xref: /openbmc/linux/arch/mips/kvm/mips.c (revision f2a89d3b)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: MIPS specific KVM APIs
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11 
12 #include <linux/bitops.h>
13 #include <linux/errno.h>
14 #include <linux/err.h>
15 #include <linux/kdebug.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/fs.h>
19 #include <linux/bootmem.h>
20 #include <asm/fpu.h>
21 #include <asm/page.h>
22 #include <asm/cacheflush.h>
23 #include <asm/mmu_context.h>
24 #include <asm/pgtable.h>
25 
26 #include <linux/kvm_host.h>
27 
28 #include "interrupt.h"
29 #include "commpage.h"
30 
31 #define CREATE_TRACE_POINTS
32 #include "trace.h"
33 
34 #ifndef VECTORSPACING
35 #define VECTORSPACING 0x100	/* for EI/VI mode */
36 #endif
37 
38 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
39 struct kvm_stats_debugfs_item debugfs_entries[] = {
40 	{ "wait",	  VCPU_STAT(wait_exits),	 KVM_STAT_VCPU },
41 	{ "cache",	  VCPU_STAT(cache_exits),	 KVM_STAT_VCPU },
42 	{ "signal",	  VCPU_STAT(signal_exits),	 KVM_STAT_VCPU },
43 	{ "interrupt",	  VCPU_STAT(int_exits),		 KVM_STAT_VCPU },
44 	{ "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
45 	{ "tlbmod",	  VCPU_STAT(tlbmod_exits),	 KVM_STAT_VCPU },
46 	{ "tlbmiss_ld",	  VCPU_STAT(tlbmiss_ld_exits),	 KVM_STAT_VCPU },
47 	{ "tlbmiss_st",	  VCPU_STAT(tlbmiss_st_exits),	 KVM_STAT_VCPU },
48 	{ "addrerr_st",	  VCPU_STAT(addrerr_st_exits),	 KVM_STAT_VCPU },
49 	{ "addrerr_ld",	  VCPU_STAT(addrerr_ld_exits),	 KVM_STAT_VCPU },
50 	{ "syscall",	  VCPU_STAT(syscall_exits),	 KVM_STAT_VCPU },
51 	{ "resvd_inst",	  VCPU_STAT(resvd_inst_exits),	 KVM_STAT_VCPU },
52 	{ "break_inst",	  VCPU_STAT(break_inst_exits),	 KVM_STAT_VCPU },
53 	{ "trap_inst",	  VCPU_STAT(trap_inst_exits),	 KVM_STAT_VCPU },
54 	{ "msa_fpe",	  VCPU_STAT(msa_fpe_exits),	 KVM_STAT_VCPU },
55 	{ "fpe",	  VCPU_STAT(fpe_exits),		 KVM_STAT_VCPU },
56 	{ "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
57 	{ "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
58 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
59 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
60 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
61 	{ "halt_wakeup",  VCPU_STAT(halt_wakeup),	 KVM_STAT_VCPU },
62 	{NULL}
63 };
64 
65 static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
66 {
67 	int i;
68 
69 	for_each_possible_cpu(i) {
70 		vcpu->arch.guest_kernel_asid[i] = 0;
71 		vcpu->arch.guest_user_asid[i] = 0;
72 	}
73 
74 	return 0;
75 }
76 
77 /*
78  * XXXKYMA: We are simulatoring a processor that has the WII bit set in
79  * Config7, so we are "runnable" if interrupts are pending
80  */
81 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
82 {
83 	return !!(vcpu->arch.pending_exceptions);
84 }
85 
86 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
87 {
88 	return 1;
89 }
90 
91 int kvm_arch_hardware_enable(void)
92 {
93 	return 0;
94 }
95 
96 int kvm_arch_hardware_setup(void)
97 {
98 	return 0;
99 }
100 
101 void kvm_arch_check_processor_compat(void *rtn)
102 {
103 	*(int *)rtn = 0;
104 }
105 
106 static void kvm_mips_init_tlbs(struct kvm *kvm)
107 {
108 	unsigned long wired;
109 
110 	/*
111 	 * Add a wired entry to the TLB, it is used to map the commpage to
112 	 * the Guest kernel
113 	 */
114 	wired = read_c0_wired();
115 	write_c0_wired(wired + 1);
116 	mtc0_tlbw_hazard();
117 	kvm->arch.commpage_tlb = wired;
118 
119 	kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
120 		  kvm->arch.commpage_tlb);
121 }
122 
123 static void kvm_mips_init_vm_percpu(void *arg)
124 {
125 	struct kvm *kvm = (struct kvm *)arg;
126 
127 	kvm_mips_init_tlbs(kvm);
128 	kvm_mips_callbacks->vm_init(kvm);
129 
130 }
131 
132 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
133 {
134 	if (atomic_inc_return(&kvm_mips_instance) == 1) {
135 		kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
136 			  __func__);
137 		on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
138 	}
139 
140 	return 0;
141 }
142 
143 void kvm_mips_free_vcpus(struct kvm *kvm)
144 {
145 	unsigned int i;
146 	struct kvm_vcpu *vcpu;
147 
148 	/* Put the pages we reserved for the guest pmap */
149 	for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
150 		if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
151 			kvm_release_pfn_clean(kvm->arch.guest_pmap[i]);
152 	}
153 	kfree(kvm->arch.guest_pmap);
154 
155 	kvm_for_each_vcpu(i, vcpu, kvm) {
156 		kvm_arch_vcpu_free(vcpu);
157 	}
158 
159 	mutex_lock(&kvm->lock);
160 
161 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
162 		kvm->vcpus[i] = NULL;
163 
164 	atomic_set(&kvm->online_vcpus, 0);
165 
166 	mutex_unlock(&kvm->lock);
167 }
168 
169 static void kvm_mips_uninit_tlbs(void *arg)
170 {
171 	/* Restore wired count */
172 	write_c0_wired(0);
173 	mtc0_tlbw_hazard();
174 	/* Clear out all the TLBs */
175 	kvm_local_flush_tlb_all();
176 }
177 
178 void kvm_arch_destroy_vm(struct kvm *kvm)
179 {
180 	kvm_mips_free_vcpus(kvm);
181 
182 	/* If this is the last instance, restore wired count */
183 	if (atomic_dec_return(&kvm_mips_instance) == 0) {
184 		kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
185 			  __func__);
186 		on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
187 	}
188 }
189 
190 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
191 			unsigned long arg)
192 {
193 	return -ENOIOCTLCMD;
194 }
195 
196 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
197 			    unsigned long npages)
198 {
199 	return 0;
200 }
201 
202 int kvm_arch_prepare_memory_region(struct kvm *kvm,
203 				   struct kvm_memory_slot *memslot,
204 				   const struct kvm_userspace_memory_region *mem,
205 				   enum kvm_mr_change change)
206 {
207 	return 0;
208 }
209 
210 void kvm_arch_commit_memory_region(struct kvm *kvm,
211 				   const struct kvm_userspace_memory_region *mem,
212 				   const struct kvm_memory_slot *old,
213 				   const struct kvm_memory_slot *new,
