xref: /openbmc/linux/arch/mips/kvm/mips.c (revision 15b7cc78)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: MIPS specific KVM APIs
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11 
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/kdebug.h>
15 #include <linux/module.h>
16 #include <linux/vmalloc.h>
17 #include <linux/fs.h>
18 #include <linux/bootmem.h>
19 #include <asm/fpu.h>
20 #include <asm/page.h>
21 #include <asm/cacheflush.h>
22 #include <asm/mmu_context.h>
23 #include <asm/pgtable.h>
24 
25 #include <linux/kvm_host.h>
26 
27 #include "interrupt.h"
28 #include "commpage.h"
29 
30 #define CREATE_TRACE_POINTS
31 #include "trace.h"
32 
33 #ifndef VECTORSPACING
34 #define VECTORSPACING 0x100	/* for EI/VI mode */
35 #endif
36 
37 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
38 struct kvm_stats_debugfs_item debugfs_entries[] = {
39 	{ "wait",	  VCPU_STAT(wait_exits),	 KVM_STAT_VCPU },
40 	{ "cache",	  VCPU_STAT(cache_exits),	 KVM_STAT_VCPU },
41 	{ "signal",	  VCPU_STAT(signal_exits),	 KVM_STAT_VCPU },
42 	{ "interrupt",	  VCPU_STAT(int_exits),		 KVM_STAT_VCPU },
43 	{ "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
44 	{ "tlbmod",	  VCPU_STAT(tlbmod_exits),	 KVM_STAT_VCPU },
45 	{ "tlbmiss_ld",	  VCPU_STAT(tlbmiss_ld_exits),	 KVM_STAT_VCPU },
46 	{ "tlbmiss_st",	  VCPU_STAT(tlbmiss_st_exits),	 KVM_STAT_VCPU },
47 	{ "addrerr_st",	  VCPU_STAT(addrerr_st_exits),	 KVM_STAT_VCPU },
48 	{ "addrerr_ld",	  VCPU_STAT(addrerr_ld_exits),	 KVM_STAT_VCPU },
49 	{ "syscall",	  VCPU_STAT(syscall_exits),	 KVM_STAT_VCPU },
50 	{ "resvd_inst",	  VCPU_STAT(resvd_inst_exits),	 KVM_STAT_VCPU },
51 	{ "break_inst",	  VCPU_STAT(break_inst_exits),	 KVM_STAT_VCPU },
52 	{ "trap_inst",	  VCPU_STAT(trap_inst_exits),	 KVM_STAT_VCPU },
53 	{ "msa_fpe",	  VCPU_STAT(msa_fpe_exits),	 KVM_STAT_VCPU },
54 	{ "fpe",	  VCPU_STAT(fpe_exits),		 KVM_STAT_VCPU },
55 	{ "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
56 	{ "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
57 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
58 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
59 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
60 	{ "halt_wakeup",  VCPU_STAT(halt_wakeup),	 KVM_STAT_VCPU },
61 	{NULL}
62 };
63 
64 static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
65 {
66 	int i;
67 
68 	for_each_possible_cpu(i) {
69 		vcpu->arch.guest_kernel_asid[i] = 0;
70 		vcpu->arch.guest_user_asid[i] = 0;
71 	}
72 
73 	return 0;
74 }
75 
76 /*
77  * XXXKYMA: We are simulatoring a processor that has the WII bit set in
78  * Config7, so we are "runnable" if interrupts are pending
79  */
80 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
81 {
82 	return !!(vcpu->arch.pending_exceptions);
83 }
84 
85 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
86 {
87 	return 1;
88 }
89 
90 int kvm_arch_hardware_enable(void)
91 {
92 	return 0;
93 }
94 
95 int kvm_arch_hardware_setup(void)
96 {
97 	return 0;
98 }
99 
100 void kvm_arch_check_processor_compat(void *rtn)
101 {
102 	*(int *)rtn = 0;
103 }
104 
105 static void kvm_mips_init_tlbs(struct kvm *kvm)
106 {
107 	unsigned long wired;
108 
109 	/*
110 	 * Add a wired entry to the TLB, it is used to map the commpage to
111 	 * the Guest kernel
112 	 */
113 	wired = read_c0_wired();
114 	write_c0_wired(wired + 1);
115 	mtc0_tlbw_hazard();
116 	kvm->arch.commpage_tlb = wired;
117 
118 	kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
119 		  kvm->arch.commpage_tlb);
120 }
121 
122 static void kvm_mips_init_vm_percpu(void *arg)
123 {
124 	struct kvm *kvm = (struct kvm *)arg;
125 
126 	kvm_mips_init_tlbs(kvm);
127 	kvm_mips_callbacks->vm_init(kvm);
128 
129 }
130 
131 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
132 {
133 	if (atomic_inc_return(&kvm_mips_instance) == 1) {
134 		kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
135 			  __func__);
136 		on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
137 	}
138 
139 	return 0;
140 }
141 
142 void kvm_mips_free_vcpus(struct kvm *kvm)
143 {
144 	unsigned int i;
145 	struct kvm_vcpu *vcpu;
146 
147 	/* Put the pages we reserved for the guest pmap */
148 	for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
149 		if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
150 			kvm_mips_release_pfn_clean(kvm->arch.guest_pmap[i]);
151 	}
152 	kfree(kvm->arch.guest_pmap);
153 
154 	kvm_for_each_vcpu(i, vcpu, kvm) {
155 		kvm_arch_vcpu_free(vcpu);
156 	}
157 
158 	mutex_lock(&kvm->lock);
159 
160 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
161 		kvm->vcpus[i] = NULL;
162 
163 	atomic_set(&kvm->online_vcpus, 0);
164 
165 	mutex_unlock(&kvm->lock);
166 }
167 
168 static void kvm_mips_uninit_tlbs(void *arg)
169 {
170 	/* Restore wired count */
171 	write_c0_wired(0);
172 	mtc0_tlbw_hazard();
173 	/* Clear out all the TLBs */
174 	kvm_local_flush_tlb_all();
175 }
176 
177 void kvm_arch_destroy_vm(struct kvm *kvm)
178 {
179 	kvm_mips_free_vcpus(kvm);
180 
181 	/* If this is the last instance, restore wired count */
182 	if (atomic_dec_return(&kvm_mips_instance) == 0) {
183 		kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
184 			  __func__);
185 		on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
186 	}
187 }
188 
189 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
190 			unsigned long arg)
191 {
192 	return -ENOIOCTLCMD;
193 }
194 
195 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
196 			    unsigned long npages)
197 {
198 	return 0;
199 }
200 
201 int kvm_arch_prepare_memory_region(struct kvm *kvm,
202 				   struct kvm_memory_slot *memslot,
203 				   const struct kvm_userspace_memory_region *mem,
204 				   enum kvm_mr_change change)
205 {
206 	return 0;
207 }
208 
209 void kvm_arch_commit_memory_region(struct kvm *kvm,
210 				   const struct kvm_userspace_memory_region *mem,
211 				   const struct kvm_memory_slot *old,
212 				   const struct kvm_memory_slot *new,
213 				   enum kvm_mr_change change)
214 {
215 	unsigned long npages = 0;
216 	int i;
217 
218 	kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
