xref: /openbmc/linux/arch/mips/kvm/mips.c (revision 6189f1b0)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: MIPS specific KVM APIs
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11 
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/kdebug.h>
15 #include <linux/module.h>
16 #include <linux/vmalloc.h>
17 #include <linux/fs.h>
18 #include <linux/bootmem.h>
19 #include <asm/fpu.h>
20 #include <asm/page.h>
21 #include <asm/cacheflush.h>
22 #include <asm/mmu_context.h>
23 #include <asm/pgtable.h>
24 
25 #include <linux/kvm_host.h>
26 
27 #include "interrupt.h"
28 #include "commpage.h"
29 
30 #define CREATE_TRACE_POINTS
31 #include "trace.h"
32 
33 #ifndef VECTORSPACING
34 #define VECTORSPACING 0x100	/* for EI/VI mode */
35 #endif
36 
37 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
38 struct kvm_stats_debugfs_item debugfs_entries[] = {
39 	{ "wait",	  VCPU_STAT(wait_exits),	 KVM_STAT_VCPU },
40 	{ "cache",	  VCPU_STAT(cache_exits),	 KVM_STAT_VCPU },
41 	{ "signal",	  VCPU_STAT(signal_exits),	 KVM_STAT_VCPU },
42 	{ "interrupt",	  VCPU_STAT(int_exits),		 KVM_STAT_VCPU },
43 	{ "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
44 	{ "tlbmod",	  VCPU_STAT(tlbmod_exits),	 KVM_STAT_VCPU },
45 	{ "tlbmiss_ld",	  VCPU_STAT(tlbmiss_ld_exits),	 KVM_STAT_VCPU },
46 	{ "tlbmiss_st",	  VCPU_STAT(tlbmiss_st_exits),	 KVM_STAT_VCPU },
47 	{ "addrerr_st",	  VCPU_STAT(addrerr_st_exits),	 KVM_STAT_VCPU },
48 	{ "addrerr_ld",	  VCPU_STAT(addrerr_ld_exits),	 KVM_STAT_VCPU },
49 	{ "syscall",	  VCPU_STAT(syscall_exits),	 KVM_STAT_VCPU },
50 	{ "resvd_inst",	  VCPU_STAT(resvd_inst_exits),	 KVM_STAT_VCPU },
51 	{ "break_inst",	  VCPU_STAT(break_inst_exits),	 KVM_STAT_VCPU },
52 	{ "trap_inst",	  VCPU_STAT(trap_inst_exits),	 KVM_STAT_VCPU },
53 	{ "msa_fpe",	  VCPU_STAT(msa_fpe_exits),	 KVM_STAT_VCPU },
54 	{ "fpe",	  VCPU_STAT(fpe_exits),		 KVM_STAT_VCPU },
55 	{ "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
56 	{ "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
57 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
58 	{ "halt_wakeup",  VCPU_STAT(halt_wakeup),	 KVM_STAT_VCPU },
59 	{NULL}
60 };
61 
62 static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
63 {
64 	int i;
65 
66 	for_each_possible_cpu(i) {
67 		vcpu->arch.guest_kernel_asid[i] = 0;
68 		vcpu->arch.guest_user_asid[i] = 0;
69 	}
70 
71 	return 0;
72 }
73 
74 /*
75  * XXXKYMA: We are simulatoring a processor that has the WII bit set in
76  * Config7, so we are "runnable" if interrupts are pending
77  */
78 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
79 {
80 	return !!(vcpu->arch.pending_exceptions);
81 }
82 
83 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
84 {
85 	return 1;
86 }
87 
88 int kvm_arch_hardware_enable(void)
89 {
90 	return 0;
91 }
92 
93 int kvm_arch_hardware_setup(void)
94 {
95 	return 0;
96 }
97 
98 void kvm_arch_check_processor_compat(void *rtn)
99 {
100 	*(int *)rtn = 0;
101 }
102 
103 static void kvm_mips_init_tlbs(struct kvm *kvm)
104 {
105 	unsigned long wired;
106 
107 	/*
108 	 * Add a wired entry to the TLB, it is used to map the commpage to
109 	 * the Guest kernel
110 	 */
111 	wired = read_c0_wired();
112 	write_c0_wired(wired + 1);
113 	mtc0_tlbw_hazard();
114 	kvm->arch.commpage_tlb = wired;
115 
116 	kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
117 		  kvm->arch.commpage_tlb);
118 }
119 
120 static void kvm_mips_init_vm_percpu(void *arg)
121 {
122 	struct kvm *kvm = (struct kvm *)arg;
123 
124 	kvm_mips_init_tlbs(kvm);
125 	kvm_mips_callbacks->vm_init(kvm);
126 
127 }
128 
129 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
130 {
131 	if (atomic_inc_return(&kvm_mips_instance) == 1) {
132 		kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
133 			  __func__);
134 		on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
135 	}
136 
137 	return 0;
138 }
139 
140 void kvm_mips_free_vcpus(struct kvm *kvm)
141 {
142 	unsigned int i;
143 	struct kvm_vcpu *vcpu;
144 
145 	/* Put the pages we reserved for the guest pmap */
146 	for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
147 		if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
148 			kvm_mips_release_pfn_clean(kvm->arch.guest_pmap[i]);
149 	}
150 	kfree(kvm->arch.guest_pmap);
151 
152 	kvm_for_each_vcpu(i, vcpu, kvm) {
153 		kvm_arch_vcpu_free(vcpu);
154 	}
155 
156 	mutex_lock(&kvm->lock);
157 
158 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
159 		kvm->vcpus[i] = NULL;
160 
161 	atomic_set(&kvm->online_vcpus, 0);
162 
163 	mutex_unlock(&kvm->lock);
164 }
165 
166 static void kvm_mips_uninit_tlbs(void *arg)
167 {
168 	/* Restore wired count */
169 	write_c0_wired(0);
170 	mtc0_tlbw_hazard();
171 	/* Clear out all the TLBs */
172 	kvm_local_flush_tlb_all();
173 }
174 
175 void kvm_arch_destroy_vm(struct kvm *kvm)
176 {
177 	kvm_mips_free_vcpus(kvm);
178 
179 	/* If this is the last instance, restore wired count */
180 	if (atomic_dec_return(&kvm_mips_instance) == 0) {
181 		kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
182 			  __func__);
183 		on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
184 	}
185 }
186 
187 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
188 			unsigned long arg)
189 {
190 	return -ENOIOCTLCMD;
191 }
192 
193 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
194 			    unsigned long npages)
195 {
196 	return 0;
197 }
198 
199 int kvm_arch_prepare_memory_region(struct kvm *kvm,
200 				   struct kvm_memory_slot *memslot,
201 				   const struct kvm_userspace_memory_region *mem,
202 				   enum kvm_mr_change change)
203 {
204 	return 0;
205 }
206 
207 void kvm_arch_commit_memory_region(struct kvm *kvm,
208 				   const struct kvm_userspace_memory_region *mem,
209 				   const struct kvm_memory_slot *old,
210 				   const struct kvm_memory_slot *new,
211 				   enum kvm_mr_change change)
212 {
213 	unsigned long npages = 0;
214 	int i;
215 
216 	kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
217 		  __func__, kvm, mem->slot, mem->guest_phys_addr,
218 		  mem->memory_size, mem->userspace_addr);
