest physical addresses. 288 * @kvm: KVM pointer. 289 * @start_gfn: Guest frame number of first page in GPA range to flush. 290 * @end_gfn: Guest frame number of last page in GPA range to flush. 291 * 292 * Flushes a range of GPA mappings from the GPA page tables. 293 * 294 * The caller must hold the @kvm->mmu_lock spinlock. 295 * 296 * Returns: Whether its safe to remove the top level page directory because 297 * all lower levels have been removed. 298 */ 299 bool kvm_mips_flush_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn) 300 { 301 return kvm_mips_flush_gpa_pgd(kvm->arch.gpa_mm.pgd, 302 start_gfn << PAGE_SHIFT, 303 end_gfn << PAGE_SHIFT); 304 } 305 306 #define BUILD_PTE_RANGE_OP(name, op) \ 307 static int kvm_mips_##name##_pte(pte_t *pte, unsigned long start, \ 308 unsigned long end) \ 309 { \ 310 int ret = 0; \ 311 int i_min = __pte_offset(start); \ 312 int i_max = __pte_offset(end); \ 313 int i; \ 314 pte_t old, new; \ 315 \ 316 for (i = i_min; i <= i_max; ++i) { \ 317 if (!pte_present(pte[i])) \ 318 continue; \ 319 \ 320 old = pte[i]; \ 321 new = op(old); \ 322 if (pte_val(new) == pte_val(old)) \ 323 continue; \ 324 set_pte(pte + i, new); \ 325 ret = 1; \ 326 } \ 327 return ret; \ 328 } \ 329 \ 330 /* returns true if anything was done */ \ 331 static int kvm_mips_##name##_pmd(pmd_t *pmd, unsigned long start, \ 332 unsigned long end) \ 333 { \ 334 int ret = 0; \ 335 pte_t *pte; \ 336 unsigned long cur_end = ~0ul; \ 337 int i_min = __pmd_offset(start); \ 338 int i_max = __pmd_offset(end); \ 339 int i; \ 340 \ 341 for (i = i_min; i <= i_max; ++i, start = 0) { \ 342 if (!pmd_present(pmd[i])) \ 343 continue; \ 344 \ 345 pte = pte_offset(pmd + i, 0); \ 346 if (i == i_max) \ 347 cur_end = end; \ 348 \ 349 ret |= kvm_mips_##name##_pte(pte, start, cur_end); \ 350 } \ 351 return ret; \ 352 } \ 353 \ 354 static int kvm_mips_##name##_pud(pud_t *pud, unsigned long start, \ 355 unsigned long end) \ 356 { \ 357 int ret = 0; \ 358 pmd_t *pmd; \ 359 unsigned long cur_end = ~0ul; \ 360 int i_min = __pud_offset(start); \ 361 int i_max = __pud_offset(end); \ 362 int i; \ 363 \ 364 for (i = i_min; i <= i_max; ++i, start = 0) { \ 365 if (!pud_present(pud[i])) \ 366 continue; \ 367 \ 368 pmd = pmd_offset(pud + i, 0); \ 369 if (i == i_max) \ 370 cur_end = end; \ 371 \ 372 ret |= kvm_mips_##name##_pmd(pmd, start, cur_end); \ 373 } \ 374 return ret; \ 375 } \ 376 \ 377 static int kvm_mips_##name##_pgd(pgd_t *pgd, unsigned long start, \ 378 unsigned long end) \ 379 { \ 380 int ret = 0; \ 381 pud_t *pud; \ 382 unsigned long cur_end = ~0ul; \ 383 int i_min = pgd_index(start); \ 384 int i_max = pgd_index(end); \ 385 int i; \ 386 \ 387 for (i = i_min; i <= i_max; ++i, start = 0) { \ 388 if (!pgd_present(pgd[i])) \ 389 continue; \ 390 \ 391 pud = pud_offset(pgd + i, 0); \ 392 if (i == i_max) \ 393 cur_end = end; \ 394 \ 395 ret |= kvm_mips_##name##_pud(pud, start, cur_end); \ 396 } \ 397 return ret; \ 398 } 399 400 /* 401 * kvm_mips_mkclean_gpa_pt. 402 * Mark a range of guest physical address space clean (writes fault) in the VM's 403 * GPA page table to allow dirty page tracking. 404 */ 405 406 BUILD_PTE_RANGE_OP(mkclean, pte_mkclean) 407 408 /** 409 * kvm_mips_mkclean_gpa_pt() - Make a range of guest physical addresses clean. 410 * @kvm: KVM pointer. 411 * @start_gfn: Guest frame number of first page in GPA range to flush. 412 * @end_gfn: Guest frame number of last page in GPA range to flush. 413 * 414 * Make a range of GPA mappings clean so that guest writes will fault and 415 * trigger dirty page logging. 416 * 417 * The caller must hold the @kvm->mmu_lock spinlock. 