xref: /openbmc/linux/arch/mips/kvm/mips.c (revision 827634ad)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: MIPS specific KVM APIs
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11 
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/kdebug.h>
15 #include <linux/module.h>
16 #include <linux/vmalloc.h>
17 #include <linux/fs.h>
18 #include <linux/bootmem.h>
19 #include <asm/fpu.h>
20 #include <asm/page.h>
21 #include <asm/cacheflush.h>
22 #include <asm/mmu_context.h>
23 #include <asm/pgtable.h>
24 
25 #include <linux/kvm_host.h>
26 
27 #include "interrupt.h"
28 #include "commpage.h"
29 
30 #define CREATE_TRACE_POINTS
31 #include "trace.h"
32 
33 #ifndef VECTORSPACING
34 #define VECTORSPACING 0x100	/* for EI/VI mode */
35 #endif
36 
37 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
38 struct kvm_stats_debugfs_item debugfs_entries[] = {
39 	{ "wait",	  VCPU_STAT(wait_exits),	 KVM_STAT_VCPU },
40 	{ "cache",	  VCPU_STAT(cache_exits),	 KVM_STAT_VCPU },
41 	{ "signal",	  VCPU_STAT(signal_exits),	 KVM_STAT_VCPU },
42 	{ "interrupt",	  VCPU_STAT(int_exits),		 KVM_STAT_VCPU },
43 	{ "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
44 	{ "tlbmod",	  VCPU_STAT(tlbmod_exits),	 KVM_STAT_VCPU },
45 	{ "tlbmiss_ld",	  VCPU_STAT(tlbmiss_ld_exits),	 KVM_STAT_VCPU },
46 	{ "tlbmiss_st",	  VCPU_STAT(tlbmiss_st_exits),	 KVM_STAT_VCPU },
47 	{ "addrerr_st",	  VCPU_STAT(addrerr_st_exits),	 KVM_STAT_VCPU },
48 	{ "addrerr_ld",	  VCPU_STAT(addrerr_ld_exits),	 KVM_STAT_VCPU },
49 	{ "syscall",	  VCPU_STAT(syscall_exits),	 KVM_STAT_VCPU },
50 	{ "resvd_inst",	  VCPU_STAT(resvd_inst_exits),	 KVM_STAT_VCPU },
51 	{ "break_inst",	  VCPU_STAT(break_inst_exits),	 KVM_STAT_VCPU },
52 	{ "trap_inst",	  VCPU_STAT(trap_inst_exits),	 KVM_STAT_VCPU },
53 	{ "msa_fpe",	  VCPU_STAT(msa_fpe_exits),	 KVM_STAT_VCPU },
54 	{ "fpe",	  VCPU_STAT(fpe_exits),		 KVM_STAT_VCPU },
55 	{ "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
56 	{ "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
57 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
58 	{ "halt_wakeup",  VCPU_STAT(halt_wakeup),	 KVM_STAT_VCPU },
59 	{NULL}
60 };
61 
62 static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
63 {
64 	int i;
65 
66 	for_each_possible_cpu(i) {
67 		vcpu->arch.guest_kernel_asid[i] = 0;
68 		vcpu->arch.guest_user_asid[i] = 0;
69 	}
70 
71 	return 0;
72 }
73 
74 /*
75  * XXXKYMA: We are simulatoring a processor that has the WII bit set in
76  * Config7, so we are "runnable" if interrupts are pending
77  */
78 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
79 {
80 	return !!(vcpu->arch.pending_exceptions);
81 }
82 
83 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
84 {
85 	return 1;
86 }
87 
88 int kvm_arch_hardware_enable(void)
89 {
90 	return 0;
91 }
92 
93 int kvm_arch_hardware_setup(void)
94 {
95 	return 0;
96 }
97 
98 void kvm_arch_check_processor_compat(void *rtn)
99 {
100 	*(int *)rtn = 0;
101 }
102 
103 static void kvm_mips_init_tlbs(struct kvm *kvm)
104 {
105 	unsigned long wired;
106 
107 	/*
108 	 * Add a wired entry to the TLB, it is used to map the commpage to
109 	 * the Guest kernel
110 	 */
111 	wired = read_c0_wired();
112 	write_c0_wired(wired + 1);
113 	mtc0_tlbw_hazard();
114 	kvm->arch.commpage_tlb = wired;
115 
116 	kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
117 		  kvm->arch.commpage_tlb);
118 }
119 
120 static void kvm_mips_init_vm_percpu(void *arg)
121 {
122 	struct kvm *kvm = (struct kvm *)arg;
123 
124 	kvm_mips_init_tlbs(kvm);
125 	kvm_mips_callbacks->vm_init(kvm);
126 
127 }
128 
129 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
130 {
131 	if (atomic_inc_return(&kvm_mips_instance) == 1) {
132 		kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
133 			  __func__);
134 		on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
135 	}
136 
137 	return 0;
138 }
139 
140 void kvm_mips_free_vcpus(struct kvm *kvm)
141 {
142 	unsigned int i;
143 	struct kvm_vcpu *vcpu;
144 
145 	/* Put the pages we reserved for the guest pmap */
146 	for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
147 		if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
148 			kvm_mips_release_pfn_clean(kvm->arch.guest_pmap[i]);
149 	}
150 	kfree(kvm->arch.guest_pmap);
151 
152 	kvm_for_each_vcpu(i, vcpu, kvm) {
153 		kvm_arch_vcpu_free(vcpu);
154 	}
155 
156 	mutex_lock(&kvm->lock);
157 
158 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
159 		kvm->vcpus[i] = NULL;
160 
161 	atomic_set(&kvm->online_vcpus, 0);
162 
163 	mutex_unlock(&kvm->lock);
164 }
165 
166 static void kvm_mips_uninit_tlbs(void *arg)
167 {
168 	/* Restore wired count */
169 	write_c0_wired(0);
170 	mtc0_tlbw_hazard();
171 	/* Clear out all the TLBs */
172 	kvm_local_flush_tlb_all();
173 }
174 
175 void kvm_arch_destroy_vm(struct kvm *kvm)
176 {
177 	kvm_mips_free_vcpus(kvm);
178 
179 	/* If this is the last instance, restore wired count */
180 	if (atomic_dec_return(&kvm_mips_instance) == 0) {
181 		kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
182 			  __func__);
183 		on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
184 	}
185 }
186 
187 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
188 			unsigned long arg)
189 {
190 	return -ENOIOCTLCMD;
191 }
192 
193 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
194 			    unsigned long npages)
195 {
196 	return 0;
197 }
198 
199 int kvm_arch_prepare_memory_region(struct kvm *kvm,
200 				   struct kvm_memory_slot *memslot,
201 				   struct kvm_userspace_memory_region *mem,
202 				   enum kvm_mr_change change)
203 {
204 	return 0;
205 }
206 
207 void kvm_arch_commit_memory_region(struct kvm *kvm,
208 				   struct kvm_userspace_memory_region *mem,
209 				   const struct kvm_memory_slot *old,
210 				   enum kvm_mr_change change)
211 {
212 	unsigned long npages = 0;
213 	int i;
214 
215 	kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
216 		  __func__, kvm, mem->slot, mem->guest_phys_addr,
217 		  mem->memory_size, mem->userspace_addr);
218 
