xref: /openbmc/linux/arch/mips/kvm/entry.c (revision e5c86679)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Generation of main entry point for the guest, exception handling.
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  *
11  * Copyright (C) 2016 Imagination Technologies Ltd.
12  */
13 
14 #include <linux/kvm_host.h>
15 #include <linux/log2.h>
16 #include <asm/mmu_context.h>
17 #include <asm/msa.h>
18 #include <asm/setup.h>
19 #include <asm/tlbex.h>
20 #include <asm/uasm.h>
21 
22 /* Register names */
23 #define ZERO		0
24 #define AT		1
25 #define V0		2
26 #define V1		3
27 #define A0		4
28 #define A1		5
29 
30 #if _MIPS_SIM == _MIPS_SIM_ABI32
31 #define T0		8
32 #define T1		9
33 #define T2		10
34 #define T3		11
35 #endif /* _MIPS_SIM == _MIPS_SIM_ABI32 */
36 
37 #if _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32
38 #define T0		12
39 #define T1		13
40 #define T2		14
41 #define T3		15
42 #endif /* _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32 */
43 
44 #define S0		16
45 #define S1		17
46 #define T9		25
47 #define K0		26
48 #define K1		27
49 #define GP		28
50 #define SP		29
51 #define RA		31
52 
53 /* Some CP0 registers */
54 #define C0_HWRENA	7, 0
55 #define C0_BADVADDR	8, 0
56 #define C0_BADINSTR	8, 1
57 #define C0_BADINSTRP	8, 2
58 #define C0_ENTRYHI	10, 0
59 #define C0_STATUS	12, 0
60 #define C0_CAUSE	13, 0
61 #define C0_EPC		14, 0
62 #define C0_EBASE	15, 1
63 #define C0_CONFIG5	16, 5
64 #define C0_DDATA_LO	28, 3
65 #define C0_ERROREPC	30, 0
66 
67 #define CALLFRAME_SIZ   32
68 
69 #ifdef CONFIG_64BIT
70 #define ST0_KX_IF_64	ST0_KX
71 #else
72 #define ST0_KX_IF_64	0
73 #endif
74 
75 static unsigned int scratch_vcpu[2] = { C0_DDATA_LO };
76 static unsigned int scratch_tmp[2] = { C0_ERROREPC };
77 
78 enum label_id {
79 	label_fpu_1 = 1,
80 	label_msa_1,
81 	label_return_to_host,
82 	label_kernel_asid,
83 	label_exit_common,
84 };
85 
86 UASM_L_LA(_fpu_1)
87 UASM_L_LA(_msa_1)
88 UASM_L_LA(_return_to_host)
89 UASM_L_LA(_kernel_asid)
90 UASM_L_LA(_exit_common)
91 
92 static void *kvm_mips_build_enter_guest(void *addr);
93 static void *kvm_mips_build_ret_from_exit(void *addr);
94 static void *kvm_mips_build_ret_to_guest(void *addr);
95 static void *kvm_mips_build_ret_to_host(void *addr);
96 
97 /*
98  * The version of this function in tlbex.c uses current_cpu_type(), but for KVM
99  * we assume symmetry.
100  */
101 static int c0_kscratch(void)
102 {
103 	switch (boot_cpu_type()) {
104 	case CPU_XLP:
105 	case CPU_XLR:
106 		return 22;
107 	default:
108 		return 31;
109 	}
110 }
111 
112 /**
113  * kvm_mips_entry_setup() - Perform global setup for entry code.
114  *
115  * Perform global setup for entry code, such as choosing a scratch register.
116  *
117  * Returns:	0 on success.
118  *		-errno on failure.
119  */
120 int kvm_mips_entry_setup(void)
121 {
122 	/*
123 	 * We prefer to use KScratchN registers if they are available over the
124 	 * defaults above, which may not work on all cores.
