1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * KVM/MIPS: MIPS specific KVM APIs 7 * 8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved. 9 * Authors: Sanjay Lal <sanjayl@kymasys.com> 10 */ 11 12 #include <linux/bitops.h> 13 #include <linux/errno.h> 14 #include <linux/err.h> 15 #include <linux/kdebug.h> 16 #include <linux/module.h> 17 #include <linux/uaccess.h> 18 #include <linux/vmalloc.h> 19 #include <linux/sched/signal.h> 20 #include <linux/fs.h> 21 #include <linux/memblock.h> 22 #include <linux/pgtable.h> 23 24 #include <asm/fpu.h> 25 #include <asm/page.h> 26 #include <asm/cacheflush.h> 27 #include <asm/mmu_context.h> 28 #include <asm/pgalloc.h> 29 30 #include <linux/kvm_host.h> 31 32 #include "interrupt.h" 33 #include "commpage.h" 34 35 #define CREATE_TRACE_POINTS 36 #include "trace.h" 37 38 #ifndef VECTORSPACING 39 #define VECTORSPACING 0x100 /* for EI/VI mode */ 40 #endif 41 42 struct kvm_stats_debugfs_item debugfs_entries[] = { 43 VCPU_STAT("wait", wait_exits), 44 VCPU_STAT("cache", cache_exits), 45 VCPU_STAT("signal", signal_exits), 46 VCPU_STAT("interrupt", int_exits), 47 VCPU_STAT("cop_unusable", cop_unusable_exits), 48 VCPU_STAT("tlbmod", tlbmod_exits), 49 VCPU_STAT("tlbmiss_ld", tlbmiss_ld_exits), 50 VCPU_STAT("tlbmiss_st", tlbmiss_st_exits), 51 VCPU_STAT("addrerr_st", addrerr_st_exits), 52 VCPU_STAT("addrerr_ld", addrerr_ld_exits), 53 VCPU_STAT("syscall", syscall_exits), 54 VCPU_STAT("resvd_inst", resvd_inst_exits), 55 VCPU_STAT("break_inst", break_inst_exits), 56 VCPU_STAT("trap_inst", trap_inst_exits), 57 VCPU_STAT("msa_fpe", msa_fpe_exits), 58 VCPU_STAT("fpe", fpe_exits), 59 VCPU_STAT("msa_disabled", msa_disabled_exits), 60 VCPU_STAT("flush_dcache", flush_dcache_exits), 61 #ifdef CONFIG_KVM_MIPS_VZ 62 VCPU_STAT("vz_gpsi", vz_gpsi_exits), 63 VCPU_STAT("vz_gsfc", vz_gsfc_exits), 64 VCPU_STAT("vz_hc", vz_hc_exits), 65 VCPU_STAT("vz_grr", vz_grr_exits), 66 VCPU_STAT("vz_gva", vz_gva_exits), 67 VCPU_STAT("vz_ghfc", vz_ghfc_exits), 68 VCPU_STAT("vz_gpa", vz_gpa_exits), 69 VCPU_STAT("vz_resvd", vz_resvd_exits), 70 #endif 71 VCPU_STAT("halt_successful_poll", halt_successful_poll), 72 VCPU_STAT("halt_attempted_poll", halt_attempted_poll), 73 VCPU_STAT("halt_poll_invalid", halt_poll_invalid), 74 VCPU_STAT("halt_wakeup", halt_wakeup), 75 VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns), 76 VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns), 77 {NULL} 78 }; 79 80 bool kvm_trace_guest_mode_change; 81 82 int kvm_guest_mode_change_trace_reg(void) 83 { 84 kvm_trace_guest_mode_change = true; 85 return 0; 86 } 87 88 void kvm_guest_mode_change_trace_unreg(void) 89 { 90 kvm_trace_guest_mode_change = false; 91 } 92 93 /* 94 * XXXKYMA: We are simulatoring a processor that has the WII bit set in 95 * Config7, so we are "runnable" if interrupts are pending 96 */ 97 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 98 { 99 return !!(vcpu->arch.pending_exceptions); 100 } 101 102 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 103 { 104 return false; 105 } 106 107 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 108 { 109 return 1; 110 } 111 112 int kvm_arch_hardware_enable(void) 113 { 114 return kvm_mips_callbacks->hardware_enable(); 115 } 116 117 void kvm_arch_hardware_disable(void) 118 { 119 kvm_mips_callbacks->hardware_disable(); 120 } 121 122 int kvm_arch_hardware_setup(void *opaque) 123 { 124 return 0; 125 } 126 127 int kvm_arch_check_processor_compat(void *opaque) 128 { 129 return 0; 130 } 131 132 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 133 { 134 switch (type) { 135 #ifdef CONFIG_KVM_MIPS_VZ 136 case KVM_VM_MIPS_VZ: 137 #else 138 case KVM_VM_MIPS_TE: 139 #endif 140 break; 141 default: 142 /* Unsupported KVM type */ 143 return -EINVAL; 144 }; 145 146 /* Allocate page table to map GPA -> RPA */ 147 kvm->arch.gpa_mm.pgd = kvm_pgd_alloc(); 148 if (!kvm->arch.gpa_mm.pgd) 149 return -ENOMEM; 150 151 return 0; 152 } 153 154 void kvm_mips_free_vcpus(struct kvm *kvm) 155 { 156 unsigned int i; 157 struct kvm_vcpu *vcpu; 158 159 kvm_for_each_vcpu(i, vcpu, kvm) { 160 kvm_vcpu_destroy(vcpu); 161 } 162 163 mutex_lock(&kvm->lock); 164 165 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 166 kvm->vcpus[i] = NULL; 167 168 atomic_set(&kvm->online_vcpus, 0); 169 170 mutex_unlock(&kvm->lock); 171 } 172 173 static void kvm_mips_free_gpa_pt(struct kvm *kvm) 174 { 175 /* It should always be safe to remove after flushing the whole range */ 176 WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0)); 177 pgd_free(NULL, kvm->arch.gpa_mm.pgd); 178 } 179 180 void kvm_arch_destroy_vm(struct kvm *kvm) 181 { 182 kvm_mips_free_vcpus(kvm); 183 kvm_mips_free_gpa_pt(kvm); 184 } 185 186 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl, 187 unsigned long arg) 188 { 189 return -ENOIOCTLCMD; 190 } 191 192 void kvm_arch_flush_shadow_all(struct kvm *kvm) 193 { 194 /* Flush whole GPA */ 195 kvm_mips_flush_gpa_pt(kvm, 0, ~0); 196 197 /* Let implementation do the rest */ 198 kvm_mips_callbacks->flush_shadow_all(kvm); 199 } 200 201 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 202 struct kvm_memory_slot *slot) 203 { 204 /* 205 * The slot has been made invalid (ready for moving or deletion), so we 206 * need to ensure that it can no longer be accessed by any guest VCPUs. 