xref: /openbmc/linux/arch/mips/kvm/mips.c (revision 5fa1f768)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: MIPS specific KVM APIs
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11 
12 #include <linux/bitops.h>
13 #include <linux/errno.h>
14 #include <linux/err.h>
15 #include <linux/kdebug.h>
16 #include <linux/module.h>
17 #include <linux/uaccess.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sched/signal.h>
20 #include <linux/fs.h>
21 #include <linux/memblock.h>
22 #include <linux/pgtable.h>
23 
24 #include <asm/fpu.h>
25 #include <asm/page.h>
26 #include <asm/cacheflush.h>
27 #include <asm/mmu_context.h>
28 #include <asm/pgalloc.h>
29 
30 #include <linux/kvm_host.h>
31 
32 #include "interrupt.h"
33 #include "commpage.h"
34 
35 #define CREATE_TRACE_POINTS
36 #include "trace.h"
37 
38 #ifndef VECTORSPACING
39 #define VECTORSPACING 0x100	/* for EI/VI mode */
40 #endif
41 
42 struct kvm_stats_debugfs_item debugfs_entries[] = {
43 	VCPU_STAT("wait", wait_exits),
44 	VCPU_STAT("cache", cache_exits),
45 	VCPU_STAT("signal", signal_exits),
46 	VCPU_STAT("interrupt", int_exits),
47 	VCPU_STAT("cop_unusable", cop_unusable_exits),
48 	VCPU_STAT("tlbmod", tlbmod_exits),
49 	VCPU_STAT("tlbmiss_ld", tlbmiss_ld_exits),
50 	VCPU_STAT("tlbmiss_st", tlbmiss_st_exits),
51 	VCPU_STAT("addrerr_st", addrerr_st_exits),
52 	VCPU_STAT("addrerr_ld", addrerr_ld_exits),
53 	VCPU_STAT("syscall", syscall_exits),
54 	VCPU_STAT("resvd_inst", resvd_inst_exits),
55 	VCPU_STAT("break_inst", break_inst_exits),
56 	VCPU_STAT("trap_inst", trap_inst_exits),
57 	VCPU_STAT("msa_fpe", msa_fpe_exits),
58 	VCPU_STAT("fpe", fpe_exits),
59 	VCPU_STAT("msa_disabled", msa_disabled_exits),
60 	VCPU_STAT("flush_dcache", flush_dcache_exits),
61 #ifdef CONFIG_KVM_MIPS_VZ
62 	VCPU_STAT("vz_gpsi", vz_gpsi_exits),
63 	VCPU_STAT("vz_gsfc", vz_gsfc_exits),
64 	VCPU_STAT("vz_hc", vz_hc_exits),
65 	VCPU_STAT("vz_grr", vz_grr_exits),
66 	VCPU_STAT("vz_gva", vz_gva_exits),
67 	VCPU_STAT("vz_ghfc", vz_ghfc_exits),
68 	VCPU_STAT("vz_gpa", vz_gpa_exits),
69 	VCPU_STAT("vz_resvd", vz_resvd_exits),
70 #ifdef CONFIG_CPU_LOONGSON64
71 	VCPU_STAT("vz_cpucfg", vz_cpucfg_exits),
72 #endif
73 #endif
74 	VCPU_STAT("halt_successful_poll", halt_successful_poll),
75 	VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
76 	VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
77 	VCPU_STAT("halt_wakeup", halt_wakeup),
78 	VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
79 	VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
80 	{NULL}
81 };
82 
83 bool kvm_trace_guest_mode_change;
84 
85 int kvm_guest_mode_change_trace_reg(void)
86 {
87 	kvm_trace_guest_mode_change = true;
88 	return 0;
89 }
90 
91 void kvm_guest_mode_change_trace_unreg(void)
92 {
93 	kvm_trace_guest_mode_change = false;
94 }
95 
96 /*
97  * XXXKYMA: We are simulatoring a processor that has the WII bit set in
98  * Config7, so we are "runnable" if interrupts are pending
99  */
100 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
101 {
102 	return !!(vcpu->arch.pending_exceptions);
103 }
104 
105 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
106 {
107 	return false;
108 }
109 
110 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
111 {
112 	return 1;
113 }
114 
115 int kvm_arch_hardware_enable(void)
116 {
117 	return kvm_mips_callbacks->hardware_enable();
118 }
119 
120 void kvm_arch_hardware_disable(void)
121 {
122 	kvm_mips_callbacks->hardware_disable();
123 }
124 
125 int kvm_arch_hardware_setup(void *opaque)
126 {
127 	return 0;
128 }
129 
130 int kvm_arch_check_processor_compat(void *opaque)
131 {
132 	return 0;
133 }
134 
135 extern void kvm_init_loongson_ipi(struct kvm *kvm);
136 
137 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
138 {
139 	switch (type) {
140 #ifdef CONFIG_KVM_MIPS_VZ
141 	case KVM_VM_MIPS_VZ:
142 #else
143 	case KVM_VM_MIPS_TE:
144 #endif
145 		break;
146 	default:
147 		/* Unsupported KVM type */
148 		return -EINVAL;
149 	};
150 
151 	/* Allocate page table to map GPA -> RPA */
152 	kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
153 	if (!kvm->arch.gpa_mm.pgd)
154 		return -ENOMEM;
155 
156 #ifdef CONFIG_CPU_LOONGSON64
157 	kvm_init_loongson_ipi(kvm);
158 #endif
159 
160 	return 0;
161 }
162 
163 void kvm_mips_free_vcpus(struct kvm *kvm)
164 {
165 	unsigned int i;
166 	struct kvm_vcpu *vcpu;
167 
168 	kvm_for_each_vcpu(i, vcpu, kvm) {
169 		kvm_vcpu_destroy(vcpu);
170 	}
171 
172 	mutex_lock(&kvm->lock);
173 
174 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
175 		kvm->vcpus[i] = NULL;
176 
177 	atomic_set(&kvm->online_vcpus, 0);
178 
179 	mutex_unlock(&kvm->lock);
180 }
181 
182 static void kvm_mips_free_gpa_pt(struct kvm *kvm)
183 {
184 	/* It should always be safe to remove after flushing the whole range */
185 	WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
186 	pgd_free(NULL, kvm->arch.gpa_mm.pgd);
187 }
188 
189 void kvm_arch_destroy_vm(struct kvm *kvm)
190 {
191 	kvm_mips_free_vcpus(kvm);
192 	kvm_mips_free_gpa_pt(kvm);
193 }
194 
195 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
196 			unsigned long arg)
197 {
198 	return -ENOIOCTLCMD;
199 }
200 
201 void kvm_arch_flush_shadow_all(struct kvm *kvm)
202 {
203 	/* Flush whole GPA */
204 	kvm_mips_flush_gpa_pt(kvm, 0, ~0);
205 
206 	/* Let implementation do the rest */
207 	kvm_mips_callbacks->flush_shadow_all(kvm);
208 }
209 
210 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
211 				   struct kvm_memory_slot *slot)
212 {
213 	/*
214 	 * The slot has been made invalid (ready for moving or deletion), so we
215 	 * need to ensure that it can no longer be accessed by any guest VCPUs.
