1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * KVM/MIPS: MIPS specific KVM APIs 7 * 8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved. 9 * Authors: Sanjay Lal <sanjayl@kymasys.com> 10 */ 11 12 #include <linux/bitops.h> 13 #include <linux/errno.h> 14 #include <linux/err.h> 15 #include <linux/kdebug.h> 16 #include <linux/module.h> 17 #include <linux/uaccess.h> 18 #include <linux/vmalloc.h> 19 #include <linux/sched/signal.h> 20 #include <linux/fs.h> 21 #include <linux/memblock.h> 22 23 #include <asm/fpu.h> 24 #include <asm/page.h> 25 #include <asm/cacheflush.h> 26 #include <asm/mmu_context.h> 27 #include <asm/pgalloc.h> 28 #include <asm/pgtable.h> 29 30 #include <linux/kvm_host.h> 31 32 #include "interrupt.h" 33 #include "commpage.h" 34 35 #define CREATE_TRACE_POINTS 36 #include "trace.h" 37 38 #ifndef VECTORSPACING 39 #define VECTORSPACING 0x100 /* for EI/VI mode */ 40 #endif 41 42 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x) 43 struct kvm_stats_debugfs_item debugfs_entries[] = { 44 { "wait", VCPU_STAT(wait_exits), KVM_STAT_VCPU }, 45 { "cache", VCPU_STAT(cache_exits), KVM_STAT_VCPU }, 46 { "signal", VCPU_STAT(signal_exits), KVM_STAT_VCPU }, 47 { "interrupt", VCPU_STAT(int_exits), KVM_STAT_VCPU }, 48 { "cop_unusable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU }, 49 { "tlbmod", VCPU_STAT(tlbmod_exits), KVM_STAT_VCPU }, 50 { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits), KVM_STAT_VCPU }, 51 { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits), KVM_STAT_VCPU }, 52 { "addrerr_st", VCPU_STAT(addrerr_st_exits), KVM_STAT_VCPU }, 53 { "addrerr_ld", VCPU_STAT(addrerr_ld_exits), KVM_STAT_VCPU }, 54 { "syscall", VCPU_STAT(syscall_exits), KVM_STAT_VCPU }, 55 { "resvd_inst", VCPU_STAT(resvd_inst_exits), KVM_STAT_VCPU }, 56 { "break_inst", VCPU_STAT(break_inst_exits), KVM_STAT_VCPU }, 57 { "trap_inst", VCPU_STAT(trap_inst_exits), KVM_STAT_VCPU }, 58 { "msa_fpe", VCPU_STAT(msa_fpe_exits), KVM_STAT_VCPU }, 59 { "fpe", VCPU_STAT(fpe_exits), KVM_STAT_VCPU }, 60 { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU }, 61 { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU }, 62 #ifdef CONFIG_KVM_MIPS_VZ 63 { "vz_gpsi", VCPU_STAT(vz_gpsi_exits), KVM_STAT_VCPU }, 64 { "vz_gsfc", VCPU_STAT(vz_gsfc_exits), KVM_STAT_VCPU }, 65 { "vz_hc", VCPU_STAT(vz_hc_exits), KVM_STAT_VCPU }, 66 { "vz_grr", VCPU_STAT(vz_grr_exits), KVM_STAT_VCPU }, 67 { "vz_gva", VCPU_STAT(vz_gva_exits), KVM_STAT_VCPU }, 68 { "vz_ghfc", VCPU_STAT(vz_ghfc_exits), KVM_STAT_VCPU }, 69 { "vz_gpa", VCPU_STAT(vz_gpa_exits), KVM_STAT_VCPU }, 70 { "vz_resvd", VCPU_STAT(vz_resvd_exits), KVM_STAT_VCPU }, 71 #endif 72 { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU }, 73 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU }, 74 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU }, 75 { "halt_wakeup", VCPU_STAT(halt_wakeup), KVM_STAT_VCPU }, 76 {NULL} 77 }; 78 79 bool kvm_trace_guest_mode_change; 80 81 int kvm_guest_mode_change_trace_reg(void) 82 { 83 kvm_trace_guest_mode_change = 1; 84 return 0; 85 } 86 87 void kvm_guest_mode_change_trace_unreg(void) 88 { 89 kvm_trace_guest_mode_change = 0; 90 } 91 92 /* 93 * XXXKYMA: We are simulatoring a processor that has the WII bit set in 94 * Config7, so we are "runnable" if interrupts are pending 95 */ 96 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 97 { 98 return !!(vcpu->arch.pending_exceptions); 99 } 100 101 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 102 { 103 return false; 104 } 105 106 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 107 { 108 return 1; 109 } 110 111 int kvm_arch_hardware_enable(void) 112 { 113 return kvm_mips_callbacks->hardware_enable(); 114 } 115 116 void kvm_arch_hardware_disable(void) 117 { 118 kvm_mips_callbacks->hardware_disable(); 119 } 120 121 int kvm_arch_hardware_setup(void) 122 { 123 return 0; 124 } 125 126 void kvm_arch_check_processor_compat(void *rtn) 127 { 128 *(int *)rtn = 0; 129 } 130 131 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 132 { 133 switch (type) { 134 #ifdef CONFIG_KVM_MIPS_VZ 135 case KVM_VM_MIPS_VZ: 136 #else 137 case KVM_VM_MIPS_TE: 138 #endif 139 break; 140 default: 141 /* Unsupported KVM type */ 142 return -EINVAL; 143 }; 144 145 /* Allocate page table to map GPA -> RPA */ 146 kvm->arch.gpa_mm.pgd = kvm_pgd_alloc(); 147 if (!kvm->arch.gpa_mm.pgd) 148 return -ENOMEM; 149 150 return 0; 151 } 152 153 bool kvm_arch_has_vcpu_debugfs(void) 154 { 155 return false; 156 } 157 158 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 159 { 160 return 0; 161 } 162 163 void kvm_mips_free_vcpus(struct kvm *kvm) 164 { 165 unsigned int i; 166 struct kvm_vcpu *vcpu; 167 168 kvm_for_each_vcpu(i, vcpu, kvm) { 169 kvm_arch_vcpu_free(vcpu); 170 } 171 172 mutex_lock(&kvm->lock); 173 174 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 175 kvm->vcpus[i] = NULL; 176 177 atomic_set(&kvm->online_vcpus, 0); 178 179 mutex_unlock(&kvm->lock); 180 } 181 182 static void kvm_mips_free_gpa_pt(struct kvm *kvm) 183 { 184 /* It should always be safe to remove after flushing the whole range */ 185 WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0)); 186 pgd_free(NULL, kvm->arch.gpa_mm.pgd); 187 } 188 189 void kvm_arch_destroy_vm(struct kvm *kvm) 190 { 191 kvm_mips_free_vcpus(kvm); 192 kvm_mips_free_gpa_pt(kvm); 193 } 194 195 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl, 196 unsigned long arg) 197 { 198 return -ENOIOCTLCMD; 199 } 200 201 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 202 unsigned long npages) 203 { 204 return 0; 205 } 206 207 void kvm_arch_flush_shadow_all(struct kvm *kvm) 208 { 209 /* Flush whole GPA */ 210 kvm_mips_flush_gpa_pt(kvm, 0, ~0); 211 212 /* Let implementation do the rest */ 213 kvm_mips_callbacks->flush_shadow_all(kvm); 214 } 215 216 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 217 struct kvm_memory_slot *slot) 218 { 219 /* 220 * The slot has been made invalid (ready for moving or deletion), so we 221 * need to ensure that it can no longer be accessed by any guest VCPUs. 