125 	 */
126 	unsigned int kscratch_mask = cpu_data[0].kscratch_mask;
127 
128 	if (pgd_reg != -1)
129 		kscratch_mask &= ~BIT(pgd_reg);
130 
131 	/* Pick a scratch register for storing VCPU */
132 	if (kscratch_mask) {
133 		scratch_vcpu[0] = c0_kscratch();
134 		scratch_vcpu[1] = ffs(kscratch_mask) - 1;
135 		kscratch_mask &= ~BIT(scratch_vcpu[1]);
136 	}
137 
138 	/* Pick a scratch register to use as a temp for saving state */
139 	if (kscratch_mask) {
140 		scratch_tmp[0] = c0_kscratch();
141 		scratch_tmp[1] = ffs(kscratch_mask) - 1;
142 		kscratch_mask &= ~BIT(scratch_tmp[1]);
143 	}
144 
145 	return 0;
146 }
147 
148 static void kvm_mips_build_save_scratch(u32 **p, unsigned int tmp,
149 					unsigned int frame)
150 {
151 	/* Save the VCPU scratch register value in cp0_epc of the stack frame */
152 	UASM_i_MFC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
153 	UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
154 
155 	/* Save the temp scratch register value in cp0_cause of stack frame */
156 	if (scratch_tmp[0] == c0_kscratch()) {
157 		UASM_i_MFC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
158 		UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
159 	}
160 }
161 
162 static void kvm_mips_build_restore_scratch(u32 **p, unsigned int tmp,
163 					   unsigned int frame)
164 {
165 	/*
166 	 * Restore host scratch register values saved by
167 	 * kvm_mips_build_save_scratch().
168 	 */
169 	UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
170 	UASM_i_MTC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
171 
172 	if (scratch_tmp[0] == c0_kscratch()) {
173 		UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
174 		UASM_i_MTC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
175 	}
176 }
177 
178 /**
179  * build_set_exc_base() - Assemble code to write exception base address.
180  * @p:		Code buffer pointer.
181  * @reg:	Source register (generated code may set WG bit in @reg).
182  *
183  * Assemble code to modify the exception base address in the EBase register,
184  * using the appropriately sized access and setting the WG bit if necessary.
185  */
186 static inline void build_set_exc_base(u32 **p, unsigned int reg)
187 {
188 	if (cpu_has_ebase_wg) {
189 		/* Set WG so that all the bits get written */
190 		uasm_i_ori(p, reg, reg, MIPS_EBASE_WG);
191 		UASM_i_MTC0(p, reg, C0_EBASE);
192 	} else {
193 		uasm_i_mtc0(p, reg, C0_EBASE);
194 	}
195 }
196 
197 /**
198  * kvm_mips_build_vcpu_run() - Assemble function to start running a guest VCPU.
199  * @addr:	Address to start writing code.
200  *
201  * Assemble the start of the vcpu_run function to run a guest VCPU. The function
202  * conforms to the following prototype:
203  *
204  * int vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu);
205  *
206  * The exit from the guest and return to the caller is handled by the code
207  * generated by kvm_mips_build_ret_to_host().
208  *
209  * Returns:	Next address after end of written function.