219 
220 	/* Setup Guest PMAP table */
221 	if (!kvm->arch.guest_pmap) {
222 		if (mem->slot == 0)
223 			npages = mem->memory_size >> PAGE_SHIFT;
224 
225 		if (npages) {
226 			kvm->arch.guest_pmap_npages = npages;
227 			kvm->arch.guest_pmap =
228 			    kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
229 
230 			if (!kvm->arch.guest_pmap) {
231 				kvm_err("Failed to allocate guest PMAP");
232 				return;
233 			}
234 
235 			kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
236 				  npages, kvm->arch.guest_pmap);
237 
238 			/* Now setup the page table */
239 			for (i = 0; i < npages; i++)
240 				kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
241 		}
242 	}
243 }
244 
245 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
246 {
247 	int err, size, offset;
248 	void *gebase;
249 	int i;
250 
251 	struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
252 
253 	if (!vcpu) {
254 		err = -ENOMEM;
255 		goto out;
256 	}
257 
258 	err = kvm_vcpu_init(vcpu, kvm, id);
259 
260 	if (err)
261 		goto out_free_cpu;
262 
263 	kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
264 
265 	/*
266 	 * Allocate space for host mode exception handlers that handle
267 	 * guest mode exits
268 	 */
269 	if (cpu_has_veic || cpu_has_vint)
270 		size = 0x200 + VECTORSPACING * 64;
271 	else
272 		size = 0x4000;
273 
274 	/* Save Linux EBASE */
275 	vcpu->arch.host_ebase = (void *)read_c0_ebase();
276 
277 	gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
278 
279 	if (!gebase) {
280 		err = -ENOMEM;
281 		goto out_free_cpu;
282 	}
283 	kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
284 		  ALIGN(size, PAGE_SIZE), gebase);
285 
286 	/* Save new ebase */
287 	vcpu->arch.guest_ebase = gebase;
288 
289 	/* Copy L1 Guest Exception handler to correct offset */
290 
291 	/* TLB Refill, EXL = 0 */
292 	memcpy(gebase, mips32_exception,
293 	       mips32_exceptionEnd - mips32_exception);
294 
295 	/* General Exception Entry point */
296 	memcpy(gebase + 0x180, mips32_exception,
297 	       mips32_exceptionEnd - mips32_exception);
298 
299 	/* For vectored interrupts poke the exception code @ all offsets 0-7 */
300 	for (i = 0; i < 8; i++) {
301 		kvm_debug("L1 Vectored handler @ %p\n",
302 			  gebase + 0x200 + (i * VECTORSPACING));
303 		memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception,
304 		       mips32_exceptionEnd - mips32_exception);
305 	}
306 
307 	/* General handler, relocate to unmapped space for sanity's sake */
308 	offset = 0x2000;
309 	kvm_debug("Installing KVM Exception handlers @ %p, %#x bytes\n",
310 		  gebase + offset,
311 		  mips32_GuestExceptionEnd - mips32_GuestException);
312 
313 	memcpy(gebase + offset, mips32_GuestException,
314 	       mips32_GuestExceptionEnd - mips32_GuestException);
315 
316 	/* Invalidate the icache for these ranges */
317 	local_flush_icache_range((unsigned long)gebase,
318 				(unsigned long)gebase + ALIGN(size, PAGE_SIZE));
319 
320 	/*
321 	 * Allocate comm page for guest kernel, a TLB will be reserved for
322 	 * mapping GVA @ 0xFFFF8000 to this page
323 	 */
324 	vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
325 
326 	if (!vcpu->arch.kseg0_commpage) {
327 		err = -ENOMEM;
328 		goto out_free_gebase;
329 	}
330 
331 	kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
332 	kvm_mips_commpage_init(vcpu);
333 
334 	/* Init */
335 	vcpu->arch.last_sched_cpu = -1;
336 
337 	/* Start off the timer */
338 	kvm_mips_init_count(vcpu);
339 
340 	return vcpu;
341 
342 out_free_gebase:
343 	kfree(gebase);
344 
345 out_free_cpu:
346 	kfree(vcpu);
347 
348 out:
349 	return ERR_PTR(err);
350 }
351 
352 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
353 {
354 	hrtimer_cancel(&vcpu->arch.comparecount_timer);
355 
356 	kvm_vcpu_uninit(vcpu);
357 
358 	kvm_mips_dump_stats(vcpu);
359 
360 	kfree(vcpu->arch.guest_ebase);
361 	kfree(vcpu->arch.kseg0_commpage);
362 	kfree(vcpu);
363 }
364 
365 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
366 {
367 	kvm_arch_vcpu_free(vcpu);
368 }
369 
370 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
371 					struct kvm_guest_debug *dbg)
372 {
373 	return -ENOIOCTLCMD;
374 }
375 
376 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
377 {
378 	int r = 0;
379 	sigset_t sigsaved;
380 
381 	if (vcpu->sigset_active)
382 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
383 
384 	if (vcpu->mmio_needed) {
385 		if (!vcpu->mmio_is_write)
386 			kvm_mips_complete_mmio_load(vcpu, run);
387 		vcpu->mmio_needed = 0;
388 	}
389 
390 	lose_fpu(1);
391 
392 	local_irq_disable();
393 	/* Check if we have any exceptions/interrupts pending */
394 	kvm_mips_deliver_interrupts(vcpu,
395 				    kvm_read_c0_guest_cause(vcpu->arch.cop0));
396 
397 	__kvm_guest_enter();
398 
399 	/* Disable hardware page table walking while in guest */
400 	htw_stop();
401 
402 	r = __kvm_mips_vcpu_run(run, vcpu);
403 
404 	/* Re-enable HTW before enabling interrupts */
405 	htw_start();
406 
407 	__kvm_guest_exit();
408 	local_irq_enable();
409 
410 	if (vcpu->sigset_active)
411 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
412 
413 	return r;
414 }
415 
416 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
417 			     struct kvm_mips_interrupt *irq)
418 {
419 	int intr = (int)irq->irq;
420 	struct kvm_vcpu *dvcpu = NULL;
421 
422 	if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
423 		kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
424 			  (int)intr);
425 
426 	if (irq->cpu == -1)
427 		dvcpu = vcpu;
428 	else
429 		dvcpu = vcpu->kvm->vcpus[irq->cpu];
430 
431 	if (intr == 2 || intr == 3 || intr == 4) {
432 		kvm_mips_callbacks->queue_io_int(dvcpu, irq);
433 
434 	} else if (intr == -2 || intr == -3 || intr == -4) {
435 		kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
436 	} else {
437 		kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
438 			irq->cpu, irq->irq);
439 		return -EINVAL;
440 	}
441 
442 	dvcpu->arch.wait = 0;
443 
444 	if (waitqueue_active(&dvcpu->wq))
445 		wake_up_interruptible(&dvcpu->wq);