418 * 419 * Returns: Whether any GPA mappings were modified, which would require 420 * derived mappings (GVA page tables & TLB enties) to be 421 * invalidated. 422 */ 423 int kvm_mips_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn) 424 { 425 return kvm_mips_mkclean_pgd(kvm->arch.gpa_mm.pgd, 426 start_gfn << PAGE_SHIFT, 427 end_gfn << PAGE_SHIFT); 428 } 429 430 /** 431 * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages 432 * @kvm: The KVM pointer 433 * @slot: The memory slot associated with mask 434 * @gfn_offset: The gfn offset in memory slot 435 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory 436 * slot to be write protected 437 * 438 * Walks bits set in mask write protects the associated pte's. Caller must 439 * acquire @kvm->mmu_lock. 440 */ 441 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 442 struct kvm_memory_slot *slot, 443 gfn_t gfn_offset, unsigned long mask) 444 { 445 gfn_t base_gfn = slot->base_gfn + gfn_offset; 446 gfn_t start = base_gfn + __ffs(mask); 447 gfn_t end = base_gfn + __fls(mask); 448 449 kvm_mips_mkclean_gpa_pt(kvm, start, end); 450 } 451 452 /* 453 * kvm_mips_mkold_gpa_pt. 454 * Mark a range of guest physical address space old (all accesses fault) in the 455 * VM's GPA page table to allow detection of commonly used pages. 456 */ 457 458 BUILD_PTE_RANGE_OP(mkold, pte_mkold) 459 460 static int kvm_mips_mkold_gpa_pt(struct kvm *kvm, gfn_t start_gfn, 461 gfn_t end_gfn) 462 { 463 return kvm_mips_mkold_pgd(kvm->arch.gpa_mm.pgd, 464 start_gfn << PAGE_SHIFT, 465 end_gfn << PAGE_SHIFT); 466 } 467 468 static int handle_hva_to_gpa(struct kvm *kvm, 469 unsigned long start, 470 unsigned long end, 471 int (*handler)(struct kvm *kvm, gfn_t gfn, 472 gpa_t gfn_end, 473 struct kvm_memory_slot *memslot, 474 void *data), 475 void *data) 476 { 477 struct kvm_memslots *slots; 478 struct kvm_memory_slot *memslot; 479 int ret = 0; 480 481 slots = kvm_memslots(kvm); 482 483 /* we only care about the pages that the guest sees */ 484 kvm_for_each_memslot(memslot, slots) { 485 unsigned long hva_start, hva_end; 486 gfn_t gfn, gfn_end; 487 488 hva_start = max(start, memslot->userspace_addr); 489 hva_end = min(end, memslot->userspace_addr + 490 (memslot->npages << PAGE_SHIFT)); 491 if (hva_start >= hva_end) 492 continue; 493 494 /* 495 * {gfn(page) | page intersects with [hva_start, hva_end)} = 496 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 497 */ 498 gfn = hva_to_gfn_memslot(hva_start, memslot); 499 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); 500 501 ret |= handler(kvm, gfn, gfn_end, memslot, data); 502 } 503 504 return ret; 505 } 506 507 508 static int kvm_unmap_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end, 509 struct kvm_memory_slot *memslot, void *data) 510 { 511 kvm_mips_flush_gpa_pt(kvm, gfn, gfn_end); 512 return 1; 513 } 514 515 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end) 516 { 517 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL); 518 519 kvm_mips_callbacks->flush_shadow_all(kvm); 520 return 0; 521 } 522 523 static int kvm_set_spte_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end, 524 struct kvm_memory_slot *memslot, void *data) 525 { 526 gpa_t gpa = gfn << PAGE_SHIFT; 527 pte_t hva_pte = *(pte_t *)data; 528 pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa); 529 pte_t old_pte; 530 531 if (!gpa_pte) 532 return 0; 533 534 /* Mapping may need adjusting depending on memslot flags */ 535 old_pte = *gpa_pte; 536 if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES && !pte_dirty(old_pte)) 537 hva_pte = pte_mkclean(hva_pte); 538 else if (memslot->flags & KVM_MEM_READONLY) 