210  */
211 void *kvm_mips_build_vcpu_run(void *addr)
212 {
213 	u32 *p = addr;
214 	unsigned int i;
215 
216 	/*
217 	 * A0: run
218 	 * A1: vcpu
219 	 */
220 
221 	/* k0/k1 not being used in host kernel context */
222 	UASM_i_ADDIU(&p, K1, SP, -(int)sizeof(struct pt_regs));
223 	for (i = 16; i < 32; ++i) {
224 		if (i == 24)
225 			i = 28;
226 		UASM_i_SW(&p, i, offsetof(struct pt_regs, regs[i]), K1);
227 	}
228 
229 	/* Save host status */
230 	uasm_i_mfc0(&p, V0, C0_STATUS);
231 	UASM_i_SW(&p, V0, offsetof(struct pt_regs, cp0_status), K1);
232 
233 	/* Save scratch registers, will be used to store pointer to vcpu etc */
234 	kvm_mips_build_save_scratch(&p, V1, K1);
235 
236 	/* VCPU scratch register has pointer to vcpu */
237 	UASM_i_MTC0(&p, A1, scratch_vcpu[0], scratch_vcpu[1]);
238 
239 	/* Offset into vcpu->arch */
240 	UASM_i_ADDIU(&p, K1, A1, offsetof(struct kvm_vcpu, arch));
241 
242 	/*
243 	 * Save the host stack to VCPU, used for exception processing
244 	 * when we exit from the Guest
245 	 */
246 	UASM_i_SW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1);
247 
248 	/* Save the kernel gp as well */
249 	UASM_i_SW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1);
250 
251 	/*
252 	 * Setup status register for running the guest in UM, interrupts
253 	 * are disabled
254 	 */
255 	UASM_i_LA(&p, K0, ST0_EXL | KSU_USER | ST0_BEV | ST0_KX_IF_64);
256 	uasm_i_mtc0(&p, K0, C0_STATUS);
257 	uasm_i_ehb(&p);
258 
259 	/* load up the new EBASE */
260 	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1);
261 	build_set_exc_base(&p, K0);
262 
263 	/*
264 	 * Now that the new EBASE has been loaded, unset BEV, set
265 	 * interrupt mask as it was but make sure that timer interrupts
266 	 * are enabled
267 	 */
268 	uasm_i_addiu(&p, K0, ZERO, ST0_EXL | KSU_USER | ST0_IE | ST0_KX_IF_64);
269 	uasm_i_andi(&p, V0, V0, ST0_IM);
270 	uasm_i_or(&p, K0, K0, V0);
271 	uasm_i_mtc0(&p, K0, C0_STATUS);
272 	uasm_i_ehb(&p);
273 
274 	p = kvm_mips_build_enter_guest(p);
275 
276 	return p;
277 }
278 
279 /**
280  * kvm_mips_build_enter_guest() - Assemble code to resume guest execution.
281  * @addr:	Address to start writing code.
282  *
283  * Assemble the code to resume guest execution. This code is common between the
284  * initial entry into the guest from the host, and returning from the exit
285  * handler back to the guest.
286  *
287  * Returns:	Next address after end of written function.
288  */
289 static void *kvm_mips_build_enter_guest(void *addr)
290 {
291 	u32 *p = addr;
292 	unsigned int i;
293 	struct uasm_label labels[2];
294 	struct uasm_reloc relocs[2];
295 	struct uasm_label *l = labels;
296 	struct uasm_reloc *r = relocs;
297 
298 	memset(labels, 0, sizeof(labels));
299 	memset(relocs, 0, sizeof(relocs));
300 
301 	/* Set Guest EPC */
302 	UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, pc), K1);
303 	UASM_i_MTC0(&p, T0, C0_EPC);
304 
305 	/* Set the ASID for the Guest Kernel */
306 	UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, cop0), K1);
307 	UASM_i_LW(&p, T0, offsetof(struct mips_coproc, reg[MIPS_CP0_STATUS][0]),
308 		  T0);
309 	uasm_i_andi(&p, T0, T0, KSU_USER | ST0_ERL | ST0_EXL);
310 	uasm_i_xori(&p, T0, T0, KSU_USER);
311 	uasm_il_bnez(&p, &r, T0, label_kernel_asid);
312 	 UASM_i_ADDIU(&p, T1, K1, offsetof(struct kvm_vcpu_arch,
313 					   guest_kernel_mm.context.asid));
314 	/* else user */
315 	UASM_i_ADDIU(&p, T1, K1, offsetof(struct kvm_vcpu_arch,
316 					  guest_user_mm.context.asid));
317 	uasm_l_kernel_asid(&l, p);
318 
319 	/* t1: contains the base of the ASID array, need to get the cpu id  */
320 	/* smp_processor_id */
321 	uasm_i_lw(&p, T2, offsetof(struct thread_info, cpu), GP);
322 	/* index the ASID array */
323 	uasm_i_sll(&p, T2, T2, ilog2(sizeof(long)));
324 	UASM_i_ADDU(&p, T3, T1, T2);
325 	UASM_i_LW(&p, K0, 0, T3);
326 #ifdef CONFIG_MIPS_ASID_BITS_VARIABLE
327 	/*
328 	 * reuse ASID array offset
329 	 * cpuinfo_mips is a multiple of sizeof(long)
330 	 */
331 	uasm_i_addiu(&p, T3, ZERO, sizeof(struct cpuinfo_mips)/sizeof(long));
332 	uasm_i_mul(&p, T2, T2, T3);
333 
334 	UASM_i_LA_mostly(&p, AT, (long)&cpu_data[0].asid_mask);
335 	UASM_i_ADDU(&p, AT, AT, T2);
336 	UASM_i_LW(&p, T2, uasm_rel_lo((long)&cpu_data[0].asid_mask), AT);
337 	uasm_i_and(&p, K0, K0, T2);
338 #else
339 	uasm_i_andi(&p, K0, K0, MIPS_ENTRYHI_ASID);
340 #endif
341 
342 	/*
343 	 * Set up KVM T&E GVA pgd.