222 */ 223 224 spin_lock(&kvm->mmu_lock); 225 /* Flush slot from GPA */ 226 kvm_mips_flush_gpa_pt(kvm, slot->base_gfn, 227 slot->base_gfn + slot->npages - 1); 228 /* Let implementation do the rest */ 229 kvm_mips_callbacks->flush_shadow_memslot(kvm, slot); 230 spin_unlock(&kvm->mmu_lock); 231 } 232 233 int kvm_arch_prepare_memory_region(struct kvm *kvm, 234 struct kvm_memory_slot *memslot, 235 const struct kvm_userspace_memory_region *mem, 236 enum kvm_mr_change change) 237 { 238 return 0; 239 } 240 241 void kvm_arch_commit_memory_region(struct kvm *kvm, 242 const struct kvm_userspace_memory_region *mem, 243 const struct kvm_memory_slot *old, 244 const struct kvm_memory_slot *new, 245 enum kvm_mr_change change) 246 { 247 int needs_flush; 248 249 kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n", 250 __func__, kvm, mem->slot, mem->guest_phys_addr, 251 mem->memory_size, mem->userspace_addr); 252 253 /* 254 * If dirty page logging is enabled, write protect all pages in the slot 255 * ready for dirty logging. 256 * 257 * There is no need to do this in any of the following cases: 258 * CREATE: No dirty mappings will already exist. 259 * MOVE/DELETE: The old mappings will already have been cleaned up by 260 * kvm_arch_flush_shadow_memslot() 261 */ 262 if (change == KVM_MR_FLAGS_ONLY && 263 (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) && 264 new->flags & KVM_MEM_LOG_DIRTY_PAGES)) { 265 spin_lock(&kvm->mmu_lock); 266 /* Write protect GPA page table entries */ 267 needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn, 268 new->base_gfn + new->npages - 1); 269 /* Let implementation do the rest */ 270 if (needs_flush) 271 kvm_mips_callbacks->flush_shadow_memslot(kvm, new); 272 spin_unlock(&kvm->mmu_lock); 273 } 274 } 275 276 static inline void dump_handler(const char *symbol, void *start, void *end) 277 { 278 u32 *p; 279 280 pr_debug("LEAF(%s)\n", symbol); 281 282 pr_debug("\t.set push\n"); 283 pr_debug("\t.set noreorder\n"); 284 285 for (p = start; p < (u32 *)end; ++p) 286 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p); 287 288 pr_debug("\t.set\tpop\n"); 289 290 pr_debug("\tEND(%s)\n", symbol); 291 } 292 293 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) 294 { 295 int err, size; 296 void *gebase, *p, *handler, *refill_start, *refill_end; 297 int i; 298 299 struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL); 300 301 if (!vcpu) { 302 err = -ENOMEM; 303 goto out; 304 } 305 306 err = kvm_vcpu_init(vcpu, kvm, id); 307 308 if (err) 309 goto out_free_cpu; 310 311 kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu); 312 313 /* 314 * Allocate space for host mode exception handlers that handle 315 * guest mode exits 316 */ 317 if (cpu_has_veic || cpu_has_vint) 318 size = 0x200 + VECTORSPACING * 64; 319 else 320 size = 0x4000; 321 322 gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL); 323 324 if (!gebase) { 325 err = -ENOMEM; 326 goto out_uninit_cpu; 327 } 328 kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n", 329 ALIGN(size, PAGE_SIZE), gebase); 330 331 /* 332 * Check new ebase actually fits in CP0_EBase. The lack of a write gate 333 * limits us to the low 512MB of physical address space. If the memory 334 * we allocate is out of range, just give up now. 335 */ 336 if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) { 337 kvm_err("CP0_EBase.WG required for guest exception base %pK\n", 338 gebase); 339 err = -ENOMEM; 340 goto out_free_gebase; 341 } 342 343 /* Save new ebase */ 344 vcpu->arch.guest_ebase = gebase; 345 346 /* Build guest exception vectors dynamically in unmapped memory */ 347 handler = gebase + 0x2000; 348 349 /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */ 350 refill_start = gebase; 351 if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && IS_ENABLED(CONFIG_64BIT)) 352 refill_start += 0x080; 353 refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler); 354 355 /* General Exception Entry point */ 356 kvm_mips_build_exception(gebase + 0x180, handler); 357 358 /* For vectored interrupts poke the exception code @ all offsets 0-7 */ 359 for (i = 0; i < 8; i++) { 360 kvm_debug("L1 Vectored handler @ %p\n", 361 gebase + 0x200 + (i * VECTORSPACING)); 362 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING, 363 handler); 364 } 365 366 /* General exit handler */ 367 p = handler; 368 p = kvm_mips_build_exit(p); 369 370 /* Guest entry routine */ 371 vcpu->arch.vcpu_run = p; 372 p = kvm_mips_build_vcpu_run(p); 373 374 /* Dump the generated code */ 375 pr_debug("#include <asm/asm.h>\n"); 376 pr_debug("#include <asm/regdef.h>\n"); 377 pr_debug("\n"); 378 dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p); 379 dump_handler("kvm_tlb_refill", refill_start, refill_end); 380 dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200); 381 dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run); 382 383 /* Invalidate the icache for these ranges */ 384 flush_icache_range((unsigned long)gebase, 385 (unsigned long)gebase + ALIGN(size, PAGE_SIZE)); 386 387 /* 388 * Allocate comm page for guest kernel, a TLB will be reserved for 389 * mapping GVA @ 0xFFFF8000 to this page 390 */ 391 vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL); 392 393 if (!vcpu->arch.kseg0_commpage) { 394 err = -ENOMEM; 395 goto out_free_gebase; 396 } 397 398 kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage); 399 kvm_mips_commpage_init(vcpu); 400 401 /* Init */ 402 vcpu->arch.last_sched_cpu = -1; 403 vcpu->arch.last_exec_cpu = -1; 404 405 return vcpu; 406 407 out_free_gebase: 408 kfree(gebase); 409 410 out_uninit_cpu: 411 kvm_vcpu_uninit(vcpu); 412 413 out_free_cpu: 414 kfree(vcpu); 415 416 out: 417 return ERR_PTR(err); 418 } 419 420 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 421 { 422 hrtimer_cancel(&vcpu->arch.comparecount_timer); 423 424 kvm_vcpu_uninit(vcpu); 425 426 kvm_mips_dump_stats(vcpu); 427 428 kvm_mmu_free_memory_caches(vcpu); 429 kfree(vcpu->arch.guest_ebase); 430 kfree(vcpu->arch.kseg0_commpage); 431 kfree(vcpu); 432 } 433 434 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 435 { 436 kvm_arch_vcpu_free(vcpu); 437 } 438 439 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 440 