539 hva_pte = pte_wrprotect(hva_pte); 540 541 set_pte(gpa_pte, hva_pte); 542 543 /* Replacing an absent or old page doesn't need flushes */ 544 if (!pte_present(old_pte) || !pte_young(old_pte)) 545 return 0; 546 547 /* Pages swapped, aged, moved, or cleaned require flushes */ 548 return !pte_present(hva_pte) || 549 !pte_young(hva_pte) || 550 pte_pfn(old_pte) != pte_pfn(hva_pte) || 551 (pte_dirty(old_pte) && !pte_dirty(hva_pte)); 552 } 553 554 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) 555 { 556 unsigned long end = hva + PAGE_SIZE; 557 int ret; 558 559 ret = handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &pte); 560 if (ret) 561 kvm_mips_callbacks->flush_shadow_all(kvm); 562 } 563 564 static int kvm_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end, 565 struct kvm_memory_slot *memslot, void *data) 566 { 567 return kvm_mips_mkold_gpa_pt(kvm, gfn, gfn_end); 568 } 569 570 static int kvm_test_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end, 571 struct kvm_memory_slot *memslot, void *data) 572 { 573 gpa_t gpa = gfn << PAGE_SHIFT; 574 pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa); 575 576 if (!gpa_pte) 577 return 0; 578 return pte_young(*gpa_pte); 579 } 580 581 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end) 582 { 583 return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL); 584 } 585 586 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) 587 { 588 return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL); 589 } 590 591 /** 592 * _kvm_mips_map_page_fast() - Fast path GPA fault handler. 593 * @vcpu: VCPU pointer. 594 * @gpa: Guest physical address of fault. 595 * @write_fault: Whether the fault was due to a write. 596 * @out_entry: New PTE for @gpa (written on success unless NULL). 597 * @out_buddy: New PTE for @gpa's buddy (written on success unless 598 * NULL). 599 * 600 * Perform fast path GPA fault handling, doing all that can be done without 601 * calling into KVM. This handles marking old pages young (for idle page 602 * tracking), and dirtying of clean pages (for dirty page logging). 603 * 604 * Returns: 0 on success, in which case we can update derived mappings and 605 * resume guest execution. 606 * -EFAULT on failure due to absent GPA mapping or write to 607 * read-only page, in which case KVM must be consulted. 608 */ 609 static int _kvm_mips_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa, 610 bool write_fault, 611 pte_t *out_entry, pte_t *out_buddy) 612 { 613 struct kvm *kvm = vcpu->kvm; 614 gfn_t gfn = gpa >> PAGE_SHIFT; 615 pte_t *ptep; 616 kvm_pfn_t pfn = 0; /* silence bogus GCC warning */ 617 bool pfn_valid = false; 618 int ret = 0; 619 620 spin_lock(&kvm->mmu_lock); 621 622 /* Fast path - just check GPA page table for an existing entry */ 623 ptep = kvm_mips_pte_for_gpa(kvm, NULL, gpa); 624 if (!ptep || !pte_present(*ptep)) { 625 ret = -EFAULT; 626 goto out; 627 } 628 629 /* Track access to pages marked old */ 630 if (!pte_young(*ptep)) { 631 set_pte(ptep, pte_mkyoung(*ptep)); 632 pfn = pte_pfn(*ptep); 633 pfn_valid = true; 634 /* call kvm_set_pfn_accessed() after unlock */ 635 } 636 if (write_fault && !pte_dirty(*ptep)) { 637 if (!pte_write(*ptep)) { 638 ret = -EFAULT; 639 goto out; 640 } 641 642 /* Track dirtying of writeable pages */ 643 set_pte(ptep, pte_mkdirty(*ptep)); 644 pfn = pte_pfn(*ptep); 645 mark_page_dirty(kvm, gfn); 646 kvm_set_pfn_dirty(pfn); 647 } 648 649 if (out_entry) 650 *out_entry = *ptep; 651 if (out_buddy) 652 *out_buddy = *ptep_buddy(ptep); 653 654 out: 655 spin_unlock(&kvm->mmu_lock); 656 if (pfn_valid) 657 kvm_set_pfn_accessed(pfn); 658 return ret; 659 } 660 661 /** 662 * kvm_mips_map_page() - Map a guest physical page. 663 * @vcpu: VCPU pointer. 