446 
447 	return 0;
448 }
449 
450 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
451 				    struct kvm_mp_state *mp_state)
452 {
453 	return -ENOIOCTLCMD;
454 }
455 
456 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
457 				    struct kvm_mp_state *mp_state)
458 {
459 	return -ENOIOCTLCMD;
460 }
461 
462 static u64 kvm_mips_get_one_regs[] = {
463 	KVM_REG_MIPS_R0,
464 	KVM_REG_MIPS_R1,
465 	KVM_REG_MIPS_R2,
466 	KVM_REG_MIPS_R3,
467 	KVM_REG_MIPS_R4,
468 	KVM_REG_MIPS_R5,
469 	KVM_REG_MIPS_R6,
470 	KVM_REG_MIPS_R7,
471 	KVM_REG_MIPS_R8,
472 	KVM_REG_MIPS_R9,
473 	KVM_REG_MIPS_R10,
474 	KVM_REG_MIPS_R11,
475 	KVM_REG_MIPS_R12,
476 	KVM_REG_MIPS_R13,
477 	KVM_REG_MIPS_R14,
478 	KVM_REG_MIPS_R15,
479 	KVM_REG_MIPS_R16,
480 	KVM_REG_MIPS_R17,
481 	KVM_REG_MIPS_R18,
482 	KVM_REG_MIPS_R19,
483 	KVM_REG_MIPS_R20,
484 	KVM_REG_MIPS_R21,
485 	KVM_REG_MIPS_R22,
486 	KVM_REG_MIPS_R23,
487 	KVM_REG_MIPS_R24,
488 	KVM_REG_MIPS_R25,
489 	KVM_REG_MIPS_R26,
490 	KVM_REG_MIPS_R27,
491 	KVM_REG_MIPS_R28,
492 	KVM_REG_MIPS_R29,
493 	KVM_REG_MIPS_R30,
494 	KVM_REG_MIPS_R31,
495 
496 	KVM_REG_MIPS_HI,
497 	KVM_REG_MIPS_LO,
498 	KVM_REG_MIPS_PC,
499 
500 	KVM_REG_MIPS_CP0_INDEX,
501 	KVM_REG_MIPS_CP0_CONTEXT,
502 	KVM_REG_MIPS_CP0_USERLOCAL,
503 	KVM_REG_MIPS_CP0_PAGEMASK,
504 	KVM_REG_MIPS_CP0_WIRED,
505 	KVM_REG_MIPS_CP0_HWRENA,
506 	KVM_REG_MIPS_CP0_BADVADDR,
507 	KVM_REG_MIPS_CP0_COUNT,
508 	KVM_REG_MIPS_CP0_ENTRYHI,
509 	KVM_REG_MIPS_CP0_COMPARE,
510 	KVM_REG_MIPS_CP0_STATUS,
511 	KVM_REG_MIPS_CP0_CAUSE,
512 	KVM_REG_MIPS_CP0_EPC,
513 	KVM_REG_MIPS_CP0_PRID,
514 	KVM_REG_MIPS_CP0_CONFIG,
515 	KVM_REG_MIPS_CP0_CONFIG1,
516 	KVM_REG_MIPS_CP0_CONFIG2,
517 	KVM_REG_MIPS_CP0_CONFIG3,
518 	KVM_REG_MIPS_CP0_CONFIG4,
519 	KVM_REG_MIPS_CP0_CONFIG5,
520 	KVM_REG_MIPS_CP0_CONFIG7,
521 	KVM_REG_MIPS_CP0_ERROREPC,
522 
523 	KVM_REG_MIPS_COUNT_CTL,
524 	KVM_REG_MIPS_COUNT_RESUME,
525 	KVM_REG_MIPS_COUNT_HZ,
526 };
527 
528 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
529 			    const struct kvm_one_reg *reg)
530 {
531 	struct mips_coproc *cop0 = vcpu->arch.cop0;
532 	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
533 	int ret;
534 	s64 v;
535 	s64 vs[2];
536 	unsigned int idx;
537 
538 	switch (reg->id) {
539 	/* General purpose registers */
540 	case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
541 		v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
542 		break;
543 	case KVM_REG_MIPS_HI:
544 		v = (long)vcpu->arch.hi;
545 		break;
546 	case KVM_REG_MIPS_LO:
547 		v = (long)vcpu->arch.lo;
548 		break;
549 	case KVM_REG_MIPS_PC:
550 		v = (long)vcpu->arch.pc;
551 		break;
552 
553 	/* Floating point registers */
554 	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
555 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
556 			return -EINVAL;
557 		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
558 		/* Odd singles in top of even double when FR=0 */
559 		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
560 			v = get_fpr32(&fpu->fpr[idx], 0);
561 		else
562 			v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
563 		break;
564 	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
565 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
566 			return -EINVAL;
567 		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
568 		/* Can't access odd doubles in FR=0 mode */
569 		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
570 			return -EINVAL;
571 		v = get_fpr64(&fpu->fpr[idx], 0);
572 		break;
573 	case KVM_REG_MIPS_FCR_IR:
574 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
575 			return -EINVAL;
576 		v = boot_cpu_data.fpu_id;
577 		break;
578 	case KVM_REG_MIPS_FCR_CSR:
579 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
580 			return -EINVAL;
581 		v = fpu->fcr31;
582 		break;
583 
584 	/* MIPS SIMD Architecture (MSA) registers */
585 	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
586 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
587 			return -EINVAL;
588 		/* Can't access MSA registers in FR=0 mode */
589 		if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
590 			return -EINVAL;
591 		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
592 #ifdef CONFIG_CPU_LITTLE_ENDIAN
593 		/* least significant byte first */
594 		vs[0] = get_fpr64(&fpu->fpr[idx], 0);
595 		vs[1] = get_fpr64(&fpu->fpr[idx], 1);
596 #else
597 		/* most significant byte first */
598 		vs[0] = get_fpr64(&fpu->fpr[idx], 1);
599 		vs[1] = get_fpr64(&fpu->fpr[idx], 0);
600 #endif
601 		break;
602 	case KVM_REG_MIPS_MSA_IR:
603 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
604 			return -EINVAL;
605 		v = boot_cpu_data.msa_id;
606 		break;
607 	case KVM_REG_MIPS_MSA_CSR:
608 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
609 			return -EINVAL;
610 		v = fpu->msacsr;
611 		break;
612 
613 	/* Co-processor 0 registers */
614 	case KVM_REG_MIPS_CP0_INDEX:
615 		v = (long)kvm_read_c0_guest_index(cop0);
616 		break;
617 	case KVM_REG_MIPS_CP0_CONTEXT:
618 		v = (long)kvm_read_c0_guest_context(cop0);
619 		break;
620 	case KVM_REG_MIPS_CP0_USERLOCAL:
621 		v = (long)kvm_read_c0_guest_userlocal(cop0);
622 		break;
623 	case KVM_REG_MIPS_CP0_PAGEMASK:
624 		v = (long)kvm_read_c0_guest_pagemask(cop0);
625 		break;
626 	case KVM_REG_MIPS_CP0_WIRED:
627 		v = (long)kvm_read_c0_guest_wired(cop0);
628 		break;
629 	case KVM_REG_MIPS_CP0_HWRENA:
630 		v = (long)kvm_read_c0_guest_hwrena(cop0);
631 		break;
632 	case KVM_REG_MIPS_CP0_BADVADDR:
633 		v = (long)kvm_read_c0_guest_badvaddr(cop0);
634 		break;
635 	case KVM_REG_MIPS_CP0_ENTRYHI:
636 		v = (long)kvm_read_c0_guest_entryhi(cop0);
637 		break;
638 	case KVM_REG_MIPS_CP0_COMPARE:
639 		v = (long)kvm_read_c0_guest_compare(cop0);
640 		break;
641 	case KVM_REG_MIPS_CP0_STATUS:
642 		v = (long)kvm_read_c0_guest_status(cop0);
643 		break;
644 	case KVM_REG_MIPS_CP0_CAUSE:
645 		v = (long)kvm_read_c0_guest_cause(cop0);
646 		break;
647 	case KVM_REG_MIPS_CP0_EPC:
648 		v = (long)kvm_read_c0_guest_epc(cop0);
649 		break;
650 	case KVM_REG_MIPS_CP0_PRID:
651 		v = (long)kvm_read_c0_guest_prid(cop0);
652 		break;
653 	case KVM_REG_MIPS_CP0_CONFIG:
654 		v = (long)kvm_read_c0_guest_config(cop0);
655 		break;
656 	case KVM_REG_MIPS_CP0_CONFIG1:
657 		v = (long)kvm_read_c0_guest_config1(cop0);
658 		break;
659 	case KVM_REG_MIPS_CP0_CONFIG2:
660 		v = (long)kvm_read_c0_guest_config2(cop0);
661 		break;
662 	case KVM_REG_MIPS_CP0_CONFIG3:
663 		v = (long)kvm_read_c0_guest_config3(cop0);
664 		break;
665 	case KVM_REG_MIPS_CP0_CONFIG4:
666 		v = (long)kvm_read_c0_guest_config4(cop0);
667 		break;
668 	case KVM_REG_MIPS_CP0_CONFIG5:
669 		v = (long)kvm_read_c0_guest_config5(cop0);
670 		break;
671 	case KVM_REG_MIPS_CP0_CONFIG7:
672 		v = (long)kvm_read_c0_guest_config7(cop0);
673 		break;
674 	case KVM_REG_MIPS_CP0_ERROREPC:
675 		v = (long)kvm_read_c0_guest_errorepc(cop0);
676 		break;
677 	/* registers to be handled specially */
678 	case KVM_REG_MIPS_CP0_COUNT:
679 	case KVM_REG_MIPS_COUNT_CTL:
680 	case KVM_REG_MIPS_COUNT_RESUME:
681 	case KVM_REG_MIPS_COUNT_HZ:
682 		ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
683 		if (ret)
684 			return ret;
685 		break;
686 	default:
687 		return -EINVAL;
688 	}
689 	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
690 		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
691 
692 		return put_user(v, uaddr64);
693 	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
694 		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
695 		u32 v32 = (u32)v;
696 
697 		return put_user(v32, uaddr32);
698 	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
699 		void __user *uaddr = (void __user *)(long)reg->addr;
700 
701 		return copy_to_user(uaddr, vs, 16);
702 	} else {
703 		return -EINVAL;
704 	}
705 }
706 
707 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
708 			    const struct kvm_one_reg *reg)
709 {
710 	struct mips_coproc *cop0 = vcpu->arch.cop0;
711 	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
712 	s64 v;
713 	s64 vs[2];
714 	unsigned int idx;
715 
716 	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
717 		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
718 
719 		if (get_user(v, uaddr64) != 0)
720 			return -EFAULT;
721 	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
722 		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
723 		s32 v32;
724 
725 		if (get_user(v32, uaddr32) != 0)
726 			return -EFAULT;
727 		v = (s64)v32;
728 	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
729 		void __user *uaddr = (void __user *)(long)reg->addr;
730 
731 		return copy_from_user(vs, uaddr, 16);
732 	} else {
733 		return -EINVAL;
734 	}
735 
736 	switch (reg->id) {
737 	/* General purpose registers */
738 	case KVM_REG_MIPS_R0:
739 		/* Silently ignore requests to set $0 */
740 		break;
741 	case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
742 		vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
743 		break;
744 	case KVM_REG_MIPS_HI:
745 		vcpu->arch.hi = v;
746 		break;
747 	case KVM_REG_MIPS_LO:
748 		vcpu->arch.lo = v;
749 		break;
750 	case KVM_REG_MIPS_PC:
751 		vcpu->arch.pc = v;
752 		break;
753 
754 	/* Floating point registers */
755 	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
756 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
757 			return -EINVAL;
758 		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
759 		/* Odd singles in top of even double when FR=0 */
760 		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
761 			set_fpr32(&fpu->fpr[idx], 0, v);
762 		else
763 			set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
764 		break;
765 	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
766 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
767 			return -EINVAL;
768 		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
769 		/* Can't access odd doubles in FR=0 mode */
770 		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
771 			return -EINVAL;
772 		set_fpr64(&fpu->fpr[idx], 0, v);
773 		break;
774 	case KVM_REG_MIPS_FCR_IR:
775 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
776 			return -EINVAL;
777 		/* Read-only */
778 		break;
779 	case KVM_REG_MIPS_FCR_CSR:
780 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
781 			return -EINVAL;
782 		fpu->fcr31 = v;
783 		break;
784 
785 	/* MIPS SIMD Architecture (MSA) registers */
786 	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
787 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
788 			return -EINVAL;
789 		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
790 #ifdef CONFIG_CPU_LITTLE_ENDIAN
791 		/* least significant byte first */
792 		set_fpr64(&fpu->fpr[idx], 0, vs[0]);
793 		set_fpr64(&fpu->fpr[idx], 1, vs[1]);
794 #else
795 		/* most significant byte first */
796 		set_fpr64(&fpu->fpr[idx], 1, vs[0]);
797 		set_fpr64(&fpu->fpr[idx], 0, vs[1]);
798 #endif
799 		break;
800 	case KVM_REG_MIPS_MSA_IR:
801 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
802 			return -EINVAL;
803 		/* Read-only */
804 		break;
805 	case KVM_REG_MIPS_MSA_CSR:
806 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
807 			return -EINVAL;
808 		fpu->msacsr = v;
809 		break;
810 
811 	/* Co-processor 0 registers */
812 	case KVM_REG_MIPS_CP0_INDEX:
813 		kvm_write_c0_guest_index(cop0, v);
814 		break;
815 	case KVM_REG_MIPS_CP0_CONTEXT:
816 		kvm_write_c0_guest_context(cop0, v);
817 		break;
818 	case KVM_REG_MIPS_CP0_USERLOCAL:
819 		kvm_write_c0_guest_userlocal(cop0, v);
820 		break;
821 	case KVM_REG_MIPS_CP0_PAGEMASK:
822 		kvm_write_c0_guest_pagemask(cop0, v);
823 		break;
824 	case KVM_REG_MIPS_CP0_WIRED:
825 		kvm_write_c0_guest_wired(cop0, v);
826 		break;
827 	case KVM_REG_MIPS_CP0_HWRENA:
828 		kvm_write_c0_guest_hwrena(cop0, v);
829 		break;
830 	case KVM_REG_MIPS_CP0_BADVADDR:
831 		kvm_write_c0_guest_badvaddr(cop0, v);
832 		break;
833 	case KVM_REG_MIPS_CP0_ENTRYHI:
834 		kvm_write_c0_guest_entryhi(cop0, v);
835 		break;
836 	case KVM_REG_MIPS_CP0_STATUS:
837 		kvm_write_c0_guest_status(cop0, v);
838 		break;
839 	case KVM_REG_MIPS_CP0_EPC:
840 		kvm_write_c0_guest_epc(cop0, v);
841 		break;
842 	case KVM_REG_MIPS_CP0_PRID:
843 		kvm_write_c0_guest_prid(cop0, v);
844 		break;
845 	case KVM_REG_MIPS_CP0_ERROREPC:
846 		kvm_write_c0_guest_errorepc(cop0, v);
847 		break;
848 	/* registers to be handled specially */
849 	case KVM_REG_MIPS_CP0_COUNT:
850 	case KVM_REG_MIPS_CP0_COMPARE:
851 	case KVM_REG_MIPS_CP0_CAUSE:
852 	case KVM_REG_MIPS_CP0_CONFIG:
853 	case KVM_REG_MIPS_CP0_CONFIG1:
854 	case KVM_REG_MIPS_CP0_CONFIG2:
855 	case KVM_REG_MIPS_CP0_CONFIG3:
856 	case KVM_REG_MIPS_CP0_CONFIG4:
857 	case KVM_REG_MIPS_CP0_CONFIG5:
858 	case KVM_REG_MIPS_COUNT_CTL:
859 	case KVM_REG_MIPS_COUNT_RESUME:
860 	case KVM_REG_MIPS_COUNT_HZ:
861 		return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
862 	default:
863 		return -EINVAL;
864 	}
865 	return 0;
866 }
867 
868 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
869 				     struct kvm_enable_cap *cap)
870 {
871 	int r = 0;
872 
873 	if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
874 		return -EINVAL;
875 	if (cap->flags)
876 		return -EINVAL;
877 	if (cap->args[0])
878 		return -EINVAL;
879 
880 	switch (cap->cap) {
881 	case KVM_CAP_MIPS_FPU:
882 		vcpu->arch.fpu_enabled = true;
883 		break;
884 	case KVM_CAP_MIPS_MSA:
885 		vcpu->arch.msa_enabled = true;
886 		break;
887 	default:
888 		r = -EINVAL;
889 		break;
890 	}
891 
892 	return r;
893 }
894 
895 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
896 			 unsigned long arg)
897 {
898 	struct kvm_vcpu *vcpu = filp->private_data;
899 	void __user *argp = (void __user *)arg;
900 	long r;
901 
902 	switch (ioctl) {
903 	case KVM_SET_ONE_REG:
904 	case KVM_GET_ONE_REG: {
905 		struct kvm_one_reg reg;
906 
907 		if (copy_from_user(&reg, argp, sizeof(reg)))
908 			return -EFAULT;
909 		if (ioctl == KVM_SET_ONE_REG)
910 			return kvm_mips_set_reg(vcpu, &reg);
911 		else
912 			return kvm_mips_get_reg(vcpu, &reg);
913 	}
914 	case KVM_GET_REG_LIST: {
915 		struct kvm_reg_list __user *user_list = argp;
916 		u64 __user *reg_dest;
917 		struct kvm_reg_list reg_list;
918 		unsigned n;
919 
920 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
921 			return -EFAULT;
922 		n = reg_list.n;
923 		reg_list.n = ARRAY_SIZE(kvm_mips_get_one_regs);
924 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
925 			return -EFAULT;
926 		if (n < reg_list.n)
927 			return -E2BIG;
928 		reg_dest = user_list->reg;
929 		if (copy_to_user(reg_dest, kvm_mips_get_one_regs,
930 				 sizeof(kvm_mips_get_one_regs)))
931 			return -EFAULT;
932 		return 0;
933 	}
934 	case KVM_NMI:
935 		/* Treat the NMI as a CPU reset */
936 		r = kvm_mips_reset_vcpu(vcpu);
937 		break;
938 	case KVM_INTERRUPT:
939 		{
940 			struct kvm_mips_interrupt irq;
941 
942 			r = -EFAULT;
943 			if (copy_from_user(&irq, argp, sizeof(irq)))
944 				goto out;
945 
946 			kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
947 				  irq.irq);
948 
949 			r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
950 			break;
951 		}
952 	case KVM_ENABLE_CAP: {
953 		struct kvm_enable_cap cap;
954 
955 		r = -EFAULT;
956 		if (copy_from_user(&cap, argp, sizeof(cap)))
957 			goto out;
958 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
959 		break;
960 	}
961 	default:
962 		r = -ENOIOCTLCMD;
963 	}
964 
965 out:
966 	return r;
967 }
968 
969 /* Get (and clear) the dirty memory log for a memory slot. */
970 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
971 {
972 	struct kvm_memslots *slots;
973 	struct kvm_memory_slot *memslot;
974 	unsigned long ga, ga_end;
975 	int is_dirty = 0;
976 	int r;
977 	unsigned long n;
978 
979 	mutex_lock(&kvm->slots_lock);
980 
981 	r = kvm_get_dirty_log(kvm, log, &is_dirty);
982 	if (r)
983 		goto out;
984 
985 	/* If nothing is dirty, don't bother messing with page tables. */
986 	if (is_dirty) {
987 		slots = kvm_memslots(kvm);
988 		memslot = id_to_memslot(slots, log->slot);
989 
990 		ga = memslot->base_gfn << PAGE_SHIFT;
991 		ga_end = ga + (memslot->npages << PAGE_SHIFT);
992 
993 		kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
994 			 ga_end);
995 
996 		n = kvm_dirty_bitmap_bytes(memslot);
997 		memset(memslot->dirty_bitmap, 0, n);
998 	}
999 
1000 	r = 0;
1001 out:
1002 	mutex_unlock(&kvm->slots_lock);
1003 	return r;
1004 
1005 }
1006 
1007 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1008 {
1009 	long r;
1010 
1011 	switch (ioctl) {
1012 	default:
1013 		r = -ENOIOCTLCMD;
1014 	}
1015 
1016 	return r;
1017 }
1018 
1019 int kvm_arch_init(void *opaque)
1020 {
1021 	if (kvm_mips_callbacks) {
1022 		kvm_err("kvm: module already exists\n");
1023 		return -EEXIST;
1024 	}
1025 
1026 	return kvm_mips_emulation_init(&kvm_mips_callbacks);
1027 }
1028 
1029 void kvm_arch_exit(void)
1030 {
1031 	kvm_mips_callbacks = NULL;
1032 }
1033 
1034 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1035 				  struct kvm_sregs *sregs)
1036 {
1037 	return -ENOIOCTLCMD;
1038 }
1039 
1040 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1041 				  struct kvm_sregs *sregs)
1042 {
1043 	return -ENOIOCTLCMD;
1044 }
1045 
1046 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1047 {
1048 }
1049 
1050 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1051 {
1052 	return -ENOIOCTLCMD;
1053 }
1054 
1055 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1056 {
1057 	return -ENOIOCTLCMD;
1058 }
1059 
1060 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1061 {
1062 	return VM_FAULT_SIGBUS;
1063 }
1064 
1065 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1066 {
1067 	int r;
1068 
1069 	switch (ext) {
1070 	case KVM_CAP_ONE_REG:
1071 	case KVM_CAP_ENABLE_CAP:
1072 		r = 1;
1073 		break;
1074 	case KVM_CAP_COALESCED_MMIO:
1075 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1076 		break;
1077 	case KVM_CAP_MIPS_FPU:
1078 		r = !!cpu_has_fpu;
1079 		break;
1080 	case KVM_CAP_MIPS_MSA:
1081 		/*
1082 		 * We don't support MSA vector partitioning yet:
1083 		 * 1) It would require explicit support which can't be tested
1084 		 *    yet due to lack of support in current hardware.
