1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * KVM/MIPS: MIPS specific KVM APIs 7 * 8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved. 9 * Authors: Sanjay Lal <sanjayl@kymasys.com> 10 */ 11 12 #include <linux/errno.h> 13 #include <linux/err.h> 14 #include <linux/kdebug.h> 15 #include <linux/module.h> 16 #include <linux/vmalloc.h> 17 #include <linux/fs.h> 18 #include <linux/bootmem.h> 19 #include <asm/fpu.h> 20 #include <asm/page.h> 21 #include <asm/cacheflush.h> 22 #include <asm/mmu_context.h> 23 #include <asm/pgtable.h> 24 25 #include <linux/kvm_host.h> 26 27 #include "interrupt.h" 28 #include "commpage.h" 29 30 #define CREATE_TRACE_POINTS 31 #include "trace.h" 32 33 #ifndef VECTORSPACING 34 #define VECTORSPACING 0x100 /* for EI/VI mode */ 35 #endif 36 37 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x) 38 struct kvm_stats_debugfs_item debugfs_entries[] = { 39 { "wait", VCPU_STAT(wait_exits), KVM_STAT_VCPU }, 40 { "cache", VCPU_STAT(cache_exits), KVM_STAT_VCPU }, 41 { "signal", VCPU_STAT(signal_exits), KVM_STAT_VCPU }, 42 { "interrupt", VCPU_STAT(int_exits), KVM_STAT_VCPU }, 43 { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU }, 44 { "tlbmod", VCPU_STAT(tlbmod_exits), KVM_STAT_VCPU }, 45 { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits), KVM_STAT_VCPU }, 46 { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits), KVM_STAT_VCPU }, 47 { "addrerr_st", VCPU_STAT(addrerr_st_exits), KVM_STAT_VCPU }, 48 { "addrerr_ld", VCPU_STAT(addrerr_ld_exits), KVM_STAT_VCPU }, 49 { "syscall", VCPU_STAT(syscall_exits), KVM_STAT_VCPU }, 50 { "resvd_inst", VCPU_STAT(resvd_inst_exits), KVM_STAT_VCPU }, 51 { "break_inst", VCPU_STAT(break_inst_exits), KVM_STAT_VCPU }, 52 { "trap_inst", VCPU_STAT(trap_inst_exits), KVM_STAT_VCPU }, 53 { "msa_fpe", VCPU_STAT(msa_fpe_exits), KVM_STAT_VCPU }, 54 { "fpe", VCPU_STAT(fpe_exits), KVM_STAT_VCPU }, 55 { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU }, 56 { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU }, 57 { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU }, 58 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU }, 59 { "halt_wakeup", VCPU_STAT(halt_wakeup), KVM_STAT_VCPU }, 60 {NULL} 61 }; 62 63 static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu) 64 { 65 int i; 66 67 for_each_possible_cpu(i) { 68 vcpu->arch.guest_kernel_asid[i] = 0; 69 vcpu->arch.guest_user_asid[i] = 0; 70 } 71 72 return 0; 73 } 74 75 /* 76 * XXXKYMA: We are simulatoring a processor that has the WII bit set in 77 * Config7, so we are "runnable" if interrupts are pending 78 */ 79 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 80 { 81 return !!(vcpu->arch.pending_exceptions); 82 } 83 84 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 85 { 86 return 1; 87 } 88 89 int kvm_arch_hardware_enable(void) 90 { 91 return 0; 92 } 93 94 int kvm_arch_hardware_setup(void) 95 { 96 return 0; 97 } 98 99 void kvm_arch_check_processor_compat(void *rtn) 100 { 101 *(int *)rtn = 0; 102 } 103 104 static void kvm_mips_init_tlbs(struct kvm *kvm) 105 { 106 unsigned long wired; 107 108 /* 109 * Add a wired entry to the TLB, it is used to map the commpage to 110 * the Guest kernel 111 */ 112 wired = read_c0_wired(); 113 write_c0_wired(wired + 1); 114 mtc0_tlbw_hazard(); 115 kvm->arch.commpage_tlb = wired; 116 117 kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(), 118 kvm->arch.commpage_tlb); 119 } 120 121 static void kvm_mips_init_vm_percpu(void *arg) 122 { 123 struct kvm *kvm = (struct kvm *)arg; 124 125 kvm_mips_init_tlbs(kvm); 126 kvm_mips_callbacks->vm_init(kvm); 127 128 } 129 130 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 131 { 132 if (atomic_inc_return(&kvm_mips_instance) == 1) { 133 kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n", 134 __func__); 135 on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1); 136 } 137 138 return 0; 139 } 140 141 void kvm_mips_free_vcpus(struct kvm *kvm) 142 { 143 unsigned int i; 144 struct kvm_vcpu *vcpu; 145 146 /* Put the pages we reserved for the guest pmap */ 147 for (i = 0; i < kvm->arch.guest_pmap_npages; i++) { 148 if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE) 149 kvm_mips_release_pfn_clean(kvm->arch.guest_pmap[i]); 150 } 151 kfree(kvm->arch.guest_pmap); 152 153 kvm_for_each_vcpu(i, vcpu, kvm) { 154 kvm_arch_vcpu_free(vcpu); 155 } 156 157 mutex_lock(&kvm->lock); 158 159 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 160 kvm->vcpus[i] = NULL; 161 162 atomic_set(&kvm->online_vcpus, 0); 163 164 mutex_unlock(&kvm->lock); 165 } 166 167 static void kvm_mips_uninit_tlbs(void *arg) 168 { 169 /* Restore wired count */ 170 write_c0_wired(0); 171 mtc0_tlbw_hazard(); 172 /* Clear out all the TLBs */ 173 kvm_local_flush_tlb_all(); 174 } 175 176 void kvm_arch_destroy_vm(struct kvm *kvm) 177 { 178 kvm_mips_free_vcpus(kvm); 179 180 /* If this is the last instance, restore wired count */ 181 if (atomic_dec_return(&kvm_mips_instance) == 0) { 182 kvm_debug("%s: last KVM instance, restoring TLB parameters\n", 183 __func__); 184 on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1); 185 } 186 } 187 188 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl, 189 unsigned long arg) 190 { 191 return -ENOIOCTLCMD; 192 } 193 194 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 195 unsigned long npages) 196 { 197 return 0; 198 } 199 200 int kvm_arch_prepare_memory_region(struct kvm *kvm, 201 struct kvm_memory_slot *memslot, 202 const struct kvm_userspace_memory_region *mem, 203 enum kvm_mr_change change) 204 { 205 return 0; 206 } 207 208 void kvm_arch_commit_memory_region(struct kvm *kvm, 209 const struct kvm_userspace_memory_region *mem, 210 const struct kvm_memory_slot *old, 211 const struct kvm_memory_slot *new, 212 enum kvm_mr_change change) 213 { 214 unsigned long npages = 0; 215 int i; 216 217 kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n", 218 __func__, kvm, mem->slot, mem->guest_phys_addr, 219 mem->memory_size, mem->userspace_addr); 220 221 /* Setup Guest PMAP table */ 222 if (!kvm->arch.guest_pmap) { 223 if (mem->slot == 0) 224 npages = mem->memory_size >> PAGE_SHIFT; 225 226 if (npages) { 227 kvm->arch.guest_pmap_npages = npages; 228 kvm->arch.guest_pmap = 229 kzalloc(npages * sizeof(unsigned long), GFP_KERNEL); 230 231 if (!kvm->arch.guest_pmap) { 232 kvm_err("Failed to allocate guest PMAP\n"); 233 return; 234 } 235 236 kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n", 237 npages, kvm->arch.guest_pmap); 238 239 /* Now setup the page table */ 240 for (i = 0; i < npages; i++) 241 kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE; 242 } 243 } 244 } 245 246 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) 247 { 248 int err, size, offset; 249 void *gebase; 250 int i; 251 252 struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL); 253 254 if (!vcpu) { 255 err = -ENOMEM; 256 goto out; 257 } 258 259 err = kvm_vcpu_init(vcpu, kvm, id); 260 261 if (err) 262 goto out_free_cpu; 263 264 kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu); 265 266 /* 267 * Allocate space for host mode exception handlers that handle 268 * guest mode exits 269 */ 270 if (cpu_has_veic || cpu_has_vint) 271 size = 0x200 + VECTORSPACING * 64; 272 else 273 size = 0x4000; 274 275 /* Save Linux EBASE */ 276 vcpu->arch.host_ebase = (void *)read_c0_ebase(); 277 278 gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL); 279 280 if (!gebase) { 281 err = -ENOMEM; 282 goto out_uninit_cpu; 283 } 284 kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n", 285 ALIGN(size, PAGE_SIZE), gebase); 286 287 /* Save new ebase */ 288 vcpu->arch.guest_ebase = gebase; 289 290 /* Copy L1 Guest Exception handler to correct offset */ 291 292 /* TLB Refill, EXL = 0 */ 293 memcpy(gebase, mips32_exception, 294 mips32_exceptionEnd - mips32_exception); 295 296 /* General Exception Entry point */ 297 memcpy(gebase + 0x180, mips32_exception, 298 mips32_exceptionEnd - mips32_exception); 299 300 /* For vectored interrupts poke the exception code @ all offsets 0-7 */ 301 for (i = 0; i < 8; i++) { 302 kvm_debug("L1 Vectored handler @ %p\n", 303 gebase + 0x200 + (i * VECTORSPACING)); 304 memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception, 305 mips32_exceptionEnd - mips32_exception); 306 } 307 308 /* General handler, relocate to unmapped space for sanity's sake */ 309 offset = 0x2000; 310 kvm_debug("Installing KVM Exception handlers @ %p, %#x bytes\n", 311 gebase + offset, 312 mips32_GuestExceptionEnd - mips32_GuestException); 313 314 memcpy(gebase + offset, mips32_GuestException, 315 mips32_GuestExceptionEnd - mips32_GuestException); 316 317 /* Invalidate the icache for these ranges */ 318 local_flush_icache_range((unsigned long)gebase, 319 (unsigned long)gebase + ALIGN(size, PAGE_SIZE)); 320 321 /* 322 * Allocate comm page for guest kernel, a TLB will be reserved for 323 * mapping GVA @ 0xFFFF8000 to this page 324 */ 325 vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL); 326 327 if (!vcpu->arch.kseg0_commpage) { 328 err = -ENOMEM; 329 goto out_free_gebase; 330 } 331 332 kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage); 333 kvm_mips_commpage_init(vcpu); 334 335 /* Init */ 336 vcpu->arch.last_sched_cpu = -1; 337 338 /* Start off the timer */ 339 kvm_mips_init_count(vcpu); 340 341 return vcpu; 342 343 out_free_gebase: 344 kfree(gebase); 345 346 out_uninit_cpu: 347 kvm_vcpu_uninit(vcpu); 348 349 out_free_cpu: 350 kfree(vcpu); 351 352 out: 353 return ERR_PTR(err); 354 } 355 356 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 357 { 358 hrtimer_cancel(&vcpu->arch.comparecount_timer); 359 360 kvm_vcpu_uninit(vcpu); 361 362 kvm_mips_dump_stats(vcpu); 363 364 kfree(vcpu->arch.guest_ebase); 365 kfree(vcpu->arch.kseg0_commpage); 366 kfree(vcpu); 367 } 368 369 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 370 { 371 kvm_arch_vcpu_free(vcpu); 372 } 373 374 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 375 struct kvm_guest_debug *dbg) 376 { 377 return -ENOIOCTLCMD; 378 } 379 380 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run) 381 { 382 int r = 0; 383 sigset_t sigsaved; 384 385 if (vcpu->sigset_active) 386 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); 387 388 if (vcpu->mmio_needed) { 389 if (!vcpu->mmio_is_write) 390 kvm_mips_complete_mmio_load(vcpu, run); 391 vcpu->mmio_needed = 0; 392 } 393 394 lose_fpu(1); 395 396 local_irq_disable(); 397 /* Check if we have any exceptions/interrupts pending */ 398 kvm_mips_deliver_interrupts(vcpu, 399 kvm_read_c0_guest_cause(vcpu->arch.cop0)); 400 401 __kvm_guest_enter(); 402 403 /* Disable hardware page table walking while in guest */ 404 htw_stop(); 405 406 r = __kvm_mips_vcpu_run(run, vcpu); 407 408 /* Re-enable HTW before enabling interrupts */ 409 htw_start(); 410 411 __kvm_guest_exit(); 412 local_irq_enable(); 413 414 if (vcpu->sigset_active) 415 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 416 417 return r; 418 } 419 420 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 421 struct kvm_mips_interrupt *irq) 422 { 423 int intr = (int)irq->irq; 424 struct kvm_vcpu *dvcpu = NULL; 425 426 if (intr == 3 || intr == -3 || intr == 4 || intr == -4) 427 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu, 428 (int)intr); 429 430 if (irq->cpu == -1) 431 dvcpu = vcpu; 432 else 433 dvcpu = vcpu->kvm->vcpus[irq->cpu]; 434 435 if (intr == 2 || intr == 3 || intr == 4) { 436 kvm_mips_callbacks->queue_io_int(dvcpu, irq); 437 438 } else if (intr == -2 || intr == -3 || intr == -4) { 439 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq); 