664 * @gpa: Guest physical address of fault. 665 * @write_fault: Whether the fault was due to a write. 666 * @out_entry: New PTE for @gpa (written on success unless NULL). 667 * @out_buddy: New PTE for @gpa's buddy (written on success unless 668 * NULL). 669 * 670 * Handle GPA faults by creating a new GPA mapping (or updating an existing 671 * one). 672 * 673 * This takes care of marking pages young or dirty (idle/dirty page tracking), 674 * asking KVM for the corresponding PFN, and creating a mapping in the GPA page 675 * tables. Derived mappings (GVA page tables and TLBs) must be handled by the 676 * caller. 677 * 678 * Returns: 0 on success, in which case the caller may use the @out_entry 679 * and @out_buddy PTEs to update derived mappings and resume guest 680 * execution. 681 * -EFAULT if there is no memory region at @gpa or a write was 682 * attempted to a read-only memory region. This is usually handled 683 * as an MMIO access. 684 */ 685 static int kvm_mips_map_page(struct kvm_vcpu *vcpu, unsigned long gpa, 686 bool write_fault, 687 pte_t *out_entry, pte_t *out_buddy) 688 { 689 struct kvm *kvm = vcpu->kvm; 690 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; 691 gfn_t gfn = gpa >> PAGE_SHIFT; 692 int srcu_idx, err; 693 kvm_pfn_t pfn; 694 pte_t *ptep, entry, old_pte; 695 bool writeable; 696 unsigned long prot_bits; 697 unsigned long mmu_seq; 698 699 /* Try the fast path to handle old / clean pages */ 700 srcu_idx = srcu_read_lock(&kvm->srcu); 701 err = _kvm_mips_map_page_fast(vcpu, gpa, write_fault, out_entry, 702 out_buddy); 703 if (!err) 704 goto out; 705 706 /* We need a minimum of cached pages ready for page table creation */ 707 err = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES, 708 KVM_NR_MEM_OBJS); 709 if (err) 710 goto out; 711 712 retry: 713 /* 714 * Used to check for invalidations in progress, of the pfn that is 715 * returned by pfn_to_pfn_prot below. 716 */ 717 mmu_seq = kvm->mmu_notifier_seq; 718 /* 719 * Ensure the read of mmu_notifier_seq isn't reordered with PTE reads in 720 * gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't 721 * risk the page we get a reference to getting unmapped before we have a 722 * chance to grab the mmu_lock without mmu_notifier_retry() noticing. 723 * 724 * This smp_rmb() pairs with the effective smp_wmb() of the combination 725 * of the pte_unmap_unlock() after the PTE is zapped, and the 726 * spin_lock() in kvm_mmu_notifier_invalidate_<page|range_end>() before 727 * mmu_notifier_seq is incremented. 728 */ 729 smp_rmb(); 730 731 /* Slow path - ask KVM core whether we can access this GPA */ 732 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writeable); 733 if (is_error_noslot_pfn(pfn)) { 734 err = -EFAULT; 735 goto out; 736 } 737 738 spin_lock(&kvm->mmu_lock); 739 /* Check if an invalidation has taken place since we got pfn */ 740 if (mmu_notifier_retry(kvm, mmu_seq)) { 741 /* 742 * This can happen when mappings are changed asynchronously, but 743 * also synchronously if a COW is triggered by 744 * gfn_to_pfn_prot(). 