214 				   enum kvm_mr_change change)
215 {
216 	unsigned long npages = 0;
217 	int i;
218 
219 	kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
220 		  __func__, kvm, mem->slot, mem->guest_phys_addr,
221 		  mem->memory_size, mem->userspace_addr);
222 
223 	/* Setup Guest PMAP table */
224 	if (!kvm->arch.guest_pmap) {
225 		if (mem->slot == 0)
226 			npages = mem->memory_size >> PAGE_SHIFT;
227 
228 		if (npages) {
229 			kvm->arch.guest_pmap_npages = npages;
230 			kvm->arch.guest_pmap =
231 			    kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
232 
233 			if (!kvm->arch.guest_pmap) {
234 				kvm_err("Failed to allocate guest PMAP\n");
235 				return;
236 			}
237 
238 			kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
239 				  npages, kvm->arch.guest_pmap);
240 
241 			/* Now setup the page table */
242 			for (i = 0; i < npages; i++)
243 				kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
244 		}
245 	}
246 }
247 
248 static inline void dump_handler(const char *symbol, void *start, void *end)
249 {
250 	u32 *p;
251 
252 	pr_debug("LEAF(%s)\n", symbol);
253 
254 	pr_debug("\t.set push\n");
255 	pr_debug("\t.set noreorder\n");
256 
257 	for (p = start; p < (u32 *)end; ++p)
258 		pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
259 
260 	pr_debug("\t.set\tpop\n");
261 
262 	pr_debug("\tEND(%s)\n", symbol);
263 }
264 
265 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
266 {
267 	int err, size;
268 	void *gebase, *p, *handler;
269 	int i;
270 
271 	struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
272 
273 	if (!vcpu) {
274 		err = -ENOMEM;
275 		goto out;
276 	}
277 
278 	err = kvm_vcpu_init(vcpu, kvm, id);
279 
280 	if (err)
281 		goto out_free_cpu;
282 
283 	kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
284 
285 	/*
286 	 * Allocate space for host mode exception handlers that handle
287 	 * guest mode exits
288 	 */
289 	if (cpu_has_veic || cpu_has_vint)
290 		size = 0x200 + VECTORSPACING * 64;
291 	else
292 		size = 0x4000;
293 
294 	gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
295 
296 	if (!gebase) {
297 		err = -ENOMEM;
298 		goto out_uninit_cpu;
299 	}
300 	kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
301 		  ALIGN(size, PAGE_SIZE), gebase);
302 
303 	/*
304 	 * Check new ebase actually fits in CP0_EBase. The lack of a write gate
305 	 * limits us to the low 512MB of physical address space. If the memory
306 	 * we allocate is out of range, just give up now.
307 	 */
308 	if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
309 		kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
310 			gebase);
311 		err = -ENOMEM;
312 		goto out_free_gebase;
313 	}
314 
315 	/* Save new ebase */
316 	vcpu->arch.guest_ebase = gebase;
317 
318 	/* Build guest exception vectors dynamically in unmapped memory */
319 	handler = gebase + 0x2000;
320 
321 	/* TLB Refill, EXL = 0 */
322 	kvm_mips_build_exception(gebase, handler);
323 
324 	/* General Exception Entry point */
325 	kvm_mips_build_exception(gebase + 0x180, handler);
326 
327 	/* For vectored interrupts poke the exception code @ all offsets 0-7 */
328 	for (i = 0; i < 8; i++) {
329 		kvm_debug("L1 Vectored handler @ %p\n",
330 			  gebase + 0x200 + (i * VECTORSPACING));
331 		kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
332 					 handler);
333 	}
334 
335 	/* General exit handler */
336 	p = handler;
337 	p = kvm_mips_build_exit(p);
338 
339 	/* Guest entry routine */
340 	vcpu->arch.vcpu_run = p;
341 	p = kvm_mips_build_vcpu_run(p);
342 
343 	/* Dump the generated code */
344 	pr_debug("#include <asm/asm.h>\n");
345 	pr_debug("#include <asm/regdef.h>\n");
346 	pr_debug("\n");
347 	dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
348 	dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
349 	dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
350 
351 	/* Invalidate the icache for these ranges */
352 	local_flush_icache_range((unsigned long)gebase,
353 				(unsigned long)gebase + ALIGN(size, PAGE_SIZE));
354 
355 	/*
356 	 * Allocate comm page for guest kernel, a TLB will be reserved for
357 	 * mapping GVA @ 0xFFFF8000 to this page
358 	 */
359 	vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
360 
361 	if (!vcpu->arch.kseg0_commpage) {
362 		err = -ENOMEM;
363 		goto out_free_gebase;
364 	}
365 
366 	kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
367 	kvm_mips_commpage_init(vcpu);
368 
369 	/* Init */
370 	vcpu->arch.last_sched_cpu = -1;
371 
372 	/* Start off the timer */
373 	kvm_mips_init_count(vcpu);
374 
375 	return vcpu;
376 
377 out_free_gebase:
378 	kfree(gebase);
379 
380 out_uninit_cpu:
381 	kvm_vcpu_uninit(vcpu);
382 
383 out_free_cpu:
384 	kfree(vcpu);
385 
386 out:
387 	return ERR_PTR(err);
388 }
389 
390 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
391 {
392 	hrtimer_cancel(&vcpu->arch.comparecount_timer);
393 
394 	kvm_vcpu_uninit(vcpu);
395 
396 	kvm_mips_dump_stats(vcpu);
397 
398 	kfree(vcpu->arch.guest_ebase);
399 	kfree(vcpu->arch.kseg0_commpage);
400 	kfree(vcpu);
401 }
402 
403 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
404 {
405 	kvm_arch_vcpu_free(vcpu);
406 }
407 
408 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
409 					struct kvm_guest_debug *dbg)
410 {
411 	return -ENOIOCTLCMD;
412 }
413 
414 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
415 {
416 	int r = 0;
417 	sigset_t sigsaved;
418 
419 	if (vcpu->sigset_active)
420 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
421 
422 	if (vcpu->mmio_needed) {
423 		if (!vcpu->mmio_is_write)
424 			kvm_mips_complete_mmio_load(vcpu, run);
425 		vcpu->mmio_needed = 0;
426 	}
427 
428 	lose_fpu(1);
429 
430 	local_irq_disable();
431 	/* Check if we have any exceptions/interrupts pending */
432 	kvm_mips_deliver_interrupts(vcpu,
433 				    kvm_read_c0_guest_cause(vcpu->arch.cop0));
434 
435 	guest_enter_irqoff();
436 
437 	/* Disable hardware page table walking while in guest */