219 	/* Setup Guest PMAP table */
220 	if (!kvm->arch.guest_pmap) {
221 		if (mem->slot == 0)
222 			npages = mem->memory_size >> PAGE_SHIFT;
223 
224 		if (npages) {
225 			kvm->arch.guest_pmap_npages = npages;
226 			kvm->arch.guest_pmap =
227 			    kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
228 
229 			if (!kvm->arch.guest_pmap) {
230 				kvm_err("Failed to allocate guest PMAP");
231 				return;
232 			}
233 
234 			kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
235 				  npages, kvm->arch.guest_pmap);
236 
237 			/* Now setup the page table */
238 			for (i = 0; i < npages; i++)
239 				kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
240 		}
241 	}
242 }
243 
244 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
245 {
246 	int err, size, offset;
247 	void *gebase;
248 	int i;
249 
250 	struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
251 
252 	if (!vcpu) {
253 		err = -ENOMEM;
254 		goto out;
255 	}
256 
257 	err = kvm_vcpu_init(vcpu, kvm, id);
258 
259 	if (err)
260 		goto out_free_cpu;
261 
262 	kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
263 
264 	/*
265 	 * Allocate space for host mode exception handlers that handle
266 	 * guest mode exits
267 	 */
268 	if (cpu_has_veic || cpu_has_vint)
269 		size = 0x200 + VECTORSPACING * 64;
270 	else
271 		size = 0x4000;
272 
273 	/* Save Linux EBASE */
274 	vcpu->arch.host_ebase = (void *)read_c0_ebase();
275 
276 	gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
277 
278 	if (!gebase) {
279 		err = -ENOMEM;
280 		goto out_free_cpu;
281 	}
282 	kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
283 		  ALIGN(size, PAGE_SIZE), gebase);
284 
285 	/* Save new ebase */
286 	vcpu->arch.guest_ebase = gebase;
287 
288 	/* Copy L1 Guest Exception handler to correct offset */
289 
290 	/* TLB Refill, EXL = 0 */
291 	memcpy(gebase, mips32_exception,
292 	       mips32_exceptionEnd - mips32_exception);
293 
294 	/* General Exception Entry point */
295 	memcpy(gebase + 0x180, mips32_exception,
296 	       mips32_exceptionEnd - mips32_exception);
297 
298 	/* For vectored interrupts poke the exception code @ all offsets 0-7 */
299 	for (i = 0; i < 8; i++) {
300 		kvm_debug("L1 Vectored handler @ %p\n",
301 			  gebase + 0x200 + (i * VECTORSPACING));
302 		memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception,
303 		       mips32_exceptionEnd - mips32_exception);
304 	}
305 
306 	/* General handler, relocate to unmapped space for sanity's sake */
307 	offset = 0x2000;
308 	kvm_debug("Installing KVM Exception handlers @ %p, %#x bytes\n",
309 		  gebase + offset,
310 		  mips32_GuestExceptionEnd - mips32_GuestException);
311 
312 	memcpy(gebase + offset, mips32_GuestException,
313 	       mips32_GuestExceptionEnd - mips32_GuestException);
314 
315 	/* Invalidate the icache for these ranges */
316 	local_flush_icache_range((unsigned long)gebase,
317 				(unsigned long)gebase + ALIGN(size, PAGE_SIZE));
318 
319 	/*
320 	 * Allocate comm page for guest kernel, a TLB will be reserved for
321 	 * mapping GVA @ 0xFFFF8000 to this page
322 	 */
323 	vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
324 
325 	if (!vcpu->arch.kseg0_commpage) {
326 		err = -ENOMEM;
327 		goto out_free_gebase;
328 	}
329 
330 	kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
331 	kvm_mips_commpage_init(vcpu);
332 
333 	/* Init */
334 	vcpu->arch.last_sched_cpu = -1;
335 
336 	/* Start off the timer */
337 	kvm_mips_init_count(vcpu);
338 
339 	return vcpu;
340 
341 out_free_gebase:
342 	kfree(gebase);
343 
344 out_free_cpu:
345 	kfree(vcpu);
346 
347 out:
348 	return ERR_PTR(err);
349 }
350 
351 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
352 {
353 	hrtimer_cancel(&vcpu->arch.comparecount_timer);
354 
355 	kvm_vcpu_uninit(vcpu);
356 
357 	kvm_mips_dump_stats(vcpu);
358 
359 	kfree(vcpu->arch.guest_ebase);
360 	kfree(vcpu->arch.kseg0_commpage);
361 	kfree(vcpu);
362 }
363 
364 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
365 {
366 	kvm_arch_vcpu_free(vcpu);
367 }
368 
369 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
370 					struct kvm_guest_debug *dbg)
371 {
372 	return -ENOIOCTLCMD;
373 }
374 
375 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
376 {
377 	int r = 0;
378 	sigset_t sigsaved;
379 
380 	if (vcpu->sigset_active)
381 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
382 
383 	if (vcpu->mmio_needed) {
384 		if (!vcpu->mmio_is_write)
385 			kvm_mips_complete_mmio_load(vcpu, run);
386 		vcpu->mmio_needed = 0;
387 	}
388 
389 	lose_fpu(1);
390 
391 	local_irq_disable();
392 	/* Check if we have any exceptions/interrupts pending */
393 	kvm_mips_deliver_interrupts(vcpu,
394 				    kvm_read_c0_guest_cause(vcpu->arch.cop0));
395 
396 	kvm_guest_enter();
397 
398 	/* Disable hardware page table walking while in guest */
399 	htw_stop();
400 
401 	r = __kvm_mips_vcpu_run(run, vcpu);
402 
403 	/* Re-enable HTW before enabling interrupts */
404 	htw_start();
405 
406 	kvm_guest_exit();
407 	local_irq_enable();
408 
409 	if (vcpu->sigset_active)
410 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
411 
412 	return r;
413 }
414 
415 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
416 			     struct kvm_mips_interrupt *irq)
417 {
418 	int intr = (int)irq->irq;
419 	struct kvm_vcpu *dvcpu = NULL;
420 
421 	if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
422 		kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
423 			  (int)intr);
424 
425 	if (irq->cpu == -1)
426 		dvcpu = vcpu;
427 	else
428 		dvcpu = vcpu->kvm->vcpus[irq->cpu];
429 
430 	if (intr == 2 || intr == 3 || intr == 4) {
431 		kvm_mips_callbacks->queue_io_int(dvcpu, irq);
432 
433 	} else if (intr == -2 || intr == -3 || intr == -4) {
434 		kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
435 	} else {
436 		kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
437 			irq->cpu, irq->irq);
438 		return -EINVAL;
439 	}
440 
441 	dvcpu->arch.wait = 0;
442 
443 	if (waitqueue_active(&dvcpu->wq))
444 		wake_up_interruptible(&dvcpu->wq);