745 */ 746 spin_unlock(&kvm->mmu_lock); 747 kvm_release_pfn_clean(pfn); 748 goto retry; 749 } 750 751 /* Ensure page tables are allocated */ 752 ptep = kvm_mips_pte_for_gpa(kvm, memcache, gpa); 753 754 /* Set up the PTE */ 755 prot_bits = _PAGE_PRESENT | __READABLE | _page_cachable_default; 756 if (writeable) { 757 prot_bits |= _PAGE_WRITE; 758 if (write_fault) { 759 prot_bits |= __WRITEABLE; 760 mark_page_dirty(kvm, gfn); 761 kvm_set_pfn_dirty(pfn); 762 } 763 } 764 entry = pfn_pte(pfn, __pgprot(prot_bits)); 765 766 /* Write the PTE */ 767 old_pte = *ptep; 768 set_pte(ptep, entry); 769 770 err = 0; 771 if (out_entry) 772 *out_entry = *ptep; 773 if (out_buddy) 774 *out_buddy = *ptep_buddy(ptep); 775 776 spin_unlock(&kvm->mmu_lock); 777 kvm_release_pfn_clean(pfn); 778 kvm_set_pfn_accessed(pfn); 779 out: 780 srcu_read_unlock(&kvm->srcu, srcu_idx); 781 return err; 782 } 783 784 static pte_t *kvm_trap_emul_pte_for_gva(struct kvm_vcpu *vcpu, 785 unsigned long addr) 786 { 787 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; 788 pgd_t *pgdp; 789 int ret; 790 791 /* We need a minimum of cached pages ready for page table creation */ 792 ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES, 793 KVM_NR_MEM_OBJS); 794 if (ret) 795 return NULL; 796 797 if (KVM_GUEST_KERNEL_MODE(vcpu)) 798 pgdp = vcpu->arch.guest_kernel_mm.pgd; 799 else 800 pgdp = vcpu->arch.guest_user_mm.pgd; 801 802 return kvm_mips_walk_pgd(pgdp, memcache, addr); 803 } 804 805 void kvm_trap_emul_invalidate_gva(struct kvm_vcpu *vcpu, unsigned long addr, 806 bool user) 807 { 808 pgd_t *pgdp; 809 pte_t *ptep; 810 811 addr &= PAGE_MASK << 1; 812 813 pgdp = vcpu->arch.guest_kernel_mm.pgd; 814 ptep = kvm_mips_walk_pgd(pgdp, NULL, addr); 815 if (ptep) { 816 ptep[0] = pfn_pte(0, __pgprot(0)); 817 ptep[1] = pfn_pte(0, __pgprot(0)); 818 } 819 820 if (user) { 821 pgdp = vcpu->arch.guest_user_mm.pgd; 822 ptep = kvm_mips_walk_pgd(pgdp, NULL, addr); 823 if (ptep) { 824 ptep[0] = pfn_pte(0, __pgprot(0)); 825 ptep[1] = pfn_pte(0, __pgprot(0)); 826 } 827 } 828 } 829 830 /* 831 * kvm_mips_flush_gva_{pte,pmd,pud,pgd,pt}. 832 * Flush a range of guest physical address space from the VM's GPA page tables. 833 */ 834 835 static bool kvm_mips_flush_gva_pte(pte_t *pte, unsigned long start_gva, 836 unsigned long end_gva) 837 { 838 int i_min = __pte_offset(start_gva); 839 int i_max = __pte_offset(end_gva); 840 bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1); 841 int i; 842 843 /* 844 * There's no freeing to do, so there's no point clearing individual 845 * entries unless only part of the last level page table needs flushing. 846 */ 847 if (safe_to_remove) 848 return true; 849 850 for (i = i_min; i <= i_max; ++i) { 851 if (!pte_present(pte[i])) 852 continue; 853 854 set_pte(pte + i, __pte(0)); 855 } 856 return false; 857 } 858 859 static bool kvm_mips_flush_gva_pmd(pmd_t *pmd, unsigned long start_gva, 860 unsigned long end_gva) 861 { 862 pte_t *pte; 863 unsigned long end = ~0ul; 864 int i_min = __pmd_offset(start_gva); 865 int i_max = __pmd_offset(end_gva); 866 bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1); 867 int i; 868 869 for (i = i_min; i <= i_max; ++i, start_gva = 0) { 870 if (!pmd_present(pmd[i])) 871 continue; 872 873 pte = pte_offset(pmd + i, 0); 874 if (i == i_max) 875 end = end_gva; 876 877 if (kvm_mips_flush_gva_pte(pte, start_gva, end)) { 878 pmd_clear(pmd + i); 879 pte_free_kernel(NULL, pte); 880 } else { 881 safe_to_remove = false; 882 } 883 } 884 return safe_to_remove; 885 } 886 887 static bool kvm_mips_flush_gva_pud(pud_t *pud, unsigned long start_gva, 888 unsigned long end_gva) 889 { 890 pmd_t *pmd; 891 unsigned long end = ~0ul; 892 int i_min = __pud_offset(start_gva); 893 int i_max = __pud_offset(end_gva); 894 bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1); 895 int i; 896 897 for (i = i_min; i <= i_max; ++i, start_gva = 0) { 898 if (!pud_present(pud[i])) 899 continue; 900 901 pmd = pmd_offset(pud + i, 0); 902 if (i == i_max) 903 end = end_gva; 904 905 if (kvm_mips_flush_gva_pmd(pmd, start_gva, end)) { 906 pud_clear(pud + i); 907 