438 	htw_stop();
439 
440 	trace_kvm_enter(vcpu);
441 	r = vcpu->arch.vcpu_run(run, vcpu);
442 	trace_kvm_out(vcpu);
443 
444 	/* Re-enable HTW before enabling interrupts */
445 	htw_start();
446 
447 	guest_exit_irqoff();
448 	local_irq_enable();
449 
450 	if (vcpu->sigset_active)
451 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
452 
453 	return r;
454 }
455 
456 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
457 			     struct kvm_mips_interrupt *irq)
458 {
459 	int intr = (int)irq->irq;
460 	struct kvm_vcpu *dvcpu = NULL;
461 
462 	if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
463 		kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
464 			  (int)intr);
465 
466 	if (irq->cpu == -1)
467 		dvcpu = vcpu;
468 	else
469 		dvcpu = vcpu->kvm->vcpus[irq->cpu];
470 
471 	if (intr == 2 || intr == 3 || intr == 4) {
472 		kvm_mips_callbacks->queue_io_int(dvcpu, irq);
473 
474 	} else if (intr == -2 || intr == -3 || intr == -4) {
475 		kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
476 	} else {
477 		kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
478 			irq->cpu, irq->irq);
479 		return -EINVAL;
480 	}
481 
482 	dvcpu->arch.wait = 0;
483 
484 	if (swait_active(&dvcpu->wq))
485 		swake_up(&dvcpu->wq);
486 
487 	return 0;
488 }
489 
490 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
491 				    struct kvm_mp_state *mp_state)
492 {
493 	return -ENOIOCTLCMD;
494 }
495 
496 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
497 				    struct kvm_mp_state *mp_state)
498 {
499 	return -ENOIOCTLCMD;
500 }
501 
502 static u64 kvm_mips_get_one_regs[] = {
503 	KVM_REG_MIPS_R0,
504 	KVM_REG_MIPS_R1,
505 	KVM_REG_MIPS_R2,
506 	KVM_REG_MIPS_R3,
507 	KVM_REG_MIPS_R4,
508 	KVM_REG_MIPS_R5,
509 	KVM_REG_MIPS_R6,
510 	KVM_REG_MIPS_R7,
511 	KVM_REG_MIPS_R8,
512 	KVM_REG_MIPS_R9,
513 	KVM_REG_MIPS_R10,
514 	KVM_REG_MIPS_R11,
515 	KVM_REG_MIPS_R12,
516 	KVM_REG_MIPS_R13,
517 	KVM_REG_MIPS_R14,
518 	KVM_REG_MIPS_R15,
519 	KVM_REG_MIPS_R16,
520 	KVM_REG_MIPS_R17,
521 	KVM_REG_MIPS_R18,
522 	KVM_REG_MIPS_R19,
523 	KVM_REG_MIPS_R20,
524 	KVM_REG_MIPS_R21,
525 	KVM_REG_MIPS_R22,
526 	KVM_REG_MIPS_R23,
527 	KVM_REG_MIPS_R24,
528 	KVM_REG_MIPS_R25,
529 	KVM_REG_MIPS_R26,
530 	KVM_REG_MIPS_R27,
531 	KVM_REG_MIPS_R28,
532 	KVM_REG_MIPS_R29,
533 	KVM_REG_MIPS_R30,
534 	KVM_REG_MIPS_R31,
535 
536 #ifndef CONFIG_CPU_MIPSR6
537 	KVM_REG_MIPS_HI,
538 	KVM_REG_MIPS_LO,
539 #endif
540 	KVM_REG_MIPS_PC,
541 
542 	KVM_REG_MIPS_CP0_INDEX,
543 	KVM_REG_MIPS_CP0_CONTEXT,
544 	KVM_REG_MIPS_CP0_USERLOCAL,
545 	KVM_REG_MIPS_CP0_PAGEMASK,
546 	KVM_REG_MIPS_CP0_WIRED,
547 	KVM_REG_MIPS_CP0_HWRENA,
548 	KVM_REG_MIPS_CP0_BADVADDR,
549 	KVM_REG_MIPS_CP0_COUNT,
550 	KVM_REG_MIPS_CP0_ENTRYHI,
551 	KVM_REG_MIPS_CP0_COMPARE,
552 	KVM_REG_MIPS_CP0_STATUS,
553 	KVM_REG_MIPS_CP0_CAUSE,
554 	KVM_REG_MIPS_CP0_EPC,
555 	KVM_REG_MIPS_CP0_PRID,
556 	KVM_REG_MIPS_CP0_CONFIG,
557 	KVM_REG_MIPS_CP0_CONFIG1,
558 	KVM_REG_MIPS_CP0_CONFIG2,
559 	KVM_REG_MIPS_CP0_CONFIG3,
560 	KVM_REG_MIPS_CP0_CONFIG4,
561 	KVM_REG_MIPS_CP0_CONFIG5,
562 	KVM_REG_MIPS_CP0_CONFIG7,
563 	KVM_REG_MIPS_CP0_ERROREPC,
564 
565 	KVM_REG_MIPS_COUNT_CTL,
566 	KVM_REG_MIPS_COUNT_RESUME,
567 	KVM_REG_MIPS_COUNT_HZ,
568 };
569 
570 static u64 kvm_mips_get_one_regs_fpu[] = {
571 	KVM_REG_MIPS_FCR_IR,
572 	KVM_REG_MIPS_FCR_CSR,
573 };
574 
575 static u64 kvm_mips_get_one_regs_msa[] = {
576 	KVM_REG_MIPS_MSA_IR,
577 	KVM_REG_MIPS_MSA_CSR,
578 };
579 
580 static u64 kvm_mips_get_one_regs_kscratch[] = {
581 	KVM_REG_MIPS_CP0_KSCRATCH1,
582 	KVM_REG_MIPS_CP0_KSCRATCH2,
583 	KVM_REG_MIPS_CP0_KSCRATCH3,
584 	KVM_REG_MIPS_CP0_KSCRATCH4,
585 	KVM_REG_MIPS_CP0_KSCRATCH5,
586 	KVM_REG_MIPS_CP0_KSCRATCH6,
587 };
588 
589 static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
590 {
591 	unsigned long ret;
592 
593 	ret = ARRAY_SIZE(kvm_mips_get_one_regs);
594 	if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
595 		ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
596 		/* odd doubles */
597 		if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
598 			ret += 16;
599 	}
600 	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
601 		ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
602 	ret += __arch_hweight8(vcpu->arch.kscratch_enabled);
603 	ret += kvm_mips_callbacks->num_regs(vcpu);
604 
605 	return ret;
606 }
607 
608 static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
609 {
610 	u64 index;
611 	unsigned int i;
612 
613 	if (copy_to_user(indices, kvm_mips_get_one_regs,
614 			 sizeof(kvm_mips_get_one_regs)))
615 		return -EFAULT;
616 	indices += ARRAY_SIZE(kvm_mips_get_one_regs);
617 
618 	if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
619 		if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
620 				 sizeof(kvm_mips_get_one_regs_fpu)))
621 			return -EFAULT;
622 		indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
623 
624 		for (i = 0; i < 32; ++i) {
625 			index = KVM_REG_MIPS_FPR_32(i);
626 			if (copy_to_user(indices, &index, sizeof(index)))
627 				return -EFAULT;
628 			++indices;
629 
630 			/* skip odd doubles if no F64 */
631 			if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
632 				continue;
633 
634 			index = KVM_REG_MIPS_FPR_64(i);
635 			if (copy_to_user(indices, &index, sizeof(index)))
636 				return -EFAULT;
637 			++indices;
638 		}
639 	}
640 
641 	if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
642 		if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
643 				 sizeof(kvm_mips_get_one_regs_msa)))
644 			return -EFAULT;
645 		indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
646 
647 		for (i = 0; i < 32; ++i) {
648 			index = KVM_REG_MIPS_VEC_128(i);
649 			if (copy_to_user(indices, &index, sizeof(index)))
650 				return -EFAULT;
651 			++indices;
652 		}
653 	}
654 
655 	for (i = 0; i < 6; ++i) {
656 		if (!(vcpu->arch.kscratch_enabled & BIT(i + 2)))
657 			continue;
658 