216 	 */
217 
218 	spin_lock(&kvm->mmu_lock);
219 	/* Flush slot from GPA */
220 	kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
221 			      slot->base_gfn + slot->npages - 1);
222 	/* Let implementation do the rest */
223 	kvm_mips_callbacks->flush_shadow_memslot(kvm, slot);
224 	spin_unlock(&kvm->mmu_lock);
225 }
226 
227 int kvm_arch_prepare_memory_region(struct kvm *kvm,
228 				   struct kvm_memory_slot *memslot,
229 				   const struct kvm_userspace_memory_region *mem,
230 				   enum kvm_mr_change change)
231 {
232 	return 0;
233 }
234 
235 void kvm_arch_commit_memory_region(struct kvm *kvm,
236 				   const struct kvm_userspace_memory_region *mem,
237 				   struct kvm_memory_slot *old,
238 				   const struct kvm_memory_slot *new,
239 				   enum kvm_mr_change change)
240 {
241 	int needs_flush;
242 
243 	kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
244 		  __func__, kvm, mem->slot, mem->guest_phys_addr,
245 		  mem->memory_size, mem->userspace_addr);
246 
247 	/*
248 	 * If dirty page logging is enabled, write protect all pages in the slot
249 	 * ready for dirty logging.
250 	 *
251 	 * There is no need to do this in any of the following cases:
252 	 * CREATE:	No dirty mappings will already exist.
253 	 * MOVE/DELETE:	The old mappings will already have been cleaned up by
254 	 *		kvm_arch_flush_shadow_memslot()
255 	 */
256 	if (change == KVM_MR_FLAGS_ONLY &&
257 	    (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
258 	     new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
259 		spin_lock(&kvm->mmu_lock);
260 		/* Write protect GPA page table entries */
261 		needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
262 					new->base_gfn + new->npages - 1);
263 		/* Let implementation do the rest */
264 		if (needs_flush)
265 			kvm_mips_callbacks->flush_shadow_memslot(kvm, new);
266 		spin_unlock(&kvm->mmu_lock);
267 	}
268 }
269 
270 static inline void dump_handler(const char *symbol, void *start, void *end)
271 {
272 	u32 *p;
273 
274 	pr_debug("LEAF(%s)\n", symbol);
275 
276 	pr_debug("\t.set push\n");
277 	pr_debug("\t.set noreorder\n");
278 
279 	for (p = start; p < (u32 *)end; ++p)
280 		pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
281 
282 	pr_debug("\t.set\tpop\n");
283 
284 	pr_debug("\tEND(%s)\n", symbol);
285 }
286 
287 /* low level hrtimer wake routine */
288 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
289 {
290 	struct kvm_vcpu *vcpu;
291 
292 	vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
293 
294 	kvm_mips_callbacks->queue_timer_int(vcpu);
295 
296 	vcpu->arch.wait = 0;
297 	rcuwait_wake_up(&vcpu->wait);
298 
299 	return kvm_mips_count_timeout(vcpu);
300 }
301 
302 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
303 {
304 	return 0;
305 }
306 
307 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
308 {
309 	int err, size;
310 	void *gebase, *p, *handler, *refill_start, *refill_end;
311 	int i;
312 
313 	kvm_debug("kvm @ %p: create cpu %d at %p\n",
314 		  vcpu->kvm, vcpu->vcpu_id, vcpu);
315 
316 	err = kvm_mips_callbacks->vcpu_init(vcpu);
317 	if (err)
318 		return err;
319 
320 	hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
321 		     HRTIMER_MODE_REL);
322 	vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
323 
324 	/*
325 	 * Allocate space for host mode exception handlers that handle
326 	 * guest mode exits
327 	 */
328 	if (cpu_has_veic || cpu_has_vint)
329 		size = 0x200 + VECTORSPACING * 64;
330 	else
331 		size = 0x4000;
332 
333 	gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
334 
335 	if (!gebase) {
336 		err = -ENOMEM;
337 		goto out_uninit_vcpu;
338 	}
339 	kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
340 		  ALIGN(size, PAGE_SIZE), gebase);
341 
342 	/*
343 	 * Check new ebase actually fits in CP0_EBase. The lack of a write gate
344 	 * limits us to the low 512MB of physical address space. If the memory
345 	 * we allocate is out of range, just give up now.