pmd_free(NULL, pmd); 908 } else { 909 safe_to_remove = false; 910 } 911 } 912 return safe_to_remove; 913 } 914 915 static bool kvm_mips_flush_gva_pgd(pgd_t *pgd, unsigned long start_gva, 916 unsigned long end_gva) 917 { 918 pud_t *pud; 919 unsigned long end = ~0ul; 920 int i_min = pgd_index(start_gva); 921 int i_max = pgd_index(end_gva); 922 bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1); 923 int i; 924 925 for (i = i_min; i <= i_max; ++i, start_gva = 0) { 926 if (!pgd_present(pgd[i])) 927 continue; 928 929 pud = pud_offset(pgd + i, 0); 930 if (i == i_max) 931 end = end_gva; 932 933 if (kvm_mips_flush_gva_pud(pud, start_gva, end)) { 934 pgd_clear(pgd + i); 935 pud_free(NULL, pud); 936 } else { 937 safe_to_remove = false; 938 } 939 } 940 return safe_to_remove; 941 } 942 943 void kvm_mips_flush_gva_pt(pgd_t *pgd, enum kvm_mips_flush flags) 944 { 945 if (flags & KMF_GPA) { 946 /* all of guest virtual address space could be affected */ 947 if (flags & KMF_KERN) 948 /* useg, kseg0, seg2/3 */ 949 kvm_mips_flush_gva_pgd(pgd, 0, 0x7fffffff); 950 else 951 /* useg */ 952 kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff); 953 } else { 954 /* useg */ 955 kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff); 956 957 /* kseg2/3 */ 958 if (flags & KMF_KERN) 959 kvm_mips_flush_gva_pgd(pgd, 0x60000000, 0x7fffffff); 960 } 961 } 962 963 static pte_t kvm_mips_gpa_pte_to_gva_unmapped(pte_t pte) 964 { 965 /* 966 * Don't leak writeable but clean entries from GPA page tables. We don't 967 * want the normal Linux tlbmod handler to handle dirtying when KVM 968 * accesses guest memory. 969 */ 970 if (!pte_dirty(pte)) 971 pte = pte_wrprotect(pte); 972 973 return pte; 974 } 975 976 static pte_t kvm_mips_gpa_pte_to_gva_mapped(pte_t pte, long entrylo) 977 { 978 /* Guest EntryLo overrides host EntryLo */ 979 if (!(entrylo & ENTRYLO_D)) 980 pte = pte_mkclean(pte); 981 982 return kvm_mips_gpa_pte_to_gva_unmapped(pte); 983 } 984 985 #ifdef CONFIG_KVM_MIPS_VZ 986 int kvm_mips_handle_vz_root_tlb_fault(unsigned long badvaddr, 987 struct kvm_vcpu *vcpu, 988 bool write_fault) 989 { 990 int ret; 991 992 ret = kvm_mips_map_page(vcpu, badvaddr, write_fault, NULL, NULL); 993 if (ret) 994 return ret; 995 996 /* Invalidate this entry in the TLB */ 997 return kvm_vz_host_tlb_inv(vcpu, badvaddr); 998 } 999 #endif 1000 1001 /* XXXKYMA: Must be called with interrupts disabled */ 1002 int kvm_mips_handle_kseg0_tlb_fault(unsigned long badvaddr, 1003 struct kvm_vcpu *vcpu, 1004 bool write_fault) 1005 { 1006 unsigned long gpa; 1007 pte_t pte_gpa[2], *ptep_gva; 1008 int idx; 1009 1010 if (KVM_GUEST_KSEGX(badvaddr) != KVM_GUEST_KSEG0) { 1011 kvm_err("%s: Invalid BadVaddr: %#lx\n", __func__, badvaddr); 1012 kvm_mips_dump_host_tlbs(); 1013 return -1; 1014 } 1015 1016 /* Get the GPA page table entry */ 1017 gpa = KVM_GUEST_CPHYSADDR(badvaddr); 1018 idx = (badvaddr >> PAGE_SHIFT) & 1; 1019 if (kvm_mips_map_page(vcpu, gpa, write_fault, &pte_gpa[idx], 1020 &pte_gpa[!idx]) < 0) 1021 return -1; 1022 1023 /* Get the GVA page table entry */ 1024 ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, badvaddr & ~PAGE_SIZE); 1025 if (!ptep_gva) { 1026 kvm_err("No ptep for gva %lx\n", badvaddr); 1027 return -1; 1028 } 1029 1030 /* Copy a pair of entries from GPA page table to GVA page table */ 1031 ptep_gva[0] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[0]); 1032 ptep_gva[1] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[1]); 1033 1034 /* Invalidate this entry in the TLB, guest kernel ASID only */ 1035 kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true); 1036 return 0; 1037 } 1038 1039 