207 */ 208 209 spin_lock(&kvm->mmu_lock); 210 /* Flush slot from GPA */ 211 kvm_mips_flush_gpa_pt(kvm, slot->base_gfn, 212 slot->base_gfn + slot->npages - 1); 213 /* Let implementation do the rest */ 214 kvm_mips_callbacks->flush_shadow_memslot(kvm, slot); 215 spin_unlock(&kvm->mmu_lock); 216 } 217 218 int kvm_arch_prepare_memory_region(struct kvm *kvm, 219 struct kvm_memory_slot *memslot, 220 const struct kvm_userspace_memory_region *mem, 221 enum kvm_mr_change change) 222 { 223 return 0; 224 } 225 226 void kvm_arch_commit_memory_region(struct kvm *kvm, 227 const struct kvm_userspace_memory_region *mem, 228 struct kvm_memory_slot *old, 229 const struct kvm_memory_slot *new, 230 enum kvm_mr_change change) 231 { 232 int needs_flush; 233 234 kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n", 235 __func__, kvm, mem->slot, mem->guest_phys_addr, 236 mem->memory_size, mem->userspace_addr); 237 238 /* 239 * If dirty page logging is enabled, write protect all pages in the slot 240 * ready for dirty logging. 241 * 242 * There is no need to do this in any of the following cases: 243 * CREATE: No dirty mappings will already exist. 244 * MOVE/DELETE: The old mappings will already have been cleaned up by 245 * kvm_arch_flush_shadow_memslot() 246 */ 247 if (change == KVM_MR_FLAGS_ONLY && 248 (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) && 249 new->flags & KVM_MEM_LOG_DIRTY_PAGES)) { 250 spin_lock(&kvm->mmu_lock); 251 /* Write protect GPA page table entries */ 252 needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn, 253 new->base_gfn + new->npages - 1); 254 /* Let implementation do the rest */ 255 if (needs_flush) 256 kvm_mips_callbacks->flush_shadow_memslot(kvm, new); 257 spin_unlock(&kvm->mmu_lock); 258 } 259 } 260 261 static inline void dump_handler(const char *symbol, void *start, void *end) 262 { 263 u32 *p; 264 265 pr_debug("LEAF(%s)\n", symbol); 266 267 pr_debug("\t.set push\n"); 268 pr_debug("\t.set noreorder\n"); 269 270 for (p = start; p < (u32 *)end; ++p) 271 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p); 272 273 pr_debug("\t.set\tpop\n"); 274 275 pr_debug("\tEND(%s)\n", symbol); 276 } 277 278 /* low level hrtimer wake routine */ 279 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer) 280 { 281 struct kvm_vcpu *vcpu; 282 283 vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer); 284 285 kvm_mips_callbacks->queue_timer_int(vcpu); 286 287 vcpu->arch.wait = 0; 288 rcuwait_wake_up(&vcpu->wait); 289 290 return kvm_mips_count_timeout(vcpu); 291 } 292 293 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 294 { 295 return 0; 296 } 297 298 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 299 { 300 int err, size; 301 void *gebase, *p, *handler, *refill_start, *refill_end; 302 int i; 303 304 kvm_debug("kvm @ %p: create cpu %d at %p\n", 305 vcpu->kvm, vcpu->vcpu_id, vcpu); 306 307 err = kvm_mips_callbacks->vcpu_init(vcpu); 308 if (err) 309 return err; 310 311 hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC, 312 HRTIMER_MODE_REL); 313 vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup; 314 315 /* 316 * Allocate space for host mode exception handlers that handle 317 * guest mode exits 318 */ 319 if (cpu_has_veic || cpu_has_vint) 320 size = 0x200 + VECTORSPACING * 64; 321 else 322 size = 0x4000; 323 324 gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL); 325 326 if (!gebase) { 327 err = -ENOMEM; 328 goto out_uninit_vcpu; 329 } 330 kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n", 331 ALIGN(size, PAGE_SIZE), gebase); 332 333 /* 334 * Check new ebase actually fits in CP0_EBase. The lack of a write gate 335 * limits us to the low 512MB of physical address space. If the memory 336 * we allocate is out of range, just give up now. 337 */ 338 if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) { 339 kvm_err("CP0_EBase.WG required for guest exception base %pK\n", 340 gebase); 341 err = -ENOMEM; 342 goto out_free_gebase; 343 } 344 345 /* Save new ebase */ 346 vcpu->arch.guest_ebase = gebase; 347 348 /* Build guest exception vectors dynamically in unmapped memory */ 349 handler = gebase + 0x2000; 350 351 /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */ 352 refill_start = gebase; 353 if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && IS_ENABLED(CONFIG_64BIT)) 354 refill_start += 0x080; 355 refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler); 356 357 /* General Exception Entry point */ 358 kvm_mips_build_exception(gebase + 0x180, handler); 359 360 /* For vectored interrupts poke the exception code @ all offsets 0-7 */ 361 for (i = 0; i < 8; i++) { 362 kvm_debug("L1 Vectored handler @ %p\n", 363 gebase + 0x200 + (i * VECTORSPACING)); 364 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING, 365 handler); 366 } 367 368 /* General exit handler */ 369 p = handler; 370 p = kvm_mips_build_exit(p); 371 372 /* Guest entry routine */ 373 vcpu->arch.vcpu_run = p; 374 p = kvm_mips_build_vcpu_run(p); 375 376 /* Dump the generated code */ 377 pr_debug("#include <asm/asm.h>\n"); 378 pr_debug("#include <asm/regdef.h>\n"); 379 pr_debug("\n"); 380 dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p); 381 dump_handler("kvm_tlb_refill", refill_start, refill_end); 382 dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200); 383 dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run); 384 385 /* Invalidate the icache for these ranges */ 386 flush_icache_range((unsigned long)gebase, 387 (unsigned long)gebase + ALIGN(size, PAGE_SIZE)); 388 389 /* 390 * Allocate comm page for guest kernel, a TLB will be reserved for 391 * mapping GVA @ 0xFFFF8000 to this page 392 */ 393 vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL); 394 395 if (!vcpu->arch.kseg0_commpage) { 396 err = -ENOMEM; 397 goto out_free_gebase; 398 } 399 400 kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage); 401 kvm_mips_commpage_init(vcpu); 402 403 /* Init */ 404 vcpu->arch.last_sched_cpu = -1; 405 vcpu->arch.last_exec_cpu = -1; 406 407 /* Initial guest state */ 408 err = kvm_mips_callbacks->vcpu_setup(vcpu); 409 if (err) 410 goto out_free_commpage; 411 412 return 0; 413 414 out_free_commpage: 