659 		if (copy_to_user(indices, &kvm_mips_get_one_regs_kscratch[i],
660 				 sizeof(kvm_mips_get_one_regs_kscratch[i])))
661 			return -EFAULT;
662 		++indices;
663 	}
664 
665 	return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
666 }
667 
668 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
669 			    const struct kvm_one_reg *reg)
670 {
671 	struct mips_coproc *cop0 = vcpu->arch.cop0;
672 	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
673 	int ret;
674 	s64 v;
675 	s64 vs[2];
676 	unsigned int idx;
677 
678 	switch (reg->id) {
679 	/* General purpose registers */
680 	case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
681 		v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
682 		break;
683 #ifndef CONFIG_CPU_MIPSR6
684 	case KVM_REG_MIPS_HI:
685 		v = (long)vcpu->arch.hi;
686 		break;
687 	case KVM_REG_MIPS_LO:
688 		v = (long)vcpu->arch.lo;
689 		break;
690 #endif
691 	case KVM_REG_MIPS_PC:
692 		v = (long)vcpu->arch.pc;
693 		break;
694 
695 	/* Floating point registers */
696 	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
697 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
698 			return -EINVAL;
699 		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
700 		/* Odd singles in top of even double when FR=0 */
701 		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
702 			v = get_fpr32(&fpu->fpr[idx], 0);
703 		else
704 			v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
705 		break;
706 	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
707 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
708 			return -EINVAL;
709 		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
710 		/* Can't access odd doubles in FR=0 mode */
711 		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
712 			return -EINVAL;
713 		v = get_fpr64(&fpu->fpr[idx], 0);
714 		break;
715 	case KVM_REG_MIPS_FCR_IR:
716 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
717 			return -EINVAL;
718 		v = boot_cpu_data.fpu_id;
719 		break;
720 	case KVM_REG_MIPS_FCR_CSR:
721 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
722 			return -EINVAL;
723 		v = fpu->fcr31;
724 		break;
725 
726 	/* MIPS SIMD Architecture (MSA) registers */
727 	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
728 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
729 			return -EINVAL;
730 		/* Can't access MSA registers in FR=0 mode */
731 		if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
732 			return -EINVAL;
733 		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
734 #ifdef CONFIG_CPU_LITTLE_ENDIAN
735 		/* least significant byte first */
736 		vs[0] = get_fpr64(&fpu->fpr[idx], 0);
737 		vs[1] = get_fpr64(&fpu->fpr[idx], 1);
738 #else
739 		/* most significant byte first */
740 		vs[0] = get_fpr64(&fpu->fpr[idx], 1);
741 		vs[1] = get_fpr64(&fpu->fpr[idx], 0);
742 #endif
743 		break;
744 	case KVM_REG_MIPS_MSA_IR:
745 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
746 			return -EINVAL;
747 		v = boot_cpu_data.msa_id;
748 		break;
749 	case KVM_REG_MIPS_MSA_CSR:
750 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
751 			return -EINVAL;
752 		v = fpu->msacsr;
753 		break;
754 
755 	/* Co-processor 0 registers */
756 	case KVM_REG_MIPS_CP0_INDEX:
757 		v = (long)kvm_read_c0_guest_index(cop0);
758 		break;
759 	case KVM_REG_MIPS_CP0_CONTEXT:
760 		v = (long)kvm_read_c0_guest_context(cop0);
761 		break;
762 	case KVM_REG_MIPS_CP0_USERLOCAL:
763 		v = (long)kvm_read_c0_guest_userlocal(cop0);
764 		break;
765 	case KVM_REG_MIPS_CP0_PAGEMASK:
766 		v = (long)kvm_read_c0_guest_pagemask(cop0);
767 		break;
768 	case KVM_REG_MIPS_CP0_WIRED:
769 		v = (long)kvm_read_c0_guest_wired(cop0);
770 		break;
771 	case KVM_REG_MIPS_CP0_HWRENA:
772 		v = (long)kvm_read_c0_guest_hwrena(cop0);
773 		break;
774 	case KVM_REG_MIPS_CP0_BADVADDR:
775 		v = (long)kvm_read_c0_guest_badvaddr(cop0);
776 		break;
777 	case KVM_REG_MIPS_CP0_ENTRYHI:
778 		v = (long)kvm_read_c0_guest_entryhi(cop0);
779 		break;
780 	case KVM_REG_MIPS_CP0_COMPARE:
781 		v = (long)kvm_read_c0_guest_compare(cop0);
782 		break;
783 	case KVM_REG_MIPS_CP0_STATUS:
784 		v = (long)kvm_read_c0_guest_status(cop0);
785 		break;
786 	case KVM_REG_MIPS_CP0_CAUSE:
787 		v = (long)kvm_read_c0_guest_cause(cop0);
788 		break;
789 	case KVM_REG_MIPS_CP0_EPC:
790 		v = (long)kvm_read_c0_guest_epc(cop0);
791 		break;
792 	case KVM_REG_MIPS_CP0_PRID:
793 		v = (long)kvm_read_c0_guest_prid(cop0);
794 		break;
795 	case KVM_REG_MIPS_CP0_CONFIG:
796 		v = (long)kvm_read_c0_guest_config(cop0);
797 		break;
798 	case KVM_REG_MIPS_CP0_CONFIG1:
799 		v = (long)kvm_read_c0_guest_config1(cop0);
800 		break;
801 	case KVM_REG_MIPS_CP0_CONFIG2:
802 		v = (long)kvm_read_c0_guest_config2(cop0);
803 		break;
804 	case KVM_REG_MIPS_CP0_CONFIG3:
805 		v = (long)kvm_read_c0_guest_config3(cop0);
806 		break;
807 	case KVM_REG_MIPS_CP0_CONFIG4:
808 		v = (long)kvm_read_c0_guest_config4(cop0);
809 		break;
810 	case KVM_REG_MIPS_CP0_CONFIG5:
811 		v = (long)kvm_read_c0_guest_config5(cop0);
812 		break;
813 	case KVM_REG_MIPS_CP0_CONFIG7:
814 		v = (long)kvm_read_c0_guest_config7(cop0);
815 		break;
816 	case KVM_REG_MIPS_CP0_ERROREPC:
817 		v = (long)kvm_read_c0_guest_errorepc(cop0);
818 		break;
819 	case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
820 		idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
821 		if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
822 			return -EINVAL;
823 		switch (idx) {
824 		case 2:
825 			v = (long)kvm_read_c0_guest_kscratch1(cop0);
826 			break;
827 		case 3:
828 			v = (long)kvm_read_c0_guest_kscratch2(cop0);
829 			break;
830 		case 4:
831 			v = (long)kvm_read_c0_guest_kscratch3(cop0);
832 			break;
833 		case 5:
834 			v = (long)kvm_read_c0_guest_kscratch4(cop0);
835 			break;
836 		case 6:
837 			v = (long)kvm_read_c0_guest_kscratch5(cop0);
838 			break;
839 		case 7:
840 			v = (long)kvm_read_c0_guest_kscratch6(cop0);
841 			break;
842 		}
843 		break;