int kvm_mips_handle_mapped_seg_tlb_fault(struct kvm_vcpu *vcpu, 1040 struct kvm_mips_tlb *tlb, 1041 unsigned long gva, 1042 bool write_fault) 1043 { 1044 struct kvm *kvm = vcpu->kvm; 1045 long tlb_lo[2]; 1046 pte_t pte_gpa[2], *ptep_buddy, *ptep_gva; 1047 unsigned int idx = TLB_LO_IDX(*tlb, gva); 1048 bool kernel = KVM_GUEST_KERNEL_MODE(vcpu); 1049 1050 tlb_lo[0] = tlb->tlb_lo[0]; 1051 tlb_lo[1] = tlb->tlb_lo[1]; 1052 1053 /* 1054 * The commpage address must not be mapped to anything else if the guest 1055 * TLB contains entries nearby, or commpage accesses will break. 1056 */ 1057 if (!((gva ^ KVM_GUEST_COMMPAGE_ADDR) & VPN2_MASK & (PAGE_MASK << 1))) 1058 tlb_lo[TLB_LO_IDX(*tlb, KVM_GUEST_COMMPAGE_ADDR)] = 0; 1059 1060 /* Get the GPA page table entry */ 1061 if (kvm_mips_map_page(vcpu, mips3_tlbpfn_to_paddr(tlb_lo[idx]), 1062 write_fault, &pte_gpa[idx], NULL) < 0) 1063 return -1; 1064 1065 /* And its GVA buddy's GPA page table entry if it also exists */ 1066 pte_gpa[!idx] = pfn_pte(0, __pgprot(0)); 1067 if (tlb_lo[!idx] & ENTRYLO_V) { 1068 spin_lock(&kvm->mmu_lock); 1069 ptep_buddy = kvm_mips_pte_for_gpa(kvm, NULL, 1070 mips3_tlbpfn_to_paddr(tlb_lo[!idx])); 1071 if (ptep_buddy) 1072 pte_gpa[!idx] = *ptep_buddy; 1073 spin_unlock(&kvm->mmu_lock); 1074 } 1075 1076 /* Get the GVA page table entry pair */ 1077 ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, gva & ~PAGE_SIZE); 1078 if (!ptep_gva) { 1079 kvm_err("No ptep for gva %lx\n", gva); 1080 return -1; 1081 } 1082 1083 /* Copy a pair of entries from GPA page table to GVA page table */ 1084 ptep_gva[0] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[0], tlb_lo[0]); 1085 ptep_gva[1] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[1], tlb_lo[1]); 1086 1087 /* Invalidate this entry in the TLB, current guest mode ASID only */ 1088 kvm_mips_host_tlb_inv(vcpu, gva, !kernel, kernel); 1089 1090 kvm_debug("@ %#lx tlb_lo0: 0x%08lx tlb_lo1: 0x%08lx\n", vcpu->arch.pc, 1091 tlb->tlb_lo[0], tlb->tlb_lo[1]); 1092 1093 return 0; 1094 } 1095 1096 int kvm_mips_handle_commpage_tlb_fault(unsigned long badvaddr, 1097 struct kvm_vcpu *vcpu) 1098 { 1099 kvm_pfn_t pfn; 1100 pte_t *ptep; 1101 1102 ptep = kvm_trap_emul_pte_for_gva(vcpu, badvaddr); 1103 if (!ptep) { 1104 kvm_err("No ptep for commpage %lx\n", badvaddr); 1105 return -1; 1106 } 1107 1108 pfn = PFN_DOWN(virt_to_phys(vcpu->arch.kseg0_commpage)); 1109 /* Also set valid and dirty, so refill handler doesn't have to */ 1110 *ptep = pte_mkyoung(pte_mkdirty(pfn_pte(pfn, PAGE_SHARED))); 1111 1112 /* Invalidate this entry in the TLB, guest kernel ASID only */ 1113 kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true); 1114 return 0; 1115 } 1116 1117 /** 1118 * kvm_mips_migrate_count() - Migrate timer. 1119 * @vcpu: Virtual CPU. 1120 * 1121 * Migrate CP0_Count hrtimer to the current CPU by cancelling and restarting it 1122 * if it was running prior to being cancelled. 1123 * 1124 * Must be called when the VCPU is migrated to a different CPU to ensure that 1125 * timer expiry during guest execution interrupts the guest and causes the 1126 * interrupt to be delivered in a timely manner. 1127 */ 1128 static void kvm_mips_migrate_count(struct kvm_vcpu *vcpu) 1129 { 1130 if (hrtimer_cancel(&vcpu->arch.comparecount_timer)) 1131 hrtimer_restart(&vcpu->arch.comparecount_timer); 1132 } 1133 1134 /* Restore ASID once we are scheduled back after preemption */ 1135 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1136 { 1137 unsigned long flags; 1138 1139 kvm_debug("%s: vcpu %p, cpu: %d\n", __func__, vcpu, cpu); 1140 1141 local_irq_save(flags); 1142 1143 vcpu->cpu = cpu; 1144 if (vcpu->arch.last_sched_cpu != cpu) { 1145 kvm_debug("[%d->%d]KVM VCPU[%d] switch\n", 1146 vcpu->arch.last_sched_cpu, cpu, vcpu->vcpu_id); 1147 /* 1148 * Migrate the timer interrupt to the current CPU so that it 1149 * always interrupts the guest and synchronously triggers a 1150 * guest timer interrupt. 