415 kfree(vcpu->arch.kseg0_commpage); 416 out_free_gebase: 417 kfree(gebase); 418 out_uninit_vcpu: 419 kvm_mips_callbacks->vcpu_uninit(vcpu); 420 return err; 421 } 422 423 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 424 { 425 hrtimer_cancel(&vcpu->arch.comparecount_timer); 426 427 kvm_mips_dump_stats(vcpu); 428 429 kvm_mmu_free_memory_caches(vcpu); 430 kfree(vcpu->arch.guest_ebase); 431 kfree(vcpu->arch.kseg0_commpage); 432 433 kvm_mips_callbacks->vcpu_uninit(vcpu); 434 } 435 436 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 437 struct kvm_guest_debug *dbg) 438 { 439 return -ENOIOCTLCMD; 440 } 441 442 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 443 { 444 struct kvm_run *run = vcpu->run; 445 int r = -EINTR; 446 447 vcpu_load(vcpu); 448 449 kvm_sigset_activate(vcpu); 450 451 if (vcpu->mmio_needed) { 452 if (!vcpu->mmio_is_write) 453 kvm_mips_complete_mmio_load(vcpu, run); 454 vcpu->mmio_needed = 0; 455 } 456 457 if (run->immediate_exit) 458 goto out; 459 460 lose_fpu(1); 461 462 local_irq_disable(); 463 guest_enter_irqoff(); 464 trace_kvm_enter(vcpu); 465 466 /* 467 * Make sure the read of VCPU requests in vcpu_run() callback is not 468 * reordered ahead of the write to vcpu->mode, or we could miss a TLB 469 * flush request while the requester sees the VCPU as outside of guest 470 * mode and not needing an IPI. 471 */ 472 smp_store_mb(vcpu->mode, IN_GUEST_MODE); 473 474 r = kvm_mips_callbacks->vcpu_run(run, vcpu); 475 476 trace_kvm_out(vcpu); 477 guest_exit_irqoff(); 478 local_irq_enable(); 479 480 out: 481 kvm_sigset_deactivate(vcpu); 482 483 vcpu_put(vcpu); 484 return r; 485 } 486 487 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 488 struct kvm_mips_interrupt *irq) 489 { 490 int intr = (int)irq->irq; 491 struct kvm_vcpu *dvcpu = NULL; 492 493 if (intr == 3 || intr == -3 || intr == 4 || intr == -4) 494 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu, 495 (int)intr); 496 497 if (irq->cpu == -1) 498 dvcpu = vcpu; 499 else 500 dvcpu = vcpu->kvm->vcpus[irq->cpu]; 501 502 if (intr == 2 || intr == 3 || intr == 4) { 503 kvm_mips_callbacks->queue_io_int(dvcpu, irq); 504 505 } else if (intr == -2 || intr == -3 || intr == -4) { 506 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq); 507 } else { 508 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__, 509 irq->cpu, irq->irq); 510 return -EINVAL; 511 } 512 513 dvcpu->arch.wait = 0; 514 515 rcuwait_wake_up(&dvcpu->wait); 516 517 return 0; 518 } 519 520 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 521 struct kvm_mp_state *mp_state) 522 { 523 return -ENOIOCTLCMD; 524 } 525 526 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 527 struct kvm_mp_state *mp_state) 528 { 529 return -ENOIOCTLCMD; 530 } 531 532 static u64 kvm_mips_get_one_regs[] = { 533 KVM_REG_MIPS_R0, 534 KVM_REG_MIPS_R1, 535 KVM_REG_MIPS_R2, 536 KVM_REG_MIPS_R3, 537 KVM_REG_MIPS_R4, 538 KVM_REG_MIPS_R5, 539 KVM_REG_MIPS_R6, 540 KVM_REG_MIPS_R7, 541 KVM_REG_MIPS_R8, 542 KVM_REG_MIPS_R9, 543 KVM_REG_MIPS_R10, 544 KVM_REG_MIPS_R11, 545 KVM_REG_MIPS_R12, 546 KVM_REG_MIPS_R13, 547 KVM_REG_MIPS_R14, 548 KVM_REG_MIPS_R15, 549 KVM_REG_MIPS_R16, 550 KVM_REG_MIPS_R17, 551 KVM_REG_MIPS_R18, 552 KVM_REG_MIPS_R19, 553 KVM_REG_MIPS_R20, 554 KVM_REG_MIPS_R21, 555 KVM_REG_MIPS_R22, 556 KVM_REG_MIPS_R23, 557 KVM_REG_MIPS_R24, 558 KVM_REG_MIPS_R25, 559 KVM_REG_MIPS_R26, 560 KVM_REG_MIPS_R27, 561 KVM_REG_MIPS_R28, 562 KVM_REG_MIPS_R29, 563 KVM_REG_MIPS_R30, 564 KVM_REG_MIPS_R31, 565 566 #ifndef CONFIG_CPU_MIPSR6 567 KVM_REG_MIPS_HI, 568 KVM_REG_MIPS_LO, 569 #endif 570 KVM_REG_MIPS_PC, 571 }; 572 573 static u64 kvm_mips_get_one_regs_fpu[] = { 574 KVM_REG_MIPS_FCR_IR, 575 KVM_REG_MIPS_FCR_CSR, 576 }; 577 578 static u64 kvm_mips_get_one_regs_msa[] = { 579 KVM_REG_MIPS_MSA_IR, 580 KVM_REG_MIPS_MSA_CSR, 581 }; 582 583 static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu) 584 { 585 unsigned long ret; 586 587 ret = ARRAY_SIZE(kvm_mips_get_one_regs); 588 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) { 589 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48; 590 /* odd doubles */ 591 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64) 592 ret += 16; 593 } 594 if (kvm_mips_guest_can_have_msa(&vcpu->arch)) 595 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32; 596 ret += kvm_mips_callbacks->num_regs(vcpu); 597 598 return ret; 599 } 600 601 static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices) 602 { 603 u64 index; 604 unsigned int i; 605 606 if (copy_to_user(indices, kvm_mips_get_one_regs, 607 sizeof(kvm_mips_get_one_regs))) 608 return -EFAULT; 609 indices += ARRAY_SIZE(kvm_mips_get_one_regs); 610 611 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) { 612 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu, 613 sizeof(kvm_mips_get_one_regs_fpu))) 614 return -EFAULT; 615 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu); 616 617 for (i = 0; i < 32; ++i) { 618 index = KVM_REG_MIPS_FPR_32(i); 619 if (copy_to_user(indices, &index, sizeof(index))) 620 return -EFAULT; 621 ++indices; 622 623 /* skip odd doubles if no F64 */ 624 if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64)) 625 continue; 626 627 index = KVM_REG_MIPS_FPR_64(i); 628 if (copy_to_user(indices, &index, sizeof(index))) 629 return -EFAULT; 630 ++indices; 631 } 632 } 633 634 if (kvm_mips_guest_can_have_msa(&vcpu->arch)) { 635 if (copy_to_user(indices, kvm_mips_get_one_regs_msa, 636 sizeof(kvm_mips_get_one_regs_msa))) 637 return -EFAULT; 638 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa); 639 640 for (i = 0; i < 32; ++i) { 641 index = KVM_REG_MIPS_VEC_128(i); 642 if (copy_to_user(indices, &index, sizeof(index))) 643 return -EFAULT; 644 ++indices; 645 } 646 } 647 648 return kvm_mips_callbacks->copy_reg_indices(vcpu, indices); 649 } 650 651 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu, 652 const struct kvm_one_reg *reg) 653 { 654 struct mips_coproc *cop0 = vcpu->arch.cop0; 655 struct mips_fpu_struct *fpu = &vcpu->arch.fpu; 656 int ret; 657 s64 v; 658 s64 vs[2]; 659 unsigned int idx; 660 661 switch (reg->id) { 662 /* General purpose registers */ 663 case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31: 664 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0]; 665 break; 666 #ifndef CONFIG_CPU_MIPSR6 667 case KVM_REG_MIPS_HI: 668 v = (long)vcpu->arch.hi; 669 break; 670 case KVM_REG_MIPS_LO: 671 v = (long)vcpu->arch.lo; 672 break; 673 #endif 674 case KVM_REG_MIPS_PC: 675 v = (long)vcpu->arch.pc; 676 break; 677 678 /* Floating point registers */ 679 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31): 680 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 681 return -EINVAL; 682 idx = reg->id - KVM_REG_MIPS_FPR_32(0); 683 /* Odd singles in top of even double when FR=0 */ 684 if (kvm_read_c0_guest_status(cop0) & ST0_FR) 685 v = get_fpr32(&fpu->fpr[idx], 0); 686 else 687 v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1); 688 break; 689 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31): 690 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 691 return -EINVAL; 692 idx = reg->id - KVM_REG_MIPS_FPR_64(0); 693 /* Can't access odd doubles in FR=0 mode */ 694 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR)) 695 return -EINVAL; 696 v = get_fpr64(&fpu->fpr[idx], 0); 697 break; 698 case KVM_REG_MIPS_FCR_IR: 699 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 700 return -EINVAL; 701 v = boot_cpu_data.fpu_id; 702 break; 703 case KVM_REG_MIPS_FCR_CSR: 704 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 705 return -EINVAL; 706 v = fpu->fcr31; 707 break; 708 709 /* MIPS SIMD Architecture (MSA) registers */ 710 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31): 711 if (!kvm_mips_guest_has_msa(&vcpu->arch)) 712 return -EINVAL; 713 /* Can't access MSA registers in FR=0 mode */ 714 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR)) 715 return -EINVAL; 716 idx = reg->id - KVM_REG_MIPS_VEC_128(0); 717 #ifdef CONFIG_CPU_LITTLE_ENDIAN 718 /* least significant byte first */ 719 vs[0] = get_fpr64(&fpu->fpr[idx], 0); 720 vs[1] = get_fpr64(&fpu->fpr[idx], 1); 721 #else 722 /* most significant byte first */ 723 vs[0] = get_fpr64(&fpu->fpr[idx], 1); 724 vs[1] = get_fpr64(&fpu->fpr[idx], 0); 725 #endif 726 break; 727 case KVM_REG_MIPS_MSA_IR: 728 if (!kvm_mips_guest_has_msa(&vcpu->arch)) 729 return -EINVAL; 730 v = boot_cpu_data.msa_id; 731 break; 732 case KVM_REG_MIPS_MSA_CSR: 733 if (!kvm_mips_guest_has_msa(&vcpu->arch)) 734 return -EINVAL; 735 v = fpu->msacsr; 736 break; 737 738 /* registers to be handled specially */ 739 default: 740 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v); 741 if (ret) 742 return ret; 743 break; 744 } 745 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) { 746 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr; 747 748 return put_user(v, uaddr64); 749 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) { 750 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr; 751 u32 v32 = (u32)v; 752 753 return put_user(v32, uaddr32); 754 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) { 755 void __user *uaddr = (void __user *)(long)reg->addr; 756 757 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0; 758 } else { 759 return -EINVAL; 760 } 761 } 762 763 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu, 764 const struct kvm_one_reg *reg) 765 { 766 struct mips_coproc *cop0 = vcpu->arch.cop0; 767 struct mips_fpu_struct *fpu = &vcpu->arch.fpu; 768 s64 v; 769 s64 vs[2]; 770 unsigned int idx; 771 772 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) { 773 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr; 774 775 if (get_user(v, uaddr64) != 0) 776 return -EFAULT; 777 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) { 778 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr; 779 s32 v32; 780 781 if (get_user(v32, uaddr32) != 0) 782 return -EFAULT; 783 v = (s64)v32; 784 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) { 785 void __user *uaddr = (void __user *)(long)reg->addr; 786 787 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0; 788 } else { 789 return -EINVAL; 790 } 791 792 switch (reg->id) { 793 /* General purpose registers */ 794 case KVM_REG_MIPS_R0: 795 /* Silently ignore requests to set $0 */ 796 break; 797 case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31: 798 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v; 799 break; 800 #ifndef CONFIG_CPU_MIPSR6 801 case KVM_REG_MIPS_HI: 802 vcpu->arch.hi = v; 803 break; 804 case KVM_REG_MIPS_LO: 805 vcpu->arch.lo = v; 806 break; 807 #endif 808 case KVM_REG_MIPS_PC: 809 vcpu->arch.pc = v; 810 break; 811 812 /* Floating point registers */ 813 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31): 814 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 815 return -EINVAL; 816 idx = reg->id - KVM_REG_MIPS_FPR_32(0); 817 /* Odd singles in top of even double when FR=0 */ 818 if (kvm_read_c0_guest_status(cop0) & ST0_FR) 819 set_fpr32(&fpu->fpr[idx], 0, v); 820 else 821 set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v); 822 break; 823 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31): 824 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 825 return -EINVAL; 826 idx = reg->id - KVM_REG_MIPS_FPR_64(0); 827 /* Can't access odd doubles in FR=0 mode */ 828 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR)) 829 return -EINVAL; 830 set_fpr64(&fpu->fpr[idx], 0, v); 