445 
446 	return 0;
447 }
448 
449 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
450 				    struct kvm_mp_state *mp_state)
451 {
452 	return -ENOIOCTLCMD;
453 }
454 
455 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
456 				    struct kvm_mp_state *mp_state)
457 {
458 	return -ENOIOCTLCMD;
459 }
460 
461 static u64 kvm_mips_get_one_regs[] = {
462 	KVM_REG_MIPS_R0,
463 	KVM_REG_MIPS_R1,
464 	KVM_REG_MIPS_R2,
465 	KVM_REG_MIPS_R3,
466 	KVM_REG_MIPS_R4,
467 	KVM_REG_MIPS_R5,
468 	KVM_REG_MIPS_R6,
469 	KVM_REG_MIPS_R7,
470 	KVM_REG_MIPS_R8,
471 	KVM_REG_MIPS_R9,
472 	KVM_REG_MIPS_R10,
473 	KVM_REG_MIPS_R11,
474 	KVM_REG_MIPS_R12,
475 	KVM_REG_MIPS_R13,
476 	KVM_REG_MIPS_R14,
477 	KVM_REG_MIPS_R15,
478 	KVM_REG_MIPS_R16,
479 	KVM_REG_MIPS_R17,
480 	KVM_REG_MIPS_R18,
481 	KVM_REG_MIPS_R19,
482 	KVM_REG_MIPS_R20,
483 	KVM_REG_MIPS_R21,
484 	KVM_REG_MIPS_R22,
485 	KVM_REG_MIPS_R23,
486 	KVM_REG_MIPS_R24,
487 	KVM_REG_MIPS_R25,
488 	KVM_REG_MIPS_R26,
489 	KVM_REG_MIPS_R27,
490 	KVM_REG_MIPS_R28,
491 	KVM_REG_MIPS_R29,
492 	KVM_REG_MIPS_R30,
493 	KVM_REG_MIPS_R31,
494 
495 	KVM_REG_MIPS_HI,
496 	KVM_REG_MIPS_LO,
497 	KVM_REG_MIPS_PC,
498 
499 	KVM_REG_MIPS_CP0_INDEX,
500 	KVM_REG_MIPS_CP0_CONTEXT,
501 	KVM_REG_MIPS_CP0_USERLOCAL,
502 	KVM_REG_MIPS_CP0_PAGEMASK,
503 	KVM_REG_MIPS_CP0_WIRED,
504 	KVM_REG_MIPS_CP0_HWRENA,
505 	KVM_REG_MIPS_CP0_BADVADDR,
506 	KVM_REG_MIPS_CP0_COUNT,
507 	KVM_REG_MIPS_CP0_ENTRYHI,
508 	KVM_REG_MIPS_CP0_COMPARE,
509 	KVM_REG_MIPS_CP0_STATUS,
510 	KVM_REG_MIPS_CP0_CAUSE,
511 	KVM_REG_MIPS_CP0_EPC,
512 	KVM_REG_MIPS_CP0_PRID,
513 	KVM_REG_MIPS_CP0_CONFIG,
514 	KVM_REG_MIPS_CP0_CONFIG1,
515 	KVM_REG_MIPS_CP0_CONFIG2,
516 	KVM_REG_MIPS_CP0_CONFIG3,
517 	KVM_REG_MIPS_CP0_CONFIG4,
518 	KVM_REG_MIPS_CP0_CONFIG5,
519 	KVM_REG_MIPS_CP0_CONFIG7,
520 	KVM_REG_MIPS_CP0_ERROREPC,
521 
522 	KVM_REG_MIPS_COUNT_CTL,
523 	KVM_REG_MIPS_COUNT_RESUME,
524 	KVM_REG_MIPS_COUNT_HZ,
525 };
526 
527 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
528 			    const struct kvm_one_reg *reg)
529 {
530 	struct mips_coproc *cop0 = vcpu->arch.cop0;
531 	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
532 	int ret;
533 	s64 v;
534 	s64 vs[2];
535 	unsigned int idx;
536 
537 	switch (reg->id) {
538 	/* General purpose registers */
539 	case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
540 		v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
541 		break;
542 	case KVM_REG_MIPS_HI:
543 		v = (long)vcpu->arch.hi;
544 		break;
545 	case KVM_REG_MIPS_LO:
546 		v = (long)vcpu->arch.lo;
547 		break;
548 	case KVM_REG_MIPS_PC:
549 		v = (long)vcpu->arch.pc;
550 		break;
551 
552 	/* Floating point registers */
553 	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
554 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
555 			return -EINVAL;
556 		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
557 		/* Odd singles in top of even double when FR=0 */
558 		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
559 			v = get_fpr32(&fpu->fpr[idx], 0);
560 		else
561 			v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
562 		break;
563 	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
564 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
565 			return -EINVAL;
566 		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
567 		/* Can't access odd doubles in FR=0 mode */
568 		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
569 			return -EINVAL;
570 		v = get_fpr64(&fpu->fpr[idx], 0);
571 		break;
572 	case KVM_REG_MIPS_FCR_IR:
573 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
574 			return -EINVAL;
575 		v = boot_cpu_data.fpu_id;
576 		break;
577 	case KVM_REG_MIPS_FCR_CSR:
578 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
579 			return -EINVAL;
580 		v = fpu->fcr31;
581 		break;
582 
583 	/* MIPS SIMD Architecture (MSA) registers */
584 	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
585 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
586 			return -EINVAL;
587 		/* Can't access MSA registers in FR=0 mode */
588 		if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
589 			return -EINVAL;
590 		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
591 #ifdef CONFIG_CPU_LITTLE_ENDIAN
592 		/* least significant byte first */
593 		vs[0] = get_fpr64(&fpu->fpr[idx], 0);
594 		vs[1] = get_fpr64(&fpu->fpr[idx], 1);
595 #else
596 		/* most significant byte first */
597 		vs[0] = get_fpr64(&fpu->fpr[idx], 1);
598 		vs[1] = get_fpr64(&fpu->fpr[idx], 0);
599 #endif
600 		break;
601 	case KVM_REG_MIPS_MSA_IR:
602 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
603 			return -EINVAL;
604 		v = boot_cpu_data.msa_id;
605 		break;
606 	case KVM_REG_MIPS_MSA_CSR:
607 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
608 			return -EINVAL;
609 		v = fpu->msacsr;
610 		break;
611 
612 	/* Co-processor 0 registers */
613 	case KVM_REG_MIPS_CP0_INDEX:
614 		v = (long)kvm_read_c0_guest_index(cop0);
615 		break;
616 	case KVM_REG_MIPS_CP0_CONTEXT:
617 		v = (long)kvm_read_c0_guest_context(cop0);
618 		break;
619 	case KVM_REG_MIPS_CP0_USERLOCAL:
620 		v = (long)kvm_read_c0_guest_userlocal(cop0);
621 		break;
622 	case KVM_REG_MIPS_CP0_PAGEMASK:
623 		v = (long)kvm_read_c0_guest_pagemask(cop0);
624 		break;
625 	case KVM_REG_MIPS_CP0_WIRED:
626 		v = (long)kvm_read_c0_guest_wired(cop0);
627 		break;
628 	case KVM_REG_MIPS_CP0_HWRENA:
629 		v = (long)kvm_read_c0_guest_hwrena(cop0);
630 		break;
631 	case KVM_REG_MIPS_CP0_BADVADDR:
632 		v = (long)kvm_read_c0_guest_badvaddr(cop0);
633 		break;
634 	case KVM_REG_MIPS_CP0_ENTRYHI:
635 		v = (long)kvm_read_c0_guest_entryhi(cop0);
636 		break;
637 	case KVM_REG_MIPS_CP0_COMPARE:
638 		v = (long)kvm_read_c0_guest_compare(cop0);
639 		break;
640 	case KVM_REG_MIPS_CP0_STATUS:
641 		v = (long)kvm_read_c0_guest_status(cop0);
642 		break;
643 	case KVM_REG_MIPS_CP0_CAUSE:
644 		v = (long)kvm_read_c0_guest_cause(cop0);
645 		break;
646 	case KVM_REG_MIPS_CP0_EPC:
647 		v = (long)kvm_read_c0_guest_epc(cop0);
648 		break;