844 	/* registers to be handled specially */
845 	default:
846 		ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
847 		if (ret)
848 			return ret;
849 		break;
850 	}
851 	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
852 		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
853 
854 		return put_user(v, uaddr64);
855 	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
856 		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
857 		u32 v32 = (u32)v;
858 
859 		return put_user(v32, uaddr32);
860 	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
861 		void __user *uaddr = (void __user *)(long)reg->addr;
862 
863 		return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
864 	} else {
865 		return -EINVAL;
866 	}
867 }
868 
869 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
870 			    const struct kvm_one_reg *reg)
871 {
872 	struct mips_coproc *cop0 = vcpu->arch.cop0;
873 	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
874 	s64 v;
875 	s64 vs[2];
876 	unsigned int idx;
877 
878 	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
879 		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
880 
881 		if (get_user(v, uaddr64) != 0)
882 			return -EFAULT;
883 	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
884 		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
885 		s32 v32;
886 
887 		if (get_user(v32, uaddr32) != 0)
888 			return -EFAULT;
889 		v = (s64)v32;
890 	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
891 		void __user *uaddr = (void __user *)(long)reg->addr;
892 
893 		return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
894 	} else {
895 		return -EINVAL;
896 	}
897 
898 	switch (reg->id) {
899 	/* General purpose registers */
900 	case KVM_REG_MIPS_R0:
901 		/* Silently ignore requests to set $0 */
902 		break;
903 	case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
904 		vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
905 		break;
906 #ifndef CONFIG_CPU_MIPSR6
907 	case KVM_REG_MIPS_HI:
908 		vcpu->arch.hi = v;
909 		break;
910 	case KVM_REG_MIPS_LO:
911 		vcpu->arch.lo = v;
912 		break;
913 #endif
914 	case KVM_REG_MIPS_PC:
915 		vcpu->arch.pc = v;
916 		break;
917 
918 	/* Floating point registers */
919 	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
920 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
921 			return -EINVAL;
922 		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
923 		/* Odd singles in top of even double when FR=0 */
924 		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
925 			set_fpr32(&fpu->fpr[idx], 0, v);
926 		else
927 			set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
928 		break;
929 	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
930 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
931 			return -EINVAL;
932 		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
933 		/* Can't access odd doubles in FR=0 mode */
934 		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
935 			return -EINVAL;
936 		set_fpr64(&fpu->fpr[idx], 0, v);
937 		break;
938 	case KVM_REG_MIPS_FCR_IR:
939 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
940 			return -EINVAL;
941 		/* Read-only */
942 		break;
943 	case KVM_REG_MIPS_FCR_CSR:
944 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
945 			return -EINVAL;
946 		fpu->fcr31 = v;
947 		break;
948 
949 	/* MIPS SIMD Architecture (MSA) registers */
950 	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
951 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
952 			return -EINVAL;
953 		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
954 #ifdef CONFIG_CPU_LITTLE_ENDIAN
955 		/* least significant byte first */
956 		set_fpr64(&fpu->fpr[idx], 0, vs[0]);
957 		set_fpr64(&fpu->fpr[idx], 1, vs[1]);
958 #else
959 		/* most significant byte first */
960 		set_fpr64(&fpu->fpr[idx], 1, vs[0]);
961 		set_fpr64(&fpu->fpr[idx], 0, vs[1]);
962 #endif
963 		break;
964 	case KVM_REG_MIPS_MSA_IR:
965 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
966 			return -EINVAL;
967 		/* Read-only */
968 		break;
969 	case KVM_REG_MIPS_MSA_CSR:
970 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
971 			return -EINVAL;
972 		fpu->msacsr = v;
973 		break;
974 
975 	/* Co-processor 0 registers */
976 	case KVM_REG_MIPS_CP0_INDEX:
977 		kvm_write_c0_guest_index(cop0, v);
978 		break;
979 	case KVM_REG_MIPS_CP0_CONTEXT:
980 		kvm_write_c0_guest_context(cop0, v);
981 		break;
982 	case KVM_REG_MIPS_CP0_USERLOCAL:
983 		kvm_write_c0_guest_userlocal(cop0, v);
984 		break;
985 	case KVM_REG_MIPS_CP0_PAGEMASK:
986 		kvm_write_c0_guest_pagemask(cop0, v);
987 		break;
988 	case KVM_REG_MIPS_CP0_WIRED:
989 		kvm_write_c0_guest_wired(cop0, v);
990 		break;
991 	case KVM_REG_MIPS_CP0_HWRENA:
992 		kvm_write_c0_guest_hwrena(cop0, v);
993 		break;
994 	case KVM_REG_MIPS_CP0_BADVADDR:
995 		kvm_write_c0_guest_badvaddr(cop0, v);
996 		break;
997 	case KVM_REG_MIPS_CP0_ENTRYHI:
998 		kvm_write_c0_guest_entryhi(cop0, v);
999 		break;
1000 	case KVM_REG_MIPS_CP0_STATUS:
1001 		kvm_write_c0_guest_status(cop0, v);
1002 		break;
1003 	case KVM_REG_MIPS_CP0_EPC:
1004 		kvm_write_c0_guest_epc(cop0, v);
1005 		break;
1006 	case KVM_REG_MIPS_CP0_PRID:
1007 		kvm_write_c0_guest_prid(cop0, v);
1008 		break;
1009 	case KVM_REG_MIPS_CP0_ERROREPC:
1010 		kvm_write_c0_guest_errorepc(cop0, v);
1011 		break;
1012 	case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
1013 		idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
1014 		if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
1015 			return -EINVAL;
1016 		switch (idx) {
1017 		case 2:
1018 			kvm_write_c0_guest_kscratch1(cop0, v);
1019 			break;
1020 		case 3:
1021 			kvm_write_c0_guest_kscratch2(cop0, v);
1022 			break;
1023 		case 4:
1024 			kvm_write_c0_guest_kscratch3(cop0, v);
1025 			break;
1026 		case 5:
1027 			kvm_write_c0_guest_kscratch4(cop0, v);
1028 			break;
1029 		case 6:
1030 			kvm_write_c0_guest_kscratch5(cop0, v);