219 		  __func__, kvm, mem->slot, mem->guest_phys_addr,
220 		  mem->memory_size, mem->userspace_addr);
221 
222 	/* Setup Guest PMAP table */
223 	if (!kvm->arch.guest_pmap) {
224 		if (mem->slot == 0)
225 			npages = mem->memory_size >> PAGE_SHIFT;
226 
227 		if (npages) {
228 			kvm->arch.guest_pmap_npages = npages;
229 			kvm->arch.guest_pmap =
230 			    kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
231 
232 			if (!kvm->arch.guest_pmap) {
233 				kvm_err("Failed to allocate guest PMAP\n");
234 				return;
235 			}
236 
237 			kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
238 				  npages, kvm->arch.guest_pmap);
239 
240 			/* Now setup the page table */
241 			for (i = 0; i < npages; i++)
242 				kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
243 		}
244 	}
245 }
246 
247 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
248 {
249 	int err, size, offset;
250 	void *gebase;
251 	int i;
252 
253 	struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
254 
255 	if (!vcpu) {
256 		err = -ENOMEM;
257 		goto out;
258 	}
259 
260 	err = kvm_vcpu_init(vcpu, kvm, id);
261 
262 	if (err)
263 		goto out_free_cpu;
264 
265 	kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
266 
267 	/*
268 	 * Allocate space for host mode exception handlers that handle
269 	 * guest mode exits
270 	 */
271 	if (cpu_has_veic || cpu_has_vint)
272 		size = 0x200 + VECTORSPACING * 64;
273 	else
274 		size = 0x4000;
275 
276 	/* Save Linux EBASE */
277 	vcpu->arch.host_ebase = (void *)read_c0_ebase();
278 
279 	gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
280 
281 	if (!gebase) {
282 		err = -ENOMEM;
283 		goto out_uninit_cpu;
284 	}
285 	kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
286 		  ALIGN(size, PAGE_SIZE), gebase);
287 
288 	/* Save new ebase */
289 	vcpu->arch.guest_ebase = gebase;
290 
291 	/* Copy L1 Guest Exception handler to correct offset */
292 
293 	/* TLB Refill, EXL = 0 */
294 	memcpy(gebase, mips32_exception,
295 	       mips32_exceptionEnd - mips32_exception);
296 
297 	/* General Exception Entry point */
298 	memcpy(gebase + 0x180, mips32_exception,
299 	       mips32_exceptionEnd - mips32_exception);
300 
301 	/* For vectored interrupts poke the exception code @ all offsets 0-7 */
302 	for (i = 0; i < 8; i++) {
303 		kvm_debug("L1 Vectored handler @ %p\n",
304 			  gebase + 0x200 + (i * VECTORSPACING));
305 		memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception,
306 		       mips32_exceptionEnd - mips32_exception);
307 	}
308 
309 	/* General handler, relocate to unmapped space for sanity's sake */
310 	offset = 0x2000;
311 	kvm_debug("Installing KVM Exception handlers @ %p, %#x bytes\n",
312 		  gebase + offset,
313 		  mips32_GuestExceptionEnd - mips32_GuestException);
314 
315 	memcpy(gebase + offset, mips32_GuestException,
316 	       mips32_GuestExceptionEnd - mips32_GuestException);
317 
318 	/* Invalidate the icache for these ranges */
319 	local_flush_icache_range((unsigned long)gebase,
320 				(unsigned long)gebase + ALIGN(size, PAGE_SIZE));
321 
322 	/*
323 	 * Allocate comm page for guest kernel, a TLB will be reserved for
324 	 * mapping GVA @ 0xFFFF8000 to this page
325 	 */
326 	vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
327 
328 	if (!vcpu->arch.kseg0_commpage) {
329 		err = -ENOMEM;
330 		goto out_free_gebase;
331 	}
332 
333 	kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
334 	kvm_mips_commpage_init(vcpu);
335 
336 	/* Init */
337 	vcpu->arch.last_sched_cpu = -1;
338 
339 	/* Start off the timer */
340 	kvm_mips_init_count(vcpu);
341 
342 	return vcpu;
343 
344 out_free_gebase:
345 	kfree(gebase);
346 
347 out_uninit_cpu:
348 	kvm_vcpu_uninit(vcpu);
349 
350 out_free_cpu:
351 	kfree(vcpu);
352 
353 out:
354 	return ERR_PTR(err);
355 }
356 
357 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
358 {
359 	hrtimer_cancel(&vcpu->arch.comparecount_timer);
360 
361 	kvm_vcpu_uninit(vcpu);
362 
363 	kvm_mips_dump_stats(vcpu);
364 
365 	kfree(vcpu->arch.guest_ebase);
366 	kfree(vcpu->arch.kseg0_commpage);
367 	kfree(vcpu);
368 }
369 
370 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
371 {
372 	kvm_arch_vcpu_free(vcpu);
373 }
374 
375 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
376 					struct kvm_guest_debug *dbg)
377 {
378 	return -ENOIOCTLCMD;
379 }
380 
381 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
382 {
383 	int r = 0;
384 	sigset_t sigsaved;
385 
386 	if (vcpu->sigset_active)
387 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
388 
389 	if (vcpu->mmio_needed) {
390 		if (!vcpu->mmio_is_write)
391 			kvm_mips_complete_mmio_load(vcpu, run);
392 		vcpu->mmio_needed = 0;
393 	}
394 
395 	lose_fpu(1);
396 
397 	local_irq_disable();
398 	/* Check if we have any exceptions/interrupts pending */
399 	kvm_mips_deliver_interrupts(vcpu,
400 				    kvm_read_c0_guest_cause(vcpu->arch.cop0));
401 
402 	__kvm_guest_enter();
403 
404 	/* Disable hardware page table walking while in guest */
405 	htw_stop();
406 
407 	r = __kvm_mips_vcpu_run(run, vcpu);
408 
409 	/* Re-enable HTW before enabling interrupts */
410 	htw_start();
411 
412 	__kvm_guest_exit();
413 	local_irq_enable();
414 
415 	if (vcpu->sigset_active)
416 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
417 
418 	return r;
419 }
420 
421 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
422 			     struct kvm_mips_interrupt *irq)
423 {
424 	int intr = (int)irq->irq;
425 	struct kvm_vcpu *dvcpu = NULL;
426 
427 	if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
428 		kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
429 			  (int)intr);
430 
431 	if (irq->cpu == -1)
432 		dvcpu = vcpu;
433 	else
434 		dvcpu = vcpu->kvm->vcpus[irq->cpu];
435 
436 	if (intr == 2 || intr == 3 || intr == 4) {
437 		kvm_mips_callbacks->queue_io_int(dvcpu, irq);
438 
439 	} else if (intr == -2 || intr == -3 || intr == -4) {
440 		kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
441 	} else {
442 		kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
443 			irq->cpu, irq->irq);
444 		return -EINVAL;
445 	}
446 
447 	dvcpu->arch.wait = 0;
448 