649 	case KVM_REG_MIPS_CP0_PRID:
650 		v = (long)kvm_read_c0_guest_prid(cop0);
651 		break;
652 	case KVM_REG_MIPS_CP0_CONFIG:
653 		v = (long)kvm_read_c0_guest_config(cop0);
654 		break;
655 	case KVM_REG_MIPS_CP0_CONFIG1:
656 		v = (long)kvm_read_c0_guest_config1(cop0);
657 		break;
658 	case KVM_REG_MIPS_CP0_CONFIG2:
659 		v = (long)kvm_read_c0_guest_config2(cop0);
660 		break;
661 	case KVM_REG_MIPS_CP0_CONFIG3:
662 		v = (long)kvm_read_c0_guest_config3(cop0);
663 		break;
664 	case KVM_REG_MIPS_CP0_CONFIG4:
665 		v = (long)kvm_read_c0_guest_config4(cop0);
666 		break;
667 	case KVM_REG_MIPS_CP0_CONFIG5:
668 		v = (long)kvm_read_c0_guest_config5(cop0);
669 		break;
670 	case KVM_REG_MIPS_CP0_CONFIG7:
671 		v = (long)kvm_read_c0_guest_config7(cop0);
672 		break;
673 	case KVM_REG_MIPS_CP0_ERROREPC:
674 		v = (long)kvm_read_c0_guest_errorepc(cop0);
675 		break;
676 	/* registers to be handled specially */
677 	case KVM_REG_MIPS_CP0_COUNT:
678 	case KVM_REG_MIPS_COUNT_CTL:
679 	case KVM_REG_MIPS_COUNT_RESUME:
680 	case KVM_REG_MIPS_COUNT_HZ:
681 		ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
682 		if (ret)
683 			return ret;
684 		break;
685 	default:
686 		return -EINVAL;
687 	}
688 	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
689 		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
690 
691 		return put_user(v, uaddr64);
692 	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
693 		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
694 		u32 v32 = (u32)v;
695 
696 		return put_user(v32, uaddr32);
697 	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
698 		void __user *uaddr = (void __user *)(long)reg->addr;
699 
700 		return copy_to_user(uaddr, vs, 16);
701 	} else {
702 		return -EINVAL;
703 	}
704 }
705 
706 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
707 			    const struct kvm_one_reg *reg)
708 {
709 	struct mips_coproc *cop0 = vcpu->arch.cop0;
710 	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
711 	s64 v;
712 	s64 vs[2];
713 	unsigned int idx;
714 
715 	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
716 		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
717 
718 		if (get_user(v, uaddr64) != 0)
719 			return -EFAULT;
720 	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
721 		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
722 		s32 v32;
723 
724 		if (get_user(v32, uaddr32) != 0)
725 			return -EFAULT;
726 		v = (s64)v32;
727 	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
728 		void __user *uaddr = (void __user *)(long)reg->addr;
729 
730 		return copy_from_user(vs, uaddr, 16);
731 	} else {
732 		return -EINVAL;
733 	}
734 
735 	switch (reg->id) {
736 	/* General purpose registers */
737 	case KVM_REG_MIPS_R0:
738 		/* Silently ignore requests to set $0 */
739 		break;
740 	case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
741 		vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
742 		break;
743 	case KVM_REG_MIPS_HI:
744 		vcpu->arch.hi = v;
745 		break;
746 	case KVM_REG_MIPS_LO:
747 		vcpu->arch.lo = v;
748 		break;
749 	case KVM_REG_MIPS_PC:
750 		vcpu->arch.pc = v;
751 		break;
752 
753 	/* Floating point registers */
754 	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
755 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
756 			return -EINVAL;
757 		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
758 		/* Odd singles in top of even double when FR=0 */
759 		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
760 			set_fpr32(&fpu->fpr[idx], 0, v);
761 		else
762 			set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
763 		break;
764 	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
765 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
766 			return -EINVAL;
767 		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
768 		/* Can't access odd doubles in FR=0 mode */
769 		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
770 			return -EINVAL;
771 		set_fpr64(&fpu->fpr[idx], 0, v);
772 		break;
773 	case KVM_REG_MIPS_FCR_IR:
774 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
775 			return -EINVAL;
776 		/* Read-only */
777 		break;
778 	case KVM_REG_MIPS_FCR_CSR:
779 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
780 			return -EINVAL;
781 		fpu->fcr31 = v;
782 		break;
783 
784 	/* MIPS SIMD Architecture (MSA) registers */
785 	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
786 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
787 			return -EINVAL;
788 		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
789 #ifdef CONFIG_CPU_LITTLE_ENDIAN
790 		/* least significant byte first */
791 		set_fpr64(&fpu->fpr[idx], 0, vs[0]);
792 		set_fpr64(&fpu->fpr[idx], 1, vs[1]);
793 #else
794 		/* most significant byte first */
795 		set_fpr64(&fpu->fpr[idx], 1, vs[0]);
796 		set_fpr64(&fpu->fpr[idx], 0, vs[1]);
797 #endif
798 		break;
799 	case KVM_REG_MIPS_MSA_IR:
800 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
801 			return -EINVAL;
802 		/* Read-only */
803 		break;
804 	case KVM_REG_MIPS_MSA_CSR:
805 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
806 			return -EINVAL;
807 		fpu->msacsr = v;
808 		break;
809 
810 	/* Co-processor 0 registers */
811 	case KVM_REG_MIPS_CP0_INDEX:
812 		kvm_write_c0_guest_index(cop0, v);
813 		break;
814 	case KVM_REG_MIPS_CP0_CONTEXT:
815 		kvm_write_c0_guest_context(cop0, v);
816 		break;
817 	case KVM_REG_MIPS_CP0_USERLOCAL:
818 		kvm_write_c0_guest_userlocal(cop0, v);
819 		break;
820 	case KVM_REG_MIPS_CP0_PAGEMASK:
821 		kvm_write_c0_guest_pagemask(cop0, v);
822 		break;
823 	case KVM_REG_MIPS_CP0_WIRED:
824 		kvm_write_c0_guest_wired(cop0, v);
825 		break;
826 	case KVM_REG_MIPS_CP0_HWRENA:
827 		kvm_write_c0_guest_hwrena(cop0, v);
828 		break;
829 	case KVM_REG_MIPS_CP0_BADVADDR:
830 		kvm_write_c0_guest_badvaddr(cop0, v);
831 		break;
832 	case KVM_REG_MIPS_CP0_ENTRYHI:
833 		kvm_write_c0_guest_entryhi(cop0, v);
834 		break;
835 	case KVM_REG_MIPS_CP0_STATUS:
836 		kvm_write_c0_guest_status(cop0, v);
837 		break;