1031 			break;
1032 		case 7:
1033 			kvm_write_c0_guest_kscratch6(cop0, v);
1034 			break;
1035 		}
1036 		break;
1037 	/* registers to be handled specially */
1038 	default:
1039 		return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
1040 	}
1041 	return 0;
1042 }
1043 
1044 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1045 				     struct kvm_enable_cap *cap)
1046 {
1047 	int r = 0;
1048 
1049 	if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
1050 		return -EINVAL;
1051 	if (cap->flags)
1052 		return -EINVAL;
1053 	if (cap->args[0])
1054 		return -EINVAL;
1055 
1056 	switch (cap->cap) {
1057 	case KVM_CAP_MIPS_FPU:
1058 		vcpu->arch.fpu_enabled = true;
1059 		break;
1060 	case KVM_CAP_MIPS_MSA:
1061 		vcpu->arch.msa_enabled = true;
1062 		break;
1063 	default:
1064 		r = -EINVAL;
1065 		break;
1066 	}
1067 
1068 	return r;
1069 }
1070 
1071 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
1072 			 unsigned long arg)
1073 {
1074 	struct kvm_vcpu *vcpu = filp->private_data;
1075 	void __user *argp = (void __user *)arg;
1076 	long r;
1077 
1078 	switch (ioctl) {
1079 	case KVM_SET_ONE_REG:
1080 	case KVM_GET_ONE_REG: {
1081 		struct kvm_one_reg reg;
1082 
1083 		if (copy_from_user(&reg, argp, sizeof(reg)))
1084 			return -EFAULT;
1085 		if (ioctl == KVM_SET_ONE_REG)
1086 			return kvm_mips_set_reg(vcpu, &reg);
1087 		else
1088 			return kvm_mips_get_reg(vcpu, &reg);
1089 	}
1090 	case KVM_GET_REG_LIST: {
1091 		struct kvm_reg_list __user *user_list = argp;
1092 		struct kvm_reg_list reg_list;
1093 		unsigned n;
1094 
1095 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1096 			return -EFAULT;
1097 		n = reg_list.n;
1098 		reg_list.n = kvm_mips_num_regs(vcpu);
1099 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1100 			return -EFAULT;
1101 		if (n < reg_list.n)
1102 			return -E2BIG;
1103 		return kvm_mips_copy_reg_indices(vcpu, user_list->reg);
1104 	}
1105 	case KVM_NMI:
1106 		/* Treat the NMI as a CPU reset */
1107 		r = kvm_mips_reset_vcpu(vcpu);
1108 		break;
1109 	case KVM_INTERRUPT:
1110 		{
1111 			struct kvm_mips_interrupt irq;
1112 
1113 			r = -EFAULT;
1114 			if (copy_from_user(&irq, argp, sizeof(irq)))
1115 				goto out;
1116 
1117 			kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
1118 				  irq.irq);
1119 
1120 			r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1121 			break;
1122 		}
1123 	case KVM_ENABLE_CAP: {
1124 		struct kvm_enable_cap cap;
1125 
1126 		r = -EFAULT;
1127 		if (copy_from_user(&cap, argp, sizeof(cap)))
1128 			goto out;
1129 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1130 		break;
1131 	}
1132 	default:
1133 		r = -ENOIOCTLCMD;
1134 	}
1135 
1136 out:
1137 	return r;
1138 }
1139 
1140 /* Get (and clear) the dirty memory log for a memory slot. */
1141 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1142 {
1143 	struct kvm_memslots *slots;
1144 	struct kvm_memory_slot *memslot;
1145 	unsigned long ga, ga_end;
1146 	int is_dirty = 0;
1147 	int r;
1148 	unsigned long n;
1149 
1150 	mutex_lock(&kvm->slots_lock);
1151 
1152 	r = kvm_get_dirty_log(kvm, log, &is_dirty);
1153 	if (r)
1154 		goto out;
1155 
1156 	/* If nothing is dirty, don't bother messing with page tables. */
1157 	if (is_dirty) {
1158 		slots = kvm_memslots(kvm);
1159 		memslot = id_to_memslot(slots, log->slot);
1160 
1161 		ga = memslot->base_gfn << PAGE_SHIFT;
1162 		ga_end = ga + (memslot->npages << PAGE_SHIFT);
1163 
1164 		kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
1165 			 ga_end);
1166 
1167 		n = kvm_dirty_bitmap_bytes(memslot);
1168 		memset(memslot->dirty_bitmap, 0, n);
1169 	}
1170 
1171 	r = 0;
1172 out:
1173 	mutex_unlock(&kvm->slots_lock);
1174 	return r;
1175 
1176 }
1177 
1178 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1179 {
1180 	long r;
1181 
1182 	switch (ioctl) {
1183 	default:
1184 		r = -ENOIOCTLCMD;
1185 	}
1186 
1187 	return r;
1188 }
1189 
1190 int kvm_arch_init(void *opaque)
1191 {
1192 	if (kvm_mips_callbacks) {
1193 		kvm_err("kvm: module already exists\n");
1194 		return -EEXIST;
1195 	}
1196 
1197 	return kvm_mips_emulation_init(&kvm_mips_callbacks);
1198 }
1199 
1200 void kvm_arch_exit(void)
1201 {
1202 	kvm_mips_callbacks = NULL;
1203 }
1204 
1205 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1206 				  struct kvm_sregs *sregs)
1207 {
1208 	return -ENOIOCTLCMD;
1209 }
1210 
1211 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1212 				  struct kvm_sregs *sregs)
1213 {
1214 	return -ENOIOCTLCMD;
1215 }
1216 
1217 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1218 {
1219 }
1220 
1221 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1222 {
1223 	return -ENOIOCTLCMD;
1224 }
1225 
1226 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1227 {
1228 	return -ENOIOCTLCMD;
1229 }
1230 
1231 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1232 {
1233 	return VM_FAULT_SIGBUS;
1234 }
1235 
1236 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1237 {
1238 	int r;
1239 
1240 	switch (ext) {
1241 	case KVM_CAP_ONE_REG:
1242 	case KVM_CAP_ENABLE_CAP:
1243 		r = 1;
1244 		break;
1245 	case KVM_CAP_COALESCED_MMIO:
1246 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1247 		break;
1248 	case KVM_CAP_MIPS_FPU:
1249 		/* We don't handle systems with inconsistent cpu_has_fpu */
1250 		r = !!raw_cpu_has_fpu;
1251 		break;
1252 	case KVM_CAP_MIPS_MSA:
1253 		/*
1254 		 * We don't support MSA vector partitioning yet:
1255 		 * 1) It would require explicit support which can't be tested
1256 		 *    yet due to lack of support in current hardware.
1257 		 * 2) It extends the state that would need to be saved/restored
1258 		 *    by e.g. QEMU for migration.
1259 		 *
1260 		 * When vector partitioning hardware becomes available, support
1261 		 * could be added by requiring a flag when enabling
1262 		 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1263 		 * to save/restore the appropriate extra state.