344 	 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
345 	 * - call tlbmiss_handler_setup_pgd(mm->pgd)
346 	 * - but skips write into CP0_PWBase for now
347 	 */
348 	UASM_i_LW(&p, A0, (int)offsetof(struct mm_struct, pgd) -
349 			  (int)offsetof(struct mm_struct, context.asid), T1);
350 
351 	UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
352 	uasm_i_jalr(&p, RA, T9);
353 	 uasm_i_mtc0(&p, K0, C0_ENTRYHI);
354 
355 	uasm_i_ehb(&p);
356 
357 	/* Disable RDHWR access */
358 	uasm_i_mtc0(&p, ZERO, C0_HWRENA);
359 
360 	/* load the guest context from VCPU and return */
361 	for (i = 1; i < 32; ++i) {
362 		/* Guest k0/k1 loaded later */
363 		if (i == K0 || i == K1)
364 			continue;
365 		UASM_i_LW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1);
366 	}
367 
368 #ifndef CONFIG_CPU_MIPSR6
369 	/* Restore hi/lo */
370 	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, hi), K1);
371 	uasm_i_mthi(&p, K0);
372 
373 	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, lo), K1);
374 	uasm_i_mtlo(&p, K0);
375 #endif
376 
377 	/* Restore the guest's k0/k1 registers */
378 	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1);
379 	UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1);
380 
381 	/* Jump to guest */
382 	uasm_i_eret(&p);
383 
384 	uasm_resolve_relocs(relocs, labels);
385 
386 	return p;
387 }
388 
389 /**
390  * kvm_mips_build_tlb_refill_exception() - Assemble TLB refill handler.
391  * @addr:	Address to start writing code.
392  * @handler:	Address of common handler (within range of @addr).
393  *
394  * Assemble TLB refill exception fast path handler for guest execution.
395  *
396  * Returns:	Next address after end of written function.
397  */
398 void *kvm_mips_build_tlb_refill_exception(void *addr, void *handler)
399 {
400 	u32 *p = addr;
401 	struct uasm_label labels[2];
402 	struct uasm_reloc relocs[2];
403 	struct uasm_label *l = labels;
404 	struct uasm_reloc *r = relocs;
405 
406 	memset(labels, 0, sizeof(labels));
407 	memset(relocs, 0, sizeof(relocs));
408 
409 	/* Save guest k1 into scratch register */
410 	UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
411 
412 	/* Get the VCPU pointer from the VCPU scratch register */
413 	UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
414 
415 	/* Save guest k0 into VCPU structure */
416 	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1);
417 
418 	/*
419 	 * Some of the common tlbex code uses current_cpu_type(). For KVM we
420 	 * assume symmetry and just disable preemption to silence the warning.
421 	 */
422 	preempt_disable();
423 
424 	/*
425 	 * Now for the actual refill bit. A lot of this can be common with the
426 	 * Linux TLB refill handler, however we don't need to handle so many
427 	 * cases. We only need to handle user mode refills, and user mode runs
428 	 * with 32-bit addressing.