346 	 */
347 	if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
348 		kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
349 			gebase);
350 		err = -ENOMEM;
351 		goto out_free_gebase;
352 	}
353 
354 	/* Save new ebase */
355 	vcpu->arch.guest_ebase = gebase;
356 
357 	/* Build guest exception vectors dynamically in unmapped memory */
358 	handler = gebase + 0x2000;
359 
360 	/* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
361 	refill_start = gebase;
362 	if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && IS_ENABLED(CONFIG_64BIT))
363 		refill_start += 0x080;
364 	refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
365 
366 	/* General Exception Entry point */
367 	kvm_mips_build_exception(gebase + 0x180, handler);
368 
369 	/* For vectored interrupts poke the exception code @ all offsets 0-7 */
370 	for (i = 0; i < 8; i++) {
371 		kvm_debug("L1 Vectored handler @ %p\n",
372 			  gebase + 0x200 + (i * VECTORSPACING));
373 		kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
374 					 handler);
375 	}
376 
377 	/* General exit handler */
378 	p = handler;
379 	p = kvm_mips_build_exit(p);
380 
381 	/* Guest entry routine */
382 	vcpu->arch.vcpu_run = p;
383 	p = kvm_mips_build_vcpu_run(p);
384 
385 	/* Dump the generated code */
386 	pr_debug("#include <asm/asm.h>\n");
387 	pr_debug("#include <asm/regdef.h>\n");
388 	pr_debug("\n");
389 	dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
390 	dump_handler("kvm_tlb_refill", refill_start, refill_end);
391 	dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
392 	dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
393 
394 	/* Invalidate the icache for these ranges */
395 	flush_icache_range((unsigned long)gebase,
396 			   (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
397 
398 	/*
399 	 * Allocate comm page for guest kernel, a TLB will be reserved for
400 	 * mapping GVA @ 0xFFFF8000 to this page
401 	 */
402 	vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
403 
404 	if (!vcpu->arch.kseg0_commpage) {
405 		err = -ENOMEM;
406 		goto out_free_gebase;
407 	}
408 
409 	kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
410 	kvm_mips_commpage_init(vcpu);
411 
412 	/* Init */
413 	vcpu->arch.last_sched_cpu = -1;
414 	vcpu->arch.last_exec_cpu = -1;
415 
416 	/* Initial guest state */
417 	err = kvm_mips_callbacks->vcpu_setup(vcpu);
418 	if (err)
419 		goto out_free_commpage;
420 
421 	return 0;
422 
423 out_free_commpage:
424 	kfree(vcpu->arch.kseg0_commpage);
425 out_free_gebase:
426 	kfree(gebase);
427 out_uninit_vcpu:
428 	kvm_mips_callbacks->vcpu_uninit(vcpu);
429 	return err;
430 }
431 
432 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
433 {
434 	hrtimer_cancel(&vcpu->arch.comparecount_timer);
435 
436 	kvm_mips_dump_stats(vcpu);
437 
438 	kvm_mmu_free_memory_caches(vcpu);
439 	kfree(vcpu->arch.guest_ebase);
440 	kfree(vcpu->arch.kseg0_commpage);
441 
442 	kvm_mips_callbacks->vcpu_uninit(vcpu);
443 }
444 
445 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
446 					struct kvm_guest_debug *dbg)
447 {
448 	return -ENOIOCTLCMD;
449 }
450 
451 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
452 {
453 	int r = -EINTR;
454 
455 	vcpu_load(vcpu);
456 
457 	kvm_sigset_activate(vcpu);
458 
459 	if (vcpu->mmio_needed) {
460 		if (!vcpu->mmio_is_write)
461 			kvm_mips_complete_mmio_load(vcpu);
462 		vcpu->mmio_needed = 0;
463 	}
464 
465 	if (vcpu->run->immediate_exit)
466 		goto out;
467 
468 	lose_fpu(1);
469 
470 	local_irq_disable();
471 	guest_enter_irqoff();
472 	trace_kvm_enter(vcpu);
473 
474 	/*
475 	 * Make sure the read of VCPU requests in vcpu_run() callback is not
476 	 * reordered ahead of the write to vcpu->mode, or we could miss a TLB
477 	 * flush request while the requester sees the VCPU as outside of guest
478 	 * mode and not needing an IPI.
479 	 */
480 	smp_store_mb(vcpu->mode, IN_GUEST_MODE);
481 
482 	r = kvm_mips_callbacks->vcpu_run(vcpu);
483 
484 	trace_kvm_out(vcpu);
485 	guest_exit_irqoff();
486 	local_irq_enable();
487 
488 out:
489 	kvm_sigset_deactivate(vcpu);
490 
491 	vcpu_put(vcpu);
492 	return r;
493 }
494 
495 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
496 			     struct kvm_mips_interrupt *irq)
497 {
498 	int intr = (int)irq->irq;
499 	struct kvm_vcpu *dvcpu = NULL;
500 
501 	if (intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_1] ||
502 	    intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_2] ||
503 	    intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_1]) ||
504 	    intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_2]))
505 		kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
506 			  (int)intr);
507 
508 	if (irq->cpu == -1)
509 		dvcpu = vcpu;
510 	else
511 		dvcpu = vcpu->kvm->vcpus[irq->cpu];
512 
513 	if (intr == 2 || intr == 3 || intr == 4 || intr == 6) {
514 		kvm_mips_callbacks->queue_io_int(dvcpu, irq);
515 
516 	} else if (intr == -2 || intr == -3 || intr == -4 || intr == -6) {
517 		kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
518 	} else {
519 		kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
520 			irq->cpu, irq->irq);
521 		return -EINVAL;
522 	}
523 
524 	dvcpu->arch.wait = 0;
525 
526 	rcuwait_wake_up(&dvcpu->wait);
527 
528 	return 0;
529 }
530 
531 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
532 				    struct kvm_mp_state *mp_state)
533 {
534 	return -ENOIOCTLCMD;
535 }
536 
537 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
538 				    struct kvm_mp_state *mp_state)
539 {
540 	return -ENOIOCTLCMD;
541 }
542 
543 static u64 kvm_mips_get_one_regs[] = {
544 	KVM_REG_MIPS_R0,
545 	KVM_REG_MIPS_R1,
546 	KVM_REG_MIPS_R2,
547 	KVM_REG_MIPS_R3,
548 	KVM_REG_MIPS_R4,
549 	KVM_REG_MIPS_R5,
550 	KVM_REG_MIPS_R6,
551 	KVM_REG_MIPS_R7,
552 	KVM_REG_MIPS_R8,
553 	KVM_REG_MIPS_R9,
554 	KVM_REG_MIPS_R10,
555 	KVM_REG_MIPS_R11,
556 	KVM_REG_MIPS_R12,
557 	KVM_REG_MIPS_R13,
558 	KVM_REG_MIPS_R14,
559 	KVM_REG_MIPS_R15,
560 	KVM_REG_MIPS_R16,
561 	KVM_REG_MIPS_R17,
562 	KVM_REG_MIPS_R18,
563 	KVM_REG_MIPS_R19,
564 	KVM_REG_MIPS_R20,
565 	KVM_REG_MIPS_R21,
566 	KVM_REG_MIPS_R22,
567 	KVM_REG_MIPS_R23,
568 	KVM_REG_MIPS_R24,
569 	KVM_REG_MIPS_R25,
570 	KVM_REG_MIPS_R26,
571 	KVM_REG_MIPS_R27,
572 	KVM_REG_MIPS_R28,
573 	KVM_REG_MIPS_R29,
574 	KVM_REG_MIPS_R30,
575 	KVM_REG_MIPS_R31,
576 
577 #ifndef CONFIG_CPU_MIPSR6
578 	KVM_REG_MIPS_HI,
579 	KVM_REG_MIPS_LO,
580 #endif
581 	KVM_REG_MIPS_PC,
582 };
583 
584 static u64 kvm_mips_get_one_regs_fpu[] = {
585 	KVM_REG_MIPS_FCR_IR,
586 	KVM_REG_MIPS_FCR_CSR,
587 };
588 
589 static u64 kvm_mips_get_one_regs_msa[] = {
590 	KVM_REG_MIPS_MSA_IR,
591 	KVM_REG_MIPS_MSA_CSR,
592 };
593 
594 static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
595 {
596 	unsigned long ret;
597 
598 	ret = ARRAY_SIZE(kvm_mips_get_one_regs);
599 	if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
600 		ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
601 		/* odd doubles */
602 		if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