1264 		 */
1265 		r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1266 		break;
1267 	default:
1268 		r = 0;
1269 		break;
1270 	}
1271 	return r;
1272 }
1273 
1274 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1275 {
1276 	return kvm_mips_pending_timer(vcpu);
1277 }
1278 
1279 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1280 {
1281 	int i;
1282 	struct mips_coproc *cop0;
1283 
1284 	if (!vcpu)
1285 		return -1;
1286 
1287 	kvm_debug("VCPU Register Dump:\n");
1288 	kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1289 	kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1290 
1291 	for (i = 0; i < 32; i += 4) {
1292 		kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1293 		       vcpu->arch.gprs[i],
1294 		       vcpu->arch.gprs[i + 1],
1295 		       vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1296 	}
1297 	kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1298 	kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1299 
1300 	cop0 = vcpu->arch.cop0;
1301 	kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
1302 		  kvm_read_c0_guest_status(cop0),
1303 		  kvm_read_c0_guest_cause(cop0));
1304 
1305 	kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1306 
1307 	return 0;
1308 }
1309 
1310 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1311 {
1312 	int i;
1313 
1314 	for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1315 		vcpu->arch.gprs[i] = regs->gpr[i];
1316 	vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1317 	vcpu->arch.hi = regs->hi;
1318 	vcpu->arch.lo = regs->lo;
1319 	vcpu->arch.pc = regs->pc;
1320 
1321 	return 0;
1322 }
1323 
1324 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1325 {
1326 	int i;
1327 
1328 	for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1329 		regs->gpr[i] = vcpu->arch.gprs[i];
1330 
1331 	regs->hi = vcpu->arch.hi;
1332 	regs->lo = vcpu->arch.lo;
1333 	regs->pc = vcpu->arch.pc;
1334 
1335 	return 0;
1336 }
1337 
1338 static void kvm_mips_comparecount_func(unsigned long data)
1339 {
1340 	struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1341 
1342 	kvm_mips_callbacks->queue_timer_int(vcpu);
1343 
1344 	vcpu->arch.wait = 0;
1345 	if (swait_active(&vcpu->wq))
1346 		swake_up(&vcpu->wq);
1347 }
1348 
1349 /* low level hrtimer wake routine */
1350 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1351 {
1352 	struct kvm_vcpu *vcpu;
1353 
1354 	vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1355 	kvm_mips_comparecount_func((unsigned long) vcpu);
1356 	return kvm_mips_count_timeout(vcpu);
1357 }
1358 
1359 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1360 {
1361 	kvm_mips_callbacks->vcpu_init(vcpu);
1362 	hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1363 		     HRTIMER_MODE_REL);
1364 	vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1365 	return 0;
1366 }
1367 
1368 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1369 				  struct kvm_translation *tr)
1370 {
1371 	return 0;
1372 }
1373 
1374 /* Initial guest state */
1375 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1376 {
1377 	return kvm_mips_callbacks->vcpu_setup(vcpu);
1378 }
1379 
1380 static void kvm_mips_set_c0_status(void)
1381 {
1382 	u32 status = read_c0_status();
1383 
1384 	if (cpu_has_dsp)
1385 		status |= (ST0_MX);
1386 
1387 	write_c0_status(status);
1388 	ehb();
1389 }
1390 
1391 /*
1392  * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1393  */
1394 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1395 {
1396 	u32 cause = vcpu->arch.host_cp0_cause;
1397 	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1398 	u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1399 	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1400 	enum emulation_result er = EMULATE_DONE;
1401 	int ret = RESUME_GUEST;
1402 
1403 	/* re-enable HTW before enabling interrupts */
1404 	htw_start();
1405 
1406 	/* Set a default exit reason */
1407 	run->exit_reason = KVM_EXIT_UNKNOWN;
1408 	run->ready_for_interrupt_injection = 1;
1409 
1410 	/*
1411 	 * Set the appropriate status bits based on host CPU features,
1412 	 * before we hit the scheduler
1413 	 */
1414 	kvm_mips_set_c0_status();
1415 
1416 	local_irq_enable();
1417 
1418 	kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1419 			cause, opc, run, vcpu);
1420 	trace_kvm_exit(vcpu, exccode);
1421 
1422 	/*
1423 	 * Do a privilege check, if in UM most of these exit conditions end up
1424 	 * causing an exception to be delivered to the Guest Kernel
1425 	 */
1426 	er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1427 	if (er == EMULATE_PRIV_FAIL) {
1428 		goto skip_emul;
1429 	} else if (er == EMULATE_FAIL) {
1430 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1431 		ret = RESUME_HOST;
1432 		goto skip_emul;
1433 	}
1434 
1435 	switch (exccode) {
1436 	case EXCCODE_INT:
1437 		kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1438 
1439 		++vcpu->stat.int_exits;
1440 
1441 		if (need_resched())
1442 			cond_resched();
1443 
1444 		ret = RESUME_GUEST;
1445 		break;
1446 
1447 	case EXCCODE_CPU:
1448 		kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1449 
1450 		++vcpu->stat.cop_unusable_exits;
1451 		ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1452 		/* XXXKYMA: Might need to return to user space */
1453 		if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1454 			ret = RESUME_HOST;
1455 		break;
1456 
1457 	case EXCCODE_MOD:
1458 		++vcpu->stat.tlbmod_exits;
1459 		ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1460 		break;
1461 
1462 	case EXCCODE_TLBS:
1463 		kvm_debug("TLB ST fault:  cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
1464 			  cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1465 			  badvaddr);
1466 
1467 		++vcpu->stat.tlbmiss_st_exits;
1468 		ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1469 		break;
1470 
1471 	case EXCCODE_TLBL:
1472 		kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1473 			  cause, opc, badvaddr);
1474 
1475 		++vcpu->stat.tlbmiss_ld_exits;
1476 		ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1477 		break;
1478 
1479 	case EXCCODE_ADES:
1480 		++vcpu->stat.addrerr_st_exits;
1481 		ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1482 		break;
1483 
1484 	case EXCCODE_ADEL:
1485 		++vcpu->stat.addrerr_ld_exits;
1486 		ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1487 		break;
1488 
1489 	case EXCCODE_SYS:
1490 		++vcpu->stat.syscall_exits;
1491 		ret = kvm_mips_callbacks->handle_syscall(vcpu);
1492 		break;
1493 
1494 	case EXCCODE_RI:
1495 		++vcpu->stat.resvd_inst_exits;
1496 		ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1497 		break;
1498 
1499 	case EXCCODE_BP:
1500 		++vcpu->stat.break_inst_exits;
1501 		ret = kvm_mips_callbacks->handle_break(vcpu);
1502 		break;
1503 
1504 	case EXCCODE_TR:
1505 		++vcpu->stat.trap_inst_exits;
1506 		ret = kvm_mips_callbacks->handle_trap(vcpu);
1507 		break;
1508 
1509 	case EXCCODE_MSAFPE:
1510 		++vcpu->stat.msa_fpe_exits;
1511 		ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1512 		break;
1513 
1514 	case EXCCODE_FPE:
1515 		++vcpu->stat.fpe_exits;
1516 		ret = kvm_mips_callbacks->handle_fpe(vcpu);
1517 		break;
1518 
1519 	case EXCCODE_MSADIS:
1520 		++vcpu->stat.msa_disabled_exits;
1521 		ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1522 		break;
1523 
1524 	default:
1525 		kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#lx\n",
1526 			exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
1527 			kvm_read_c0_guest_status(vcpu->arch.cop0));
1528 		kvm_arch_vcpu_dump_regs(vcpu);
1529 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1530 		ret = RESUME_HOST;
1531 		break;
1532 
1533 	}
1534 
1535 skip_emul:
1536 	local_irq_disable();
1537 
1538 	if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1539 		kvm_mips_deliver_interrupts(vcpu, cause);
1540 
1541 	if (!(ret & RESUME_HOST)) {
1542 		/* Only check for signals if not already exiting to userspace */
1543 		if (signal_pending(current)) {
1544 			run->exit_reason = KVM_EXIT_INTR;
1545 			ret = (-EINTR << 2) | RESUME_HOST;
1546 			++vcpu->stat.signal_exits;
1547 			trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1548 		}
1549 	}
1550 
1551 	if (ret == RESUME_GUEST) {
1552 		trace_kvm_reenter(vcpu);
1553 
1554 		/*
1555 		 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1556 		 * is live), restore FCR31 / MSACSR.
1557 		 *
1558 		 * This should be before returning to the guest exception
1559 		 * vector, as it may well cause an [MSA] FP exception if there
1560 		 * are pending exception bits unmasked. (see
1561 		 * kvm_mips_csr_die_notifier() for how that is handled).
1562 		 */
1563 		if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1564 		    read_c0_status() & ST0_CU1)
1565 			__kvm_restore_fcsr(&vcpu->arch);
1566 
1567 		if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1568 		    read_c0_config5() & MIPS_CONF5_MSAEN)
1569 			__kvm_restore_msacsr(&vcpu->arch);
1570 	}
1571 
1572 	/* Disable HTW before returning to guest or host */
1573 	htw_stop();
1574 
1575 	return ret;
1576 }
1577 
1578 /* Enable FPU for guest and restore context */
1579 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1580 {
1581 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1582 	unsigned int sr, cfg5;
1583 
1584 	preempt_disable();
1585 
1586 	sr = kvm_read_c0_guest_status(cop0);
1587 
1588 	/*
1589 	 * If MSA state is already live, it is undefined how it interacts with
1590 	 * FR=0 FPU state, and we don't want to hit reserved instruction
1591 	 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1592 	 * play it safe and save it first.