429 	 *
430 	 * Therefore the branch to label_vmalloc generated by build_get_pmde64()
431 	 * that isn't resolved should never actually get taken and is harmless
432 	 * to leave in place for now.
433 	 */
434 
435 #ifdef CONFIG_64BIT
436 	build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
437 #else
438 	build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
439 #endif
440 
441 	/* we don't support huge pages yet */
442 
443 	build_get_ptep(&p, K0, K1);
444 	build_update_entries(&p, K0, K1);
445 	build_tlb_write_entry(&p, &l, &r, tlb_random);
446 
447 	preempt_enable();
448 
449 	/* Get the VCPU pointer from the VCPU scratch register again */
450 	UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
451 
452 	/* Restore the guest's k0/k1 registers */
453 	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1);
454 	uasm_i_ehb(&p);
455 	UASM_i_MFC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
456 
457 	/* Jump to guest */
458 	uasm_i_eret(&p);
459 
460 	return p;
461 }
462 
463 /**
464  * kvm_mips_build_exception() - Assemble first level guest exception handler.
465  * @addr:	Address to start writing code.
466  * @handler:	Address of common handler (within range of @addr).
467  *
468  * Assemble exception vector code for guest execution. The generated vector will
469  * branch to the common exception handler generated by kvm_mips_build_exit().
470  *
471  * Returns:	Next address after end of written function.
472  */
473 void *kvm_mips_build_exception(void *addr, void *handler)
474 {
475 	u32 *p = addr;
476 	struct uasm_label labels[2];
477 	struct uasm_reloc relocs[2];
478 	struct uasm_label *l = labels;
479 	struct uasm_reloc *r = relocs;
480 
481 	memset(labels, 0, sizeof(labels));
482 	memset(relocs, 0, sizeof(relocs));
483 
484 	/* Save guest k1 into scratch register */
485 	UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
486 
487 	/* Get the VCPU pointer from the VCPU scratch register */
488 	UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
489 	UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch));
490 
491 	/* Save guest k0 into VCPU structure */
492 	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1);
493 
494 	/* Branch to the common handler */
495 	uasm_il_b(&p, &r, label_exit_common);
496 	 uasm_i_nop(&p);
497 
498 	uasm_l_exit_common(&l, handler);
499 	uasm_resolve_relocs(relocs, labels);
500 
501 	return p;
502 }
503 
504 /**
505  * kvm_mips_build_exit() - Assemble common guest exit handler.
506  * @addr:	Address to start writing code.
507  *
508  * Assemble the generic guest exit handling code. This is called by the
509  * exception vectors (generated by kvm_mips_build_exception()), and calls
510  * kvm_mips_handle_exit(), then either resumes the guest or returns to the host
511  * depending on the return value.
512  *
513  * Returns:	Next address after end of written function.
514  */
515 void *kvm_mips_build_exit(void *addr)
516 {
517 	u32 *p = addr;
518 	unsigned int i;
519 	struct uasm_label labels[3];
520 	struct uasm_reloc relocs[3];
521 	struct uasm_label *l = labels;
522 	struct uasm_reloc *r = relocs;
523 
524 	memset(labels, 0, sizeof(labels));
525 	memset(relocs, 0, sizeof(relocs));
526 
527 	/*
528 	 * Generic Guest exception handler. We end up here when the guest
529 	 * does something that causes a trap to kernel mode.
530 	 *
531 	 * Both k0/k1 registers will have already been saved (k0 into the vcpu
532 	 * structure, and k1 into the scratch_tmp register).
533 	 *
534 	 * The k1 register will already contain the kvm_vcpu_arch pointer.