440 } else { 441 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__, 442 irq->cpu, irq->irq); 443 return -EINVAL; 444 } 445 446 dvcpu->arch.wait = 0; 447 448 if (waitqueue_active(&dvcpu->wq)) 449 wake_up_interruptible(&dvcpu->wq); 450 451 return 0; 452 } 453 454 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 455 struct kvm_mp_state *mp_state) 456 { 457 return -ENOIOCTLCMD; 458 } 459 460 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 461 struct kvm_mp_state *mp_state) 462 { 463 return -ENOIOCTLCMD; 464 } 465 466 static u64 kvm_mips_get_one_regs[] = { 467 KVM_REG_MIPS_R0, 468 KVM_REG_MIPS_R1, 469 KVM_REG_MIPS_R2, 470 KVM_REG_MIPS_R3, 471 KVM_REG_MIPS_R4, 472 KVM_REG_MIPS_R5, 473 KVM_REG_MIPS_R6, 474 KVM_REG_MIPS_R7, 475 KVM_REG_MIPS_R8, 476 KVM_REG_MIPS_R9, 477 KVM_REG_MIPS_R10, 478 KVM_REG_MIPS_R11, 479 KVM_REG_MIPS_R12, 480 KVM_REG_MIPS_R13, 481 KVM_REG_MIPS_R14, 482 KVM_REG_MIPS_R15, 483 KVM_REG_MIPS_R16, 484 KVM_REG_MIPS_R17, 485 KVM_REG_MIPS_R18, 486 KVM_REG_MIPS_R19, 487 KVM_REG_MIPS_R20, 488 KVM_REG_MIPS_R21, 489 KVM_REG_MIPS_R22, 490 KVM_REG_MIPS_R23, 491 KVM_REG_MIPS_R24, 492 KVM_REG_MIPS_R25, 493 KVM_REG_MIPS_R26, 494 KVM_REG_MIPS_R27, 495 KVM_REG_MIPS_R28, 496 KVM_REG_MIPS_R29, 497 KVM_REG_MIPS_R30, 498 KVM_REG_MIPS_R31, 499 500 KVM_REG_MIPS_HI, 501 KVM_REG_MIPS_LO, 502 KVM_REG_MIPS_PC, 503 504 KVM_REG_MIPS_CP0_INDEX, 505 KVM_REG_MIPS_CP0_CONTEXT, 506 KVM_REG_MIPS_CP0_USERLOCAL, 507 KVM_REG_MIPS_CP0_PAGEMASK, 508 KVM_REG_MIPS_CP0_WIRED, 509 KVM_REG_MIPS_CP0_HWRENA, 510 KVM_REG_MIPS_CP0_BADVADDR, 511 KVM_REG_MIPS_CP0_COUNT, 512 KVM_REG_MIPS_CP0_ENTRYHI, 513 KVM_REG_MIPS_CP0_COMPARE, 514 KVM_REG_MIPS_CP0_STATUS, 515 KVM_REG_MIPS_CP0_CAUSE, 516 KVM_REG_MIPS_CP0_EPC, 517 KVM_REG_MIPS_CP0_PRID, 518 KVM_REG_MIPS_CP0_CONFIG, 519 KVM_REG_MIPS_CP0_CONFIG1, 520 KVM_REG_MIPS_CP0_CONFIG2, 521 KVM_REG_MIPS_CP0_CONFIG3, 522 KVM_REG_MIPS_CP0_CONFIG4, 523 KVM_REG_MIPS_CP0_CONFIG5, 524 KVM_REG_MIPS_CP0_CONFIG7, 525 KVM_REG_MIPS_CP0_ERROREPC, 526 527 KVM_REG_MIPS_COUNT_CTL, 528 KVM_REG_MIPS_COUNT_RESUME, 529 KVM_REG_MIPS_COUNT_HZ, 530 }; 531 532 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu, 533 const struct kvm_one_reg *reg) 534 { 535 struct mips_coproc *cop0 = vcpu->arch.cop0; 536 struct mips_fpu_struct *fpu = &vcpu->arch.fpu; 537 int ret; 538 s64 v; 539 s64 vs[2]; 540 unsigned int idx; 541 542 switch (reg->id) { 543 /* General purpose registers */ 544 case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31: 545 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0]; 546 break; 547 case KVM_REG_MIPS_HI: 548 v = (long)vcpu->arch.hi; 549 break; 550 case KVM_REG_MIPS_LO: 551 v = (long)vcpu->arch.lo; 552 break; 553 case KVM_REG_MIPS_PC: 554 v = (long)vcpu->arch.pc; 555 break; 556 557 /* Floating point registers */ 558 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31): 559 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 560 return -EINVAL; 561 idx = reg->id - KVM_REG_MIPS_FPR_32(0); 562 /* Odd singles in top of even double when FR=0 */ 563 if (kvm_read_c0_guest_status(cop0) & ST0_FR) 564 v = get_fpr32(&fpu->fpr[idx], 0); 565 else 566 v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1); 567 break; 568 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31): 569 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 570 return -EINVAL; 571 idx = reg->id - KVM_REG_MIPS_FPR_64(0); 572 /* Can't access odd doubles in FR=0 mode */ 573 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR)) 574 return -EINVAL; 575 v = get_fpr64(&fpu->fpr[idx], 0); 576 break; 577 case KVM_REG_MIPS_FCR_IR: 578 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 579 return -EINVAL; 580 v = boot_cpu_data.fpu_id; 581 break; 582 case KVM_REG_MIPS_FCR_CSR: 583 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 584 return -EINVAL; 585 v = fpu->fcr31; 586 break; 587 588 /* MIPS SIMD Architecture (MSA) registers */ 589 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31): 590 if (!kvm_mips_guest_has_msa(&vcpu->arch)) 591 return -EINVAL; 592 /* Can't access MSA registers in FR=0 mode */ 593 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR)) 594 return -EINVAL; 595 idx = reg->id - KVM_REG_MIPS_VEC_128(0); 596 #ifdef CONFIG_CPU_LITTLE_ENDIAN 597 /* least significant byte first */ 598 vs[0] = get_fpr64(&fpu->fpr[idx], 0); 599 vs[1] = get_fpr64(&fpu->fpr[idx], 1); 600 #else 601 /* most significant byte first */ 602 vs[0] = get_fpr64(&fpu->fpr[idx], 1); 603 vs[1] = get_fpr64(&fpu->fpr[idx], 0); 604 #endif 605 break; 606 case KVM_REG_MIPS_MSA_IR: 607 if (!kvm_mips_guest_has_msa(&vcpu->arch)) 608 return -EINVAL; 609 v = boot_cpu_data.msa_id; 610 break; 611 case KVM_REG_MIPS_MSA_CSR: 612 if (!kvm_mips_guest_has_msa(&vcpu->arch)) 613 return -EINVAL; 614 v = fpu->msacsr; 615 break; 616 617 /* Co-processor 0 registers */ 618 case KVM_REG_MIPS_CP0_INDEX: 619 v = (long)kvm_read_c0_guest_index(cop0); 620 break; 621 case KVM_REG_MIPS_CP0_CONTEXT: 622 v = (long)kvm_read_c0_guest_context(cop0); 623 break; 624 case KVM_REG_MIPS_CP0_USERLOCAL: 625 v = (long)kvm_read_c0_guest_userlocal(cop0); 626 break; 627 case KVM_REG_MIPS_CP0_PAGEMASK: 628 v = (long)kvm_read_c0_guest_pagemask(cop0); 629 break; 630 case KVM_REG_MIPS_CP0_WIRED: 631 v = (long)kvm_read_c0_guest_wired(cop0); 632 break; 633 case KVM_REG_MIPS_CP0_HWRENA: 634 v = (long)kvm_read_c0_guest_hwrena(cop0); 635 break; 636 case KVM_REG_MIPS_CP0_BADVADDR: 637 v = (long)kvm_read_c0_guest_badvaddr(cop0); 638 break; 639 case KVM_REG_MIPS_CP0_ENTRYHI: 640 v = (long)kvm_read_c0_guest_entryhi(cop0); 641 break; 642 case KVM_REG_MIPS_CP0_COMPARE: 643 v = (long)kvm_read_c0_guest_compare(cop0); 644 break; 645 case KVM_REG_MIPS_CP0_STATUS: 646 v = (long)kvm_read_c0_guest_status(cop0); 647 break; 648 case KVM_REG_MIPS_CP0_CAUSE: 