struct kvm_guest_debug *dbg) 441 { 442 return -ENOIOCTLCMD; 443 } 444 445 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run) 446 { 447 int r = -EINTR; 448 449 vcpu_load(vcpu); 450 451 kvm_sigset_activate(vcpu); 452 453 if (vcpu->mmio_needed) { 454 if (!vcpu->mmio_is_write) 455 kvm_mips_complete_mmio_load(vcpu, run); 456 vcpu->mmio_needed = 0; 457 } 458 459 if (run->immediate_exit) 460 goto out; 461 462 lose_fpu(1); 463 464 local_irq_disable(); 465 guest_enter_irqoff(); 466 trace_kvm_enter(vcpu); 467 468 /* 469 * Make sure the read of VCPU requests in vcpu_run() callback is not 470 * reordered ahead of the write to vcpu->mode, or we could miss a TLB 471 * flush request while the requester sees the VCPU as outside of guest 472 * mode and not needing an IPI. 473 */ 474 smp_store_mb(vcpu->mode, IN_GUEST_MODE); 475 476 r = kvm_mips_callbacks->vcpu_run(run, vcpu); 477 478 trace_kvm_out(vcpu); 479 guest_exit_irqoff(); 480 local_irq_enable(); 481 482 out: 483 kvm_sigset_deactivate(vcpu); 484 485 vcpu_put(vcpu); 486 return r; 487 } 488 489 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 490 struct kvm_mips_interrupt *irq) 491 { 492 int intr = (int)irq->irq; 493 struct kvm_vcpu *dvcpu = NULL; 494 495 if (intr == 3 || intr == -3 || intr == 4 || intr == -4) 496 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu, 497 (int)intr); 498 499 if (irq->cpu == -1) 500 dvcpu = vcpu; 501 else 502 dvcpu = vcpu->kvm->vcpus[irq->cpu]; 503 504 if (intr == 2 || intr == 3 || intr == 4) { 505 kvm_mips_callbacks->queue_io_int(dvcpu, irq); 506 507 } else if (intr == -2 || intr == -3 || intr == -4) { 508 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq); 509 } else { 510 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__, 511 irq->cpu, irq->irq); 512 return -EINVAL; 513 } 514 515 dvcpu->arch.wait = 0; 516 517 if (swq_has_sleeper(&dvcpu->wq)) 518 swake_up_one(&dvcpu->wq); 519 520 return 0; 521 } 522 523 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 524 struct kvm_mp_state *mp_state) 525 { 526 return -ENOIOCTLCMD; 527 } 528 529 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 530 struct kvm_mp_state *mp_state) 531 { 532 return -ENOIOCTLCMD; 533 } 534 535 static u64 kvm_mips_get_one_regs[] = { 536 KVM_REG_MIPS_R0, 537 KVM_REG_MIPS_R1, 538 KVM_REG_MIPS_R2, 539 KVM_REG_MIPS_R3, 540 KVM_REG_MIPS_R4, 541 KVM_REG_MIPS_R5, 542 KVM_REG_MIPS_R6, 543 KVM_REG_MIPS_R7, 544 KVM_REG_MIPS_R8, 545 KVM_REG_MIPS_R9, 546 KVM_REG_MIPS_R10, 547 KVM_REG_MIPS_R11, 548 KVM_REG_MIPS_R12, 549 KVM_REG_MIPS_R13, 550 KVM_REG_MIPS_R14, 551 KVM_REG_MIPS_R15, 552 KVM_REG_MIPS_R16, 553 KVM_REG_MIPS_R17, 554 KVM_REG_MIPS_R18, 555 KVM_REG_MIPS_R19, 556 KVM_REG_MIPS_R20, 557 KVM_REG_MIPS_R21, 558 KVM_REG_MIPS_R22, 559 KVM_REG_MIPS_R23, 560 KVM_REG_MIPS_R24, 561 KVM_REG_MIPS_R25, 562 KVM_REG_MIPS_R26, 563 KVM_REG_MIPS_R27, 564 KVM_REG_MIPS_R28, 565 KVM_REG_MIPS_R29, 566 KVM_REG_MIPS_R30, 567 KVM_REG_MIPS_R31, 568 569 #ifndef CONFIG_CPU_MIPSR6 570 KVM_REG_MIPS_HI, 571 KVM_REG_MIPS_LO, 572 #endif 573 KVM_REG_MIPS_PC, 574 }; 575 576 static u64 kvm_mips_get_one_regs_fpu[] = { 577 KVM_REG_MIPS_FCR_IR, 578 KVM_REG_MIPS_FCR_CSR, 579 }; 580 581 static u64 kvm_mips_get_one_regs_msa[] = { 582 KVM_REG_MIPS_MSA_IR, 583 KVM_REG_MIPS_MSA_CSR, 584 }; 585 586 static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu) 587 { 588 unsigned long ret; 589 590 ret = ARRAY_SIZE(kvm_mips_get_one_regs); 591 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) { 592 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48; 593 /* odd doubles */ 594 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64) 595 ret += 16; 596 } 597 if (kvm_mips_guest_can_have_msa(&vcpu->arch)) 598 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32; 599 ret += kvm_mips_callbacks->num_regs(vcpu); 600 601 return ret; 602 } 603 604 static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices) 605 { 606 u64 index; 607 unsigned int i; 608 609 if (copy_to_user(indices, kvm_mips_get_one_regs, 610 sizeof(kvm_mips_get_one_regs))) 611 return -EFAULT; 612 indices += ARRAY_SIZE(kvm_mips_get_one_regs); 613 614 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) { 615 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu, 616 sizeof(kvm_mips_get_one_regs_fpu))) 617 return -EFAULT; 618 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu); 619 620 for (i = 0; i < 32; ++i) { 621 index = KVM_REG_MIPS_FPR_32(i); 622 if (copy_to_user(indices, &index, sizeof(index))) 623 return -EFAULT; 624 ++indices; 625 626 /* skip odd doubles if no F64 */ 627 if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64)) 628 continue; 629 630 index = KVM_REG_MIPS_FPR_64(i); 631 if (copy_to_user(indices, &index, sizeof(index))) 632 return -EFAULT; 633 ++indices; 634 } 635 } 636 637 if (kvm_mips_guest_can_have_msa(&vcpu->arch)) { 638 if (copy_to_user(indices, kvm_mips_get_one_regs_msa, 639 sizeof(kvm_mips_get_one_regs_msa))) 640 return -EFAULT; 641 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa); 642 643 for (i = 0; i < 32; ++i) { 644 index = KVM_REG_MIPS_VEC_128(i); 645 if (copy_to_user(indices, &index, sizeof(index))) 646 return -EFAULT; 647 ++indices; 648 } 649 } 650 651 return kvm_mips_callbacks->copy_reg_indices(vcpu, indices); 652 } 653 654 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu, 655 const struct kvm_one_reg *reg) 656 { 657 struct mips_coproc *cop0 = vcpu->arch.cop0; 658 struct mips_fpu_struct *fpu = &vcpu->arch.fpu; 659 int ret; 660 s64 v; 661 s64 vs[2]; 662 unsigned int idx; 663 664 switch (reg->id) { 665 /* General purpose registers */ 666 case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31: 667 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0]; 668 break; 669 #ifndef CONFIG_CPU_MIPSR6 670 case KVM_REG_MIPS_HI: 671 v = (long)vcpu->arch.hi; 672 break; 673 case KVM_REG_MIPS_LO: 674 v = (long)vcpu->arch.lo; 675 break; 676 #endif 677 case KVM_REG_MIPS_PC: 678 v = (long)vcpu->arch.pc; 679 break; 680 681 /* Floating point registers */ 682 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31): 683 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 684 return -EINVAL; 685 idx = reg->id - KVM_REG_MIPS_FPR_32(0); 686 /* Odd singles in top of even double when FR=0 */ 687 if (kvm_read_c0_guest_status(cop0) & ST0_FR) 688 v = get_fpr32(&fpu->fpr[idx], 0); 689 else 690 v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1); 691 break; 692 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31): 693 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 694 return -EINVAL; 695 idx = reg->id - KVM_REG_MIPS_FPR_64(0); 696 /* Can't access odd doubles in FR=0 mode */ 697 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR)) 698 return -EINVAL; 699 v = get_fpr64(&fpu->fpr[idx], 0); 700 break; 701 case KVM_REG_MIPS_FCR_IR: 702 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 703 return -EINVAL; 704 v = boot_cpu_data.fpu_id; 705 break; 706 case KVM_REG_MIPS_FCR_CSR: 707 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 708 return -EINVAL; 709 v = fpu->fcr31; 710 break; 711 712 /* MIPS SIMD Architecture (MSA) registers */ 713 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31): 714 if (!kvm_mips_guest_has_msa(&vcpu->arch)) 715 return -EINVAL; 716 /* Can't access MSA registers in FR=0 mode */ 717 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR)) 718 return -EINVAL; 719 idx = reg->id - KVM_REG_MIPS_VEC_128(0); 720 #ifdef CONFIG_CPU_LITTLE_ENDIAN 721 /* least significant byte first */ 722 vs[0] = get_fpr64(&fpu->fpr[idx], 0); 723 vs[1] = get_fpr64(&fpu->fpr[idx], 1); 724 #else 725 /* most significant byte first */ 726 vs[0] = get_fpr64(&fpu->fpr[idx], 1); 727 vs[1] = get_fpr64(&fpu->fpr[idx], 0); 728 #endif 729 break; 730 case KVM_REG_MIPS_MSA_IR: 731 if (!kvm_mips_guest_has_msa(&vcpu->arch)) 732 return -EINVAL; 733 v = boot_cpu_data.msa_id; 734 break; 735 case KVM_REG_MIPS_MSA_CSR: 736 if (!kvm_mips_guest_has_msa(&vcpu->arch)) 737 return -EINVAL; 738 v = fpu->msacsr; 739 break; 740 741 /* registers to be handled specially */ 742 default: 743 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v); 744 if (ret) 745 return ret; 746 break; 747 } 748 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) { 749 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr; 750 751 return put_user(v, uaddr64); 752 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) { 753 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr; 754 u32 v32 = (u32)v; 755 756 return put_user(v32, uaddr32); 757 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) { 758 void __user *uaddr = (void __user *)(long)reg->addr; 759 760 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0; 761 } else { 762 return -EINVAL; 763 } 764 } 765 766 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu, 767 const struct kvm_one_reg *reg) 768 { 769 struct mips_coproc *cop0 = vcpu->arch.cop0; 770 struct mips_fpu_struct *fpu = &vcpu->arch.fpu; 771 s64 v; 772 s64 vs[2]; 773 unsigned int idx; 774 775 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) { 776 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr; 777 778 if (get_user(v, uaddr64) != 0) 779 return -EFAULT; 780 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) { 781 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr; 782 s32 v32; 783 784 if (get_user(v32, uaddr32) != 0) 785 return -EFAULT; 786 v = (s64)v32; 787 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) { 788 void __user *uaddr = (void __user *)(long)reg->addr; 789 790 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0; 791 } else { 792 return -EINVAL; 793 } 794 795 switch (reg->id) { 796 /* General purpose registers */ 797 case KVM_REG_MIPS_R0: 798 /* Silently ignore requests to set $0 */ 799 break; 800 case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31: 801 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v; 802 break; 803 #ifndef CONFIG_CPU_MIPSR6 804 case KVM_REG_MIPS_HI: 805 vcpu->arch.hi = v; 806 break; 807 case KVM_REG_MIPS_LO: 808 vcpu->arch.lo = v; 809 break; 810 #endif 811 case KVM_REG_MIPS_PC: 812 vcpu->arch.pc = v; 813 break; 814 815 /* Floating point registers */ 816 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31): 817 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 818 return -EINVAL; 819 idx = reg->id - KVM_REG_MIPS_FPR_32(0); 820 /* Odd singles in top of even double when FR=0 */ 821 if (kvm_read_c0_guest_status(cop0) & ST0_FR) 822 set_fpr32(&fpu->fpr[idx], 0, v); 823 else 824 set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v); 825 break; 826 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31): 827 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 828 return -EINVAL; 829 idx = reg->id - KVM_REG_MIPS_FPR_64(0); 830 /* Can't access odd doubles in FR=0 mode */ 831 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR)) 832 return -EINVAL; 833 set_fpr64(&fpu->fpr[idx], 0, v); 834 break; 835 case KVM_REG_MIPS_FCR_IR: 836 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 837 return -EINVAL; 838 /* Read-only */ 839 break; 840 case KVM_REG_MIPS_FCR_CSR: 841 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 842 return -EINVAL; 843 fpu->fcr31 = v; 844 break; 845 846 /* MIPS SIMD Architecture (MSA) registers */ 847 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31): 848 if (!kvm_mips_guest_has_msa(&vcpu->arch)) 849 return -EINVAL; 850 idx = reg->id - KVM_REG_MIPS_VEC_128(0); 851 #ifdef CONFIG_CPU_LITTLE_ENDIAN 852 /* least significant byte first */ 853 set_fpr64(&fpu->fpr[idx], 0, vs[0]); 854 set_fpr64(&fpu->fpr[idx], 1, vs[1]); 855 #else 856 /* most significant byte first */ 857 set_fpr64(&fpu->fpr[idx], 1, vs[0]); 858 set_fpr64(&fpu->fpr[idx], 0, vs[1]); 859 #endif 860 break; 861 case KVM_REG_MIPS_MSA_IR: 862 if (!kvm_mips_guest_has_msa(&vcpu->arch)) 863 return -EINVAL; 864 /* Read-only */ 865 break; 866 case KVM_REG_MIPS_MSA_CSR: 867 if (!kvm_mips_guest_has_msa(&vcpu->arch)) 868 return -EINVAL; 869 fpu->msacsr = v; 870 break; 871 872 /* registers to be handled specially */ 873 default: 874 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v); 875 } 876 return 0; 877 } 878 879 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 880 struct kvm_enable_cap *cap) 881 { 882 int r = 0; 883 