535 	 */
536 
537 	/* Start saving Guest context to VCPU */
538 	for (i = 0; i < 32; ++i) {
539 		/* Guest k0/k1 saved later */
540 		if (i == K0 || i == K1)
541 			continue;
542 		UASM_i_SW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1);
543 	}
544 
545 #ifndef CONFIG_CPU_MIPSR6
546 	/* We need to save hi/lo and restore them on the way out */
547 	uasm_i_mfhi(&p, T0);
548 	UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, hi), K1);
549 
550 	uasm_i_mflo(&p, T0);
551 	UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, lo), K1);
552 #endif
553 
554 	/* Finally save guest k1 to VCPU */
555 	uasm_i_ehb(&p);
556 	UASM_i_MFC0(&p, T0, scratch_tmp[0], scratch_tmp[1]);
557 	UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1);
558 
559 	/* Now that context has been saved, we can use other registers */
560 
561 	/* Restore vcpu */
562 	UASM_i_MFC0(&p, A1, scratch_vcpu[0], scratch_vcpu[1]);
563 	uasm_i_move(&p, S1, A1);
564 
565 	/* Restore run (vcpu->run) */
566 	UASM_i_LW(&p, A0, offsetof(struct kvm_vcpu, run), A1);
567 	/* Save pointer to run in s0, will be saved by the compiler */
568 	uasm_i_move(&p, S0, A0);
569 
570 	/*
571 	 * Save Host level EPC, BadVaddr and Cause to VCPU, useful to process
572 	 * the exception
573 	 */
574 	UASM_i_MFC0(&p, K0, C0_EPC);
575 	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, pc), K1);
576 
577 	UASM_i_MFC0(&p, K0, C0_BADVADDR);
578 	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_badvaddr),
579 		  K1);
580 
581 	uasm_i_mfc0(&p, K0, C0_CAUSE);
582 	uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_cause), K1);
583 
584 	if (cpu_has_badinstr) {
585 		uasm_i_mfc0(&p, K0, C0_BADINSTR);
586 		uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch,
587 					   host_cp0_badinstr), K1);
588 	}
589 
590 	if (cpu_has_badinstrp) {
591 		uasm_i_mfc0(&p, K0, C0_BADINSTRP);
592 		uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch,
593 					   host_cp0_badinstrp), K1);
594 	}
595 
596 	/* Now restore the host state just enough to run the handlers */
597 
598 	/* Switch EBASE to the one used by Linux */
599 	/* load up the host EBASE */
600 	uasm_i_mfc0(&p, V0, C0_STATUS);
601 
602 	uasm_i_lui(&p, AT, ST0_BEV >> 16);
603 	uasm_i_or(&p, K0, V0, AT);
604 
605 	uasm_i_mtc0(&p, K0, C0_STATUS);
606 	uasm_i_ehb(&p);
607 
608 	UASM_i_LA_mostly(&p, K0, (long)&ebase);
609 	UASM_i_LW(&p, K0, uasm_rel_lo((long)&ebase), K0);
610 	build_set_exc_base(&p, K0);
611 
612 	if (raw_cpu_has_fpu) {
613 		/*
614 		 * If FPU is enabled, save FCR31 and clear it so that later
615 		 * ctc1's don't trigger FPE for pending exceptions.
616 		 */
617 		uasm_i_lui(&p, AT, ST0_CU1 >> 16);
618 		uasm_i_and(&p, V1, V0, AT);
619 		uasm_il_beqz(&p, &r, V1, label_fpu_1);
620 		 uasm_i_nop(&p);
621 		uasm_i_cfc1(&p, T0, 31);
622 		uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.fcr31),
623 			  K1);
624 		uasm_i_ctc1(&p, ZERO, 31);
625 		uasm_l_fpu_1(&l, p);
626 	}
627 
628 	if (cpu_has_msa) {
629 		/*
630 		 * If MSA is enabled, save MSACSR and clear it so that later
631 		 * instructions don't trigger MSAFPE for pending exceptions.