603 			ret += 16;
604 	}
605 	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
606 		ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
607 	ret += kvm_mips_callbacks->num_regs(vcpu);
608 
609 	return ret;
610 }
611 
612 static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
613 {
614 	u64 index;
615 	unsigned int i;
616 
617 	if (copy_to_user(indices, kvm_mips_get_one_regs,
618 			 sizeof(kvm_mips_get_one_regs)))
619 		return -EFAULT;
620 	indices += ARRAY_SIZE(kvm_mips_get_one_regs);
621 
622 	if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
623 		if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
624 				 sizeof(kvm_mips_get_one_regs_fpu)))
625 			return -EFAULT;
626 		indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
627 
628 		for (i = 0; i < 32; ++i) {
629 			index = KVM_REG_MIPS_FPR_32(i);
630 			if (copy_to_user(indices, &index, sizeof(index)))
631 				return -EFAULT;
632 			++indices;
633 
634 			/* skip odd doubles if no F64 */
635 			if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
636 				continue;
637 
638 			index = KVM_REG_MIPS_FPR_64(i);
639 			if (copy_to_user(indices, &index, sizeof(index)))
640 				return -EFAULT;
641 			++indices;
642 		}
643 	}
644 
645 	if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
646 		if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
647 				 sizeof(kvm_mips_get_one_regs_msa)))
648 			return -EFAULT;
649 		indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
650 
651 		for (i = 0; i < 32; ++i) {
652 			index = KVM_REG_MIPS_VEC_128(i);
653 			if (copy_to_user(indices, &index, sizeof(index)))
654 				return -EFAULT;
655 			++indices;
656 		}
657 	}
658 
659 	return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
660 }
661 
662 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
663 			    const struct kvm_one_reg *reg)
664 {
665 	struct mips_coproc *cop0 = vcpu->arch.cop0;
666 	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
667 	int ret;
668 	s64 v;
669 	s64 vs[2];
670 	unsigned int idx;
671 
672 	switch (reg->id) {
673 	/* General purpose registers */
674 	case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
675 		v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
676 		break;
677 #ifndef CONFIG_CPU_MIPSR6
678 	case KVM_REG_MIPS_HI:
679 		v = (long)vcpu->arch.hi;
680 		break;
681 	case KVM_REG_MIPS_LO:
682 		v = (long)vcpu->arch.lo;
683 		break;
684 #endif
685 	case KVM_REG_MIPS_PC:
686 		v = (long)vcpu->arch.pc;
687 		break;
688 
689 	/* Floating point registers */
690 	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
691 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
692 			return -EINVAL;
693 		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
694 		/* Odd singles in top of even double when FR=0 */
695 		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
696 			v = get_fpr32(&fpu->fpr[idx], 0);
697 		else
698 			v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
699 		break;
700 	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
701 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
702 			return -EINVAL;
703 		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
704 		/* Can't access odd doubles in FR=0 mode */
705 		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
706 			return -EINVAL;
707 		v = get_fpr64(&fpu->fpr[idx], 0);
708 		break;
709 	case KVM_REG_MIPS_FCR_IR:
710 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
711 			return -EINVAL;
712 		v = boot_cpu_data.fpu_id;
713 		break;
714 	case KVM_REG_MIPS_FCR_CSR:
715 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
716 			return -EINVAL;
717 		v = fpu->fcr31;
718 		break;
719 
720 	/* MIPS SIMD Architecture (MSA) registers */
721 	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
722 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
723 			return -EINVAL;
724 		/* Can't access MSA registers in FR=0 mode */
725 		if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
726 			return -EINVAL;
727 		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
728 #ifdef CONFIG_CPU_LITTLE_ENDIAN
729 		/* least significant byte first */
730 		vs[0] = get_fpr64(&fpu->fpr[idx], 0);
731 		vs[1] = get_fpr64(&fpu->fpr[idx], 1);
732 #else
733 		/* most significant byte first */
734 		vs[0] = get_fpr64(&fpu->fpr[idx], 1);
735 		vs[1] = get_fpr64(&fpu->fpr[idx], 0);
736 #endif
737 		break;
738 	case KVM_REG_MIPS_MSA_IR:
739 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
740 			return -EINVAL;
741 		v = boot_cpu_data.msa_id;
742 		break;
743 	case KVM_REG_MIPS_MSA_CSR:
744 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
745 			return -EINVAL;
746 		v = fpu->msacsr;
747 		break;
748 
749 	/* registers to be handled specially */
750 	default:
751 		ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
752 		if (ret)
753 			return ret;
754 		break;
755 	}
756 	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
757 		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
758 
759 		return put_user(v, uaddr64);
760 	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
761 		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
762 		u32 v32 = (u32)v;
763 
764 		return put_user(v32, uaddr32);
765 	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
766 		void __user *uaddr = (void __user *)(long)reg->addr;
767 
768 		return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
769 	} else {
770 		return -EINVAL;
771 	}
772 }
773 
774 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
775 			    const struct kvm_one_reg *reg)
776 {
777 	struct mips_coproc *cop0 = vcpu->arch.cop0;
778 	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
779 	s64 v;
780 	s64 vs[2];
781 	unsigned int idx;
782 
783 	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
784 		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
785 
786 		if (get_user(v, uaddr64) != 0)
787 			return -EFAULT;
788 	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
789 		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
790 		s32 v32;
791 
792 		if (get_user(v32, uaddr32) != 0)
793 			return -EFAULT;
794 		v = (s64)v32;
795 	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
796 		void __user *uaddr = (void __user *)(long)reg->addr;
797 
798 		return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
799 	} else {
800 		return -EINVAL;
801 	}
802 
803 	switch (reg->id) {
804 	/* General purpose registers */
805 	case KVM_REG_MIPS_R0:
806 		/* Silently ignore requests to set $0 */
807 		break;
808 	case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
809 		vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
810 		break;
811 #ifndef CONFIG_CPU_MIPSR6
812 	case KVM_REG_MIPS_HI:
813 		vcpu->arch.hi = v;
814 		break;
815 	case KVM_REG_MIPS_LO:
816 		vcpu->arch.lo = v;
817 		break;
818 #endif
819 	case KVM_REG_MIPS_PC:
820 		vcpu->arch.pc = v;
821 		break;
822 
823 	/* Floating point registers */
824 	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