1085 		 * 2) It extends the state that would need to be saved/restored
1086 		 *    by e.g. QEMU for migration.
1087 		 *
1088 		 * When vector partitioning hardware becomes available, support
1089 		 * could be added by requiring a flag when enabling
1090 		 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1091 		 * to save/restore the appropriate extra state.
1092 		 */
1093 		r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1094 		break;
1095 	default:
1096 		r = 0;
1097 		break;
1098 	}
1099 	return r;
1100 }
1101 
1102 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1103 {
1104 	return kvm_mips_pending_timer(vcpu);
1105 }
1106 
1107 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1108 {
1109 	int i;
1110 	struct mips_coproc *cop0;
1111 
1112 	if (!vcpu)
1113 		return -1;
1114 
1115 	kvm_debug("VCPU Register Dump:\n");
1116 	kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1117 	kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1118 
1119 	for (i = 0; i < 32; i += 4) {
1120 		kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1121 		       vcpu->arch.gprs[i],
1122 		       vcpu->arch.gprs[i + 1],
1123 		       vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1124 	}
1125 	kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1126 	kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1127 
1128 	cop0 = vcpu->arch.cop0;
1129 	kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
1130 		  kvm_read_c0_guest_status(cop0),
1131 		  kvm_read_c0_guest_cause(cop0));
1132 
1133 	kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1134 
1135 	return 0;
1136 }
1137 
1138 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1139 {
1140 	int i;
1141 
1142 	for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1143 		vcpu->arch.gprs[i] = regs->gpr[i];
1144 	vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1145 	vcpu->arch.hi = regs->hi;
1146 	vcpu->arch.lo = regs->lo;
1147 	vcpu->arch.pc = regs->pc;
1148 
1149 	return 0;
1150 }
1151 
1152 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1153 {
1154 	int i;
1155 
1156 	for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1157 		regs->gpr[i] = vcpu->arch.gprs[i];
1158 
1159 	regs->hi = vcpu->arch.hi;
1160 	regs->lo = vcpu->arch.lo;
1161 	regs->pc = vcpu->arch.pc;
1162 
1163 	return 0;
1164 }
1165 
1166 static void kvm_mips_comparecount_func(unsigned long data)
1167 {
1168 	struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1169 
1170 	kvm_mips_callbacks->queue_timer_int(vcpu);
1171 
1172 	vcpu->arch.wait = 0;
1173 	if (waitqueue_active(&vcpu->wq))
1174 		wake_up_interruptible(&vcpu->wq);
1175 }
1176 
1177 /* low level hrtimer wake routine */
1178 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1179 {
1180 	struct kvm_vcpu *vcpu;
1181 
1182 	vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1183 	kvm_mips_comparecount_func((unsigned long) vcpu);
1184 	return kvm_mips_count_timeout(vcpu);
1185 }
1186 
1187 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1188 {
1189 	kvm_mips_callbacks->vcpu_init(vcpu);
1190 	hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1191 		     HRTIMER_MODE_REL);
1192 	vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1193 	return 0;
1194 }
1195 
1196 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1197 				  struct kvm_translation *tr)
1198 {
1199 	return 0;
1200 }
1201 
1202 /* Initial guest state */
1203 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1204 {
1205 	return kvm_mips_callbacks->vcpu_setup(vcpu);
1206 }
1207 
1208 static void kvm_mips_set_c0_status(void)
1209 {
1210 	uint32_t status = read_c0_status();
1211 
1212 	if (cpu_has_dsp)
1213 		status |= (ST0_MX);
1214 
1215 	write_c0_status(status);
1216 	ehb();
1217 }
1218 
1219 /*
1220  * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1221  */
1222 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1223 {
1224 	uint32_t cause = vcpu->arch.host_cp0_cause;
1225 	uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1226 	uint32_t __user *opc = (uint32_t __user *) vcpu->arch.pc;
1227 	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1228 	enum emulation_result er = EMULATE_DONE;
1229 	int ret = RESUME_GUEST;
1230 
1231 	/* re-enable HTW before enabling interrupts */
1232 	htw_start();
1233 
1234 	/* Set a default exit reason */
1235 	run->exit_reason = KVM_EXIT_UNKNOWN;
1236 	run->ready_for_interrupt_injection = 1;
1237 
1238 	/*
1239 	 * Set the appropriate status bits based on host CPU features,
1240 	 * before we hit the scheduler
1241 	 */
1242 	kvm_mips_set_c0_status();
1243 
1244 	local_irq_enable();
1245 
1246 	kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1247 			cause, opc, run, vcpu);
1248 
1249 	/*
1250 	 * Do a privilege check, if in UM most of these exit conditions end up
1251 	 * causing an exception to be delivered to the Guest Kernel
1252 	 */
1253 	er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1254 	if (er == EMULATE_PRIV_FAIL) {
1255 		goto skip_emul;
1256 	} else if (er == EMULATE_FAIL) {
1257 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1258 		ret = RESUME_HOST;
1259 		goto skip_emul;
1260 	}
1261 
1262 	switch (exccode) {
1263 	case T_INT:
1264 		kvm_debug("[%d]T_INT @ %p\n", vcpu->vcpu_id, opc);
1265 
1266 		++vcpu->stat.int_exits;
1267 		trace_kvm_exit(vcpu, INT_EXITS);
1268 
1269 		if (need_resched())
1270 			cond_resched();
1271 
1272 		ret = RESUME_GUEST;
1273 		break;
1274 
1275 	case T_COP_UNUSABLE:
1276 		kvm_debug("T_COP_UNUSABLE: @ PC: %p\n", opc);
1277 
1278 		++vcpu->stat.cop_unusable_exits;
1279 		trace_kvm_exit(vcpu, COP_UNUSABLE_EXITS);
1280 		ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1281 		/* XXXKYMA: Might need to return to user space */
1282 		if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1283 			ret = RESUME_HOST;
1284 		break;
1285 
1286 	case T_TLB_MOD:
1287 		++vcpu->stat.tlbmod_exits;
1288 		trace_kvm_exit(vcpu, TLBMOD_EXITS);