632 		 */
633 		uasm_i_mfc0(&p, T0, C0_CONFIG5);
634 		uasm_i_ext(&p, T0, T0, 27, 1); /* MIPS_CONF5_MSAEN */
635 		uasm_il_beqz(&p, &r, T0, label_msa_1);
636 		 uasm_i_nop(&p);
637 		uasm_i_cfcmsa(&p, T0, MSA_CSR);
638 		uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.msacsr),
639 			  K1);
640 		uasm_i_ctcmsa(&p, MSA_CSR, ZERO);
641 		uasm_l_msa_1(&l, p);
642 	}
643 
644 	/* Now that the new EBASE has been loaded, unset BEV and KSU_USER */
645 	uasm_i_addiu(&p, AT, ZERO, ~(ST0_EXL | KSU_USER | ST0_IE));
646 	uasm_i_and(&p, V0, V0, AT);
647 	uasm_i_lui(&p, AT, ST0_CU0 >> 16);
648 	uasm_i_or(&p, V0, V0, AT);
649 #ifdef CONFIG_64BIT
650 	uasm_i_ori(&p, V0, V0, ST0_SX | ST0_UX);
651 #endif
652 	uasm_i_mtc0(&p, V0, C0_STATUS);
653 	uasm_i_ehb(&p);
654 
655 	/* Load up host GP */
656 	UASM_i_LW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1);
657 
658 	/* Need a stack before we can jump to "C" */
659 	UASM_i_LW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1);
660 
661 	/* Saved host state */
662 	UASM_i_ADDIU(&p, SP, SP, -(int)sizeof(struct pt_regs));
663 
664 	/*
665 	 * XXXKYMA do we need to load the host ASID, maybe not because the
666 	 * kernel entries are marked GLOBAL, need to verify
667 	 */
668 
669 	/* Restore host scratch registers, as we'll have clobbered them */
670 	kvm_mips_build_restore_scratch(&p, K0, SP);
671 
672 	/* Restore RDHWR access */
673 	UASM_i_LA_mostly(&p, K0, (long)&hwrena);
674 	uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0);
675 	uasm_i_mtc0(&p, K0, C0_HWRENA);
676 
677 	/* Jump to handler */
678 	/*
679 	 * XXXKYMA: not sure if this is safe, how large is the stack??
680 	 * Now jump to the kvm_mips_handle_exit() to see if we can deal
681 	 * with this in the kernel
682 	 */
683 	UASM_i_LA(&p, T9, (unsigned long)kvm_mips_handle_exit);
684 	uasm_i_jalr(&p, RA, T9);
685 	 UASM_i_ADDIU(&p, SP, SP, -CALLFRAME_SIZ);
686 
687 	uasm_resolve_relocs(relocs, labels);
688 
689 	p = kvm_mips_build_ret_from_exit(p);
690 
691 	return p;
692 }
693 
694 /**
695  * kvm_mips_build_ret_from_exit() - Assemble guest exit return handler.
696  * @addr:	Address to start writing code.
697  *
698  * Assemble the code to handle the return from kvm_mips_handle_exit(), either
699  * resuming the guest or returning to the host depending on the return value.
700  *
701  * Returns:	Next address after end of written function.
702  */
703 static void *kvm_mips_build_ret_from_exit(void *addr)
704 {
705 	u32 *p = addr;
706 	struct uasm_label labels[2];
707 	struct uasm_reloc relocs[2];
708 	struct uasm_label *l = labels;
709 	struct uasm_reloc *r = relocs;
710 
711 	memset(labels, 0, sizeof(labels));
712 	memset(relocs, 0, sizeof(relocs));
713 
714 	/* Return from handler Make sure interrupts are disabled */
715 	uasm_i_di(&p, ZERO);
716 	uasm_i_ehb(&p);
717 
718 	/*
719 	 * XXXKYMA: k0/k1 could have been blown away if we processed
720 	 * an exception while we were handling the exception from the
721 	 * guest, reload k1
722 	 */
723 
724 	uasm_i_move(&p, K1, S1);
725 	UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch));
726 
727 	/*
728 	 * Check return value, should tell us if we are returning to the
729 	 * host (handle I/O etc)or resuming the guest
730 	 */
731 	uasm_i_andi(&p, T0, V0, RESUME_HOST);
732 	uasm_il_bnez(&p, &r, T0, label_return_to_host);
733 	 uasm_i_nop(&p);
734 
735 	p = kvm_mips_build_ret_to_guest(p);
736 
737 	uasm_l_return_to_host(&l, p);
738 	p = kvm_mips_build_ret_to_host(p);
739 
740 	uasm_resolve_relocs(relocs, labels);
741 
742 	return p;
743 }
744 
745 /**
746  * kvm_mips_build_ret_to_guest() - Assemble code to return to the guest.