825 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
826 			return -EINVAL;
827 		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
828 		/* Odd singles in top of even double when FR=0 */
829 		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
830 			set_fpr32(&fpu->fpr[idx], 0, v);
831 		else
832 			set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
833 		break;
834 	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
835 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
836 			return -EINVAL;
837 		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
838 		/* Can't access odd doubles in FR=0 mode */
839 		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
840 			return -EINVAL;
841 		set_fpr64(&fpu->fpr[idx], 0, v);
842 		break;
843 	case KVM_REG_MIPS_FCR_IR:
844 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
845 			return -EINVAL;
846 		/* Read-only */
847 		break;
848 	case KVM_REG_MIPS_FCR_CSR:
849 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
850 			return -EINVAL;
851 		fpu->fcr31 = v;
852 		break;
853 
854 	/* MIPS SIMD Architecture (MSA) registers */
855 	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
856 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
857 			return -EINVAL;
858 		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
859 #ifdef CONFIG_CPU_LITTLE_ENDIAN
860 		/* least significant byte first */
861 		set_fpr64(&fpu->fpr[idx], 0, vs[0]);
862 		set_fpr64(&fpu->fpr[idx], 1, vs[1]);
863 #else
864 		/* most significant byte first */
865 		set_fpr64(&fpu->fpr[idx], 1, vs[0]);
866 		set_fpr64(&fpu->fpr[idx], 0, vs[1]);
867 #endif
868 		break;
869 	case KVM_REG_MIPS_MSA_IR:
870 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
871 			return -EINVAL;
872 		/* Read-only */
873 		break;
874 	case KVM_REG_MIPS_MSA_CSR:
875 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
876 			return -EINVAL;
877 		fpu->msacsr = v;
878 		break;
879 
880 	/* registers to be handled specially */
881 	default:
882 		return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
883 	}
884 	return 0;
885 }
886 
887 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
888 				     struct kvm_enable_cap *cap)
889 {
890 	int r = 0;
891 
892 	if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
893 		return -EINVAL;
894 	if (cap->flags)
895 		return -EINVAL;
896 	if (cap->args[0])
897 		return -EINVAL;
898 
899 	switch (cap->cap) {
900 	case KVM_CAP_MIPS_FPU:
901 		vcpu->arch.fpu_enabled = true;
902 		break;
903 	case KVM_CAP_MIPS_MSA:
904 		vcpu->arch.msa_enabled = true;
905 		break;
906 	default:
907 		r = -EINVAL;
908 		break;
909 	}
910 
911 	return r;
912 }
913 
914 long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl,
915 			       unsigned long arg)
916 {
917 	struct kvm_vcpu *vcpu = filp->private_data;
918 	void __user *argp = (void __user *)arg;
919 
920 	if (ioctl == KVM_INTERRUPT) {
921 		struct kvm_mips_interrupt irq;
922 
923 		if (copy_from_user(&irq, argp, sizeof(irq)))
924 			return -EFAULT;
925 		kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
926 			  irq.irq);
927 
928 		return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
929 	}
930 
931 	return -ENOIOCTLCMD;
932 }
933 
934 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
935 			 unsigned long arg)
936 {
937 	struct kvm_vcpu *vcpu = filp->private_data;
938 	void __user *argp = (void __user *)arg;
939 	long r;
940 
941 	vcpu_load(vcpu);
942 
943 	switch (ioctl) {
944 	case KVM_SET_ONE_REG:
945 	case KVM_GET_ONE_REG: {
946 		struct kvm_one_reg reg;
947 
948 		r = -EFAULT;
949 		if (copy_from_user(&reg, argp, sizeof(reg)))
950 			break;
951 		if (ioctl == KVM_SET_ONE_REG)
952 			r = kvm_mips_set_reg(vcpu, &reg);
953 		else
954 			r = kvm_mips_get_reg(vcpu, &reg);
955 		break;
956 	}
957 	case KVM_GET_REG_LIST: {
958 		struct kvm_reg_list __user *user_list = argp;
959 		struct kvm_reg_list reg_list;
960 		unsigned n;
961 
962 		r = -EFAULT;
963 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
964 			break;
965 		n = reg_list.n;
966 		reg_list.n = kvm_mips_num_regs(vcpu);
967 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
968 			break;
969 		r = -E2BIG;
970 		if (n < reg_list.n)
971 			break;
972 		r = kvm_mips_copy_reg_indices(vcpu, user_list->reg);
973 		break;
974 	}
975 	case KVM_ENABLE_CAP: {
976 		struct kvm_enable_cap cap;
977 
978 		r = -EFAULT;
979 		if (copy_from_user(&cap, argp, sizeof(cap)))
980 			break;
981 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
982 		break;
983 	}
984 	default:
985 		r = -ENOIOCTLCMD;
986 	}
987 
988 	vcpu_put(vcpu);
989 	return r;
990 }
991 
992 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
993 {
994 
995 }
996 
997 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
998 					struct kvm_memory_slot *memslot)
999 {
1000 	/* Let implementation handle TLB/GVA invalidation */
1001 	kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot);
1002 }
1003 
1004 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1005 {
1006 	long r;
1007 
1008 	switch (ioctl) {
1009 	default:
1010 		r = -ENOIOCTLCMD;
1011 	}
1012 
1013 	return r;
1014 }
1015 
1016 int kvm_arch_init(void *opaque)
1017 {
1018 	if (kvm_mips_callbacks) {
1019 		kvm_err("kvm: module already exists\n");
1020 		return -EEXIST;
1021 	}
1022 
1023 	return kvm_mips_emulation_init(&kvm_mips_callbacks);
1024 }
1025 
1026 void kvm_arch_exit(void)
1027 {
1028 	kvm_mips_callbacks = NULL;
1029 }
1030 
1031 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1032 				  struct kvm_sregs *sregs)
1033 {
1034 	return -ENOIOCTLCMD;
1035 }
1036 
1037 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1038 				  struct kvm_sregs *sregs)
1039 {
1040 	return -ENOIOCTLCMD;
1041 }
1042 
1043 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1044 {
1045 }
1046 
1047 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1048 {
1049 	return -ENOIOCTLCMD;
1050 }
1051 
1052 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1053 {
1054 	return -ENOIOCTLCMD;
1055 }
1056 
1057 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1058 {
1059 	return VM_FAULT_SIGBUS;
1060 }
1061 
1062 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1063 {
1064 	int r;
1065 
1066 	switch (ext) {
1067 	case KVM_CAP_ONE_REG:
1068 	case KVM_CAP_ENABLE_CAP:
1069 	case KVM_CAP_READONLY_MEM:
1070 	case KVM_CAP_SYNC_MMU:
1071 	case KVM_CAP_IMMEDIATE_EXIT:
1072 		r = 1;
1073 		break;
1074 	case KVM_CAP_NR_VCPUS:
1075 		r = num_online_cpus();
1076 		break;
1077 	case KVM_CAP_MAX_VCPUS:
1078 		r = KVM_MAX_VCPUS;
1079 		break;
1080 	case KVM_CAP_MAX_VCPU_ID:
1081 		r = KVM_MAX_VCPU_ID;
1082 		break;
1083 	case KVM_CAP_MIPS_FPU:
1084 		/* We don't handle systems with inconsistent cpu_has_fpu */
1085 		r = !!raw_cpu_has_fpu;
1086 		break;
1087 	case KVM_CAP_MIPS_MSA:
1088 		/*
1089 		 * We don't support MSA vector partitioning yet:
1090 		 * 1) It would require explicit support which can't be tested
1091 		 *    yet due to lack of support in current hardware.