1289 		ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1290 		break;
1291 
1292 	case T_TLB_ST_MISS:
1293 		kvm_debug("TLB ST fault:  cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
1294 			  cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1295 			  badvaddr);
1296 
1297 		++vcpu->stat.tlbmiss_st_exits;
1298 		trace_kvm_exit(vcpu, TLBMISS_ST_EXITS);
1299 		ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1300 		break;
1301 
1302 	case T_TLB_LD_MISS:
1303 		kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1304 			  cause, opc, badvaddr);
1305 
1306 		++vcpu->stat.tlbmiss_ld_exits;
1307 		trace_kvm_exit(vcpu, TLBMISS_LD_EXITS);
1308 		ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1309 		break;
1310 
1311 	case T_ADDR_ERR_ST:
1312 		++vcpu->stat.addrerr_st_exits;
1313 		trace_kvm_exit(vcpu, ADDRERR_ST_EXITS);
1314 		ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1315 		break;
1316 
1317 	case T_ADDR_ERR_LD:
1318 		++vcpu->stat.addrerr_ld_exits;
1319 		trace_kvm_exit(vcpu, ADDRERR_LD_EXITS);
1320 		ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1321 		break;
1322 
1323 	case T_SYSCALL:
1324 		++vcpu->stat.syscall_exits;
1325 		trace_kvm_exit(vcpu, SYSCALL_EXITS);
1326 		ret = kvm_mips_callbacks->handle_syscall(vcpu);
1327 		break;
1328 
1329 	case T_RES_INST:
1330 		++vcpu->stat.resvd_inst_exits;
1331 		trace_kvm_exit(vcpu, RESVD_INST_EXITS);
1332 		ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1333 		break;
1334 
1335 	case T_BREAK:
1336 		++vcpu->stat.break_inst_exits;
1337 		trace_kvm_exit(vcpu, BREAK_INST_EXITS);
1338 		ret = kvm_mips_callbacks->handle_break(vcpu);
1339 		break;
1340 
1341 	case T_TRAP:
1342 		++vcpu->stat.trap_inst_exits;
1343 		trace_kvm_exit(vcpu, TRAP_INST_EXITS);
1344 		ret = kvm_mips_callbacks->handle_trap(vcpu);
1345 		break;
1346 
1347 	case T_MSAFPE:
1348 		++vcpu->stat.msa_fpe_exits;
1349 		trace_kvm_exit(vcpu, MSA_FPE_EXITS);
1350 		ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1351 		break;
1352 
1353 	case T_FPE:
1354 		++vcpu->stat.fpe_exits;
1355 		trace_kvm_exit(vcpu, FPE_EXITS);
1356 		ret = kvm_mips_callbacks->handle_fpe(vcpu);
1357 		break;
1358 
1359 	case T_MSADIS:
1360 		++vcpu->stat.msa_disabled_exits;
1361 		trace_kvm_exit(vcpu, MSA_DISABLED_EXITS);
1362 		ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1363 		break;
1364 
1365 	default:
1366 		kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#lx\n",
1367 			exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
1368 			kvm_read_c0_guest_status(vcpu->arch.cop0));
1369 		kvm_arch_vcpu_dump_regs(vcpu);
1370 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1371 		ret = RESUME_HOST;
1372 		break;
1373 
1374 	}
1375 
1376 skip_emul:
1377 	local_irq_disable();
1378 
1379 	if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1380 		kvm_mips_deliver_interrupts(vcpu, cause);
1381 
1382 	if (!(ret & RESUME_HOST)) {
1383 		/* Only check for signals if not already exiting to userspace */
1384 		if (signal_pending(current)) {
1385 			run->exit_reason = KVM_EXIT_INTR;
1386 			ret = (-EINTR << 2) | RESUME_HOST;
1387 			++vcpu->stat.signal_exits;
1388 			trace_kvm_exit(vcpu, SIGNAL_EXITS);
1389 		}
1390 	}
1391 
1392 	if (ret == RESUME_GUEST) {
1393 		/*
1394 		 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1395 		 * is live), restore FCR31 / MSACSR.
1396 		 *
1397 		 * This should be before returning to the guest exception
1398 		 * vector, as it may well cause an [MSA] FP exception if there
1399 		 * are pending exception bits unmasked. (see
1400 		 * kvm_mips_csr_die_notifier() for how that is handled).
1401 		 */
1402 		if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1403 		    read_c0_status() & ST0_CU1)
1404 			__kvm_restore_fcsr(&vcpu->arch);
1405 
1406 		if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1407 		    read_c0_config5() & MIPS_CONF5_MSAEN)
1408 			__kvm_restore_msacsr(&vcpu->arch);
1409 	}
1410 
1411 	/* Disable HTW before returning to guest or host */
1412 	htw_stop();
1413 
1414 	return ret;
1415 }
1416 
1417 /* Enable FPU for guest and restore context */
1418 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1419 {
1420 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1421 	unsigned int sr, cfg5;
1422 
1423 	preempt_disable();
1424 
1425 	sr = kvm_read_c0_guest_status(cop0);
1426 
1427 	/*
1428 	 * If MSA state is already live, it is undefined how it interacts with
1429 	 * FR=0 FPU state, and we don't want to hit reserved instruction
1430 	 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1431 	 * play it safe and save it first.
1432 	 *
1433 	 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1434 	 * get called when guest CU1 is set, however we can't trust the guest
1435 	 * not to clobber the status register directly via the commpage.
1436 	 */
1437 	if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1438 	    vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1439 		kvm_lose_fpu(vcpu);
1440 
1441 	/*
1442 	 * Enable FPU for guest
1443 	 * We set FR and FRE according to guest context
1444 	 */
1445 	change_c0_status(ST0_CU1 | ST0_FR, sr);
1446 	if (cpu_has_fre) {
1447 		cfg5 = kvm_read_c0_guest_config5(cop0);
1448 		change_c0_config5(MIPS_CONF5_FRE, cfg5);
1449 	}
1450 	enable_fpu_hazard();
1451 
1452 	/* If guest FPU state not active, restore it now */
1453 	if (!(vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)) {
1454 		__kvm_restore_fpu(&vcpu->arch);
1455 		vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
1456 	}
1457 
1458 	preempt_enable();
1459 }
1460 
1461 #ifdef CONFIG_CPU_HAS_MSA
1462 /* Enable MSA for guest and restore context */
1463 void kvm_own_msa(struct kvm_vcpu *vcpu)
1464 {
1465 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1466 	unsigned int sr, cfg5;
1467 
1468 	preempt_disable();
1469 
1470 	/*
1471 	 * Enable FPU if enabled in guest, since we're restoring FPU context
1472 	 * anyway. We set FR and FRE according to guest context.