449 	if (swait_active(&dvcpu->wq))
450 		swake_up(&dvcpu->wq);
451 
452 	return 0;
453 }
454 
455 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
456 				    struct kvm_mp_state *mp_state)
457 {
458 	return -ENOIOCTLCMD;
459 }
460 
461 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
462 				    struct kvm_mp_state *mp_state)
463 {
464 	return -ENOIOCTLCMD;
465 }
466 
467 static u64 kvm_mips_get_one_regs[] = {
468 	KVM_REG_MIPS_R0,
469 	KVM_REG_MIPS_R1,
470 	KVM_REG_MIPS_R2,
471 	KVM_REG_MIPS_R3,
472 	KVM_REG_MIPS_R4,
473 	KVM_REG_MIPS_R5,
474 	KVM_REG_MIPS_R6,
475 	KVM_REG_MIPS_R7,
476 	KVM_REG_MIPS_R8,
477 	KVM_REG_MIPS_R9,
478 	KVM_REG_MIPS_R10,
479 	KVM_REG_MIPS_R11,
480 	KVM_REG_MIPS_R12,
481 	KVM_REG_MIPS_R13,
482 	KVM_REG_MIPS_R14,
483 	KVM_REG_MIPS_R15,
484 	KVM_REG_MIPS_R16,
485 	KVM_REG_MIPS_R17,
486 	KVM_REG_MIPS_R18,
487 	KVM_REG_MIPS_R19,
488 	KVM_REG_MIPS_R20,
489 	KVM_REG_MIPS_R21,
490 	KVM_REG_MIPS_R22,
491 	KVM_REG_MIPS_R23,
492 	KVM_REG_MIPS_R24,
493 	KVM_REG_MIPS_R25,
494 	KVM_REG_MIPS_R26,
495 	KVM_REG_MIPS_R27,
496 	KVM_REG_MIPS_R28,
497 	KVM_REG_MIPS_R29,
498 	KVM_REG_MIPS_R30,
499 	KVM_REG_MIPS_R31,
500 
501 	KVM_REG_MIPS_HI,
502 	KVM_REG_MIPS_LO,
503 	KVM_REG_MIPS_PC,
504 
505 	KVM_REG_MIPS_CP0_INDEX,
506 	KVM_REG_MIPS_CP0_CONTEXT,
507 	KVM_REG_MIPS_CP0_USERLOCAL,
508 	KVM_REG_MIPS_CP0_PAGEMASK,
509 	KVM_REG_MIPS_CP0_WIRED,
510 	KVM_REG_MIPS_CP0_HWRENA,
511 	KVM_REG_MIPS_CP0_BADVADDR,
512 	KVM_REG_MIPS_CP0_COUNT,
513 	KVM_REG_MIPS_CP0_ENTRYHI,
514 	KVM_REG_MIPS_CP0_COMPARE,
515 	KVM_REG_MIPS_CP0_STATUS,
516 	KVM_REG_MIPS_CP0_CAUSE,
517 	KVM_REG_MIPS_CP0_EPC,
518 	KVM_REG_MIPS_CP0_PRID,
519 	KVM_REG_MIPS_CP0_CONFIG,
520 	KVM_REG_MIPS_CP0_CONFIG1,
521 	KVM_REG_MIPS_CP0_CONFIG2,
522 	KVM_REG_MIPS_CP0_CONFIG3,
523 	KVM_REG_MIPS_CP0_CONFIG4,
524 	KVM_REG_MIPS_CP0_CONFIG5,
525 	KVM_REG_MIPS_CP0_CONFIG7,
526 	KVM_REG_MIPS_CP0_ERROREPC,
527 
528 	KVM_REG_MIPS_COUNT_CTL,
529 	KVM_REG_MIPS_COUNT_RESUME,
530 	KVM_REG_MIPS_COUNT_HZ,
531 };
532 
533 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
534 			    const struct kvm_one_reg *reg)
535 {
536 	struct mips_coproc *cop0 = vcpu->arch.cop0;
537 	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
538 	int ret;
539 	s64 v;
540 	s64 vs[2];
541 	unsigned int idx;
542 
543 	switch (reg->id) {
544 	/* General purpose registers */
545 	case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
546 		v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
547 		break;
548 	case KVM_REG_MIPS_HI:
549 		v = (long)vcpu->arch.hi;
550 		break;
551 	case KVM_REG_MIPS_LO:
552 		v = (long)vcpu->arch.lo;
553 		break;
554 	case KVM_REG_MIPS_PC:
555 		v = (long)vcpu->arch.pc;
556 		break;
557 
558 	/* Floating point registers */
559 	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
560 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
561 			return -EINVAL;
562 		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
563 		/* Odd singles in top of even double when FR=0 */
564 		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
565 			v = get_fpr32(&fpu->fpr[idx], 0);
566 		else
567 			v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
568 		break;
569 	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
570 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
571 			return -EINVAL;
572 		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
573 		/* Can't access odd doubles in FR=0 mode */
574 		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
575 			return -EINVAL;
576 		v = get_fpr64(&fpu->fpr[idx], 0);
577 		break;
578 	case KVM_REG_MIPS_FCR_IR:
579 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
580 			return -EINVAL;
581 		v = boot_cpu_data.fpu_id;
582 		break;
583 	case KVM_REG_MIPS_FCR_CSR:
584 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
585 			return -EINVAL;
586 		v = fpu->fcr31;
587 		break;
588 
589 	/* MIPS SIMD Architecture (MSA) registers */
590 	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
591 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
592 			return -EINVAL;
593 		/* Can't access MSA registers in FR=0 mode */
594 		if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
595 			return -EINVAL;
596 		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
597 #ifdef CONFIG_CPU_LITTLE_ENDIAN
598 		/* least significant byte first */
599 		vs[0] = get_fpr64(&fpu->fpr[idx], 0);
600 		vs[1] = get_fpr64(&fpu->fpr[idx], 1);
601 #else
602 		/* most significant byte first */
603 		vs[0] = get_fpr64(&fpu->fpr[idx], 1);
604 		vs[1] = get_fpr64(&fpu->fpr[idx], 0);
605 #endif
606 		break;
607 	case KVM_REG_MIPS_MSA_IR:
608 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
609 			return -EINVAL;
610 		v = boot_cpu_data.msa_id;
611 		break;
612 	case KVM_REG_MIPS_MSA_CSR:
613 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
614 			return -EINVAL;
615 		v = fpu->msacsr;
616 		break;
617 
618 	/* Co-processor 0 registers */
619 	case KVM_REG_MIPS_CP0_INDEX:
620 		v = (long)kvm_read_c0_guest_index(cop0);
621 		break;
622 	case KVM_REG_MIPS_CP0_CONTEXT:
623 		v = (long)kvm_read_c0_guest_context(cop0);
624 		break;
625 	case KVM_REG_MIPS_CP0_USERLOCAL:
626 		v = (long)kvm_read_c0_guest_userlocal(cop0);
627 		break;
628 	case KVM_REG_MIPS_CP0_PAGEMASK:
629 		v = (long)kvm_read_c0_guest_pagemask(cop0);
630 		break;
631 	case KVM_REG_MIPS_CP0_WIRED:
632 		v = (long)kvm_read_c0_guest_wired(cop0);
633 		break;
634 	case KVM_REG_MIPS_CP0_HWRENA:
635 		v = (long)kvm_read_c0_guest_hwrena(cop0);
636 		break;
637 	case KVM_REG_MIPS_CP0_BADVADDR:
638 		v = (long)kvm_read_c0_guest_badvaddr(cop0);
639 		break;
640 	case KVM_REG_MIPS_CP0_ENTRYHI:
641 		v = (long)kvm_read_c0_guest_entryhi(cop0);
642 		break;
643 	case KVM_REG_MIPS_CP0_COMPARE:
644 		v = (long)kvm_read_c0_guest_compare(cop0);
645 		break;
646 	case KVM_REG_MIPS_CP0_STATUS:
647 		v = (long)kvm_read_c0_guest_status(cop0);
648 		break;
649 	case KVM_REG_MIPS_CP0_CAUSE:
650 		v = (long)kvm_read_c0_guest_cause(cop0);
651 		break;
652 	case KVM_REG_MIPS_CP0_EPC:
653 		v = (long)kvm_read_c0_guest_epc(cop0);
654 		break;
655 	case KVM_REG_MIPS_CP0_PRID:
656 		v = (long)kvm_read_c0_guest_prid(cop0);
657 		break;
658 	case KVM_REG_MIPS_CP0_CONFIG:
659 		v = (long)kvm_read_c0_guest_config(cop0);
660 		break;
661 	case KVM_REG_MIPS_CP0_CONFIG1:
662 		v = (long)kvm_read_c0_guest_config1(cop0);
663 		break;
664 	case KVM_REG_MIPS_CP0_CONFIG2:
665 		v = (long)kvm_read_c0_guest_config2(cop0);
666 		break;
667 	case KVM_REG_MIPS_CP0_CONFIG3:
668 		v = (long)kvm_read_c0_guest_config3(cop0);
669 		break;
670 	case KVM_REG_MIPS_CP0_CONFIG4:
671 		v = (long)kvm_read_c0_guest_config4(cop0);
672 		break;
673 	case KVM_REG_MIPS_CP0_CONFIG5:
674 		v = (long)kvm_read_c0_guest_config5(cop0);
675 		break;
676 	case KVM_REG_MIPS_CP0_CONFIG7:
677 		v = (long)kvm_read_c0_guest_config7(cop0);
678 		break;
679 	case KVM_REG_MIPS_CP0_ERROREPC:
680 		v = (long)kvm_read_c0_guest_errorepc(cop0);
681 		break;
682 	/* registers to be handled specially */
683 	case KVM_REG_MIPS_CP0_COUNT:
684 	case KVM_REG_MIPS_COUNT_CTL:
685 	case KVM_REG_MIPS_COUNT_RESUME:
686 	case KVM_REG_MIPS_COUNT_HZ:
687 		ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
688 		if (ret)
689 			return ret;
690 		break;
691 	default:
692 		return -EINVAL;
693 	}
694 	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
695 		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
696 
697 		return put_user(v, uaddr64);
698 	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
699 		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
700 		u32 v32 = (u32)v;
701 
702 		return put_user(v32, uaddr32);
703 	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
704 		void __user *uaddr = (void __user *)(long)reg->addr;
705 
706 		return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
707 	} else {
708 		return -EINVAL;
709 	}
710 }
711 
712 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
713 			    const struct kvm_one_reg *reg)
714 {
715 	struct mips_coproc *cop0 = vcpu->arch.cop0;
716 	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
717 	s64 v;
718 	s64 vs[2];
719 	unsigned int idx;
720 
721 	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
722 		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
723 
724 		if (get_user(v, uaddr64) != 0)
725 			return -EFAULT;
726 	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
727 		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
728 		s32 v32;
729 
730 		if (get_user(v32, uaddr32) != 0)
731 			return -EFAULT;
732 		v = (s64)v32;
733 	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
734 		void __user *uaddr = (void __user *)(long)reg->addr;
735 
736 		return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
737 	} else {
738 		return -EINVAL;
739 	}
740 
741 	switch (reg->id) {
742 	/* General purpose registers */
743 	case KVM_REG_MIPS_R0:
744 		/* Silently ignore requests to set $0 */
745 		break;
746 	case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
747 		vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
748 		break;
749 	case KVM_REG_MIPS_HI:
750 		vcpu->arch.hi = v;
751 		break;
752 	case KVM_REG_MIPS_LO:
753 		vcpu->arch.lo = v;
754 		break;
755 	case KVM_REG_MIPS_PC:
756 		vcpu->arch.pc = v;
757 		break;
758 
759 	/* Floating point registers */
760 	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
761 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
762 			return -EINVAL;
763 		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
764 		/* Odd singles in top of even double when FR=0 */
765 		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
766 			set_fpr32(&fpu->fpr[idx], 0, v);
767 		else
768 			set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
769 		break;
770 	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
771 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
772 			return -EINVAL;
773 		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
774 		/* Can't access odd doubles in FR=0 mode */
775 		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
776 			return -EINVAL;
777 		set_fpr64(&fpu->fpr[idx], 0, v);
778 		break;
779 	case KVM_REG_MIPS_FCR_IR:
780 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
781 			return -EINVAL;
782 		/* Read-only */
783 		break;
784 	case KVM_REG_MIPS_FCR_CSR:
785 		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
786 			return -EINVAL;
787 		fpu->fcr31 = v;
788 		break;
789 
790 	/* MIPS SIMD Architecture (MSA) registers */
791 	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
792 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
793 			return -EINVAL;
794 		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
795 #ifdef CONFIG_CPU_LITTLE_ENDIAN
796 		/* least significant byte first */
797 		set_fpr64(&fpu->fpr[idx], 0, vs[0]);
798 		set_fpr64(&fpu->fpr[idx], 1, vs[1]);
799 #else
800 		/* most significant byte first */
801 		set_fpr64(&fpu->fpr[idx], 1, vs[0]);
802 		set_fpr64(&fpu->fpr[idx], 0, vs[1]);
803 #endif
804 		break;
805 	case KVM_REG_MIPS_MSA_IR:
806 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
807 			return -EINVAL;
808 		/* Read-only */
809 		break;
810 	case KVM_REG_MIPS_MSA_CSR:
811 		if (!kvm_mips_guest_has_msa(&vcpu->arch))
812 			return -EINVAL;
813 		fpu->msacsr = v;
814 		break;
815 
816 	/* Co-processor 0 registers */
817 	case KVM_REG_MIPS_CP0_INDEX:
818 		kvm_write_c0_guest_index(cop0, v);
819 		break;
820 	case KVM_REG_MIPS_CP0_CONTEXT:
821 		kvm_write_c0_guest_context(cop0, v);
822 		break;
823 	case KVM_REG_MIPS_CP0_USERLOCAL:
824 		kvm_write_c0_guest_userlocal(cop0, v);
825 		break;
826 	case KVM_REG_MIPS_CP0_PAGEMASK:
827 		kvm_write_c0_guest_pagemask(cop0, v);
828 		break;
829 	case KVM_REG_MIPS_CP0_WIRED:
830 		kvm_write_c0_guest_wired(cop0, v);
831 		break;
832 	case KVM_REG_MIPS_CP0_HWRENA:
833 		kvm_write_c0_guest_hwrena(cop0, v);
834 		break;
835 	case KVM_REG_MIPS_CP0_BADVADDR:
836 		kvm_write_c0_guest_badvaddr(cop0, v);
837 		break;
838 	case KVM_REG_MIPS_CP0_ENTRYHI:
839 		kvm_write_c0_guest_entryhi(cop0, v);
840 		break;
841 	case KVM_REG_MIPS_CP0_STATUS:
842 		kvm_write_c0_guest_status(cop0, v);
843 		break;
844 	case KVM_REG_MIPS_CP0_EPC:
845 		kvm_write_c0_guest_epc(cop0, v);