1092 		 * 2) It extends the state that would need to be saved/restored
1093 		 *    by e.g. QEMU for migration.
1094 		 *
1095 		 * When vector partitioning hardware becomes available, support
1096 		 * could be added by requiring a flag when enabling
1097 		 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1098 		 * to save/restore the appropriate extra state.
1099 		 */
1100 		r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1101 		break;
1102 	default:
1103 		r = kvm_mips_callbacks->check_extension(kvm, ext);
1104 		break;
1105 	}
1106 	return r;
1107 }
1108 
1109 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1110 {
1111 	return kvm_mips_pending_timer(vcpu) ||
1112 		kvm_read_c0_guest_cause(vcpu->arch.cop0) & C_TI;
1113 }
1114 
1115 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1116 {
1117 	int i;
1118 	struct mips_coproc *cop0;
1119 
1120 	if (!vcpu)
1121 		return -1;
1122 
1123 	kvm_debug("VCPU Register Dump:\n");
1124 	kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1125 	kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1126 
1127 	for (i = 0; i < 32; i += 4) {
1128 		kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1129 		       vcpu->arch.gprs[i],
1130 		       vcpu->arch.gprs[i + 1],
1131 		       vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1132 	}
1133 	kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1134 	kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1135 
1136 	cop0 = vcpu->arch.cop0;
1137 	kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1138 		  kvm_read_c0_guest_status(cop0),
1139 		  kvm_read_c0_guest_cause(cop0));
1140 
1141 	kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1142 
1143 	return 0;
1144 }
1145 
1146 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1147 {
1148 	int i;
1149 
1150 	vcpu_load(vcpu);
1151 
1152 	for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1153 		vcpu->arch.gprs[i] = regs->gpr[i];
1154 	vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1155 	vcpu->arch.hi = regs->hi;
1156 	vcpu->arch.lo = regs->lo;
1157 	vcpu->arch.pc = regs->pc;
1158 
1159 	vcpu_put(vcpu);
1160 	return 0;
1161 }
1162 
1163 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1164 {
1165 	int i;
1166 
1167 	vcpu_load(vcpu);
1168 
1169 	for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1170 		regs->gpr[i] = vcpu->arch.gprs[i];
1171 
1172 	regs->hi = vcpu->arch.hi;
1173 	regs->lo = vcpu->arch.lo;
1174 	regs->pc = vcpu->arch.pc;
1175 
1176 	vcpu_put(vcpu);
1177 	return 0;
1178 }
1179 
1180 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1181 				  struct kvm_translation *tr)
1182 {
1183 	return 0;
1184 }
1185 
1186 static void kvm_mips_set_c0_status(void)
1187 {
1188 	u32 status = read_c0_status();
1189 
1190 	if (cpu_has_dsp)
1191 		status |= (ST0_MX);
1192 
1193 	write_c0_status(status);
1194 	ehb();
1195 }
1196 
1197 /*
1198  * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1199  */
1200 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1201 {
1202 	u32 cause = vcpu->arch.host_cp0_cause;
1203 	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1204 	u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1205 	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1206 	enum emulation_result er = EMULATE_DONE;
1207 	u32 inst;
1208 	int ret = RESUME_GUEST;
1209 
1210 	vcpu->mode = OUTSIDE_GUEST_MODE;
1211 
1212 	/* re-enable HTW before enabling interrupts */
1213 	if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1214 		htw_start();
1215 
1216 	/* Set a default exit reason */
1217 	run->exit_reason = KVM_EXIT_UNKNOWN;
1218 	run->ready_for_interrupt_injection = 1;
1219 
1220 	/*
1221 	 * Set the appropriate status bits based on host CPU features,
1222 	 * before we hit the scheduler
1223 	 */
1224 	kvm_mips_set_c0_status();
1225 
1226 	local_irq_enable();
1227 
1228 	kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1229 			cause, opc, run, vcpu);
1230 	trace_kvm_exit(vcpu, exccode);
1231 
1232 	if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1233 		/*
1234 		 * Do a privilege check, if in UM most of these exit conditions
1235 		 * end up causing an exception to be delivered to the Guest
1236 		 * Kernel
1237 		 */
1238 		er = kvm_mips_check_privilege(cause, opc, vcpu);
1239 		if (er == EMULATE_PRIV_FAIL) {
1240 			goto skip_emul;
1241 		} else if (er == EMULATE_FAIL) {
1242 			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1243 			ret = RESUME_HOST;
1244 			goto skip_emul;
1245 		}
1246 	}
1247 
1248 	switch (exccode) {
1249 	case EXCCODE_INT:
1250 		kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1251 
1252 		++vcpu->stat.int_exits;
1253 
1254 		if (need_resched())
1255 			cond_resched();
1256 
1257 		ret = RESUME_GUEST;
1258 		break;
1259 
1260 	case EXCCODE_CPU:
1261 		kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1262 
1263 		++vcpu->stat.cop_unusable_exits;
1264 		ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1265 		/* XXXKYMA: Might need to return to user space */
1266 		if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1267 			ret = RESUME_HOST;
1268 		break;
1269 
1270 	case EXCCODE_MOD:
1271 		++vcpu->stat.tlbmod_exits;
1272 		ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1273 		break;
1274 
1275 	case EXCCODE_TLBS:
1276 		kvm_debug("TLB ST fault:  cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1277 			  cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1278 			  badvaddr);
1279 
1280 		++vcpu->stat.tlbmiss_st_exits;
1281 		ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1282 		break;
1283 
1284 	case EXCCODE_TLBL:
1285 		kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1286 			  cause, opc, badvaddr);
1287 
1288 		++vcpu->stat.tlbmiss_ld_exits;
1289 		ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1290 		break;
1291 
1292 	case EXCCODE_ADES:
1293 		++vcpu->stat.addrerr_st_exits;
1294 		ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1295 		break;