1593 	 *
1594 	 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1595 	 * get called when guest CU1 is set, however we can't trust the guest
1596 	 * not to clobber the status register directly via the commpage.
1597 	 */
1598 	if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1599 	    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1600 		kvm_lose_fpu(vcpu);
1601 
1602 	/*
1603 	 * Enable FPU for guest
1604 	 * We set FR and FRE according to guest context
1605 	 */
1606 	change_c0_status(ST0_CU1 | ST0_FR, sr);
1607 	if (cpu_has_fre) {
1608 		cfg5 = kvm_read_c0_guest_config5(cop0);
1609 		change_c0_config5(MIPS_CONF5_FRE, cfg5);
1610 	}
1611 	enable_fpu_hazard();
1612 
1613 	/* If guest FPU state not active, restore it now */
1614 	if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1615 		__kvm_restore_fpu(&vcpu->arch);
1616 		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1617 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1618 	} else {
1619 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1620 	}
1621 
1622 	preempt_enable();
1623 }
1624 
1625 #ifdef CONFIG_CPU_HAS_MSA
1626 /* Enable MSA for guest and restore context */
1627 void kvm_own_msa(struct kvm_vcpu *vcpu)
1628 {
1629 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1630 	unsigned int sr, cfg5;
1631 
1632 	preempt_disable();
1633 
1634 	/*
1635 	 * Enable FPU if enabled in guest, since we're restoring FPU context
1636 	 * anyway. We set FR and FRE according to guest context.
1637 	 */
1638 	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1639 		sr = kvm_read_c0_guest_status(cop0);
1640 
1641 		/*
1642 		 * If FR=0 FPU state is already live, it is undefined how it
1643 		 * interacts with MSA state, so play it safe and save it first.
1644 		 */
1645 		if (!(sr & ST0_FR) &&
1646 		    (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1647 				KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1648 			kvm_lose_fpu(vcpu);
1649 
1650 		change_c0_status(ST0_CU1 | ST0_FR, sr);
1651 		if (sr & ST0_CU1 && cpu_has_fre) {
1652 			cfg5 = kvm_read_c0_guest_config5(cop0);
1653 			change_c0_config5(MIPS_CONF5_FRE, cfg5);
1654 		}
1655 	}
1656 
1657 	/* Enable MSA for guest */
1658 	set_c0_config5(MIPS_CONF5_MSAEN);
1659 	enable_fpu_hazard();
1660 
1661 	switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1662 	case KVM_MIPS_AUX_FPU:
1663 		/*
1664 		 * Guest FPU state already loaded, only restore upper MSA state
1665 		 */
1666 		__kvm_restore_msa_upper(&vcpu->arch);
1667 		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1668 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1669 		break;
1670 	case 0:
1671 		/* Neither FPU or MSA already active, restore full MSA state */
1672 		__kvm_restore_msa(&vcpu->arch);
1673 		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1674 		if (kvm_mips_guest_has_fpu(&vcpu->arch))
1675 			vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1676 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1677 			      KVM_TRACE_AUX_FPU_MSA);
1678 		break;
1679 	default:
1680 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1681 		break;
1682 	}
1683 
1684 	preempt_enable();
1685 }
1686 #endif
1687 
1688 /* Drop FPU & MSA without saving it */
1689 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1690 {
1691 	preempt_disable();
1692 	if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1693 		disable_msa();
1694 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1695 		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1696 	}
1697 	if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1698 		clear_c0_status(ST0_CU1 | ST0_FR);
1699 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1700 		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1701 	}
1702 	preempt_enable();
1703 }
1704 
1705 /* Save and disable FPU & MSA */
1706 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1707 {
1708 	/*
1709 	 * FPU & MSA get disabled in root context (hardware) when it is disabled
1710 	 * in guest context (software), but the register state in the hardware
1711 	 * may still be in use. This is why we explicitly re-enable the hardware
1712 	 * before saving.
1713 	 */
1714 
1715 	preempt_disable();
1716 	if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1717 		set_c0_config5(MIPS_CONF5_MSAEN);
1718 		enable_fpu_hazard();
1719 
1720 		__kvm_save_msa(&vcpu->arch);
1721 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1722 
1723 		/* Disable MSA & FPU */
1724 		disable_msa();
1725 		if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1726 			clear_c0_status(ST0_CU1 | ST0_FR);
1727 			disable_fpu_hazard();
1728 		}
1729 		vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1730 	} else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1731 		set_c0_status(ST0_CU1);
1732 		enable_fpu_hazard();
1733 
1734 		__kvm_save_fpu(&vcpu->arch);
1735 		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1736 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1737 
1738 		/* Disable FPU */
1739 		clear_c0_status(ST0_CU1 | ST0_FR);
1740 		disable_fpu_hazard();
1741 	}
1742 	preempt_enable();
1743 }
1744 
1745 /*
1746  * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1747  * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1748  * exception if cause bits are set in the value being written.
1749  */
1750 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1751 				   unsigned long cmd, void *ptr)
1752 {
1753 	struct die_args *args = (struct die_args *)ptr;
1754 	struct pt_regs *regs = args->regs;
1755 	unsigned long pc;
1756 
1757 	/* Only interested in FPE and MSAFPE */
1758 	if (cmd != DIE_FP && cmd != DIE_MSAFP)
1759 		return NOTIFY_DONE;
1760 
1761 	/* Return immediately if guest context isn't active */
1762 	if (!(current->flags & PF_VCPU))
1763 		return NOTIFY_DONE;
1764 
1765 	/* Should never get here from user mode */
1766 	BUG_ON(user_mode(regs));
1767 
1768 	pc = instruction_pointer(regs);
1769 	switch (cmd) {
1770 	case DIE_FP:
1771 		/* match 2nd instruction in __kvm_restore_fcsr */
1772 		if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1773 			return NOTIFY_DONE;
1774 		break;
1775 	case DIE_MSAFP:
1776 		/* match 2nd/3rd instruction in __kvm_restore_msacsr */
1777 		if (!cpu_has_msa ||
1778 		    pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1779 		    pc > (unsigned long)&__kvm_restore_msacsr + 8)
1780 			return NOTIFY_DONE;
1781 		break;
1782 	}
1783 
1784 	/* Move PC forward a little and continue executing */
1785 	instruction_pointer(regs) += 4;
1786 
1787 	return NOTIFY_STOP;
1788 }
1789 
1790 static struct notifier_block kvm_mips_csr_die_notifier = {
1791 	.notifier_call = kvm_mips_csr_die_notify,
1792 };
1793 
1794 static int __init kvm_mips_init(void)
1795 {
1796 	int ret;
1797 
1798 	ret = kvm_mips_entry_setup();
1799 	if (ret)
1800 		return ret;
1801 
1802 	ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1803 
1804 	if (ret)
1805 		return ret;
1806 
1807 	register_die_notifier(&kvm_mips_csr_die_notifier);
1808 
1809 	return 0;
1810 }
1811 
1812 static void __exit kvm_mips_exit(void)
1813 {
1814 	kvm_exit();
1815 
1816 	unregister_die_notifier(&kvm_mips_csr_die_notifier);
1817 }
1818 
1819 module_init(kvm_mips_init);
1820 module_exit(kvm_mips_exit);
1821 
1822 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);
1823