846 		break;
847 	case KVM_REG_MIPS_CP0_PRID:
848 		kvm_write_c0_guest_prid(cop0, v);
849 		break;
850 	case KVM_REG_MIPS_CP0_ERROREPC:
851 		kvm_write_c0_guest_errorepc(cop0, v);
852 		break;
853 	/* registers to be handled specially */
854 	case KVM_REG_MIPS_CP0_COUNT:
855 	case KVM_REG_MIPS_CP0_COMPARE:
856 	case KVM_REG_MIPS_CP0_CAUSE:
857 	case KVM_REG_MIPS_CP0_CONFIG:
858 	case KVM_REG_MIPS_CP0_CONFIG1:
859 	case KVM_REG_MIPS_CP0_CONFIG2:
860 	case KVM_REG_MIPS_CP0_CONFIG3:
861 	case KVM_REG_MIPS_CP0_CONFIG4:
862 	case KVM_REG_MIPS_CP0_CONFIG5:
863 	case KVM_REG_MIPS_COUNT_CTL:
864 	case KVM_REG_MIPS_COUNT_RESUME:
865 	case KVM_REG_MIPS_COUNT_HZ:
866 		return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
867 	default:
868 		return -EINVAL;
869 	}
870 	return 0;
871 }
872 
873 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
874 				     struct kvm_enable_cap *cap)
875 {
876 	int r = 0;
877 
878 	if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
879 		return -EINVAL;
880 	if (cap->flags)
881 		return -EINVAL;
882 	if (cap->args[0])
883 		return -EINVAL;
884 
885 	switch (cap->cap) {
886 	case KVM_CAP_MIPS_FPU:
887 		vcpu->arch.fpu_enabled = true;
888 		break;
889 	case KVM_CAP_MIPS_MSA:
890 		vcpu->arch.msa_enabled = true;
891 		break;
892 	default:
893 		r = -EINVAL;
894 		break;
895 	}
896 
897 	return r;
898 }
899 
900 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
901 			 unsigned long arg)
902 {
903 	struct kvm_vcpu *vcpu = filp->private_data;
904 	void __user *argp = (void __user *)arg;
905 	long r;
906 
907 	switch (ioctl) {
908 	case KVM_SET_ONE_REG:
909 	case KVM_GET_ONE_REG: {
910 		struct kvm_one_reg reg;
911 
912 		if (copy_from_user(&reg, argp, sizeof(reg)))
913 			return -EFAULT;
914 		if (ioctl == KVM_SET_ONE_REG)
915 			return kvm_mips_set_reg(vcpu, &reg);
916 		else
917 			return kvm_mips_get_reg(vcpu, &reg);
918 	}
919 	case KVM_GET_REG_LIST: {
920 		struct kvm_reg_list __user *user_list = argp;
921 		u64 __user *reg_dest;
922 		struct kvm_reg_list reg_list;
923 		unsigned n;
924 
925 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
926 			return -EFAULT;
927 		n = reg_list.n;
928 		reg_list.n = ARRAY_SIZE(kvm_mips_get_one_regs);
929 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
930 			return -EFAULT;
931 		if (n < reg_list.n)
932 			return -E2BIG;
933 		reg_dest = user_list->reg;
934 		if (copy_to_user(reg_dest, kvm_mips_get_one_regs,
935 				 sizeof(kvm_mips_get_one_regs)))
936 			return -EFAULT;
937 		return 0;
938 	}
939 	case KVM_NMI:
940 		/* Treat the NMI as a CPU reset */
941 		r = kvm_mips_reset_vcpu(vcpu);
942 		break;
943 	case KVM_INTERRUPT:
944 		{
945 			struct kvm_mips_interrupt irq;
946 
947 			r = -EFAULT;
948 			if (copy_from_user(&irq, argp, sizeof(irq)))
949 				goto out;
950 
951 			kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
952 				  irq.irq);
953 
954 			r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
955 			break;
956 		}
957 	case KVM_ENABLE_CAP: {
958 		struct kvm_enable_cap cap;
959 
960 		r = -EFAULT;
961 		if (copy_from_user(&cap, argp, sizeof(cap)))
962 			goto out;
963 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
964 		break;
965 	}
966 	default:
967 		r = -ENOIOCTLCMD;
968 	}
969 
970 out:
971 	return r;
972 }
973 
974 /* Get (and clear) the dirty memory log for a memory slot. */
975 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
976 {
977 	struct kvm_memslots *slots;
978 	struct kvm_memory_slot *memslot;
979 	unsigned long ga, ga_end;
980 	int is_dirty = 0;
981 	int r;
982 	unsigned long n;
983 
984 	mutex_lock(&kvm->slots_lock);
985 
986 	r = kvm_get_dirty_log(kvm, log, &is_dirty);
987 	if (r)
988 		goto out;
989 
990 	/* If nothing is dirty, don't bother messing with page tables. */
991 	if (is_dirty) {
992 		slots = kvm_memslots(kvm);
993 		memslot = id_to_memslot(slots, log->slot);
994 
995 		ga = memslot->base_gfn << PAGE_SHIFT;
996 		ga_end = ga + (memslot->npages << PAGE_SHIFT);
997 
998 		kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
999 			 ga_end);
1000 
1001 		n = kvm_dirty_bitmap_bytes(memslot);
1002 		memset(memslot->dirty_bitmap, 0, n);
1003 	}
1004 
1005 	r = 0;
1006 out:
1007 	mutex_unlock(&kvm->slots_lock);
1008 	return r;
1009 
1010 }
1011 
1012 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1013 {
1014 	long r;
1015 
1016 	switch (ioctl) {
1017 	default:
1018 		r = -ENOIOCTLCMD;
1019 	}
1020 
1021 	return r;
1022 }
1023 
1024 int kvm_arch_init(void *opaque)
1025 {
1026 	if (kvm_mips_callbacks) {
1027 		kvm_err("kvm: module already exists\n");
1028 		return -EEXIST;
1029 	}
1030 
1031 	return kvm_mips_emulation_init(&kvm_mips_callbacks);
1032 }
1033 
1034 void kvm_arch_exit(void)
1035 {
1036 	kvm_mips_callbacks = NULL;
1037 }
1038 
1039 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1040 				  struct kvm_sregs *sregs)
1041 {
1042 	return -ENOIOCTLCMD;
1043 }
1044 
1045 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1046 				  struct kvm_sregs *sregs)
1047 {
1048 	return -ENOIOCTLCMD;
1049 }
1050 
1051 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1052 {
1053 }
1054 
1055 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1056 {
1057 	return -ENOIOCTLCMD;
1058 }
1059 
1060 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1061 {
1062 	return -ENOIOCTLCMD;
1063 }
1064 
1065 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1066 {
1067 	return VM_FAULT_SIGBUS;
1068 }
1069 
1070 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1071 {
1072 	int r;
1073 
1074 	switch (ext) {
1075 	case KVM_CAP_ONE_REG:
1076 	case KVM_CAP_ENABLE_CAP:
1077 		r = 1;
1078 		break;
1079 	case KVM_CAP_COALESCED_MMIO:
1080 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1081 		break;
1082 	case KVM_CAP_MIPS_FPU:
1083 		/* We don't handle systems with inconsistent cpu_has_fpu */
1084 		r = !!raw_cpu_has_fpu;
1085 		break;
1086 	case KVM_CAP_MIPS_MSA:
1087 		/*
1088 		 * We don't support MSA vector partitioning yet:
1089 		 * 1) It would require explicit support which can't be tested
1090 		 *    yet due to lack of support in current hardware.