1473 	 */
1474 	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1475 		sr = kvm_read_c0_guest_status(cop0);
1476 
1477 		/*
1478 		 * If FR=0 FPU state is already live, it is undefined how it
1479 		 * interacts with MSA state, so play it safe and save it first.
1480 		 */
1481 		if (!(sr & ST0_FR) &&
1482 		    (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU |
1483 				KVM_MIPS_FPU_MSA)) == KVM_MIPS_FPU_FPU)
1484 			kvm_lose_fpu(vcpu);
1485 
1486 		change_c0_status(ST0_CU1 | ST0_FR, sr);
1487 		if (sr & ST0_CU1 && cpu_has_fre) {
1488 			cfg5 = kvm_read_c0_guest_config5(cop0);
1489 			change_c0_config5(MIPS_CONF5_FRE, cfg5);
1490 		}
1491 	}
1492 
1493 	/* Enable MSA for guest */
1494 	set_c0_config5(MIPS_CONF5_MSAEN);
1495 	enable_fpu_hazard();
1496 
1497 	switch (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA)) {
1498 	case KVM_MIPS_FPU_FPU:
1499 		/*
1500 		 * Guest FPU state already loaded, only restore upper MSA state
1501 		 */
1502 		__kvm_restore_msa_upper(&vcpu->arch);
1503 		vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
1504 		break;
1505 	case 0:
1506 		/* Neither FPU or MSA already active, restore full MSA state */
1507 		__kvm_restore_msa(&vcpu->arch);
1508 		vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
1509 		if (kvm_mips_guest_has_fpu(&vcpu->arch))
1510 			vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
1511 		break;
1512 	default:
1513 		break;
1514 	}
1515 
1516 	preempt_enable();
1517 }
1518 #endif
1519 
1520 /* Drop FPU & MSA without saving it */
1521 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1522 {
1523 	preempt_disable();
1524 	if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
1525 		disable_msa();
1526 		vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_MSA;
1527 	}
1528 	if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1529 		clear_c0_status(ST0_CU1 | ST0_FR);
1530 		vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
1531 	}
1532 	preempt_enable();
1533 }
1534 
1535 /* Save and disable FPU & MSA */
1536 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1537 {
1538 	/*
1539 	 * FPU & MSA get disabled in root context (hardware) when it is disabled
1540 	 * in guest context (software), but the register state in the hardware
1541 	 * may still be in use. This is why we explicitly re-enable the hardware
1542 	 * before saving.
1543 	 */
1544 
1545 	preempt_disable();
1546 	if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
1547 		set_c0_config5(MIPS_CONF5_MSAEN);
1548 		enable_fpu_hazard();
1549 
1550 		__kvm_save_msa(&vcpu->arch);
1551 
1552 		/* Disable MSA & FPU */
1553 		disable_msa();
1554 		if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1555 			clear_c0_status(ST0_CU1 | ST0_FR);
1556 		vcpu->arch.fpu_inuse &= ~(KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA);
1557 	} else if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1558 		set_c0_status(ST0_CU1);
1559 		enable_fpu_hazard();
1560 
1561 		__kvm_save_fpu(&vcpu->arch);
1562 		vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
1563 
1564 		/* Disable FPU */
1565 		clear_c0_status(ST0_CU1 | ST0_FR);
1566 	}
1567 	preempt_enable();
1568 }
1569 
1570 /*
1571  * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1572  * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1573  * exception if cause bits are set in the value being written.
1574  */
1575 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1576 				   unsigned long cmd, void *ptr)
1577 {
1578 	struct die_args *args = (struct die_args *)ptr;
1579 	struct pt_regs *regs = args->regs;
1580 	unsigned long pc;
1581 
1582 	/* Only interested in FPE and MSAFPE */
1583 	if (cmd != DIE_FP && cmd != DIE_MSAFP)
1584 		return NOTIFY_DONE;
1585 
1586 	/* Return immediately if guest context isn't active */
1587 	if (!(current->flags & PF_VCPU))
1588 		return NOTIFY_DONE;
1589 
1590 	/* Should never get here from user mode */
1591 	BUG_ON(user_mode(regs));
1592 
1593 	pc = instruction_pointer(regs);
1594 	switch (cmd) {
1595 	case DIE_FP:
1596 		/* match 2nd instruction in __kvm_restore_fcsr */
1597 		if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1598 			return NOTIFY_DONE;
1599 		break;
1600 	case DIE_MSAFP:
1601 		/* match 2nd/3rd instruction in __kvm_restore_msacsr */
1602 		if (!cpu_has_msa ||
1603 		    pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1604 		    pc > (unsigned long)&__kvm_restore_msacsr + 8)
1605 			return NOTIFY_DONE;
1606 		break;
1607 	}
1608 
1609 	/* Move PC forward a little and continue executing */
1610 	instruction_pointer(regs) += 4;
1611 
1612 	return NOTIFY_STOP;
1613 }
1614 
1615 static struct notifier_block kvm_mips_csr_die_notifier = {
1616 	.notifier_call = kvm_mips_csr_die_notify,
1617 };
1618 
1619 int __init kvm_mips_init(void)
1620 {
1621 	int ret;
1622 
1623 	ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1624 
1625 	if (ret)
1626 		return ret;
1627 
1628 	register_die_notifier(&kvm_mips_csr_die_notifier);
1629 
1630 	/*
1631 	 * On MIPS, kernel modules are executed from "mapped space", which
1632 	 * requires TLBs. The TLB handling code is statically linked with
1633 	 * the rest of the kernel (tlb.c) to avoid the possibility of
1634 	 * double faulting. The issue is that the TLB code references
1635 	 * routines that are part of the the KVM module, which are only
1636 	 * available once the module is loaded.
1637 	 */
1638 	kvm_mips_gfn_to_pfn = gfn_to_pfn;
1639 	kvm_mips_release_pfn_clean = kvm_release_pfn_clean;
1640 	kvm_mips_is_error_pfn = is_error_pfn;
1641 
1642 	return 0;
1643 }
1644 
1645 void __exit kvm_mips_exit(void)
1646 {
1647 	kvm_exit();
1648 
1649 	kvm_mips_gfn_to_pfn = NULL;
1650 	kvm_mips_release_pfn_clean = NULL;
1651 	kvm_mips_is_error_pfn = NULL;
1652 
1653 	unregister_die_notifier(&kvm_mips_csr_die_notifier);
1654 }
1655 
1656 module_init(kvm_mips_init);
1657 module_exit(kvm_mips_exit);
1658 
1659 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);
1660