884 if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap)) 885 return -EINVAL; 886 if (cap->flags) 887 return -EINVAL; 888 if (cap->args[0]) 889 return -EINVAL; 890 891 switch (cap->cap) { 892 case KVM_CAP_MIPS_FPU: 893 vcpu->arch.fpu_enabled = true; 894 break; 895 case KVM_CAP_MIPS_MSA: 896 vcpu->arch.msa_enabled = true; 897 break; 898 default: 899 r = -EINVAL; 900 break; 901 } 902 903 return r; 904 } 905 906 long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl, 907 unsigned long arg) 908 { 909 struct kvm_vcpu *vcpu = filp->private_data; 910 void __user *argp = (void __user *)arg; 911 912 if (ioctl == KVM_INTERRUPT) { 913 struct kvm_mips_interrupt irq; 914 915 if (copy_from_user(&irq, argp, sizeof(irq))) 916 return -EFAULT; 917 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__, 918 irq.irq); 919 920 return kvm_vcpu_ioctl_interrupt(vcpu, &irq); 921 } 922 923 return -ENOIOCTLCMD; 924 } 925 926 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl, 927 unsigned long arg) 928 { 929 struct kvm_vcpu *vcpu = filp->private_data; 930 void __user *argp = (void __user *)arg; 931 long r; 932 933 vcpu_load(vcpu); 934 935 switch (ioctl) { 936 case KVM_SET_ONE_REG: 937 case KVM_GET_ONE_REG: { 938 struct kvm_one_reg reg; 939 940 r = -EFAULT; 941 if (copy_from_user(®, argp, sizeof(reg))) 942 break; 943 if (ioctl == KVM_SET_ONE_REG) 944 r = kvm_mips_set_reg(vcpu, ®); 945 else 946 r = kvm_mips_get_reg(vcpu, ®); 947 break; 948 } 949 case KVM_GET_REG_LIST: { 950 struct kvm_reg_list __user *user_list = argp; 951 struct kvm_reg_list reg_list; 952 unsigned n; 953 954 r = -EFAULT; 955 if (copy_from_user(®_list, user_list, sizeof(reg_list))) 956 break; 957 n = reg_list.n; 958 reg_list.n = kvm_mips_num_regs(vcpu); 959 if (copy_to_user(user_list, ®_list, sizeof(reg_list))) 960 break; 961 r = -E2BIG; 962 if (n < reg_list.n) 963 break; 964 r = kvm_mips_copy_reg_indices(vcpu, user_list->reg); 965 break; 966 } 967 case KVM_ENABLE_CAP: { 968 struct kvm_enable_cap cap; 969 970 r = -EFAULT; 971 if (copy_from_user(&cap, argp, sizeof(cap))) 972 break; 973 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 974 break; 975 } 976 default: 977 r = -ENOIOCTLCMD; 978 } 979 980 vcpu_put(vcpu); 981 return r; 982 } 983 984 /** 985 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 986 * @kvm: kvm instance 987 * @log: slot id and address to which we copy the log 988 * 989 * Steps 1-4 below provide general overview of dirty page logging. See 990 * kvm_get_dirty_log_protect() function description for additional details. 991 * 992 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 993 * always flush the TLB (step 4) even if previous step failed and the dirty 994 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 995 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 996 * writes will be marked dirty for next log read. 997 * 998 * 1. Take a snapshot of the bit and clear it if needed. 999 * 2. Write protect the corresponding page. 1000 * 3. Copy the snapshot to the userspace. 1001 * 4. Flush TLB's if needed. 1002 */ 1003 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) 1004 { 1005 struct kvm_memslots *slots; 1006 struct kvm_memory_slot *memslot; 1007 bool flush = false; 1008 int r; 1009 1010 mutex_lock(&kvm->slots_lock); 1011 1012 r = kvm_get_dirty_log_protect(kvm, log, &flush); 1013 1014 if (flush) { 1015 slots = kvm_memslots(kvm); 1016 memslot = id_to_memslot(slots, log->slot); 1017 1018 /* Let implementation handle TLB/GVA invalidation */ 1019 kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot); 1020 } 1021 1022 mutex_unlock(&kvm->slots_lock); 1023 return r; 1024 } 1025 1026 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log) 1027 { 1028 struct kvm_memslots *slots; 1029 struct kvm_memory_slot *memslot; 1030 bool flush = false; 1031 int r; 1032 1033 mutex_lock(&kvm->slots_lock); 1034 1035 r = kvm_clear_dirty_log_protect(kvm, log, &flush); 1036 1037 if (flush) { 1038 slots = kvm_memslots(kvm); 1039 memslot = id_to_memslot(slots, log->slot); 1040 1041 /* Let implementation handle TLB/GVA invalidation */ 1042 kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot); 1043 } 1044 1045 mutex_unlock(&kvm->slots_lock); 1046 return r; 1047 } 1048 1049 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 1050 { 1051 long r; 1052 1053 switch (ioctl) { 1054 default: 1055 r = -ENOIOCTLCMD; 1056 } 1057 1058 return r; 1059 } 1060 1061 int kvm_arch_init(void *opaque) 1062 { 1063 if (kvm_mips_callbacks) { 1064 kvm_err("kvm: module already exists\n"); 1065 return -EEXIST; 1066 } 1067 1068 return kvm_mips_emulation_init(&kvm_mips_callbacks); 1069 } 1070 1071 void kvm_arch_exit(void) 1072 { 1073 kvm_mips_callbacks = NULL; 1074 } 1075 1076 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 1077 struct kvm_sregs *sregs) 1078 { 1079 return -ENOIOCTLCMD; 1080 } 1081 1082 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 1083 struct kvm_sregs *sregs) 1084 { 1085 return -ENOIOCTLCMD; 1086 } 1087 1088 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 1089 { 1090 } 1091 1092 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 1093 { 1094 return -ENOIOCTLCMD; 1095 } 1096 1097 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 1098 { 1099 return -ENOIOCTLCMD; 1100 } 1101 1102 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 1103 { 1104 return VM_FAULT_SIGBUS; 1105 } 1106 1107 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 1108 { 1109 int r; 1110 1111 switch (ext) { 1112 case KVM_CAP_ONE_REG: 1113 case KVM_CAP_ENABLE_CAP: 1114 case KVM_CAP_READONLY_MEM: 1115 case KVM_CAP_SYNC_MMU: 1116 case KVM_CAP_IMMEDIATE_EXIT: 1117 r = 1; 1118 break; 1119 case KVM_CAP_NR_VCPUS: 1120 r = num_online_cpus(); 1121 break; 1122 case KVM_CAP_MAX_VCPUS: 1123 r = KVM_MAX_VCPUS; 1124 break; 1125 case KVM_CAP_MAX_VCPU_ID: 1126 r = KVM_MAX_VCPU_ID; 1127 break; 1128 case KVM_CAP_MIPS_FPU: 1129 /* We don't handle systems with inconsistent cpu_has_fpu */ 1130 r = !!raw_cpu_has_fpu; 1131 break; 1132 case KVM_CAP_MIPS_MSA: 1133 /* 1134 * We don't support MSA vector partitioning yet: 1135 * 1) It would require explicit support which can't be tested 1136 * yet due to lack of support in current hardware. 