1091 		 * 2) It extends the state that would need to be saved/restored
1092 		 *    by e.g. QEMU for migration.
1093 		 *
1094 		 * When vector partitioning hardware becomes available, support
1095 		 * could be added by requiring a flag when enabling
1096 		 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1097 		 * to save/restore the appropriate extra state.
1098 		 */
1099 		r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1100 		break;
1101 	default:
1102 		r = 0;
1103 		break;
1104 	}
1105 	return r;
1106 }
1107 
1108 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1109 {
1110 	return kvm_mips_pending_timer(vcpu);
1111 }
1112 
1113 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1114 {
1115 	int i;
1116 	struct mips_coproc *cop0;
1117 
1118 	if (!vcpu)
1119 		return -1;
1120 
1121 	kvm_debug("VCPU Register Dump:\n");
1122 	kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1123 	kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1124 
1125 	for (i = 0; i < 32; i += 4) {
1126 		kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1127 		       vcpu->arch.gprs[i],
1128 		       vcpu->arch.gprs[i + 1],
1129 		       vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1130 	}
1131 	kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1132 	kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1133 
1134 	cop0 = vcpu->arch.cop0;
1135 	kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
1136 		  kvm_read_c0_guest_status(cop0),
1137 		  kvm_read_c0_guest_cause(cop0));
1138 
1139 	kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1140 
1141 	return 0;
1142 }
1143 
1144 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1145 {
1146 	int i;
1147 
1148 	for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1149 		vcpu->arch.gprs[i] = regs->gpr[i];
1150 	vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1151 	vcpu->arch.hi = regs->hi;
1152 	vcpu->arch.lo = regs->lo;
1153 	vcpu->arch.pc = regs->pc;
1154 
1155 	return 0;
1156 }
1157 
1158 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1159 {
1160 	int i;
1161 
1162 	for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1163 		regs->gpr[i] = vcpu->arch.gprs[i];
1164 
1165 	regs->hi = vcpu->arch.hi;
1166 	regs->lo = vcpu->arch.lo;
1167 	regs->pc = vcpu->arch.pc;
1168 
1169 	return 0;
1170 }
1171 
1172 static void kvm_mips_comparecount_func(unsigned long data)
1173 {
1174 	struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1175 
1176 	kvm_mips_callbacks->queue_timer_int(vcpu);
1177 
1178 	vcpu->arch.wait = 0;
1179 	if (swait_active(&vcpu->wq))
1180 		swake_up(&vcpu->wq);
1181 }
1182 
1183 /* low level hrtimer wake routine */
1184 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1185 {
1186 	struct kvm_vcpu *vcpu;
1187 
1188 	vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1189 	kvm_mips_comparecount_func((unsigned long) vcpu);
1190 	return kvm_mips_count_timeout(vcpu);
1191 }
1192 
1193 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1194 {
1195 	kvm_mips_callbacks->vcpu_init(vcpu);
1196 	hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1197 		     HRTIMER_MODE_REL);
1198 	vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1199 	return 0;
1200 }
1201 
1202 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1203 				  struct kvm_translation *tr)
1204 {
1205 	return 0;
1206 }
1207 
1208 /* Initial guest state */
1209 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1210 {
1211 	return kvm_mips_callbacks->vcpu_setup(vcpu);
1212 }
1213 
1214 static void kvm_mips_set_c0_status(void)
1215 {
1216 	uint32_t status = read_c0_status();
1217 
1218 	if (cpu_has_dsp)
1219 		status |= (ST0_MX);
1220 
1221 	write_c0_status(status);
1222 	ehb();
1223 }
1224 
1225 /*
1226  * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1227  */
1228 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1229 {
1230 	uint32_t cause = vcpu->arch.host_cp0_cause;
1231 	uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1232 	uint32_t __user *opc = (uint32_t __user *) vcpu->arch.pc;
1233 	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1234 	enum emulation_result er = EMULATE_DONE;
1235 	int ret = RESUME_GUEST;
1236 
1237 	/* re-enable HTW before enabling interrupts */
1238 	htw_start();
1239 
1240 	/* Set a default exit reason */
1241 	run->exit_reason = KVM_EXIT_UNKNOWN;
1242 	run->ready_for_interrupt_injection = 1;
1243 
1244 	/*
1245 	 * Set the appropriate status bits based on host CPU features,
1246 	 * before we hit the scheduler
1247 	 */
1248 	kvm_mips_set_c0_status();
1249 
1250 	local_irq_enable();
1251 
1252 	kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1253 			cause, opc, run, vcpu);
1254 
1255 	/*
1256 	 * Do a privilege check, if in UM most of these exit conditions end up
1257 	 * causing an exception to be delivered to the Guest Kernel
1258 	 */
1259 	er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1260 	if (er == EMULATE_PRIV_FAIL) {
1261 		goto skip_emul;
1262 	} else if (er == EMULATE_FAIL) {
1263 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1264 		ret = RESUME_HOST;
1265 		goto skip_emul;
1266 	}
1267 
1268 	switch (exccode) {
1269 	case EXCCODE_INT:
1270 		kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1271 
1272 		++vcpu->stat.int_exits;
1273 		trace_kvm_exit(vcpu, INT_EXITS);
1274 
1275 		if (need_resched())
1276 			cond_resched();
1277 
1278 		ret = RESUME_GUEST;
1279 		break;
1280 
1281 	case EXCCODE_CPU:
1282 		kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1283 
1284 		++vcpu->stat.cop_unusable_exits;
1285 		trace_kvm_exit(vcpu, COP_UNUSABLE_EXITS);
1286 		ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1287 		/* XXXKYMA: Might need to return to user space */
1288 		if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1289 			ret = RESUME_HOST;
1290 		break;
1291 
1292 	case EXCCODE_MOD:
1293 		++vcpu->stat.tlbmod_exits;
1294 		trace_kvm_exit(vcpu, TLBMOD_EXITS);
1295 		ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1296 		break;