649 v = (long)kvm_read_c0_guest_cause(cop0); 650 break; 651 case KVM_REG_MIPS_CP0_EPC: 652 v = (long)kvm_read_c0_guest_epc(cop0); 653 break; 654 case KVM_REG_MIPS_CP0_PRID: 655 v = (long)kvm_read_c0_guest_prid(cop0); 656 break; 657 case KVM_REG_MIPS_CP0_CONFIG: 658 v = (long)kvm_read_c0_guest_config(cop0); 659 break; 660 case KVM_REG_MIPS_CP0_CONFIG1: 661 v = (long)kvm_read_c0_guest_config1(cop0); 662 break; 663 case KVM_REG_MIPS_CP0_CONFIG2: 664 v = (long)kvm_read_c0_guest_config2(cop0); 665 break; 666 case KVM_REG_MIPS_CP0_CONFIG3: 667 v = (long)kvm_read_c0_guest_config3(cop0); 668 break; 669 case KVM_REG_MIPS_CP0_CONFIG4: 670 v = (long)kvm_read_c0_guest_config4(cop0); 671 break; 672 case KVM_REG_MIPS_CP0_CONFIG5: 673 v = (long)kvm_read_c0_guest_config5(cop0); 674 break; 675 case KVM_REG_MIPS_CP0_CONFIG7: 676 v = (long)kvm_read_c0_guest_config7(cop0); 677 break; 678 case KVM_REG_MIPS_CP0_ERROREPC: 679 v = (long)kvm_read_c0_guest_errorepc(cop0); 680 break; 681 /* registers to be handled specially */ 682 case KVM_REG_MIPS_CP0_COUNT: 683 case KVM_REG_MIPS_COUNT_CTL: 684 case KVM_REG_MIPS_COUNT_RESUME: 685 case KVM_REG_MIPS_COUNT_HZ: 686 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v); 687 if (ret) 688 return ret; 689 break; 690 default: 691 return -EINVAL; 692 } 693 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) { 694 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr; 695 696 return put_user(v, uaddr64); 697 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) { 698 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr; 699 u32 v32 = (u32)v; 700 701 return put_user(v32, uaddr32); 702 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) { 703 void __user *uaddr = (void __user *)(long)reg->addr; 704 705 return copy_to_user(uaddr, vs, 16); 706 } else { 707 return -EINVAL; 708 } 709 } 710 711 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu, 712 const struct kvm_one_reg *reg) 713 { 714 struct mips_coproc *cop0 = vcpu->arch.cop0; 715 struct mips_fpu_struct *fpu = &vcpu->arch.fpu; 716 s64 v; 717 s64 vs[2]; 718 unsigned int idx; 719 720 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) { 721 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr; 722 723 if (get_user(v, uaddr64) != 0) 724 return -EFAULT; 725 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) { 726 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr; 727 s32 v32; 728 729 if (get_user(v32, uaddr32) != 0) 730 return -EFAULT; 731 v = (s64)v32; 732 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) { 733 void __user *uaddr = (void __user *)(long)reg->addr; 734 735 return copy_from_user(vs, uaddr, 16); 736 } else { 737 return -EINVAL; 738 } 739 740 switch (reg->id) { 741 /* General purpose registers */ 742 case KVM_REG_MIPS_R0: 743 /* Silently ignore requests to set $0 */ 744 break; 745 case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31: 746 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v; 747 break; 748 case KVM_REG_MIPS_HI: 749 vcpu->arch.hi = v; 750 break; 751 case KVM_REG_MIPS_LO: 752 vcpu->arch.lo = v; 753 break; 754 case KVM_REG_MIPS_PC: 755 vcpu->arch.pc = v; 756 break; 757 758 /* Floating point registers */ 759 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31): 760 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 761 return -EINVAL; 762 idx = reg->id - KVM_REG_MIPS_FPR_32(0); 763 /* Odd singles in top of even double when FR=0 */ 764 if (kvm_read_c0_guest_status(cop0) & ST0_FR) 765 set_fpr32(&fpu->fpr[idx], 0, v); 766 else 767 set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v); 768 break; 769 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31): 770 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 771 return -EINVAL; 772 idx = reg->id - KVM_REG_MIPS_FPR_64(0); 773 /* Can't access odd doubles in FR=0 mode */ 774 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR)) 775 return -EINVAL; 776 set_fpr64(&fpu->fpr[idx], 0, v); 777 break; 778 case KVM_REG_MIPS_FCR_IR: 779 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 780 return -EINVAL; 781 /* Read-only */ 782 break; 783 case KVM_REG_MIPS_FCR_CSR: 784 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 785 return -EINVAL; 786 fpu->fcr31 = v; 787 break; 788 789 /* MIPS SIMD Architecture (MSA) registers */ 790 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31): 791 if (!kvm_mips_guest_has_msa(&vcpu->arch)) 792 return -EINVAL; 793 idx = reg->id - KVM_REG_MIPS_VEC_128(0); 794 #ifdef CONFIG_CPU_LITTLE_ENDIAN 795 /* least significant byte first */ 796 set_fpr64(&fpu->fpr[idx], 0, vs[0]); 797 set_fpr64(&fpu->fpr[idx], 1, vs[1]); 798 #else 799 /* most significant byte first */ 800 set_fpr64(&fpu->fpr[idx], 1, vs[0]); 801 set_fpr64(&fpu->fpr[idx], 0, vs[1]); 802 #endif 803 break; 804 case KVM_REG_MIPS_MSA_IR: 805 if (!kvm_mips_guest_has_msa(&vcpu->arch)) 806 return -EINVAL; 807 /* Read-only */ 808 break; 809 case KVM_REG_MIPS_MSA_CSR: 810 if (!kvm_mips_guest_has_msa(&vcpu->arch)) 811 return -EINVAL; 812 fpu->msacsr = v; 813 break; 814 815 /* Co-processor 0 registers */ 816 case KVM_REG_MIPS_CP0_INDEX: 817 kvm_write_c0_guest_index(cop0, v); 818 break; 819 case KVM_REG_MIPS_CP0_CONTEXT: 820 kvm_write_c0_guest_context(cop0, v); 821 break; 822 case KVM_REG_MIPS_CP0_USERLOCAL: 823 kvm_write_c0_guest_userlocal(cop0, v); 824 break; 825 case KVM_REG_MIPS_CP0_PAGEMASK: 826 kvm_write_c0_guest_pagemask(cop0, v); 827 break; 828 case KVM_REG_MIPS_CP0_WIRED: 829 kvm_write_c0_guest_wired(cop0, v); 830 break; 831 case KVM_REG_MIPS_CP0_HWRENA: 832 kvm_write_c0_guest_hwrena(cop0, v); 833 break; 834 case KVM_REG_MIPS_CP0_BADVADDR: 835 kvm_write_c0_guest_badvaddr(cop0, v); 836 break; 837 case KVM_REG_MIPS_CP0_ENTRYHI: 838 kvm_write_c0_guest_entryhi(cop0, v); 839 break; 