1151 */ 1152 kvm_mips_migrate_count(vcpu); 1153 } 1154 1155 /* restore guest state to registers */ 1156 kvm_mips_callbacks->vcpu_load(vcpu, cpu); 1157 1158 local_irq_restore(flags); 1159 } 1160 1161 /* ASID can change if another task is scheduled during preemption */ 1162 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 1163 { 1164 unsigned long flags; 1165 int cpu; 1166 1167 local_irq_save(flags); 1168 1169 cpu = smp_processor_id(); 1170 vcpu->arch.last_sched_cpu = cpu; 1171 vcpu->cpu = -1; 1172 1173 /* save guest state in registers */ 1174 kvm_mips_callbacks->vcpu_put(vcpu, cpu); 1175 1176 local_irq_restore(flags); 1177 } 1178 1179 /** 1180 * kvm_trap_emul_gva_fault() - Safely attempt to handle a GVA access fault. 1181 * @vcpu: Virtual CPU. 1182 * @gva: Guest virtual address to be accessed. 1183 * @write: True if write attempted (must be dirtied and made writable). 1184 * 1185 * Safely attempt to handle a GVA fault, mapping GVA pages if necessary, and 1186 * dirtying the page if @write so that guest instructions can be modified. 1187 * 1188 * Returns: KVM_MIPS_MAPPED on success. 1189 * KVM_MIPS_GVA if bad guest virtual address. 1190 * KVM_MIPS_GPA if bad guest physical address. 1191 * KVM_MIPS_TLB if guest TLB not present. 1192 * KVM_MIPS_TLBINV if guest TLB present but not valid. 1193 * KVM_MIPS_TLBMOD if guest TLB read only. 1194 */ 1195 enum kvm_mips_fault_result kvm_trap_emul_gva_fault(struct kvm_vcpu *vcpu, 1196 unsigned long gva, 1197 bool write) 1198 { 1199 struct mips_coproc *cop0 = vcpu->arch.cop0; 1200 struct kvm_mips_tlb *tlb; 1201 int index; 1202 1203 if (KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG0) { 1204 if (kvm_mips_handle_kseg0_tlb_fault(gva, vcpu, write) < 0) 1205 return KVM_MIPS_GPA; 1206 } else if ((KVM_GUEST_KSEGX(gva) < KVM_GUEST_KSEG0) || 1207 KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG23) { 1208 /* Address should be in the guest TLB */ 1209 index = kvm_mips_guest_tlb_lookup(vcpu, (gva & VPN2_MASK) | 1210 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID)); 1211 if (index < 0) 1212 return KVM_MIPS_TLB; 1213 tlb = &vcpu->arch.guest_tlb[index]; 1214 1215 /* Entry should be valid, and dirty for writes */ 1216 if (!TLB_IS_VALID(*tlb, gva)) 1217 return KVM_MIPS_TLBINV; 1218 if (write && !TLB_IS_DIRTY(*tlb, gva)) 1219 return KVM_MIPS_TLBMOD; 1220 1221 if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, gva, write)) 1222 return KVM_MIPS_GPA; 1223 } else { 1224 return KVM_MIPS_GVA; 1225 } 1226 1227 return KVM_MIPS_MAPPED; 1228 } 1229 1230 int kvm_get_inst(u32 *opc, struct kvm_vcpu *vcpu, u32 *out) 1231 { 1232 int err; 1233 1234 if (WARN(IS_ENABLED(CONFIG_KVM_MIPS_VZ), 1235 "Expect BadInstr/BadInstrP registers to be used with VZ\n")) 1236 return -EINVAL; 1237 1238 retry: 1239 kvm_trap_emul_gva_lockless_begin(vcpu); 1240 err = get_user(*out, opc); 1241 kvm_trap_emul_gva_lockless_end(vcpu); 1242 1243 if (unlikely(err)) { 1244 /* 1245 * Try to handle the fault, maybe we just raced with a GVA 1246 * invalidation. 1247 */ 1248 err = kvm_trap_emul_gva_fault(vcpu, (unsigned long)opc, 1249 false); 1250 if (unlikely(err)) { 1251 kvm_err("%s: illegal address: %p\n", 1252 __func__, opc); 1253 return -EFAULT; 1254 } 1255 1256 /* Hopefully it'll work now */ 1257 goto retry; 1258 } 1259 return 0; 1260 } 1261