1297 
1298 	case EXCCODE_TLBS:
1299 		kvm_debug("TLB ST fault:  cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
1300 			  cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1301 			  badvaddr);
1302 
1303 		++vcpu->stat.tlbmiss_st_exits;
1304 		trace_kvm_exit(vcpu, TLBMISS_ST_EXITS);
1305 		ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1306 		break;
1307 
1308 	case EXCCODE_TLBL:
1309 		kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1310 			  cause, opc, badvaddr);
1311 
1312 		++vcpu->stat.tlbmiss_ld_exits;
1313 		trace_kvm_exit(vcpu, TLBMISS_LD_EXITS);
1314 		ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1315 		break;
1316 
1317 	case EXCCODE_ADES:
1318 		++vcpu->stat.addrerr_st_exits;
1319 		trace_kvm_exit(vcpu, ADDRERR_ST_EXITS);
1320 		ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1321 		break;
1322 
1323 	case EXCCODE_ADEL:
1324 		++vcpu->stat.addrerr_ld_exits;
1325 		trace_kvm_exit(vcpu, ADDRERR_LD_EXITS);
1326 		ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1327 		break;
1328 
1329 	case EXCCODE_SYS:
1330 		++vcpu->stat.syscall_exits;
1331 		trace_kvm_exit(vcpu, SYSCALL_EXITS);
1332 		ret = kvm_mips_callbacks->handle_syscall(vcpu);
1333 		break;
1334 
1335 	case EXCCODE_RI:
1336 		++vcpu->stat.resvd_inst_exits;
1337 		trace_kvm_exit(vcpu, RESVD_INST_EXITS);
1338 		ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1339 		break;
1340 
1341 	case EXCCODE_BP:
1342 		++vcpu->stat.break_inst_exits;
1343 		trace_kvm_exit(vcpu, BREAK_INST_EXITS);
1344 		ret = kvm_mips_callbacks->handle_break(vcpu);
1345 		break;
1346 
1347 	case EXCCODE_TR:
1348 		++vcpu->stat.trap_inst_exits;
1349 		trace_kvm_exit(vcpu, TRAP_INST_EXITS);
1350 		ret = kvm_mips_callbacks->handle_trap(vcpu);
1351 		break;
1352 
1353 	case EXCCODE_MSAFPE:
1354 		++vcpu->stat.msa_fpe_exits;
1355 		trace_kvm_exit(vcpu, MSA_FPE_EXITS);
1356 		ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1357 		break;
1358 
1359 	case EXCCODE_FPE:
1360 		++vcpu->stat.fpe_exits;
1361 		trace_kvm_exit(vcpu, FPE_EXITS);
1362 		ret = kvm_mips_callbacks->handle_fpe(vcpu);
1363 		break;
1364 
1365 	case EXCCODE_MSADIS:
1366 		++vcpu->stat.msa_disabled_exits;
1367 		trace_kvm_exit(vcpu, MSA_DISABLED_EXITS);
1368 		ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1369 		break;
1370 
1371 	default:
1372 		kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#lx\n",
1373 			exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
1374 			kvm_read_c0_guest_status(vcpu->arch.cop0));
1375 		kvm_arch_vcpu_dump_regs(vcpu);
1376 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1377 		ret = RESUME_HOST;
1378 		break;
1379 
1380 	}
1381 
1382 skip_emul:
1383 	local_irq_disable();
1384 
1385 	if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1386 		kvm_mips_deliver_interrupts(vcpu, cause);
1387 
1388 	if (!(ret & RESUME_HOST)) {
1389 		/* Only check for signals if not already exiting to userspace */
1390 		if (signal_pending(current)) {
1391 			run->exit_reason = KVM_EXIT_INTR;
1392 			ret = (-EINTR << 2) | RESUME_HOST;
1393 			++vcpu->stat.signal_exits;
1394 			trace_kvm_exit(vcpu, SIGNAL_EXITS);
1395 		}
1396 	}
1397 
1398 	if (ret == RESUME_GUEST) {
1399 		/*
1400 		 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1401 		 * is live), restore FCR31 / MSACSR.
1402 		 *
1403 		 * This should be before returning to the guest exception
1404 		 * vector, as it may well cause an [MSA] FP exception if there
1405 		 * are pending exception bits unmasked. (see
1406 		 * kvm_mips_csr_die_notifier() for how that is handled).
1407 		 */
1408 		if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1409 		    read_c0_status() & ST0_CU1)
1410 			__kvm_restore_fcsr(&vcpu->arch);
1411 
1412 		if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1413 		    read_c0_config5() & MIPS_CONF5_MSAEN)
1414 			__kvm_restore_msacsr(&vcpu->arch);
1415 	}
1416 
1417 	/* Disable HTW before returning to guest or host */
1418 	htw_stop();
1419 
1420 	return ret;
1421 }
1422 
1423 /* Enable FPU for guest and restore context */
1424 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1425 {
1426 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1427 	unsigned int sr, cfg5;
1428 
1429 	preempt_disable();
1430 
1431 	sr = kvm_read_c0_guest_status(cop0);
1432 
1433 	/*
1434 	 * If MSA state is already live, it is undefined how it interacts with
1435 	 * FR=0 FPU state, and we don't want to hit reserved instruction
1436 	 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1437 	 * play it safe and save it first.
1438 	 *
1439 	 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1440 	 * get called when guest CU1 is set, however we can't trust the guest
1441 	 * not to clobber the status register directly via the commpage.
1442 	 */
1443 	if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1444 	    vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1445 		kvm_lose_fpu(vcpu);
1446 
1447 	/*
1448 	 * Enable FPU for guest
1449 	 * We set FR and FRE according to guest context
1450 	 */
1451 	change_c0_status(ST0_CU1 | ST0_FR, sr);
1452 	if (cpu_has_fre) {
1453 		cfg5 = kvm_read_c0_guest_config5(cop0);
1454 		change_c0_config5(MIPS_CONF5_FRE, cfg5);
1455 	}
1456 	enable_fpu_hazard();
1457 
1458 	/* If guest FPU state not active, restore it now */
1459 	if (!(vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)) {
1460 		__kvm_restore_fpu(&vcpu->arch);
1461 		vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
1462 	}
1463 
1464 	preempt_enable();
1465 }
1466 
1467 #ifdef CONFIG_CPU_HAS_MSA
1468 /* Enable MSA for guest and restore context */
1469 void kvm_own_msa(struct kvm_vcpu *vcpu)
1470 {
1471 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1472 	unsigned int sr, cfg5;
1473 
1474 	preempt_disable();
1475 
1476 	/*
1477 	 * Enable FPU if enabled in guest, since we're restoring FPU context
1478 	 * anyway. We set FR and FRE according to guest context.