840 case KVM_REG_MIPS_CP0_STATUS: 841 kvm_write_c0_guest_status(cop0, v); 842 break; 843 case KVM_REG_MIPS_CP0_EPC: 844 kvm_write_c0_guest_epc(cop0, v); 845 break; 846 case KVM_REG_MIPS_CP0_PRID: 847 kvm_write_c0_guest_prid(cop0, v); 848 break; 849 case KVM_REG_MIPS_CP0_ERROREPC: 850 kvm_write_c0_guest_errorepc(cop0, v); 851 break; 852 /* registers to be handled specially */ 853 case KVM_REG_MIPS_CP0_COUNT: 854 case KVM_REG_MIPS_CP0_COMPARE: 855 case KVM_REG_MIPS_CP0_CAUSE: 856 case KVM_REG_MIPS_CP0_CONFIG: 857 case KVM_REG_MIPS_CP0_CONFIG1: 858 case KVM_REG_MIPS_CP0_CONFIG2: 859 case KVM_REG_MIPS_CP0_CONFIG3: 860 case KVM_REG_MIPS_CP0_CONFIG4: 861 case KVM_REG_MIPS_CP0_CONFIG5: 862 case KVM_REG_MIPS_COUNT_CTL: 863 case KVM_REG_MIPS_COUNT_RESUME: 864 case KVM_REG_MIPS_COUNT_HZ: 865 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v); 866 default: 867 return -EINVAL; 868 } 869 return 0; 870 } 871 872 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 873 struct kvm_enable_cap *cap) 874 { 875 int r = 0; 876 877 if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap)) 878 return -EINVAL; 879 if (cap->flags) 880 return -EINVAL; 881 if (cap->args[0]) 882 return -EINVAL; 883 884 switch (cap->cap) { 885 case KVM_CAP_MIPS_FPU: 886 vcpu->arch.fpu_enabled = true; 887 break; 888 case KVM_CAP_MIPS_MSA: 889 vcpu->arch.msa_enabled = true; 890 break; 891 default: 892 r = -EINVAL; 893 break; 894 } 895 896 return r; 897 } 898 899 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl, 900 unsigned long arg) 901 { 902 struct kvm_vcpu *vcpu = filp->private_data; 903 void __user *argp = (void __user *)arg; 904 long r; 905 906 switch (ioctl) { 907 case KVM_SET_ONE_REG: 908 case KVM_GET_ONE_REG: { 909 struct kvm_one_reg reg; 910 911 if (copy_from_user(®, argp, sizeof(reg))) 912 return -EFAULT; 913 if (ioctl == KVM_SET_ONE_REG) 914 return kvm_mips_set_reg(vcpu, ®); 915 else 916 return kvm_mips_get_reg(vcpu, ®); 917 } 918 case KVM_GET_REG_LIST: { 919 struct kvm_reg_list __user *user_list = argp; 920 u64 __user *reg_dest; 921 struct kvm_reg_list reg_list; 922 unsigned n; 923 924 if (copy_from_user(®_list, user_list, sizeof(reg_list))) 925 return -EFAULT; 926 n = reg_list.n; 927 reg_list.n = ARRAY_SIZE(kvm_mips_get_one_regs); 928 if (copy_to_user(user_list, ®_list, sizeof(reg_list))) 929 return -EFAULT; 930 if (n < reg_list.n) 931 return -E2BIG; 932 reg_dest = user_list->reg; 933 if (copy_to_user(reg_dest, kvm_mips_get_one_regs, 934 sizeof(kvm_mips_get_one_regs))) 935 return -EFAULT; 936 return 0; 937 } 938 case KVM_NMI: 939 /* Treat the NMI as a CPU reset */ 940 r = kvm_mips_reset_vcpu(vcpu); 941 break; 942 case KVM_INTERRUPT: 943 { 944 struct kvm_mips_interrupt irq; 945 946 r = -EFAULT; 947 if (copy_from_user(&irq, argp, sizeof(irq))) 948 goto out; 949 950 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__, 951 irq.irq); 952 953 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 954 break; 955 } 956 case KVM_ENABLE_CAP: { 957 struct kvm_enable_cap cap; 958 959 r = -EFAULT; 960 if (copy_from_user(&cap, argp, sizeof(cap))) 961 goto out; 962 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 963 break; 964 } 965 default: 966 r = -ENOIOCTLCMD; 967 } 968 969 out: 970 return r; 971 } 972 973 /* Get (and clear) the dirty memory log for a memory slot. */ 974 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) 975 { 976 struct kvm_memslots *slots; 977 struct kvm_memory_slot *memslot; 978 unsigned long ga, ga_end; 979 int is_dirty = 0; 980 int r; 981 unsigned long n; 982 983 mutex_lock(&kvm->slots_lock); 984 985 r = kvm_get_dirty_log(kvm, log, &is_dirty); 986 if (r) 987 goto out; 988 989 /* If nothing is dirty, don't bother messing with page tables. */ 990 if (is_dirty) { 991 slots = kvm_memslots(kvm); 992 memslot = id_to_memslot(slots, log->slot); 993 994 ga = memslot->base_gfn << PAGE_SHIFT; 995 ga_end = ga + (memslot->npages << PAGE_SHIFT); 996 997 kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga, 998 ga_end); 999 1000 n = kvm_dirty_bitmap_bytes(memslot); 1001 memset(memslot->dirty_bitmap, 0, n); 1002 } 1003 1004 r = 0; 1005 out: 1006 mutex_unlock(&kvm->slots_lock); 1007 return r; 1008 1009 } 1010 1011 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 1012 { 1013 long r; 1014 1015 switch (ioctl) { 1016 default: 1017 r = -ENOIOCTLCMD; 1018 } 1019 1020 return r; 1021 } 1022 1023 int kvm_arch_init(void *opaque) 1024 { 1025 if (kvm_mips_callbacks) { 1026 kvm_err("kvm: module already exists\n"); 1027 return -EEXIST; 1028 } 1029 1030 return kvm_mips_emulation_init(&kvm_mips_callbacks); 1031 } 1032 1033 void kvm_arch_exit(void) 1034 { 1035 kvm_mips_callbacks = NULL; 1036 } 1037 1038 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 1039 struct kvm_sregs *sregs) 1040 { 1041 return -ENOIOCTLCMD; 1042 } 1043 1044 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 1045 struct kvm_sregs *sregs) 1046 { 1047 return -ENOIOCTLCMD; 1048 } 1049 1050 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 1051 { 1052 } 1053 1054 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 1055 { 1056 return -ENOIOCTLCMD; 1057 } 1058 1059 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 1060 { 1061 return -ENOIOCTLCMD; 1062 } 1063 1064 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 1065 { 1066 return VM_FAULT_SIGBUS; 1067 } 1068 1069 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 1070 { 1071 int r; 1072 1073 switch (ext) { 1074 case KVM_CAP_ONE_REG: 1075 case KVM_CAP_ENABLE_CAP: 1076 r = 1; 1077 break; 1078 case KVM_CAP_COALESCED_MMIO: 1079 r = KVM_COALESCED_MMIO_PAGE_OFFSET; 1080 break; 1081 case KVM_CAP_MIPS_FPU: 1082 r = !!cpu_has_fpu; 1083 break; 1084 case KVM_CAP_MIPS_MSA: 1085 /* 1086 * We don't support MSA vector partitioning yet: 1087 * 1) It would require explicit support which can't be tested 1088 * yet due to lack of support in current hardware. 