1137 * 2) It extends the state that would need to be saved/restored 1138 * by e.g. QEMU for migration. 1139 * 1140 * When vector partitioning hardware becomes available, support 1141 * could be added by requiring a flag when enabling 1142 * KVM_CAP_MIPS_MSA capability to indicate that userland knows 1143 * to save/restore the appropriate extra state. 1144 */ 1145 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF); 1146 break; 1147 default: 1148 r = kvm_mips_callbacks->check_extension(kvm, ext); 1149 break; 1150 } 1151 return r; 1152 } 1153 1154 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 1155 { 1156 return kvm_mips_pending_timer(vcpu) || 1157 kvm_read_c0_guest_cause(vcpu->arch.cop0) & C_TI; 1158 } 1159 1160 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu) 1161 { 1162 int i; 1163 struct mips_coproc *cop0; 1164 1165 if (!vcpu) 1166 return -1; 1167 1168 kvm_debug("VCPU Register Dump:\n"); 1169 kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc); 1170 kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions); 1171 1172 for (i = 0; i < 32; i += 4) { 1173 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i, 1174 vcpu->arch.gprs[i], 1175 vcpu->arch.gprs[i + 1], 1176 vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]); 1177 } 1178 kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi); 1179 kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo); 1180 1181 cop0 = vcpu->arch.cop0; 1182 kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n", 1183 kvm_read_c0_guest_status(cop0), 1184 kvm_read_c0_guest_cause(cop0)); 1185 1186 kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0)); 1187 1188 return 0; 1189 } 1190 1191 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 1192 { 1193 int i; 1194 1195 vcpu_load(vcpu); 1196 1197 for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++) 1198 vcpu->arch.gprs[i] = regs->gpr[i]; 1199 vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */ 1200 vcpu->arch.hi = regs->hi; 1201 vcpu->arch.lo = regs->lo; 1202 vcpu->arch.pc = regs->pc; 1203 1204 vcpu_put(vcpu); 1205 return 0; 1206 } 1207 1208 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 1209 { 1210 int i; 1211 1212 vcpu_load(vcpu); 1213 1214 for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++) 1215 regs->gpr[i] = vcpu->arch.gprs[i]; 1216 1217 regs->hi = vcpu->arch.hi; 1218 regs->lo = vcpu->arch.lo; 1219 regs->pc = vcpu->arch.pc; 1220 1221 vcpu_put(vcpu); 1222 return 0; 1223 } 1224 1225 static void kvm_mips_comparecount_func(unsigned long data) 1226 { 1227 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data; 1228 1229 kvm_mips_callbacks->queue_timer_int(vcpu); 1230 1231 vcpu->arch.wait = 0; 1232 if (swq_has_sleeper(&vcpu->wq)) 1233 swake_up_one(&vcpu->wq); 1234 } 1235 1236 /* low level hrtimer wake routine */ 1237 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer) 1238 { 1239 struct kvm_vcpu *vcpu; 1240 1241 vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer); 1242 kvm_mips_comparecount_func((unsigned long) vcpu); 1243 return kvm_mips_count_timeout(vcpu); 1244 } 1245 1246 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 1247 { 1248 int err; 1249 1250 err = kvm_mips_callbacks->vcpu_init(vcpu); 1251 if (err) 1252 return err; 1253 1254 hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC, 1255 HRTIMER_MODE_REL); 1256 vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup; 1257 return 0; 1258 } 1259 1260 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 1261 { 1262 kvm_mips_callbacks->vcpu_uninit(vcpu); 1263 } 1264 1265 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 1266 struct kvm_translation *tr) 1267 { 1268 return 0; 1269 } 1270 1271 /* Initial guest state */ 1272 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) 1273 { 1274 return kvm_mips_callbacks->vcpu_setup(vcpu); 1275 } 1276 1277 static void kvm_mips_set_c0_status(void) 1278 { 1279 u32 status = read_c0_status(); 1280 1281 if (cpu_has_dsp) 1282 status |= (ST0_MX); 1283 1284 write_c0_status(status); 1285 ehb(); 1286 } 1287 1288 /* 1289 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV) 1290 */ 1291 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu) 1292 { 1293 u32 cause = vcpu->arch.host_cp0_cause; 1294 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f; 1295 u32 __user *opc = (u32 __user *) vcpu->arch.pc; 1296 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr; 1297 enum emulation_result er = EMULATE_DONE; 1298 u32 inst; 1299 int ret = RESUME_GUEST; 1300 1301 vcpu->mode = OUTSIDE_GUEST_MODE; 1302 1303 /* re-enable HTW before enabling interrupts */ 1304 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) 1305 htw_start(); 1306 1307 /* Set a default exit reason */ 1308 run->exit_reason = KVM_EXIT_UNKNOWN; 1309 run->ready_for_interrupt_injection = 1; 1310 1311 /* 1312 * Set the appropriate status bits based on host CPU features, 1313 * before we hit the scheduler 1314 */ 1315 kvm_mips_set_c0_status(); 1316 1317 local_irq_enable(); 1318 1319 kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n", 1320 cause, opc, run, vcpu); 1321 trace_kvm_exit(vcpu, exccode); 1322 1323 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) { 1324 /* 1325 * Do a privilege check, if in UM most of these exit conditions 1326 * end up causing an exception to be delivered to the Guest 1327 * Kernel 1328 */ 1329 er = kvm_mips_check_privilege(cause, opc, run, vcpu); 1330 if (er == EMULATE_PRIV_FAIL) { 1331 goto skip_emul; 1332 } else if (er == EMULATE_FAIL) { 1333 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1334 ret = RESUME_HOST; 1335 goto skip_emul; 1336 } 1337 } 1338 1339 switch (exccode) { 1340 case EXCCODE_INT: 1341 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc); 1342 1343 ++vcpu->stat.int_exits; 1344 1345 if (need_resched()) 1346 cond_resched(); 1347 1348 ret = RESUME_GUEST; 1349 break; 1350 1351 case EXCCODE_CPU: 1352 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc); 1353 1354 ++vcpu->stat.cop_unusable_exits; 1355 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu); 1356 /* XXXKYMA: Might need to return to user space */ 1357 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN) 1358 ret = RESUME_HOST; 1359 break; 1360 1361 case EXCCODE_MOD: 1362 ++vcpu->stat.tlbmod_exits; 1363 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu); 1364 break; 1365 1366 case EXCCODE_TLBS: 1367 kvm_debug("TLB ST fault: cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n", 1368 cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc, 1369 badvaddr); 1370 1371 ++vcpu->stat.tlbmiss_st_exits; 1372 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu); 1373 break; 1374 1375 case EXCCODE_TLBL: 1376 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n", 1377 cause, opc, badvaddr); 1378 1379 ++vcpu->stat.tlbmiss_ld_exits; 1380 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu); 1381 break; 1382 1383 case EXCCODE_ADES: 1384 ++vcpu->stat.addrerr_st_exits; 1385 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu); 1386 break; 1387 1388 case EXCCODE_ADEL: 1389 ++vcpu->stat.addrerr_ld_exits; 1390 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu); 1391 break; 1392 1393 case EXCCODE_SYS: 1394 ++vcpu->stat.syscall_exits; 1395 ret = kvm_mips_callbacks->handle_syscall(vcpu); 1396 break; 1397 1398 case EXCCODE_RI: 1399 ++vcpu->stat.resvd_inst_exits; 1400 ret = kvm_mips_callbacks->handle_res_inst(vcpu); 1401 break; 1402 1403 case EXCCODE_BP: 1404 ++vcpu->stat.break_inst_exits; 1405 ret = kvm_mips_callbacks->handle_break(vcpu); 1406 break; 1407 1408 case EXCCODE_TR: 1409 ++vcpu->stat.trap_inst_exits; 1410 ret = kvm_mips_callbacks->handle_trap(vcpu); 1411 break; 1412 1413 case EXCCODE_MSAFPE: 1414 ++vcpu->stat.msa_fpe_exits; 1415 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu); 1416 break; 1417 1418 case EXCCODE_FPE: 1419 ++vcpu->stat.fpe_exits; 1420 ret = kvm_mips_callbacks->handle_fpe(vcpu); 1421 break; 1422 1423 case EXCCODE_MSADIS: 1424 ++vcpu->stat.msa_disabled_exits; 1425 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu); 1426 break; 1427 1428 case EXCCODE_GE: 1429 /* defer exit accounting to handler */ 1430 ret = kvm_mips_callbacks->handle_guest_exit(vcpu); 1431 break; 1432 1433 default: 1434 if (cause & CAUSEF_BD) 1435 opc += 1; 1436 inst = 0; 1437 kvm_get_badinstr(opc, vcpu, &inst); 1438 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n", 1439 exccode, opc, inst, badvaddr, 1440 kvm_read_c0_guest_status(vcpu->arch.cop0)); 1441 kvm_arch_vcpu_dump_regs(vcpu); 1442 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1443 ret = RESUME_HOST; 1444 break; 1445 1446 } 1447 1448 skip_emul: 1449 local_irq_disable(); 1450 1451 if (ret == RESUME_GUEST) 1452 kvm_vz_acquire_htimer(vcpu); 1453 1454 if (er == EMULATE_DONE && !(ret & RESUME_HOST)) 1455 kvm_mips_deliver_interrupts(vcpu, cause); 1456 1457 if (!(ret & RESUME_HOST)) { 1458 /* Only check for signals if not already exiting to userspace */ 1459 if (signal_pending(current)) { 1460 run->exit_reason = KVM_EXIT_INTR; 1461 ret = (-EINTR << 2) | RESUME_HOST; 1462 ++vcpu->stat.signal_exits; 1463 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL); 1464 } 1465 } 1466 1467 if (ret == RESUME_GUEST) { 1468 trace_kvm_reenter(vcpu); 1469 1470 /* 1471 * Make sure the read of VCPU requests in vcpu_reenter() 1472 * callback is not reordered ahead of the write to vcpu->mode, 1473 * or we could miss a TLB flush request while the requester sees 1474 * the VCPU as outside of guest mode and not needing an IPI. 1475 */ 1476 smp_store_mb(vcpu->mode, IN_GUEST_MODE); 1477 1478 kvm_mips_callbacks->vcpu_reenter(run, vcpu); 1479 1480 /* 1481 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context 1482 * is live), restore FCR31 / MSACSR. 1483 * 1484 * This should be before returning to the guest exception 1485 * vector, as it may well cause an [MSA] FP exception if there 1486 * are pending exception bits unmasked. (see 1487 * kvm_mips_csr_die_notifier() for how that is handled). 1488 */ 1489 if (kvm_mips_guest_has_fpu(&vcpu->arch) && 1490 read_c0_status() & ST0_CU1) 1491 __kvm_restore_fcsr(&vcpu->arch); 1492 1493 if (kvm_mips_guest_has_msa(&vcpu->arch) && 1494 read_c0_config5() & MIPS_CONF5_MSAEN) 1495 __kvm_restore_msacsr(&vcpu->arch); 1496 } 1497 1498 /* Disable HTW before returning to guest or host */ 1499 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) 1500 htw_stop(); 1501 1502 return ret; 1503 } 1504 1505 /* Enable FPU for guest and restore context */ 1506 void kvm_own_fpu(struct kvm_vcpu *vcpu) 1507 { 1508 struct mips_coproc *cop0 = vcpu->arch.cop0; 1509 unsigned int sr, cfg5; 1510 1511 preempt_disable(); 1512 1513 sr = kvm_read_c0_guest_status(cop0); 1514 1515 /* 1516 * If MSA state is already live, it is undefined how it interacts with 1517 * FR=0 FPU state, and we don't want to hit reserved instruction 1518 * exceptions trying to save the MSA state later when CU=1 && FR=1, so 1519 * play it safe and save it first. 1520 * 1521 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should 1522 * get called when guest CU1 is set, however we can't trust the guest 1523 * not to clobber the status register directly via the commpage. 1524 */ 1525 if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) && 1526 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) 1527 kvm_lose_fpu(vcpu); 1528 1529 /* 1530 * Enable FPU for guest 1531 * We set FR and FRE according to guest context 1532 */ 1533 change_c0_status(ST0_CU1 | ST0_FR, sr); 1534 if (cpu_has_fre) { 1535 cfg5 = kvm_read_c0_guest_config5(cop0); 1536 change_c0_config5(MIPS_CONF5_FRE, cfg5); 1537 } 1538 enable_fpu_hazard(); 1539 1540 /* If guest FPU state not active, restore it now */ 1541 if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) { 1542 __kvm_restore_fpu(&vcpu->arch); 1543 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU; 1544 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU); 1545 } else { 1546 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU); 1547 } 1548 1549 preempt_enable(); 1550 } 1551 1552 #ifdef CONFIG_CPU_HAS_MSA 1553 /* Enable MSA for guest and restore context */ 1554 void kvm_own_msa(struct kvm_vcpu *vcpu) 1555 { 1556 struct mips_coproc *cop0 = vcpu->arch.cop0; 1557 unsigned int sr, cfg5; 1558 1559 preempt_disable(); 1560 1561 /* 1562 * Enable FPU if enabled in guest, since we're restoring FPU context 1563 * anyway. We set FR and FRE according to guest context. 