1479 	 */
1480 	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1481 		sr = kvm_read_c0_guest_status(cop0);
1482 
1483 		/*
1484 		 * If FR=0 FPU state is already live, it is undefined how it
1485 		 * interacts with MSA state, so play it safe and save it first.
1486 		 */
1487 		if (!(sr & ST0_FR) &&
1488 		    (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU |
1489 				KVM_MIPS_FPU_MSA)) == KVM_MIPS_FPU_FPU)
1490 			kvm_lose_fpu(vcpu);
1491 
1492 		change_c0_status(ST0_CU1 | ST0_FR, sr);
1493 		if (sr & ST0_CU1 && cpu_has_fre) {
1494 			cfg5 = kvm_read_c0_guest_config5(cop0);
1495 			change_c0_config5(MIPS_CONF5_FRE, cfg5);
1496 		}
1497 	}
1498 
1499 	/* Enable MSA for guest */
1500 	set_c0_config5(MIPS_CONF5_MSAEN);
1501 	enable_fpu_hazard();
1502 
1503 	switch (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA)) {
1504 	case KVM_MIPS_FPU_FPU:
1505 		/*
1506 		 * Guest FPU state already loaded, only restore upper MSA state
1507 		 */
1508 		__kvm_restore_msa_upper(&vcpu->arch);
1509 		vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
1510 		break;
1511 	case 0:
1512 		/* Neither FPU or MSA already active, restore full MSA state */
1513 		__kvm_restore_msa(&vcpu->arch);
1514 		vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
1515 		if (kvm_mips_guest_has_fpu(&vcpu->arch))
1516 			vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
1517 		break;
1518 	default:
1519 		break;
1520 	}
1521 
1522 	preempt_enable();
1523 }
1524 #endif
1525 
1526 /* Drop FPU & MSA without saving it */
1527 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1528 {
1529 	preempt_disable();
1530 	if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
1531 		disable_msa();
1532 		vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_MSA;
1533 	}
1534 	if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1535 		clear_c0_status(ST0_CU1 | ST0_FR);
1536 		vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
1537 	}
1538 	preempt_enable();
1539 }
1540 
1541 /* Save and disable FPU & MSA */
1542 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1543 {
1544 	/*
1545 	 * FPU & MSA get disabled in root context (hardware) when it is disabled
1546 	 * in guest context (software), but the register state in the hardware
1547 	 * may still be in use. This is why we explicitly re-enable the hardware
1548 	 * before saving.
1549 	 */
1550 
1551 	preempt_disable();
1552 	if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
1553 		set_c0_config5(MIPS_CONF5_MSAEN);
1554 		enable_fpu_hazard();
1555 
1556 		__kvm_save_msa(&vcpu->arch);
1557 
1558 		/* Disable MSA & FPU */
1559 		disable_msa();
1560 		if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1561 			clear_c0_status(ST0_CU1 | ST0_FR);
1562 			disable_fpu_hazard();
1563 		}
1564 		vcpu->arch.fpu_inuse &= ~(KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA);
1565 	} else if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1566 		set_c0_status(ST0_CU1);
1567 		enable_fpu_hazard();
1568 
1569 		__kvm_save_fpu(&vcpu->arch);
1570 		vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
1571 
1572 		/* Disable FPU */
1573 		clear_c0_status(ST0_CU1 | ST0_FR);
1574 		disable_fpu_hazard();
1575 	}
1576 	preempt_enable();
1577 }
1578 
1579 /*
1580  * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1581  * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1582  * exception if cause bits are set in the value being written.
1583  */
1584 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1585 				   unsigned long cmd, void *ptr)
1586 {
1587 	struct die_args *args = (struct die_args *)ptr;
1588 	struct pt_regs *regs = args->regs;
1589 	unsigned long pc;
1590 
1591 	/* Only interested in FPE and MSAFPE */
1592 	if (cmd != DIE_FP && cmd != DIE_MSAFP)
1593 		return NOTIFY_DONE;
1594 
1595 	/* Return immediately if guest context isn't active */
1596 	if (!(current->flags & PF_VCPU))
1597 		return NOTIFY_DONE;
1598 
1599 	/* Should never get here from user mode */
1600 	BUG_ON(user_mode(regs));
1601 
1602 	pc = instruction_pointer(regs);
1603 	switch (cmd) {
1604 	case DIE_FP:
1605 		/* match 2nd instruction in __kvm_restore_fcsr */
1606 		if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1607 			return NOTIFY_DONE;
1608 		break;
1609 	case DIE_MSAFP:
1610 		/* match 2nd/3rd instruction in __kvm_restore_msacsr */
1611 		if (!cpu_has_msa ||
1612 		    pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1613 		    pc > (unsigned long)&__kvm_restore_msacsr + 8)
1614 			return NOTIFY_DONE;
1615 		break;
1616 	}
1617 
1618 	/* Move PC forward a little and continue executing */
1619 	instruction_pointer(regs) += 4;
1620 
1621 	return NOTIFY_STOP;
1622 }
1623 
1624 static struct notifier_block kvm_mips_csr_die_notifier = {
1625 	.notifier_call = kvm_mips_csr_die_notify,
1626 };
1627 
1628 static int __init kvm_mips_init(void)
1629 {
1630 	int ret;
1631 
1632 	ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1633 
1634 	if (ret)
1635 		return ret;
1636 
1637 	register_die_notifier(&kvm_mips_csr_die_notifier);
1638 
1639 	/*
1640 	 * On MIPS, kernel modules are executed from "mapped space", which
1641 	 * requires TLBs. The TLB handling code is statically linked with
1642 	 * the rest of the kernel (tlb.c) to avoid the possibility of
1643 	 * double faulting. The issue is that the TLB code references
1644 	 * routines that are part of the the KVM module, which are only
1645 	 * available once the module is loaded.
1646 	 */
1647 	kvm_mips_gfn_to_pfn = gfn_to_pfn;
1648 	kvm_mips_release_pfn_clean = kvm_release_pfn_clean;
1649 	kvm_mips_is_error_pfn = is_error_pfn;
1650 
1651 	return 0;
1652 }
1653 
1654 static void __exit kvm_mips_exit(void)
1655 {
1656 	kvm_exit();
1657 
1658 	kvm_mips_gfn_to_pfn = NULL;
1659 	kvm_mips_release_pfn_clean = NULL;
1660 	kvm_mips_is_error_pfn = NULL;
1661 
1662 	unregister_die_notifier(&kvm_mips_csr_die_notifier);
1663 }
1664 
1665 module_init(kvm_mips_init);
1666 module_exit(kvm_mips_exit);
1667 
1668 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);
1669