838 	case KVM_REG_MIPS_CP0_EPC:
839 		kvm_write_c0_guest_epc(cop0, v);
840 		break;
841 	case KVM_REG_MIPS_CP0_PRID:
842 		kvm_write_c0_guest_prid(cop0, v);
843 		break;
844 	case KVM_REG_MIPS_CP0_ERROREPC:
845 		kvm_write_c0_guest_errorepc(cop0, v);
846 		break;
847 	/* registers to be handled specially */
848 	case KVM_REG_MIPS_CP0_COUNT:
849 	case KVM_REG_MIPS_CP0_COMPARE:
850 	case KVM_REG_MIPS_CP0_CAUSE:
851 	case KVM_REG_MIPS_CP0_CONFIG:
852 	case KVM_REG_MIPS_CP0_CONFIG1:
853 	case KVM_REG_MIPS_CP0_CONFIG2:
854 	case KVM_REG_MIPS_CP0_CONFIG3:
855 	case KVM_REG_MIPS_CP0_CONFIG4:
856 	case KVM_REG_MIPS_CP0_CONFIG5:
857 	case KVM_REG_MIPS_COUNT_CTL:
858 	case KVM_REG_MIPS_COUNT_RESUME:
859 	case KVM_REG_MIPS_COUNT_HZ:
860 		return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
861 	default:
862 		return -EINVAL;
863 	}
864 	return 0;
865 }
866 
867 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
868 				     struct kvm_enable_cap *cap)
869 {
870 	int r = 0;
871 
872 	if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
873 		return -EINVAL;
874 	if (cap->flags)
875 		return -EINVAL;
876 	if (cap->args[0])
877 		return -EINVAL;
878 
879 	switch (cap->cap) {
880 	case KVM_CAP_MIPS_FPU:
881 		vcpu->arch.fpu_enabled = true;
882 		break;
883 	case KVM_CAP_MIPS_MSA:
884 		vcpu->arch.msa_enabled = true;
885 		break;
886 	default:
887 		r = -EINVAL;
888 		break;
889 	}
890 
891 	return r;
892 }
893 
894 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
895 			 unsigned long arg)
896 {
897 	struct kvm_vcpu *vcpu = filp->private_data;
898 	void __user *argp = (void __user *)arg;
899 	long r;
900 
901 	switch (ioctl) {
902 	case KVM_SET_ONE_REG:
903 	case KVM_GET_ONE_REG: {
904 		struct kvm_one_reg reg;
905 
906 		if (copy_from_user(&reg, argp, sizeof(reg)))
907 			return -EFAULT;
908 		if (ioctl == KVM_SET_ONE_REG)
909 			return kvm_mips_set_reg(vcpu, &reg);
910 		else
911 			return kvm_mips_get_reg(vcpu, &reg);
912 	}
913 	case KVM_GET_REG_LIST: {
914 		struct kvm_reg_list __user *user_list = argp;
915 		u64 __user *reg_dest;
916 		struct kvm_reg_list reg_list;
917 		unsigned n;
918 
919 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
920 			return -EFAULT;
921 		n = reg_list.n;
922 		reg_list.n = ARRAY_SIZE(kvm_mips_get_one_regs);
923 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
924 			return -EFAULT;
925 		if (n < reg_list.n)
926 			return -E2BIG;
927 		reg_dest = user_list->reg;
928 		if (copy_to_user(reg_dest, kvm_mips_get_one_regs,
929 				 sizeof(kvm_mips_get_one_regs)))
930 			return -EFAULT;
931 		return 0;
932 	}
933 	case KVM_NMI:
934 		/* Treat the NMI as a CPU reset */
935 		r = kvm_mips_reset_vcpu(vcpu);
936 		break;
937 	case KVM_INTERRUPT:
938 		{
939 			struct kvm_mips_interrupt irq;
940 
941 			r = -EFAULT;
942 			if (copy_from_user(&irq, argp, sizeof(irq)))
943 				goto out;
944 
945 			kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
946 				  irq.irq);
947 
948 			r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
949 			break;
950 		}
951 	case KVM_ENABLE_CAP: {
952 		struct kvm_enable_cap cap;
953 
954 		r = -EFAULT;
955 		if (copy_from_user(&cap, argp, sizeof(cap)))
956 			goto out;
957 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
958 		break;
959 	}
960 	default:
961 		r = -ENOIOCTLCMD;
962 	}
963 
964 out:
965 	return r;
966 }
967 
968 /* Get (and clear) the dirty memory log for a memory slot. */
969 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
970 {
971 	struct kvm_memory_slot *memslot;
972 	unsigned long ga, ga_end;
973 	int is_dirty = 0;
974 	int r;
975 	unsigned long n;
976 
977 	mutex_lock(&kvm->slots_lock);
978 
979 	r = kvm_get_dirty_log(kvm, log, &is_dirty);
980 	if (r)
981 		goto out;
982 
983 	/* If nothing is dirty, don't bother messing with page tables. */
984 	if (is_dirty) {
985 		memslot = &kvm->memslots->memslots[log->slot];
986 
987 		ga = memslot->base_gfn << PAGE_SHIFT;
988 		ga_end = ga + (memslot->npages << PAGE_SHIFT);
989 
990 		kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
991 			 ga_end);
992 
993 		n = kvm_dirty_bitmap_bytes(memslot);
994 		memset(memslot->dirty_bitmap, 0, n);
995 	}
996 
997 	r = 0;
998 out:
999 	mutex_unlock(&kvm->slots_lock);
1000 	return r;
1001 
1002 }
1003 
1004 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1005 {
1006 	long r;
1007 
1008 	switch (ioctl) {
1009 	default:
1010 		r = -ENOIOCTLCMD;
1011 	}
1012 
1013 	return r;
1014 }
1015 
1016 int kvm_arch_init(void *opaque)
1017 {
1018 	if (kvm_mips_callbacks) {
1019 		kvm_err("kvm: module already exists\n");
1020 		return -EEXIST;
1021 	}
1022 
1023 	return kvm_mips_emulation_init(&kvm_mips_callbacks);
1024 }
1025 
1026 void kvm_arch_exit(void)
1027 {
1028 	kvm_mips_callbacks = NULL;
1029 }
1030 
1031 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1032 				  struct kvm_sregs *sregs)
1033 {
1034 	return -ENOIOCTLCMD;
1035 }
1036 
1037 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1038 				  struct kvm_sregs *sregs)
1039 {
1040 	return -ENOIOCTLCMD;
1041 }
1042 
1043 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1044 {
1045 }
1046 
1047 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1048 {
1049 	return -ENOIOCTLCMD;
1050 }
1051 
1052 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1053 {
1054 	return -ENOIOCTLCMD;
1055 }
1056 
1057 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1058 {
1059 	return VM_FAULT_SIGBUS;
1060 }
1061 
1062 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1063 {
1064 	int r;
1065 
1066 	switch (ext) {
1067 	case KVM_CAP_ONE_REG:
1068 	case KVM_CAP_ENABLE_CAP:
1069 		r = 1;
1070 		break;
1071 	case KVM_CAP_COALESCED_MMIO:
1072 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1073 		break;
1074 	case KVM_CAP_MIPS_FPU:
1075 		r = !!cpu_has_fpu;
1076 		break;
1077 	case KVM_CAP_MIPS_MSA:
1078 		/*
1079 		 * We don't support MSA vector partitioning yet:
1080 		 * 1) It would require explicit support which can't be tested
1081 		 *    yet due to lack of support in current hardware.