831 break; 832 case KVM_REG_MIPS_FCR_IR: 833 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 834 return -EINVAL; 835 /* Read-only */ 836 break; 837 case KVM_REG_MIPS_FCR_CSR: 838 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 839 return -EINVAL; 840 fpu->fcr31 = v; 841 break; 842 843 /* MIPS SIMD Architecture (MSA) registers */ 844 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31): 845 if (!kvm_mips_guest_has_msa(&vcpu->arch)) 846 return -EINVAL; 847 idx = reg->id - KVM_REG_MIPS_VEC_128(0); 848 #ifdef CONFIG_CPU_LITTLE_ENDIAN 849 /* least significant byte first */ 850 set_fpr64(&fpu->fpr[idx], 0, vs[0]); 851 set_fpr64(&fpu->fpr[idx], 1, vs[1]); 852 #else 853 /* most significant byte first */ 854 set_fpr64(&fpu->fpr[idx], 1, vs[0]); 855 set_fpr64(&fpu->fpr[idx], 0, vs[1]); 856 #endif 857 break; 858 case KVM_REG_MIPS_MSA_IR: 859 if (!kvm_mips_guest_has_msa(&vcpu->arch)) 860 return -EINVAL; 861 /* Read-only */ 862 break; 863 case KVM_REG_MIPS_MSA_CSR: 864 if (!kvm_mips_guest_has_msa(&vcpu->arch)) 865 return -EINVAL; 866 fpu->msacsr = v; 867 break; 868 869 /* registers to be handled specially */ 870 default: 871 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v); 872 } 873 return 0; 874 } 875 876 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 877 struct kvm_enable_cap *cap) 878 { 879 int r = 0; 880 881 if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap)) 882 return -EINVAL; 883 if (cap->flags) 884 return -EINVAL; 885 if (cap->args[0]) 886 return -EINVAL; 887 888 switch (cap->cap) { 889 case KVM_CAP_MIPS_FPU: 890 vcpu->arch.fpu_enabled = true; 891 break; 892 case KVM_CAP_MIPS_MSA: 893 vcpu->arch.msa_enabled = true; 894 break; 895 default: 896 r = -EINVAL; 897 break; 898 } 899 900 return r; 901 } 902 903 long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl, 904 unsigned long arg) 905 { 906 struct kvm_vcpu *vcpu = filp->private_data; 907 void __user *argp = (void __user *)arg; 908 909 if (ioctl == KVM_INTERRUPT) { 910 struct kvm_mips_interrupt irq; 911 912 if (copy_from_user(&irq, argp, sizeof(irq))) 913 return -EFAULT; 914 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__, 915 irq.irq); 916 917 return kvm_vcpu_ioctl_interrupt(vcpu, &irq); 918 } 919 920 return -ENOIOCTLCMD; 921 } 922 923 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl, 924 unsigned long arg) 925 { 926 struct kvm_vcpu *vcpu = filp->private_data; 927 void __user *argp = (void __user *)arg; 928 long r; 929 930 vcpu_load(vcpu); 931 932 switch (ioctl) { 933 case KVM_SET_ONE_REG: 934 case KVM_GET_ONE_REG: { 935 struct kvm_one_reg reg; 936 937 r = -EFAULT; 938 if (copy_from_user(®, argp, sizeof(reg))) 939 break; 940 if (ioctl == KVM_SET_ONE_REG) 941 r = kvm_mips_set_reg(vcpu, ®); 942 else 943 r = kvm_mips_get_reg(vcpu, ®); 944 break; 945 } 946 case KVM_GET_REG_LIST: { 947 struct kvm_reg_list __user *user_list = argp; 948 struct kvm_reg_list reg_list; 949 unsigned n; 950 951 r = -EFAULT; 952 if (copy_from_user(®_list, user_list, sizeof(reg_list))) 953 break; 954 n = reg_list.n; 955 reg_list.n = kvm_mips_num_regs(vcpu); 956 if (copy_to_user(user_list, ®_list, sizeof(reg_list))) 957 break; 958 r = -E2BIG; 959 if (n < reg_list.n) 960 break; 961 r = kvm_mips_copy_reg_indices(vcpu, user_list->reg); 962 break; 963 } 964 case KVM_ENABLE_CAP: { 965 struct kvm_enable_cap cap; 966 967 r = -EFAULT; 968 if (copy_from_user(&cap, argp, sizeof(cap))) 969 break; 970 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 971 break; 972 } 973 default: 974 r = -ENOIOCTLCMD; 975 } 976 977 vcpu_put(vcpu); 978 return r; 979 } 980 981 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 982 { 983 984 } 985 986 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 987 struct kvm_memory_slot *memslot) 988 { 989 /* Let implementation handle TLB/GVA invalidation */ 990 kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot); 991 } 992 993 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 994 { 995 long r; 996 997 switch (ioctl) { 998 default: 999 r = -ENOIOCTLCMD; 1000 } 1001 1002 return r; 1003 } 1004 1005 int kvm_arch_init(void *opaque) 1006 { 1007 if (kvm_mips_callbacks) { 1008 kvm_err("kvm: module already exists\n"); 1009 return -EEXIST; 1010 } 1011 1012 return kvm_mips_emulation_init(&kvm_mips_callbacks); 1013 } 1014 1015 void kvm_arch_exit(void) 1016 { 1017 kvm_mips_callbacks = NULL; 1018 } 1019 1020 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 1021 struct kvm_sregs *sregs) 1022 { 1023 return -ENOIOCTLCMD; 1024 } 1025 1026 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 1027 struct kvm_sregs *sregs) 1028 { 1029 return -ENOIOCTLCMD; 1030 } 1031 1032 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 1033 { 1034 } 1035 1036 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 1037 { 1038 return -ENOIOCTLCMD; 1039 } 1040 1041 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 1042 { 1043 return -ENOIOCTLCMD; 1044 } 1045 1046 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 1047 { 1048 return VM_FAULT_SIGBUS; 1049 } 1050 1051 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 1052 { 1053 int r; 1054 1055 switch (ext) { 1056 case KVM_CAP_ONE_REG: 1057 case KVM_CAP_ENABLE_CAP: 1058 case KVM_CAP_READONLY_MEM: 1059 case KVM_CAP_SYNC_MMU: 1060 case KVM_CAP_IMMEDIATE_EXIT: 1061 r = 1; 1062 break; 1063 case KVM_CAP_NR_VCPUS: 1064 r = num_online_cpus(); 1065 break; 1066 case KVM_CAP_MAX_VCPUS: 1067 r = KVM_MAX_VCPUS; 1068 break; 1069 case KVM_CAP_MAX_VCPU_ID: 1070 r = KVM_MAX_VCPU_ID; 1071 break; 1072 case KVM_CAP_MIPS_FPU: 1073 /* We don't handle systems with inconsistent cpu_has_fpu */ 1074 r = !!raw_cpu_has_fpu; 1075 break; 1076 case KVM_CAP_MIPS_MSA: 1077 /* 1078 * We don't support MSA vector partitioning yet: 1079 * 1) It would require explicit support which can't be tested 1080 * yet due to lack of support in current hardware. 