1089 * 2) It extends the state that would need to be saved/restored 1090 * by e.g. QEMU for migration. 1091 * 1092 * When vector partitioning hardware becomes available, support 1093 * could be added by requiring a flag when enabling 1094 * KVM_CAP_MIPS_MSA capability to indicate that userland knows 1095 * to save/restore the appropriate extra state. 1096 */ 1097 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF); 1098 break; 1099 default: 1100 r = 0; 1101 break; 1102 } 1103 return r; 1104 } 1105 1106 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 1107 { 1108 return kvm_mips_pending_timer(vcpu); 1109 } 1110 1111 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu) 1112 { 1113 int i; 1114 struct mips_coproc *cop0; 1115 1116 if (!vcpu) 1117 return -1; 1118 1119 kvm_debug("VCPU Register Dump:\n"); 1120 kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc); 1121 kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions); 1122 1123 for (i = 0; i < 32; i += 4) { 1124 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i, 1125 vcpu->arch.gprs[i], 1126 vcpu->arch.gprs[i + 1], 1127 vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]); 1128 } 1129 kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi); 1130 kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo); 1131 1132 cop0 = vcpu->arch.cop0; 1133 kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n", 1134 kvm_read_c0_guest_status(cop0), 1135 kvm_read_c0_guest_cause(cop0)); 1136 1137 kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0)); 1138 1139 return 0; 1140 } 1141 1142 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 1143 { 1144 int i; 1145 1146 for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++) 1147 vcpu->arch.gprs[i] = regs->gpr[i]; 1148 vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */ 1149 vcpu->arch.hi = regs->hi; 1150 vcpu->arch.lo = regs->lo; 1151 vcpu->arch.pc = regs->pc; 1152 1153 return 0; 1154 } 1155 1156 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 1157 { 1158 int i; 1159 1160 for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++) 1161 regs->gpr[i] = vcpu->arch.gprs[i]; 1162 1163 regs->hi = vcpu->arch.hi; 1164 regs->lo = vcpu->arch.lo; 1165 regs->pc = vcpu->arch.pc; 1166 1167 return 0; 1168 } 1169 1170 static void kvm_mips_comparecount_func(unsigned long data) 1171 { 1172 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data; 1173 1174 kvm_mips_callbacks->queue_timer_int(vcpu); 1175 1176 vcpu->arch.wait = 0; 1177 if (waitqueue_active(&vcpu->wq)) 1178 wake_up_interruptible(&vcpu->wq); 1179 } 1180 1181 /* low level hrtimer wake routine */ 1182 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer) 1183 { 1184 struct kvm_vcpu *vcpu; 1185 1186 vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer); 1187 kvm_mips_comparecount_func((unsigned long) vcpu); 1188 return kvm_mips_count_timeout(vcpu); 1189 } 1190 1191 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 1192 { 1193 kvm_mips_callbacks->vcpu_init(vcpu); 1194 hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC, 1195 HRTIMER_MODE_REL); 1196 vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup; 1197 return 0; 1198 } 1199 1200 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 1201 struct kvm_translation *tr) 1202 { 1203 return 0; 1204 } 1205 1206 /* Initial guest state */ 1207 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) 1208 { 1209 return kvm_mips_callbacks->vcpu_setup(vcpu); 1210 } 1211 1212 static void kvm_mips_set_c0_status(void) 1213 { 1214 uint32_t status = read_c0_status(); 1215 1216 if (cpu_has_dsp) 1217 status |= (ST0_MX); 1218 1219 write_c0_status(status); 1220 ehb(); 1221 } 1222 1223 /* 1224 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV) 1225 */ 1226 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu) 1227 { 1228 uint32_t cause = vcpu->arch.host_cp0_cause; 1229 uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f; 1230 uint32_t __user *opc = (uint32_t __user *) vcpu->arch.pc; 1231 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr; 1232 enum emulation_result er = EMULATE_DONE; 1233 int ret = RESUME_GUEST; 1234 1235 /* re-enable HTW before enabling interrupts */ 1236 htw_start(); 1237 1238 /* Set a default exit reason */ 1239 run->exit_reason = KVM_EXIT_UNKNOWN; 1240 run->ready_for_interrupt_injection = 1; 1241 1242 /* 1243 * Set the appropriate status bits based on host CPU features, 1244 * before we hit the scheduler 1245 */ 1246 kvm_mips_set_c0_status(); 1247 1248 local_irq_enable(); 1249 1250 kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n", 1251 cause, opc, run, vcpu); 1252 1253 /* 1254 * Do a privilege check, if in UM most of these exit conditions end up 1255 * causing an exception to be delivered to the Guest Kernel 1256 */ 1257 er = kvm_mips_check_privilege(cause, opc, run, vcpu); 1258 if (er == EMULATE_PRIV_FAIL) { 1259 goto skip_emul; 1260 } else if (er == EMULATE_FAIL) { 1261 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1262 ret = RESUME_HOST; 1263 goto skip_emul; 1264 } 1265 1266 switch (exccode) { 1267 case EXCCODE_INT: 1268 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc); 1269 1270 ++vcpu->stat.int_exits; 1271 trace_kvm_exit(vcpu, INT_EXITS); 1272 1273 if (need_resched()) 1274 cond_resched(); 1275 1276 ret = RESUME_GUEST; 1277 break; 1278 1279 case EXCCODE_CPU: 1280 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc); 1281 1282 ++vcpu->stat.cop_unusable_exits; 1283 trace_kvm_exit(vcpu, COP_UNUSABLE_EXITS); 1284 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu); 1285 /* XXXKYMA: Might need to return to user space */ 1286 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN) 1287 ret = RESUME_HOST; 1288 break; 1289 1290 case EXCCODE_MOD: 1291 ++vcpu->stat.tlbmod_exits; 1292 trace_kvm_exit(vcpu, TLBMOD_EXITS); 1293 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu); 1294 break; 1295 1296 case EXCCODE_TLBS: 1297 kvm_debug("TLB ST fault: cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n", 1298 cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc, 1299 badvaddr); 1300 1301 ++vcpu->stat.tlbmiss_st_exits; 1302 trace_kvm_exit(vcpu, TLBMISS_ST_EXITS); 1303 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu); 1304 break; 1305 1306 case EXCCODE_TLBL: 1307 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n", 1308 cause, opc, badvaddr); 1309 1310 ++vcpu->stat.tlbmiss_ld_exits; 1311 trace_kvm_exit(vcpu, TLBMISS_LD_EXITS); 1312 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu); 1313 break; 1314 1315 case EXCCODE_ADES: 1316 ++vcpu->stat.addrerr_st_exits; 1317 trace_kvm_exit(vcpu, ADDRERR_ST_EXITS); 1318 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu); 1319 break; 1320 1321 case EXCCODE_ADEL: 1322 ++vcpu->stat.addrerr_ld_exits; 1323 trace_kvm_exit(vcpu, ADDRERR_LD_EXITS); 1324 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu); 1325 break; 1326 1327 case EXCCODE_SYS: 1328 ++vcpu->stat.syscall_exits; 1329 trace_kvm_exit(vcpu, SYSCALL_EXITS); 1330 ret = kvm_mips_callbacks->handle_syscall(vcpu); 1331 break; 1332 1333 case EXCCODE_RI: 1334 ++vcpu->stat.resvd_inst_exits; 1335 trace_kvm_exit(vcpu, RESVD_INST_EXITS); 1336 ret = kvm_mips_callbacks->handle_res_inst(vcpu); 1337 break; 1338 1339 case EXCCODE_BP: 1340 ++vcpu->stat.break_inst_exits; 1341 trace_kvm_exit(vcpu, BREAK_INST_EXITS); 1342 ret = kvm_mips_callbacks->handle_break(vcpu); 1343 break; 1344 1345 case EXCCODE_TR: 1346 ++vcpu->stat.trap_inst_exits; 1347 trace_kvm_exit(vcpu, TRAP_INST_EXITS); 1348 ret = kvm_mips_callbacks->handle_trap(vcpu); 1349 break; 1350 1351 case EXCCODE_MSAFPE: 1352 ++vcpu->stat.msa_fpe_exits; 1353 trace_kvm_exit(vcpu, MSA_FPE_EXITS); 1354 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu); 1355 break; 1356 1357 case EXCCODE_FPE: 1358 ++vcpu->stat.fpe_exits; 1359 trace_kvm_exit(vcpu, FPE_EXITS); 1360 ret = kvm_mips_callbacks->handle_fpe(vcpu); 1361 break; 1362 1363 case EXCCODE_MSADIS: 1364 ++vcpu->stat.msa_disabled_exits; 1365 trace_kvm_exit(vcpu, MSA_DISABLED_EXITS); 1366 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu); 1367 break; 1368 1369 default: 1370 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#lx\n", 1371 exccode, opc, kvm_get_inst(opc, vcpu), badvaddr, 1372 kvm_read_c0_guest_status(vcpu->arch.cop0)); 1373 kvm_arch_vcpu_dump_regs(vcpu); 1374 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1375 ret = RESUME_HOST; 1376 break; 1377 1378 } 1379 1380 skip_emul: 1381 local_irq_disable(); 1382 1383 if (er == EMULATE_DONE && !(ret & RESUME_HOST)) 1384 kvm_mips_deliver_interrupts(vcpu, cause); 1385 1386 if (!(ret & RESUME_HOST)) { 1387 /* Only check for signals if not already exiting to userspace */ 1388 if (signal_pending(current)) { 1389 run->exit_reason = KVM_EXIT_INTR; 1390 ret = (-EINTR << 2) | RESUME_HOST; 1391 ++vcpu->stat.signal_exits; 1392 trace_kvm_exit(vcpu, SIGNAL_EXITS); 1393 } 1394 } 1395 1396 if (ret == RESUME_GUEST) { 1397 /* 1398 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context 1399 * is live), restore FCR31 / MSACSR. 1400 * 1401 * This should be before returning to the guest exception 1402 * vector, as it may well cause an [MSA] FP exception if there 1403 * are pending exception bits unmasked. (see 1404 * kvm_mips_csr_die_notifier() for how that is handled). 1405 */ 1406 if (kvm_mips_guest_has_fpu(&vcpu->arch) && 1407 read_c0_status() & ST0_CU1) 1408 __kvm_restore_fcsr(&vcpu->arch); 1409 1410 if (kvm_mips_guest_has_msa(&vcpu->arch) && 1411 read_c0_config5() & MIPS_CONF5_MSAEN) 1412 __kvm_restore_msacsr(&vcpu->arch); 1413 } 1414 1415 /* Disable HTW before returning to guest or host */ 1416 htw_stop(); 1417 1418 return ret; 1419 } 1420 1421 /* Enable FPU for guest and restore context */ 1422 void kvm_own_fpu(struct kvm_vcpu *vcpu) 1423 { 1424 struct mips_coproc *cop0 = vcpu->arch.cop0; 1425 unsigned int sr, cfg5; 1426 1427 preempt_disable(); 1428 1429 sr = kvm_read_c0_guest_status(cop0); 1430 1431 /* 1432 * If MSA state is already live, it is undefined how it interacts with 1433 * FR=0 FPU state, and we don't want to hit reserved instruction 1434 * exceptions trying to save the MSA state later when CU=1 && FR=1, so 1435 * play it safe and save it first. 1436 * 1437 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should 1438 * get called when guest CU1 is set, however we can't trust the guest 1439 * not to clobber the status register directly via the commpage. 1440 */ 1441 if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) && 1442 vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) 1443 kvm_lose_fpu(vcpu); 1444 1445 /* 1446 * Enable FPU for guest 1447 * We set FR and FRE according to guest context 1448 */ 1449 change_c0_status(ST0_CU1 | ST0_FR, sr); 1450 if (cpu_has_fre) { 1451 cfg5 = kvm_read_c0_guest_config5(cop0); 1452 change_c0_config5(MIPS_CONF5_FRE, cfg5); 1453 } 1454 enable_fpu_hazard(); 1455 1456 /* If guest FPU state not active, restore it now */ 1457 if (!(vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)) { 1458 __kvm_restore_fpu(&vcpu->arch); 1459 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU; 1460 } 1461 1462 preempt_enable(); 1463 } 1464 1465 #ifdef CONFIG_CPU_HAS_MSA 1466 /* Enable MSA for guest and restore context */ 1467 void kvm_own_msa(struct kvm_vcpu *vcpu) 1468 { 1469 struct mips_coproc *cop0 = vcpu->arch.cop0; 1470 unsigned int sr, cfg5; 1471 1472 preempt_disable(); 1473 1474 /* 1475 * Enable FPU if enabled in guest, since we're restoring FPU context 1476 * anyway. We set FR and FRE according to guest context. 