1564 */ 1565 if (kvm_mips_guest_has_fpu(&vcpu->arch)) { 1566 sr = kvm_read_c0_guest_status(cop0); 1567 1568 /* 1569 * If FR=0 FPU state is already live, it is undefined how it 1570 * interacts with MSA state, so play it safe and save it first. 1571 */ 1572 if (!(sr & ST0_FR) && 1573 (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | 1574 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU) 1575 kvm_lose_fpu(vcpu); 1576 1577 change_c0_status(ST0_CU1 | ST0_FR, sr); 1578 if (sr & ST0_CU1 && cpu_has_fre) { 1579 cfg5 = kvm_read_c0_guest_config5(cop0); 1580 change_c0_config5(MIPS_CONF5_FRE, cfg5); 1581 } 1582 } 1583 1584 /* Enable MSA for guest */ 1585 set_c0_config5(MIPS_CONF5_MSAEN); 1586 enable_fpu_hazard(); 1587 1588 switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) { 1589 case KVM_MIPS_AUX_FPU: 1590 /* 1591 * Guest FPU state already loaded, only restore upper MSA state 1592 */ 1593 __kvm_restore_msa_upper(&vcpu->arch); 1594 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA; 1595 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA); 1596 break; 1597 case 0: 1598 /* Neither FPU or MSA already active, restore full MSA state */ 1599 __kvm_restore_msa(&vcpu->arch); 1600 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA; 1601 if (kvm_mips_guest_has_fpu(&vcpu->arch)) 1602 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU; 1603 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, 1604 KVM_TRACE_AUX_FPU_MSA); 1605 break; 1606 default: 1607 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA); 1608 break; 1609 } 1610 1611 preempt_enable(); 1612 } 1613 #endif 1614 1615 /* Drop FPU & MSA without saving it */ 1616 void kvm_drop_fpu(struct kvm_vcpu *vcpu) 1617 { 1618 preempt_disable(); 1619 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) { 1620 disable_msa(); 1621 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA); 1622 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA; 1623 } 1624 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) { 1625 clear_c0_status(ST0_CU1 | ST0_FR); 1626 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU); 1627 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU; 1628 } 1629 preempt_enable(); 1630 } 1631 1632 /* Save and disable FPU & MSA */ 1633 void kvm_lose_fpu(struct kvm_vcpu *vcpu) 1634 { 1635 /* 1636 * With T&E, FPU & MSA get disabled in root context (hardware) when it 1637 * is disabled in guest context (software), but the register state in 1638 * the hardware may still be in use. 1639 * This is why we explicitly re-enable the hardware before saving. 1640 */ 1641 1642 preempt_disable(); 1643 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) { 1644 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) { 1645 set_c0_config5(MIPS_CONF5_MSAEN); 1646 enable_fpu_hazard(); 1647 } 1648 1649 __kvm_save_msa(&vcpu->arch); 1650 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA); 1651 1652 /* Disable MSA & FPU */ 1653 disable_msa(); 1654 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) { 1655 clear_c0_status(ST0_CU1 | ST0_FR); 1656 disable_fpu_hazard(); 1657 } 1658 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA); 1659 } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) { 1660 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) { 1661 set_c0_status(ST0_CU1); 1662 enable_fpu_hazard(); 1663 } 1664 1665 __kvm_save_fpu(&vcpu->arch); 1666 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU; 1667 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU); 1668 1669 /* Disable FPU */ 1670 clear_c0_status(ST0_CU1 | ST0_FR); 1671 disable_fpu_hazard(); 1672 } 1673 preempt_enable(); 1674 } 1675 1676 /* 1677 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are 1678 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP 1679 * exception if cause bits are set in the value being written. 1680 */ 1681 static int kvm_mips_csr_die_notify(struct notifier_block *self, 1682 unsigned long cmd, void *ptr) 1683 { 1684 struct die_args *args = (struct die_args *)ptr; 1685 struct pt_regs *regs = args->regs; 1686 unsigned long pc; 1687 1688 /* Only interested in FPE and MSAFPE */ 1689 if (cmd != DIE_FP && cmd != DIE_MSAFP) 1690 return NOTIFY_DONE; 1691 1692 /* Return immediately if guest context isn't active */ 1693 if (!(current->flags & PF_VCPU)) 1694 return NOTIFY_DONE; 1695 1696 /* Should never get here from user mode */ 1697 BUG_ON(user_mode(regs)); 1698 1699 pc = instruction_pointer(regs); 1700 switch (cmd) { 1701 case DIE_FP: 1702 /* match 2nd instruction in __kvm_restore_fcsr */ 1703 if (pc != (unsigned long)&__kvm_restore_fcsr + 4) 1704 return NOTIFY_DONE; 1705 break; 1706 case DIE_MSAFP: 1707 /* match 2nd/3rd instruction in __kvm_restore_msacsr */ 1708 if (!cpu_has_msa || 1709 pc < (unsigned long)&__kvm_restore_msacsr + 4 || 1710 pc > (unsigned long)&__kvm_restore_msacsr + 8) 1711 return NOTIFY_DONE; 1712 break; 1713 } 1714 1715 /* Move PC forward a little and continue executing */ 1716 instruction_pointer(regs) += 4; 1717 1718 return NOTIFY_STOP; 1719 } 1720 1721 static struct notifier_block kvm_mips_csr_die_notifier = { 1722 .notifier_call = kvm_mips_csr_die_notify, 1723 }; 1724 1725 static int __init kvm_mips_init(void) 1726 { 1727 int ret; 1728 1729 if (cpu_has_mmid) { 1730 pr_warn("KVM does not yet support MMIDs. KVM Disabled\n"); 1731 return -EOPNOTSUPP; 1732 } 1733 1734 ret = kvm_mips_entry_setup(); 1735 if (ret) 1736 return ret; 1737 1738 ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); 1739 1740 if (ret) 1741 return ret; 1742 1743 register_die_notifier(&kvm_mips_csr_die_notifier); 1744 1745 return 0; 1746 } 1747 1748 static void __exit kvm_mips_exit(void) 1749 { 1750 kvm_exit(); 1751 1752 unregister_die_notifier(&kvm_mips_csr_die_notifier); 1753 } 1754 1755 module_init(kvm_mips_init); 1756 module_exit(kvm_mips_exit); 1757 1758 EXPORT_TRACEPOINT_SYMBOL(kvm_exit); 1759