1081 * 2) It extends the state that would need to be saved/restored 1082 * by e.g. QEMU for migration. 1083 * 1084 * When vector partitioning hardware becomes available, support 1085 * could be added by requiring a flag when enabling 1086 * KVM_CAP_MIPS_MSA capability to indicate that userland knows 1087 * to save/restore the appropriate extra state. 1088 */ 1089 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF); 1090 break; 1091 default: 1092 r = kvm_mips_callbacks->check_extension(kvm, ext); 1093 break; 1094 } 1095 return r; 1096 } 1097 1098 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 1099 { 1100 return kvm_mips_pending_timer(vcpu) || 1101 kvm_read_c0_guest_cause(vcpu->arch.cop0) & C_TI; 1102 } 1103 1104 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu) 1105 { 1106 int i; 1107 struct mips_coproc *cop0; 1108 1109 if (!vcpu) 1110 return -1; 1111 1112 kvm_debug("VCPU Register Dump:\n"); 1113 kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc); 1114 kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions); 1115 1116 for (i = 0; i < 32; i += 4) { 1117 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i, 1118 vcpu->arch.gprs[i], 1119 vcpu->arch.gprs[i + 1], 1120 vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]); 1121 } 1122 kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi); 1123 kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo); 1124 1125 cop0 = vcpu->arch.cop0; 1126 kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n", 1127 kvm_read_c0_guest_status(cop0), 1128 kvm_read_c0_guest_cause(cop0)); 1129 1130 kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0)); 1131 1132 return 0; 1133 } 1134 1135 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 1136 { 1137 int i; 1138 1139 vcpu_load(vcpu); 1140 1141 for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++) 1142 vcpu->arch.gprs[i] = regs->gpr[i]; 1143 vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */ 1144 vcpu->arch.hi = regs->hi; 1145 vcpu->arch.lo = regs->lo; 1146 vcpu->arch.pc = regs->pc; 1147 1148 vcpu_put(vcpu); 1149 return 0; 1150 } 1151 1152 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 1153 { 1154 int i; 1155 1156 vcpu_load(vcpu); 1157 1158 for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++) 1159 regs->gpr[i] = vcpu->arch.gprs[i]; 1160 1161 regs->hi = vcpu->arch.hi; 1162 regs->lo = vcpu->arch.lo; 1163 regs->pc = vcpu->arch.pc; 1164 1165 vcpu_put(vcpu); 1166 return 0; 1167 } 1168 1169 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 1170 struct kvm_translation *tr) 1171 { 1172 return 0; 1173 } 1174 1175 static void kvm_mips_set_c0_status(void) 1176 { 1177 u32 status = read_c0_status(); 1178 1179 if (cpu_has_dsp) 1180 status |= (ST0_MX); 1181 1182 write_c0_status(status); 1183 ehb(); 1184 } 1185 1186 /* 1187 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV) 1188 */ 1189 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu) 1190 { 1191 u32 cause = vcpu->arch.host_cp0_cause; 1192 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f; 1193 u32 __user *opc = (u32 __user *) vcpu->arch.pc; 1194 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr; 1195 enum emulation_result er = EMULATE_DONE; 1196 u32 inst; 1197 int ret = RESUME_GUEST; 1198 1199 vcpu->mode = OUTSIDE_GUEST_MODE; 1200 1201 /* re-enable HTW before enabling interrupts */ 1202 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) 1203 htw_start(); 1204 1205 /* Set a default exit reason */ 1206 run->exit_reason = KVM_EXIT_UNKNOWN; 1207 run->ready_for_interrupt_injection = 1; 1208 1209 /* 1210 * Set the appropriate status bits based on host CPU features, 1211 * before we hit the scheduler 1212 */ 1213 kvm_mips_set_c0_status(); 1214 1215 local_irq_enable(); 1216 1217 kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n", 1218 cause, opc, run, vcpu); 1219 trace_kvm_exit(vcpu, exccode); 1220 1221 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) { 1222 /* 1223 * Do a privilege check, if in UM most of these exit conditions 1224 * end up causing an exception to be delivered to the Guest 1225 * Kernel 1226 */ 1227 er = kvm_mips_check_privilege(cause, opc, run, vcpu); 1228 if (er == EMULATE_PRIV_FAIL) { 1229 goto skip_emul; 1230 } else if (er == EMULATE_FAIL) { 1231 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1232 ret = RESUME_HOST; 1233 goto skip_emul; 1234 } 1235 } 1236 1237 switch (exccode) { 1238 case EXCCODE_INT: 1239 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc); 1240 1241 ++vcpu->stat.int_exits; 1242 1243 if (need_resched()) 1244 cond_resched(); 1245 1246 ret = RESUME_GUEST; 1247 break; 1248 1249 case EXCCODE_CPU: 1250 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc); 1251 1252 ++vcpu->stat.cop_unusable_exits; 1253 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu); 1254 /* XXXKYMA: Might need to return to user space */ 1255 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN) 1256 ret = RESUME_HOST; 1257 break; 1258 1259 case EXCCODE_MOD: 1260 ++vcpu->stat.tlbmod_exits; 1261 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu); 1262 break; 1263 1264 case EXCCODE_TLBS: 1265 kvm_debug("TLB ST fault: cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n", 1266 cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc, 1267 badvaddr); 1268 1269 ++vcpu->stat.tlbmiss_st_exits; 1270 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu); 1271 break; 1272 1273 case EXCCODE_TLBL: 1274 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n", 1275 cause, opc, badvaddr); 1276 1277 ++vcpu->stat.tlbmiss_ld_exits; 1278 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu); 