1477 */ 1478 if (kvm_mips_guest_has_fpu(&vcpu->arch)) { 1479 sr = kvm_read_c0_guest_status(cop0); 1480 1481 /* 1482 * If FR=0 FPU state is already live, it is undefined how it 1483 * interacts with MSA state, so play it safe and save it first. 1484 */ 1485 if (!(sr & ST0_FR) && 1486 (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU | 1487 KVM_MIPS_FPU_MSA)) == KVM_MIPS_FPU_FPU) 1488 kvm_lose_fpu(vcpu); 1489 1490 change_c0_status(ST0_CU1 | ST0_FR, sr); 1491 if (sr & ST0_CU1 && cpu_has_fre) { 1492 cfg5 = kvm_read_c0_guest_config5(cop0); 1493 change_c0_config5(MIPS_CONF5_FRE, cfg5); 1494 } 1495 } 1496 1497 /* Enable MSA for guest */ 1498 set_c0_config5(MIPS_CONF5_MSAEN); 1499 enable_fpu_hazard(); 1500 1501 switch (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA)) { 1502 case KVM_MIPS_FPU_FPU: 1503 /* 1504 * Guest FPU state already loaded, only restore upper MSA state 1505 */ 1506 __kvm_restore_msa_upper(&vcpu->arch); 1507 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA; 1508 break; 1509 case 0: 1510 /* Neither FPU or MSA already active, restore full MSA state */ 1511 __kvm_restore_msa(&vcpu->arch); 1512 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA; 1513 if (kvm_mips_guest_has_fpu(&vcpu->arch)) 1514 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU; 1515 break; 1516 default: 1517 break; 1518 } 1519 1520 preempt_enable(); 1521 } 1522 #endif 1523 1524 /* Drop FPU & MSA without saving it */ 1525 void kvm_drop_fpu(struct kvm_vcpu *vcpu) 1526 { 1527 preempt_disable(); 1528 if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) { 1529 disable_msa(); 1530 vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_MSA; 1531 } 1532 if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) { 1533 clear_c0_status(ST0_CU1 | ST0_FR); 1534 vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU; 1535 } 1536 preempt_enable(); 1537 } 1538 1539 /* Save and disable FPU & MSA */ 1540 void kvm_lose_fpu(struct kvm_vcpu *vcpu) 1541 { 1542 /* 1543 * FPU & MSA get disabled in root context (hardware) when it is disabled 1544 * in guest context (software), but the register state in the hardware 1545 * may still be in use. This is why we explicitly re-enable the hardware 1546 * before saving. 1547 */ 1548 1549 preempt_disable(); 1550 if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) { 1551 set_c0_config5(MIPS_CONF5_MSAEN); 1552 enable_fpu_hazard(); 1553 1554 __kvm_save_msa(&vcpu->arch); 1555 1556 /* Disable MSA & FPU */ 1557 disable_msa(); 1558 if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) 1559 clear_c0_status(ST0_CU1 | ST0_FR); 1560 vcpu->arch.fpu_inuse &= ~(KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA); 1561 } else if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) { 1562 set_c0_status(ST0_CU1); 1563 enable_fpu_hazard(); 1564 1565 __kvm_save_fpu(&vcpu->arch); 1566 vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU; 1567 1568 /* Disable FPU */ 1569 clear_c0_status(ST0_CU1 | ST0_FR); 1570 } 1571 preempt_enable(); 1572 } 1573 1574 /* 1575 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are 1576 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP 1577 * exception if cause bits are set in the value being written. 1578 */ 1579 static int kvm_mips_csr_die_notify(struct notifier_block *self, 1580 unsigned long cmd, void *ptr) 1581 { 1582 struct die_args *args = (struct die_args *)ptr; 1583 struct pt_regs *regs = args->regs; 1584 unsigned long pc; 1585 1586 /* Only interested in FPE and MSAFPE */ 1587 if (cmd != DIE_FP && cmd != DIE_MSAFP) 1588 return NOTIFY_DONE; 1589 1590 /* Return immediately if guest context isn't active */ 1591 if (!(current->flags & PF_VCPU)) 1592 return NOTIFY_DONE; 1593 1594 /* Should never get here from user mode */ 1595 BUG_ON(user_mode(regs)); 1596 1597 pc = instruction_pointer(regs); 1598 switch (cmd) { 1599 case DIE_FP: 1600 /* match 2nd instruction in __kvm_restore_fcsr */ 1601 if (pc != (unsigned long)&__kvm_restore_fcsr + 4) 1602 return NOTIFY_DONE; 1603 break; 1604 case DIE_MSAFP: 1605 /* match 2nd/3rd instruction in __kvm_restore_msacsr */ 1606 if (!cpu_has_msa || 1607 pc < (unsigned long)&__kvm_restore_msacsr + 4 || 1608 pc > (unsigned long)&__kvm_restore_msacsr + 8) 1609 return NOTIFY_DONE; 1610 break; 1611 } 1612 1613 /* Move PC forward a little and continue executing */ 1614 instruction_pointer(regs) += 4; 1615 1616 return NOTIFY_STOP; 1617 } 1618 1619 static struct notifier_block kvm_mips_csr_die_notifier = { 1620 .notifier_call = kvm_mips_csr_die_notify, 1621 }; 1622 1623 static int __init kvm_mips_init(void) 1624 { 1625 int ret; 1626 1627 ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); 1628 1629 if (ret) 1630 return ret; 1631 1632 register_die_notifier(&kvm_mips_csr_die_notifier); 1633 1634 /* 1635 * On MIPS, kernel modules are executed from "mapped space", which 1636 * requires TLBs. The TLB handling code is statically linked with 1637 * the rest of the kernel (tlb.c) to avoid the possibility of 1638 * double faulting. The issue is that the TLB code references 1639 * routines that are part of the the KVM module, which are only 1640 * available once the module is loaded. 1641 */ 1642 kvm_mips_gfn_to_pfn = gfn_to_pfn; 1643 kvm_mips_release_pfn_clean = kvm_release_pfn_clean; 1644 kvm_mips_is_error_pfn = is_error_pfn; 1645 1646 return 0; 1647 } 1648 1649 static void __exit kvm_mips_exit(void) 1650 { 1651 kvm_exit(); 1652 1653 kvm_mips_gfn_to_pfn = NULL; 1654 kvm_mips_release_pfn_clean = NULL; 1655 kvm_mips_is_error_pfn = NULL; 1656 1657 unregister_die_notifier(&kvm_mips_csr_die_notifier); 1658 } 1659 1660 module_init(kvm_mips_init); 1661 module_exit(kvm_mips_exit); 1662 1663 EXPORT_TRACEPOINT_SYMBOL(kvm_exit); 1664