1082 		 * 2) It extends the state that would need to be saved/restored
1083 		 *    by e.g. QEMU for migration.
1084 		 *
1085 		 * When vector partitioning hardware becomes available, support
1086 		 * could be added by requiring a flag when enabling
1087 		 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1088 		 * to save/restore the appropriate extra state.
1089 		 */
1090 		r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1091 		break;
1092 	default:
1093 		r = 0;
1094 		break;
1095 	}
1096 	return r;
1097 }
1098 
1099 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1100 {
1101 	return kvm_mips_pending_timer(vcpu);
1102 }
1103 
1104 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1105 {
1106 	int i;
1107 	struct mips_coproc *cop0;
1108 
1109 	if (!vcpu)
1110 		return -1;
1111 
1112 	kvm_debug("VCPU Register Dump:\n");
1113 	kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1114 	kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1115 
1116 	for (i = 0; i < 32; i += 4) {
1117 		kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1118 		       vcpu->arch.gprs[i],
1119 		       vcpu->arch.gprs[i + 1],
1120 		       vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1121 	}
1122 	kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1123 	kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1124 
1125 	cop0 = vcpu->arch.cop0;
1126 	kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
1127 		  kvm_read_c0_guest_status(cop0),
1128 		  kvm_read_c0_guest_cause(cop0));
1129 
1130 	kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1131 
1132 	return 0;
1133 }
1134 
1135 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1136 {
1137 	int i;
1138 
1139 	for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1140 		vcpu->arch.gprs[i] = regs->gpr[i];
1141 	vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1142 	vcpu->arch.hi = regs->hi;
1143 	vcpu->arch.lo = regs->lo;
1144 	vcpu->arch.pc = regs->pc;
1145 
1146 	return 0;
1147 }
1148 
1149 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1150 {
1151 	int i;
1152 
1153 	for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1154 		regs->gpr[i] = vcpu->arch.gprs[i];
1155 
1156 	regs->hi = vcpu->arch.hi;
1157 	regs->lo = vcpu->arch.lo;
1158 	regs->pc = vcpu->arch.pc;
1159 
1160 	return 0;
1161 }
1162 
1163 static void kvm_mips_comparecount_func(unsigned long data)
1164 {
1165 	struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1166 
1167 	kvm_mips_callbacks->queue_timer_int(vcpu);
1168 
1169 	vcpu->arch.wait = 0;
1170 	if (waitqueue_active(&vcpu->wq))
1171 		wake_up_interruptible(&vcpu->wq);
1172 }
1173 
1174 /* low level hrtimer wake routine */
1175 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1176 {
1177 	struct kvm_vcpu *vcpu;
1178 
1179 	vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1180 	kvm_mips_comparecount_func((unsigned long) vcpu);
1181 	return kvm_mips_count_timeout(vcpu);
1182 }
1183 
1184 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1185 {
1186 	kvm_mips_callbacks->vcpu_init(vcpu);
1187 	hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1188 		     HRTIMER_MODE_REL);
1189 	vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1190 	return 0;
1191 }
1192 
1193 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1194 				  struct kvm_translation *tr)
1195 {
1196 	return 0;
1197 }
1198 
1199 /* Initial guest state */
1200 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1201 {
1202 	return kvm_mips_callbacks->vcpu_setup(vcpu);
1203 }
1204 
1205 static void kvm_mips_set_c0_status(void)
1206 {
1207 	uint32_t status = read_c0_status();
1208 
1209 	if (cpu_has_dsp)
1210 		status |= (ST0_MX);
1211 
1212 	write_c0_status(status);
1213 	ehb();
1214 }
1215 
1216 /*
1217  * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1218  */
1219 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1220 {
1221 	uint32_t cause = vcpu->arch.host_cp0_cause;
1222 	uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1223 	uint32_t __user *opc = (uint32_t __user *) vcpu->arch.pc;
1224 	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1225 	enum emulation_result er = EMULATE_DONE;
1226 	int ret = RESUME_GUEST;
1227 
1228 	/* re-enable HTW before enabling interrupts */
1229 	htw_start();
1230 
1231 	/* Set a default exit reason */
1232 	run->exit_reason = KVM_EXIT_UNKNOWN;
1233 	run->ready_for_interrupt_injection = 1;
1234 
1235 	/*
1236 	 * Set the appropriate status bits based on host CPU features,
1237 	 * before we hit the scheduler
1238 	 */
1239 	kvm_mips_set_c0_status();
1240 
1241 	local_irq_enable();
1242 
1243 	kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1244 			cause, opc, run, vcpu);
1245 
1246 	/*
1247 	 * Do a privilege check, if in UM most of these exit conditions end up
1248 	 * causing an exception to be delivered to the Guest Kernel
1249 	 */
1250 	er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1251 	if (er == EMULATE_PRIV_FAIL) {
1252 		goto skip_emul;
1253 	} else if (er == EMULATE_FAIL) {
1254 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1255 		ret = RESUME_HOST;
1256 		goto skip_emul;
1257 	}
1258 
1259 	switch (exccode) {
1260 	case T_INT:
1261 		kvm_debug("[%d]T_INT @ %p\n", vcpu->vcpu_id, opc);
1262 
1263 		++vcpu->stat.int_exits;
1264 		trace_kvm_exit(vcpu, INT_EXITS);
1265 
1266 		if (need_resched())
1267 			cond_resched();
1268 
1269 		ret = RESUME_GUEST;
1270 		break;
1271 
1272 	case T_COP_UNUSABLE:
1273 		kvm_debug("T_COP_UNUSABLE: @ PC: %p\n", opc);
1274 
1275 		++vcpu->stat.cop_unusable_exits;
1276 		trace_kvm_exit(vcpu, COP_UNUSABLE_EXITS);
1277 		ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1278 		/* XXXKYMA: Might need to return to user space */
1279 		if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1280 			ret = RESUME_HOST;
1281 		break;
1282 
1283 	case T_TLB_MOD:
1284 		++vcpu->stat.tlbmod_exits;
1285 		trace_kvm_exit(vcpu, TLBMOD_EXITS);