1279 break; 1280 1281 case EXCCODE_ADES: 1282 ++vcpu->stat.addrerr_st_exits; 1283 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu); 1284 break; 1285 1286 case EXCCODE_ADEL: 1287 ++vcpu->stat.addrerr_ld_exits; 1288 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu); 1289 break; 1290 1291 case EXCCODE_SYS: 1292 ++vcpu->stat.syscall_exits; 1293 ret = kvm_mips_callbacks->handle_syscall(vcpu); 1294 break; 1295 1296 case EXCCODE_RI: 1297 ++vcpu->stat.resvd_inst_exits; 1298 ret = kvm_mips_callbacks->handle_res_inst(vcpu); 1299 break; 1300 1301 case EXCCODE_BP: 1302 ++vcpu->stat.break_inst_exits; 1303 ret = kvm_mips_callbacks->handle_break(vcpu); 1304 break; 1305 1306 case EXCCODE_TR: 1307 ++vcpu->stat.trap_inst_exits; 1308 ret = kvm_mips_callbacks->handle_trap(vcpu); 1309 break; 1310 1311 case EXCCODE_MSAFPE: 1312 ++vcpu->stat.msa_fpe_exits; 1313 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu); 1314 break; 1315 1316 case EXCCODE_FPE: 1317 ++vcpu->stat.fpe_exits; 1318 ret = kvm_mips_callbacks->handle_fpe(vcpu); 1319 break; 1320 1321 case EXCCODE_MSADIS: 1322 ++vcpu->stat.msa_disabled_exits; 1323 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu); 1324 break; 1325 1326 case EXCCODE_GE: 1327 /* defer exit accounting to handler */ 1328 ret = kvm_mips_callbacks->handle_guest_exit(vcpu); 1329 break; 1330 1331 default: 1332 if (cause & CAUSEF_BD) 1333 opc += 1; 1334 inst = 0; 1335 kvm_get_badinstr(opc, vcpu, &inst); 1336 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n", 1337 exccode, opc, inst, badvaddr, 1338 kvm_read_c0_guest_status(vcpu->arch.cop0)); 1339 kvm_arch_vcpu_dump_regs(vcpu); 1340 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1341 ret = RESUME_HOST; 1342 break; 1343 1344 } 1345 1346 skip_emul: 1347 local_irq_disable(); 1348 1349 if (ret == RESUME_GUEST) 1350 kvm_vz_acquire_htimer(vcpu); 1351 1352 if (er == EMULATE_DONE && !(ret & RESUME_HOST)) 1353 kvm_mips_deliver_interrupts(vcpu, cause); 1354 1355 if (!(ret & RESUME_HOST)) { 1356 /* Only check for signals if not already exiting to userspace */ 1357 if (signal_pending(current)) { 1358 run->exit_reason = KVM_EXIT_INTR; 1359 ret = (-EINTR << 2) | RESUME_HOST; 1360 ++vcpu->stat.signal_exits; 1361 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL); 1362 } 1363 } 1364 1365 if (ret == RESUME_GUEST) { 1366 trace_kvm_reenter(vcpu); 1367 1368 /* 1369 * Make sure the read of VCPU requests in vcpu_reenter() 1370 * callback is not reordered ahead of the write to vcpu->mode, 1371 * or we could miss a TLB flush request while the requester sees 1372 * the VCPU as outside of guest mode and not needing an IPI. 1373 */ 1374 smp_store_mb(vcpu->mode, IN_GUEST_MODE); 1375 1376 kvm_mips_callbacks->vcpu_reenter(run, vcpu); 1377 1378 /* 1379 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context 1380 * is live), restore FCR31 / MSACSR. 1381 * 1382 * This should be before returning to the guest exception 1383 * vector, as it may well cause an [MSA] FP exception if there 1384 * are pending exception bits unmasked. (see 1385 * kvm_mips_csr_die_notifier() for how that is handled). 1386 */ 1387 if (kvm_mips_guest_has_fpu(&vcpu->arch) && 1388 read_c0_status() & ST0_CU1) 1389 __kvm_restore_fcsr(&vcpu->arch); 1390 1391 if (kvm_mips_guest_has_msa(&vcpu->arch) && 1392 read_c0_config5() & MIPS_CONF5_MSAEN) 1393 __kvm_restore_msacsr(&vcpu->arch); 1394 } 1395 1396 /* Disable HTW before returning to guest or host */ 1397 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) 1398 htw_stop(); 1399 1400 return ret; 1401 } 1402 1403 /* Enable FPU for guest and restore context */ 1404 void kvm_own_fpu(struct kvm_vcpu *vcpu) 1405 { 1406 struct mips_coproc *cop0 = vcpu->arch.cop0; 1407 unsigned int sr, cfg5; 1408 1409 preempt_disable(); 1410 1411 sr = kvm_read_c0_guest_status(cop0); 1412 1413 /* 1414 * If MSA state is already live, it is undefined how it interacts with 1415 * FR=0 FPU state, and we don't want to hit reserved instruction 1416 * exceptions trying to save the MSA state later when CU=1 && FR=1, so 1417 * play it safe and save it first. 1418 * 1419 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should 1420 * get called when guest CU1 is set, however we can't trust the guest 1421 * not to clobber the status register directly via the commpage. 1422 */ 1423 if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) && 1424 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) 1425 kvm_lose_fpu(vcpu); 1426 1427 /* 1428 * Enable FPU for guest 1429 * We set FR and FRE according to guest context 1430 */ 1431 change_c0_status(ST0_CU1 | ST0_FR, sr); 1432 if (cpu_has_fre) { 1433 cfg5 = kvm_read_c0_guest_config5(cop0); 1434 change_c0_config5(MIPS_CONF5_FRE, cfg5); 1435 } 1436 enable_fpu_hazard(); 1437 1438 /* If guest FPU state not active, restore it now */ 1439 if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) { 1440 __kvm_restore_fpu(&vcpu->arch); 1441 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU; 1442 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU); 1443 } else { 1444 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU); 1445 } 1446 1447 preempt_enable(); 1448 } 1449 1450 #ifdef CONFIG_CPU_HAS_MSA 1451 /* Enable MSA for guest and restore context */ 1452 void kvm_own_msa(struct kvm_vcpu *vcpu) 1453 { 1454 struct mips_coproc *cop0 = vcpu->arch.cop0; 1455 unsigned int sr, cfg5; 1456 1457 preempt_disable(); 1458 1459 /* 1460 * Enable FPU if enabled in guest, since we're restoring FPU context 1461 * anyway. We set FR and FRE according to guest context. 1462 */ 1463 if (kvm_mips_guest_has_fpu(&vcpu->arch)) { 1464 sr = kvm_read_c0_guest_status(cop0); 1465 1466 /* 1467 * If FR=0 FPU state is already live, it is undefined how it 1468 * interacts with MSA state, so play it safe and save it first. 