747  * @addr:	Address to start writing code.
748  *
749  * Assemble the code to handle return from the guest exit handler
750  * (kvm_mips_handle_exit()) back to the guest.
751  *
752  * Returns:	Next address after end of written function.
753  */
754 static void *kvm_mips_build_ret_to_guest(void *addr)
755 {
756 	u32 *p = addr;
757 
758 	/* Put the saved pointer to vcpu (s1) back into the scratch register */
759 	UASM_i_MTC0(&p, S1, scratch_vcpu[0], scratch_vcpu[1]);
760 
761 	/* Load up the Guest EBASE to minimize the window where BEV is set */
762 	UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1);
763 
764 	/* Switch EBASE back to the one used by KVM */
765 	uasm_i_mfc0(&p, V1, C0_STATUS);
766 	uasm_i_lui(&p, AT, ST0_BEV >> 16);
767 	uasm_i_or(&p, K0, V1, AT);
768 	uasm_i_mtc0(&p, K0, C0_STATUS);
769 	uasm_i_ehb(&p);
770 	build_set_exc_base(&p, T0);
771 
772 	/* Setup status register for running guest in UM */
773 	uasm_i_ori(&p, V1, V1, ST0_EXL | KSU_USER | ST0_IE);
774 	UASM_i_LA(&p, AT, ~(ST0_CU0 | ST0_MX | ST0_SX | ST0_UX));
775 	uasm_i_and(&p, V1, V1, AT);
776 	uasm_i_mtc0(&p, V1, C0_STATUS);
777 	uasm_i_ehb(&p);
778 
779 	p = kvm_mips_build_enter_guest(p);
780 
781 	return p;
782 }
783 
784 /**
785  * kvm_mips_build_ret_to_host() - Assemble code to return to the host.
786  * @addr:	Address to start writing code.
787  *
788  * Assemble the code to handle return from the guest exit handler
789  * (kvm_mips_handle_exit()) back to the host, i.e. to the caller of the vcpu_run
790  * function generated by kvm_mips_build_vcpu_run().
791  *
792  * Returns:	Next address after end of written function.
793  */
794 static void *kvm_mips_build_ret_to_host(void *addr)
795 {
796 	u32 *p = addr;
797 	unsigned int i;
798 
799 	/* EBASE is already pointing to Linux */
800 	UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, host_stack), K1);
801 	UASM_i_ADDIU(&p, K1, K1, -(int)sizeof(struct pt_regs));
802 
803 	/*
804 	 * r2/v0 is the return code, shift it down by 2 (arithmetic)
805 	 * to recover the err code
806 	 */
807 	uasm_i_sra(&p, K0, V0, 2);
808 	uasm_i_move(&p, V0, K0);
809 
810 	/* Load context saved on the host stack */
811 	for (i = 16; i < 31; ++i) {
812 		if (i == 24)
813 			i = 28;
814 		UASM_i_LW(&p, i, offsetof(struct pt_regs, regs[i]), K1);
815 	}
816 
817 	/* Restore RDHWR access */
818 	UASM_i_LA_mostly(&p, K0, (long)&hwrena);
819 	uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0);
820 	uasm_i_mtc0(&p, K0, C0_HWRENA);
821 
822 	/* Restore RA, which is the address we will return to */
823 	UASM_i_LW(&p, RA, offsetof(struct pt_regs, regs[RA]), K1);
824 	uasm_i_jr(&p, RA);
825 	 uasm_i_nop(&p);
826 
827 	return p;
828 }
829 
830