1286 		ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1287 		break;
1288 
1289 	case T_TLB_ST_MISS:
1290 		kvm_debug("TLB ST fault:  cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
1291 			  cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1292 			  badvaddr);
1293 
1294 		++vcpu->stat.tlbmiss_st_exits;
1295 		trace_kvm_exit(vcpu, TLBMISS_ST_EXITS);
1296 		ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1297 		break;
1298 
1299 	case T_TLB_LD_MISS:
1300 		kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1301 			  cause, opc, badvaddr);
1302 
1303 		++vcpu->stat.tlbmiss_ld_exits;
1304 		trace_kvm_exit(vcpu, TLBMISS_LD_EXITS);
1305 		ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1306 		break;
1307 
1308 	case T_ADDR_ERR_ST:
1309 		++vcpu->stat.addrerr_st_exits;
1310 		trace_kvm_exit(vcpu, ADDRERR_ST_EXITS);
1311 		ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1312 		break;
1313 
1314 	case T_ADDR_ERR_LD:
1315 		++vcpu->stat.addrerr_ld_exits;
1316 		trace_kvm_exit(vcpu, ADDRERR_LD_EXITS);
1317 		ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1318 		break;
1319 
1320 	case T_SYSCALL:
1321 		++vcpu->stat.syscall_exits;
1322 		trace_kvm_exit(vcpu, SYSCALL_EXITS);
1323 		ret = kvm_mips_callbacks->handle_syscall(vcpu);
1324 		break;
1325 
1326 	case T_RES_INST:
1327 		++vcpu->stat.resvd_inst_exits;
1328 		trace_kvm_exit(vcpu, RESVD_INST_EXITS);
1329 		ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1330 		break;
1331 
1332 	case T_BREAK:
1333 		++vcpu->stat.break_inst_exits;
1334 		trace_kvm_exit(vcpu, BREAK_INST_EXITS);
1335 		ret = kvm_mips_callbacks->handle_break(vcpu);
1336 		break;
1337 
1338 	case T_TRAP:
1339 		++vcpu->stat.trap_inst_exits;
1340 		trace_kvm_exit(vcpu, TRAP_INST_EXITS);
1341 		ret = kvm_mips_callbacks->handle_trap(vcpu);
1342 		break;
1343 
1344 	case T_MSAFPE:
1345 		++vcpu->stat.msa_fpe_exits;
1346 		trace_kvm_exit(vcpu, MSA_FPE_EXITS);
1347 		ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1348 		break;
1349 
1350 	case T_FPE:
1351 		++vcpu->stat.fpe_exits;
1352 		trace_kvm_exit(vcpu, FPE_EXITS);
1353 		ret = kvm_mips_callbacks->handle_fpe(vcpu);
1354 		break;
1355 
1356 	case T_MSADIS:
1357 		++vcpu->stat.msa_disabled_exits;
1358 		trace_kvm_exit(vcpu, MSA_DISABLED_EXITS);
1359 		ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1360 		break;
1361 
1362 	default:
1363 		kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#lx\n",
1364 			exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
1365 			kvm_read_c0_guest_status(vcpu->arch.cop0));
1366 		kvm_arch_vcpu_dump_regs(vcpu);
1367 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1368 		ret = RESUME_HOST;
1369 		break;
1370 
1371 	}
1372 
1373 skip_emul:
1374 	local_irq_disable();
1375 
1376 	if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1377 		kvm_mips_deliver_interrupts(vcpu, cause);
1378 
1379 	if (!(ret & RESUME_HOST)) {
1380 		/* Only check for signals if not already exiting to userspace */
1381 		if (signal_pending(current)) {
1382 			run->exit_reason = KVM_EXIT_INTR;
1383 			ret = (-EINTR << 2) | RESUME_HOST;
1384 			++vcpu->stat.signal_exits;
1385 			trace_kvm_exit(vcpu, SIGNAL_EXITS);
1386 		}
1387 	}
1388 
1389 	if (ret == RESUME_GUEST) {
1390 		/*
1391 		 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1392 		 * is live), restore FCR31 / MSACSR.
1393 		 *
1394 		 * This should be before returning to the guest exception
1395 		 * vector, as it may well cause an [MSA] FP exception if there
1396 		 * are pending exception bits unmasked. (see
1397 		 * kvm_mips_csr_die_notifier() for how that is handled).
1398 		 */
1399 		if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1400 		    read_c0_status() & ST0_CU1)
1401 			__kvm_restore_fcsr(&vcpu->arch);
1402 
1403 		if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1404 		    read_c0_config5() & MIPS_CONF5_MSAEN)
1405 			__kvm_restore_msacsr(&vcpu->arch);
1406 	}
1407 
1408 	/* Disable HTW before returning to guest or host */
1409 	htw_stop();
1410 
1411 	return ret;
1412 }
1413 
1414 /* Enable FPU for guest and restore context */
1415 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1416 {
1417 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1418 	unsigned int sr, cfg5;
1419 
1420 	preempt_disable();
1421 
1422 	sr = kvm_read_c0_guest_status(cop0);
1423 
1424 	/*
1425 	 * If MSA state is already live, it is undefined how it interacts with
1426 	 * FR=0 FPU state, and we don't want to hit reserved instruction
1427 	 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1428 	 * play it safe and save it first.
1429 	 *
1430 	 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1431 	 * get called when guest CU1 is set, however we can't trust the guest
1432 	 * not to clobber the status register directly via the commpage.
1433 	 */
1434 	if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1435 	    vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1436 		kvm_lose_fpu(vcpu);
1437 
1438 	/*
1439 	 * Enable FPU for guest
1440 	 * We set FR and FRE according to guest context
1441 	 */
1442 	change_c0_status(ST0_CU1 | ST0_FR, sr);
1443 	if (cpu_has_fre) {
1444 		cfg5 = kvm_read_c0_guest_config5(cop0);
1445 		change_c0_config5(MIPS_CONF5_FRE, cfg5);
1446 	}
1447 	enable_fpu_hazard();
1448 
1449 	/* If guest FPU state not active, restore it now */
1450 	if (!(vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)) {
1451 		__kvm_restore_fpu(&vcpu->arch);
1452 		vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
1453 	}
1454 
1455 	preempt_enable();
1456 }
1457 
1458 #ifdef CONFIG_CPU_HAS_MSA
1459 /* Enable MSA for guest and restore context */
1460 void kvm_own_msa(struct kvm_vcpu *vcpu)
1461 {
1462 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1463 	unsigned int sr, cfg5;
1464 
1465 	preempt_disable();
1466 
1467 	/*
1468 	 * Enable FPU if enabled in guest, since we're restoring FPU context
1469 	 * anyway. We set FR and FRE according to guest context.