1469 */ 1470 if (!(sr & ST0_FR) && 1471 (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | 1472 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU) 1473 kvm_lose_fpu(vcpu); 1474 1475 change_c0_status(ST0_CU1 | ST0_FR, sr); 1476 if (sr & ST0_CU1 && cpu_has_fre) { 1477 cfg5 = kvm_read_c0_guest_config5(cop0); 1478 change_c0_config5(MIPS_CONF5_FRE, cfg5); 1479 } 1480 } 1481 1482 /* Enable MSA for guest */ 1483 set_c0_config5(MIPS_CONF5_MSAEN); 1484 enable_fpu_hazard(); 1485 1486 switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) { 1487 case KVM_MIPS_AUX_FPU: 1488 /* 1489 * Guest FPU state already loaded, only restore upper MSA state 1490 */ 1491 __kvm_restore_msa_upper(&vcpu->arch); 1492 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA; 1493 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA); 1494 break; 1495 case 0: 1496 /* Neither FPU or MSA already active, restore full MSA state */ 1497 __kvm_restore_msa(&vcpu->arch); 1498 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA; 1499 if (kvm_mips_guest_has_fpu(&vcpu->arch)) 1500 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU; 1501 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, 1502 KVM_TRACE_AUX_FPU_MSA); 1503 break; 1504 default: 1505 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA); 1506 break; 1507 } 1508 1509 preempt_enable(); 1510 } 1511 #endif 1512 1513 /* Drop FPU & MSA without saving it */ 1514 void kvm_drop_fpu(struct kvm_vcpu *vcpu) 1515 { 1516 preempt_disable(); 1517 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) { 1518 disable_msa(); 1519 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA); 1520 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA; 1521 } 1522 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) { 1523 clear_c0_status(ST0_CU1 | ST0_FR); 1524 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU); 1525 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU; 1526 } 1527 preempt_enable(); 1528 } 1529 1530 /* Save and disable FPU & MSA */ 1531 void kvm_lose_fpu(struct kvm_vcpu *vcpu) 1532 { 1533 /* 1534 * With T&E, FPU & MSA get disabled in root context (hardware) when it 1535 * is disabled in guest context (software), but the register state in 1536 * the hardware may still be in use. 1537 * This is why we explicitly re-enable the hardware before saving. 1538 */ 1539 1540 preempt_disable(); 1541 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) { 1542 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) { 1543 set_c0_config5(MIPS_CONF5_MSAEN); 1544 enable_fpu_hazard(); 1545 } 1546 1547 __kvm_save_msa(&vcpu->arch); 1548 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA); 1549 1550 /* Disable MSA & FPU */ 1551 disable_msa(); 1552 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) { 1553 clear_c0_status(ST0_CU1 | ST0_FR); 1554 disable_fpu_hazard(); 1555 } 1556 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA); 1557 } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) { 1558 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) { 1559 set_c0_status(ST0_CU1); 1560 enable_fpu_hazard(); 1561 } 1562 1563 __kvm_save_fpu(&vcpu->arch); 1564 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU; 1565 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU); 1566 1567 /* Disable FPU */ 1568 clear_c0_status(ST0_CU1 | ST0_FR); 1569 disable_fpu_hazard(); 1570 } 1571 preempt_enable(); 1572 } 1573 1574 /* 1575 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are 1576 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP 1577 * exception if cause bits are set in the value being written. 1578 */ 1579 static int kvm_mips_csr_die_notify(struct notifier_block *self, 1580 unsigned long cmd, void *ptr) 1581 { 1582 struct die_args *args = (struct die_args *)ptr; 1583 struct pt_regs *regs = args->regs; 1584 unsigned long pc; 1585 1586 /* Only interested in FPE and MSAFPE */ 1587 if (cmd != DIE_FP && cmd != DIE_MSAFP) 1588 return NOTIFY_DONE; 1589 1590 /* Return immediately if guest context isn't active */ 1591 if (!(current->flags & PF_VCPU)) 1592 return NOTIFY_DONE; 1593 1594 /* Should never get here from user mode */ 1595 BUG_ON(user_mode(regs)); 1596 1597 pc = instruction_pointer(regs); 1598 switch (cmd) { 1599 case DIE_FP: 1600 /* match 2nd instruction in __kvm_restore_fcsr */ 1601 if (pc != (unsigned long)&__kvm_restore_fcsr + 4) 1602 return NOTIFY_DONE; 1603 break; 1604 case DIE_MSAFP: 1605 /* match 2nd/3rd instruction in __kvm_restore_msacsr */ 1606 if (!cpu_has_msa || 1607 pc < (unsigned long)&__kvm_restore_msacsr + 4 || 1608 pc > (unsigned long)&__kvm_restore_msacsr + 8) 1609 return NOTIFY_DONE; 1610 break; 1611 } 1612 1613 /* Move PC forward a little and continue executing */ 1614 instruction_pointer(regs) += 4; 1615 1616 return NOTIFY_STOP; 1617 } 1618 1619 static struct notifier_block kvm_mips_csr_die_notifier = { 1620 .notifier_call = kvm_mips_csr_die_notify, 1621 }; 1622 1623 static int __init kvm_mips_init(void) 1624 { 1625 int ret; 1626 1627 if (cpu_has_mmid) { 1628 pr_warn("KVM does not yet support MMIDs. KVM Disabled\n"); 1629 return -EOPNOTSUPP; 1630 } 1631 1632 ret = kvm_mips_entry_setup(); 1633 if (ret) 1634 return ret; 1635 1636 ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); 1637 1638 if (ret) 1639 return ret; 1640 1641 register_die_notifier(&kvm_mips_csr_die_notifier); 1642 1643 return 0; 1644 } 1645 1646 static void __exit kvm_mips_exit(void) 1647 { 1648 kvm_exit(); 1649 1650 unregister_die_notifier(&kvm_mips_csr_die_notifier); 1651 } 1652 1653 module_init(kvm_mips_init); 1654 module_exit(kvm_mips_exit); 1655 1656 EXPORT_TRACEPOINT_SYMBOL(kvm_exit); 1657