1296 
1297 	case EXCCODE_ADEL:
1298 		++vcpu->stat.addrerr_ld_exits;
1299 		ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1300 		break;
1301 
1302 	case EXCCODE_SYS:
1303 		++vcpu->stat.syscall_exits;
1304 		ret = kvm_mips_callbacks->handle_syscall(vcpu);
1305 		break;
1306 
1307 	case EXCCODE_RI:
1308 		++vcpu->stat.resvd_inst_exits;
1309 		ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1310 		break;
1311 
1312 	case EXCCODE_BP:
1313 		++vcpu->stat.break_inst_exits;
1314 		ret = kvm_mips_callbacks->handle_break(vcpu);
1315 		break;
1316 
1317 	case EXCCODE_TR:
1318 		++vcpu->stat.trap_inst_exits;
1319 		ret = kvm_mips_callbacks->handle_trap(vcpu);
1320 		break;
1321 
1322 	case EXCCODE_MSAFPE:
1323 		++vcpu->stat.msa_fpe_exits;
1324 		ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1325 		break;
1326 
1327 	case EXCCODE_FPE:
1328 		++vcpu->stat.fpe_exits;
1329 		ret = kvm_mips_callbacks->handle_fpe(vcpu);
1330 		break;
1331 
1332 	case EXCCODE_MSADIS:
1333 		++vcpu->stat.msa_disabled_exits;
1334 		ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1335 		break;
1336 
1337 	case EXCCODE_GE:
1338 		/* defer exit accounting to handler */
1339 		ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
1340 		break;
1341 
1342 	default:
1343 		if (cause & CAUSEF_BD)
1344 			opc += 1;
1345 		inst = 0;
1346 		kvm_get_badinstr(opc, vcpu, &inst);
1347 		kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#x\n",
1348 			exccode, opc, inst, badvaddr,
1349 			kvm_read_c0_guest_status(vcpu->arch.cop0));
1350 		kvm_arch_vcpu_dump_regs(vcpu);
1351 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1352 		ret = RESUME_HOST;
1353 		break;
1354 
1355 	}
1356 
1357 skip_emul:
1358 	local_irq_disable();
1359 
1360 	if (ret == RESUME_GUEST)
1361 		kvm_vz_acquire_htimer(vcpu);
1362 
1363 	if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1364 		kvm_mips_deliver_interrupts(vcpu, cause);
1365 
1366 	if (!(ret & RESUME_HOST)) {
1367 		/* Only check for signals if not already exiting to userspace */
1368 		if (signal_pending(current)) {
1369 			run->exit_reason = KVM_EXIT_INTR;
1370 			ret = (-EINTR << 2) | RESUME_HOST;
1371 			++vcpu->stat.signal_exits;
1372 			trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1373 		}
1374 	}
1375 
1376 	if (ret == RESUME_GUEST) {
1377 		trace_kvm_reenter(vcpu);
1378 
1379 		/*
1380 		 * Make sure the read of VCPU requests in vcpu_reenter()
1381 		 * callback is not reordered ahead of the write to vcpu->mode,
1382 		 * or we could miss a TLB flush request while the requester sees
1383 		 * the VCPU as outside of guest mode and not needing an IPI.
1384 		 */
1385 		smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1386 
1387 		kvm_mips_callbacks->vcpu_reenter(vcpu);
1388 
1389 		/*
1390 		 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1391 		 * is live), restore FCR31 / MSACSR.
1392 		 *
1393 		 * This should be before returning to the guest exception
1394 		 * vector, as it may well cause an [MSA] FP exception if there
1395 		 * are pending exception bits unmasked. (see
1396 		 * kvm_mips_csr_die_notifier() for how that is handled).
1397 		 */
1398 		if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1399 		    read_c0_status() & ST0_CU1)
1400 			__kvm_restore_fcsr(&vcpu->arch);
1401 
1402 		if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1403 		    read_c0_config5() & MIPS_CONF5_MSAEN)
1404 			__kvm_restore_msacsr(&vcpu->arch);
1405 	}
1406 
1407 	/* Disable HTW before returning to guest or host */
1408 	if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1409 		htw_stop();
1410 
1411 	return ret;
1412 }
1413 
1414 /* Enable FPU for guest and restore context */
1415 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1416 {
1417 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1418 	unsigned int sr, cfg5;
1419 
1420 	preempt_disable();
1421 
1422 	sr = kvm_read_c0_guest_status(cop0);
1423 
1424 	/*
1425 	 * If MSA state is already live, it is undefined how it interacts with
1426 	 * FR=0 FPU state, and we don't want to hit reserved instruction
1427 	 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1428 	 * play it safe and save it first.
1429 	 *
1430 	 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1431 	 * get called when guest CU1 is set, however we can't trust the guest
1432 	 * not to clobber the status register directly via the commpage.
1433 	 */
1434 	if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1435 	    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1436 		kvm_lose_fpu(vcpu);
1437 
1438 	/*
1439 	 * Enable FPU for guest
1440 	 * We set FR and FRE according to guest context
1441 	 */
1442 	change_c0_status(ST0_CU1 | ST0_FR, sr);
1443 	if (cpu_has_fre) {
1444 		cfg5 = kvm_read_c0_guest_config5(cop0);
1445 		change_c0_config5(MIPS_CONF5_FRE, cfg5);
1446 	}
1447 	enable_fpu_hazard();
1448 
1449 	/* If guest FPU state not active, restore it now */
1450 	if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1451 		__kvm_restore_fpu(&vcpu->arch);
1452 		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1453 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1454 	} else {
1455 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1456 	}
1457 
1458 	preempt_enable();
1459 }
1460 
1461 #ifdef CONFIG_CPU_HAS_MSA
1462 /* Enable MSA for guest and restore context */
1463 void kvm_own_msa(struct kvm_vcpu *vcpu)
1464 {
1465 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1466 	unsigned int sr, cfg5;
1467 
1468 	preempt_disable();
1469 
1470 	/*
1471 	 * Enable FPU if enabled in guest, since we're restoring FPU context
1472 	 * anyway. We set FR and FRE according to guest context.
1473 	 */
1474 	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1475 		sr = kvm_read_c0_guest_status(cop0);
1476 
1477 		/*
1478 		 * If FR=0 FPU state is already live, it is undefined how it
1479 		 * interacts with MSA state, so play it safe and save it first.