1470 	 */
1471 	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1472 		sr = kvm_read_c0_guest_status(cop0);
1473 
1474 		/*
1475 		 * If FR=0 FPU state is already live, it is undefined how it
1476 		 * interacts with MSA state, so play it safe and save it first.
1477 		 */
1478 		if (!(sr & ST0_FR) &&
1479 		    (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU |
1480 				KVM_MIPS_FPU_MSA)) == KVM_MIPS_FPU_FPU)
1481 			kvm_lose_fpu(vcpu);
1482 
1483 		change_c0_status(ST0_CU1 | ST0_FR, sr);
1484 		if (sr & ST0_CU1 && cpu_has_fre) {
1485 			cfg5 = kvm_read_c0_guest_config5(cop0);
1486 			change_c0_config5(MIPS_CONF5_FRE, cfg5);
1487 		}
1488 	}
1489 
1490 	/* Enable MSA for guest */
1491 	set_c0_config5(MIPS_CONF5_MSAEN);
1492 	enable_fpu_hazard();
1493 
1494 	switch (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA)) {
1495 	case KVM_MIPS_FPU_FPU:
1496 		/*
1497 		 * Guest FPU state already loaded, only restore upper MSA state
1498 		 */
1499 		__kvm_restore_msa_upper(&vcpu->arch);
1500 		vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
1501 		break;
1502 	case 0:
1503 		/* Neither FPU or MSA already active, restore full MSA state */
1504 		__kvm_restore_msa(&vcpu->arch);
1505 		vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
1506 		if (kvm_mips_guest_has_fpu(&vcpu->arch))
1507 			vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
1508 		break;
1509 	default:
1510 		break;
1511 	}
1512 
1513 	preempt_enable();
1514 }
1515 #endif
1516 
1517 /* Drop FPU & MSA without saving it */
1518 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1519 {
1520 	preempt_disable();
1521 	if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
1522 		disable_msa();
1523 		vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_MSA;
1524 	}
1525 	if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1526 		clear_c0_status(ST0_CU1 | ST0_FR);
1527 		vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
1528 	}
1529 	preempt_enable();
1530 }
1531 
1532 /* Save and disable FPU & MSA */
1533 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1534 {
1535 	/*
1536 	 * FPU & MSA get disabled in root context (hardware) when it is disabled
1537 	 * in guest context (software), but the register state in the hardware
1538 	 * may still be in use. This is why we explicitly re-enable the hardware
1539 	 * before saving.
1540 	 */
1541 
1542 	preempt_disable();
1543 	if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
1544 		set_c0_config5(MIPS_CONF5_MSAEN);
1545 		enable_fpu_hazard();
1546 
1547 		__kvm_save_msa(&vcpu->arch);
1548 
1549 		/* Disable MSA & FPU */
1550 		disable_msa();
1551 		if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1552 			clear_c0_status(ST0_CU1 | ST0_FR);
1553 		vcpu->arch.fpu_inuse &= ~(KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA);
1554 	} else if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1555 		set_c0_status(ST0_CU1);
1556 		enable_fpu_hazard();
1557 
1558 		__kvm_save_fpu(&vcpu->arch);
1559 		vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
1560 
1561 		/* Disable FPU */
1562 		clear_c0_status(ST0_CU1 | ST0_FR);
1563 	}
1564 	preempt_enable();
1565 }
1566 
1567 /*
1568  * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1569  * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1570  * exception if cause bits are set in the value being written.
1571  */
1572 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1573 				   unsigned long cmd, void *ptr)
1574 {
1575 	struct die_args *args = (struct die_args *)ptr;
1576 	struct pt_regs *regs = args->regs;
1577 	unsigned long pc;
1578 
1579 	/* Only interested in FPE and MSAFPE */
1580 	if (cmd != DIE_FP && cmd != DIE_MSAFP)
1581 		return NOTIFY_DONE;
1582 
1583 	/* Return immediately if guest context isn't active */
1584 	if (!(current->flags & PF_VCPU))
1585 		return NOTIFY_DONE;
1586 
1587 	/* Should never get here from user mode */
1588 	BUG_ON(user_mode(regs));
1589 
1590 	pc = instruction_pointer(regs);
1591 	switch (cmd) {
1592 	case DIE_FP:
1593 		/* match 2nd instruction in __kvm_restore_fcsr */
1594 		if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1595 			return NOTIFY_DONE;
1596 		break;
1597 	case DIE_MSAFP:
1598 		/* match 2nd/3rd instruction in __kvm_restore_msacsr */
1599 		if (!cpu_has_msa ||
1600 		    pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1601 		    pc > (unsigned long)&__kvm_restore_msacsr + 8)
1602 			return NOTIFY_DONE;
1603 		break;
1604 	}
1605 
1606 	/* Move PC forward a little and continue executing */
1607 	instruction_pointer(regs) += 4;
1608 
1609 	return NOTIFY_STOP;
1610 }
1611 
1612 static struct notifier_block kvm_mips_csr_die_notifier = {
1613 	.notifier_call = kvm_mips_csr_die_notify,
1614 };
1615 
1616 int __init kvm_mips_init(void)
1617 {
1618 	int ret;
1619 
1620 	ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1621 
1622 	if (ret)
1623 		return ret;
1624 
1625 	register_die_notifier(&kvm_mips_csr_die_notifier);
1626 
1627 	/*
1628 	 * On MIPS, kernel modules are executed from "mapped space", which
1629 	 * requires TLBs. The TLB handling code is statically linked with
1630 	 * the rest of the kernel (tlb.c) to avoid the possibility of
1631 	 * double faulting. The issue is that the TLB code references
1632 	 * routines that are part of the the KVM module, which are only
1633 	 * available once the module is loaded.
1634 	 */
1635 	kvm_mips_gfn_to_pfn = gfn_to_pfn;
1636 	kvm_mips_release_pfn_clean = kvm_release_pfn_clean;
1637 	kvm_mips_is_error_pfn = is_error_pfn;
1638 
1639 	return 0;
1640 }
1641 
1642 void __exit kvm_mips_exit(void)
1643 {
1644 	kvm_exit();
1645 
1646 	kvm_mips_gfn_to_pfn = NULL;
1647 	kvm_mips_release_pfn_clean = NULL;
1648 	kvm_mips_is_error_pfn = NULL;
1649 
1650 	unregister_die_notifier(&kvm_mips_csr_die_notifier);
1651 }
1652 
1653 module_init(kvm_mips_init);
1654 module_exit(kvm_mips_exit);
1655 
1656 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);
1657