1480 		 */
1481 		if (!(sr & ST0_FR) &&
1482 		    (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1483 				KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1484 			kvm_lose_fpu(vcpu);
1485 
1486 		change_c0_status(ST0_CU1 | ST0_FR, sr);
1487 		if (sr & ST0_CU1 && cpu_has_fre) {
1488 			cfg5 = kvm_read_c0_guest_config5(cop0);
1489 			change_c0_config5(MIPS_CONF5_FRE, cfg5);
1490 		}
1491 	}
1492 
1493 	/* Enable MSA for guest */
1494 	set_c0_config5(MIPS_CONF5_MSAEN);
1495 	enable_fpu_hazard();
1496 
1497 	switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1498 	case KVM_MIPS_AUX_FPU:
1499 		/*
1500 		 * Guest FPU state already loaded, only restore upper MSA state
1501 		 */
1502 		__kvm_restore_msa_upper(&vcpu->arch);
1503 		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1504 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1505 		break;
1506 	case 0:
1507 		/* Neither FPU or MSA already active, restore full MSA state */
1508 		__kvm_restore_msa(&vcpu->arch);
1509 		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1510 		if (kvm_mips_guest_has_fpu(&vcpu->arch))
1511 			vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1512 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1513 			      KVM_TRACE_AUX_FPU_MSA);
1514 		break;
1515 	default:
1516 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1517 		break;
1518 	}
1519 
1520 	preempt_enable();
1521 }
1522 #endif
1523 
1524 /* Drop FPU & MSA without saving it */
1525 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1526 {
1527 	preempt_disable();
1528 	if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1529 		disable_msa();
1530 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1531 		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1532 	}
1533 	if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1534 		clear_c0_status(ST0_CU1 | ST0_FR);
1535 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1536 		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1537 	}
1538 	preempt_enable();
1539 }
1540 
1541 /* Save and disable FPU & MSA */
1542 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1543 {
1544 	/*
1545 	 * With T&E, FPU & MSA get disabled in root context (hardware) when it
1546 	 * is disabled in guest context (software), but the register state in
1547 	 * the hardware may still be in use.
1548 	 * This is why we explicitly re-enable the hardware before saving.
1549 	 */
1550 
1551 	preempt_disable();
1552 	if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1553 		if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1554 			set_c0_config5(MIPS_CONF5_MSAEN);
1555 			enable_fpu_hazard();
1556 		}
1557 
1558 		__kvm_save_msa(&vcpu->arch);
1559 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1560 
1561 		/* Disable MSA & FPU */
1562 		disable_msa();
1563 		if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1564 			clear_c0_status(ST0_CU1 | ST0_FR);
1565 			disable_fpu_hazard();
1566 		}
1567 		vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1568 	} else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1569 		if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1570 			set_c0_status(ST0_CU1);
1571 			enable_fpu_hazard();
1572 		}
1573 
1574 		__kvm_save_fpu(&vcpu->arch);
1575 		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1576 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1577 
1578 		/* Disable FPU */
1579 		clear_c0_status(ST0_CU1 | ST0_FR);
1580 		disable_fpu_hazard();
1581 	}
1582 	preempt_enable();
1583 }
1584 
1585 /*
1586  * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1587  * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1588  * exception if cause bits are set in the value being written.
1589  */
1590 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1591 				   unsigned long cmd, void *ptr)
1592 {
1593 	struct die_args *args = (struct die_args *)ptr;
1594 	struct pt_regs *regs = args->regs;
1595 	unsigned long pc;
1596 
1597 	/* Only interested in FPE and MSAFPE */
1598 	if (cmd != DIE_FP && cmd != DIE_MSAFP)
1599 		return NOTIFY_DONE;
1600 
1601 	/* Return immediately if guest context isn't active */
1602 	if (!(current->flags & PF_VCPU))
1603 		return NOTIFY_DONE;
1604 
1605 	/* Should never get here from user mode */
1606 	BUG_ON(user_mode(regs));
1607 
1608 	pc = instruction_pointer(regs);
1609 	switch (cmd) {
1610 	case DIE_FP:
1611 		/* match 2nd instruction in __kvm_restore_fcsr */
1612 		if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1613 			return NOTIFY_DONE;
1614 		break;
1615 	case DIE_MSAFP:
1616 		/* match 2nd/3rd instruction in __kvm_restore_msacsr */
1617 		if (!cpu_has_msa ||
1618 		    pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1619 		    pc > (unsigned long)&__kvm_restore_msacsr + 8)
1620 			return NOTIFY_DONE;
1621 		break;
1622 	}
1623 
1624 	/* Move PC forward a little and continue executing */
1625 	instruction_pointer(regs) += 4;
1626 
1627 	return NOTIFY_STOP;
1628 }
1629 
1630 static struct notifier_block kvm_mips_csr_die_notifier = {
1631 	.notifier_call = kvm_mips_csr_die_notify,
1632 };
1633 
1634 static u32 kvm_default_priority_to_irq[MIPS_EXC_MAX] = {
1635 	[MIPS_EXC_INT_TIMER] = C_IRQ5,
1636 	[MIPS_EXC_INT_IO_1]  = C_IRQ0,
1637 	[MIPS_EXC_INT_IPI_1] = C_IRQ1,
1638 	[MIPS_EXC_INT_IPI_2] = C_IRQ2,
1639 };
1640 
1641 static u32 kvm_loongson3_priority_to_irq[MIPS_EXC_MAX] = {
1642 	[MIPS_EXC_INT_TIMER] = C_IRQ5,
1643 	[MIPS_EXC_INT_IO_1]  = C_IRQ0,
1644 	[MIPS_EXC_INT_IO_2]  = C_IRQ1,
1645 	[MIPS_EXC_INT_IPI_1] = C_IRQ4,
1646 };
1647 
1648 u32 *kvm_priority_to_irq = kvm_default_priority_to_irq;
1649 
1650 u32 kvm_irq_to_priority(u32 irq)
1651 {
1652 	int i;
1653 
1654 	for (i = MIPS_EXC_INT_TIMER; i < MIPS_EXC_MAX; i++) {
1655 		if (kvm_priority_to_irq[i] == (1 << (irq + 8)))
1656 			return i;
1657 	}
1658 
1659 	return MIPS_EXC_MAX;
1660 }
1661 
1662 static int __init kvm_mips_init(void)
1663 {
1664 	int ret;
1665 
1666 	if (cpu_has_mmid) {
1667 		pr_warn("KVM does not yet support MMIDs. KVM Disabled\n");
1668 		return -EOPNOTSUPP;
1669 	}
1670 
1671 	ret = kvm_mips_entry_setup();
1672 	if (ret)
1673 		return ret;
1674 
1675 	ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1676 
1677 	if (ret)
1678 		return ret;
1679 
1680 	if (boot_cpu_type() == CPU_LOONGSON64)
1681 		kvm_priority_to_irq = kvm_loongson3_priority_to_irq;
1682 
1683 	register_die_notifier(&kvm_mips_csr_die_notifier);
1684 
1685 	return 0;
1686 }
1687 
1688 static void __exit kvm_mips_exit(void)
1689 {
1690 	kvm_exit();
1691 
1692 	unregister_die_notifier(&kvm_mips_csr_die_notifier);
1693 }
1694 
1695 module_init(kvm_mips_init);
1696 module_exit(kvm_mips_exit);
1697 
1698 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);
1699