1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Generation of main entry point for the guest, exception handling. 7 * 8 * Copyright (C) 2012 MIPS Technologies, Inc. 9 * Authors: Sanjay Lal <sanjayl@kymasys.com> 10 * 11 * Copyright (C) 2016 Imagination Technologies Ltd. 12 */ 13 14 #include <linux/kvm_host.h> 15 #include <linux/log2.h> 16 #include <asm/mmu_context.h> 17 #include <asm/msa.h> 18 #include <asm/setup.h> 19 #include <asm/tlbex.h> 20 #include <asm/uasm.h> 21 22 /* Register names */ 23 #define ZERO 0 24 #define AT 1 25 #define V0 2 26 #define V1 3 27 #define A0 4 28 #define A1 5 29 30 #if _MIPS_SIM == _MIPS_SIM_ABI32 31 #define T0 8 32 #define T1 9 33 #define T2 10 34 #define T3 11 35 #endif /* _MIPS_SIM == _MIPS_SIM_ABI32 */ 36 37 #if _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32 38 #define T0 12 39 #define T1 13 40 #define T2 14 41 #define T3 15 42 #endif /* _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32 */ 43 44 #define S0 16 45 #define S1 17 46 #define T9 25 47 #define K0 26 48 #define K1 27 49 #define GP 28 50 #define SP 29 51 #define RA 31 52 53 /* Some CP0 registers */ 54 #define C0_PWBASE 5, 5 55 #define C0_HWRENA 7, 0 56 #define C0_BADVADDR 8, 0 57 #define C0_BADINSTR 8, 1 58 #define C0_BADINSTRP 8, 2 59 #define C0_PGD 9, 7 60 #define C0_ENTRYHI 10, 0 61 #define C0_GUESTCTL1 10, 4 62 #define C0_STATUS 12, 0 63 #define C0_GUESTCTL0 12, 6 64 #define C0_CAUSE 13, 0 65 #define C0_EPC 14, 0 66 #define C0_EBASE 15, 1 67 #define C0_CONFIG5 16, 5 68 #define C0_DDATA_LO 28, 3 69 #define C0_ERROREPC 30, 0 70 71 #define CALLFRAME_SIZ 32 72 73 #ifdef CONFIG_64BIT 74 #define ST0_KX_IF_64 ST0_KX 75 #else 76 #define ST0_KX_IF_64 0 77 #endif 78 79 static unsigned int scratch_vcpu[2] = { C0_DDATA_LO }; 80 static unsigned int scratch_tmp[2] = { C0_ERROREPC }; 81 82 enum label_id { 83 label_fpu_1 = 1, 84 label_msa_1, 85 label_return_to_host, 86 label_kernel_asid, 87 label_exit_common, 88 }; 89 90 UASM_L_LA(_fpu_1) 91 UASM_L_LA(_msa_1) 92 UASM_L_LA(_return_to_host) 93 UASM_L_LA(_kernel_asid) 94 UASM_L_LA(_exit_common) 95 96 static void *kvm_mips_build_enter_guest(void *addr); 97 static void *kvm_mips_build_ret_from_exit(void *addr); 98 static void *kvm_mips_build_ret_to_guest(void *addr); 99 static void *kvm_mips_build_ret_to_host(void *addr); 100 101 /* 102 * The version of this function in tlbex.c uses current_cpu_type(), but for KVM 103 * we assume symmetry. 104 */ 105 static int c0_kscratch(void) 106 { 107 switch (boot_cpu_type()) { 108 case CPU_XLP: 109 case CPU_XLR: 110 return 22; 111 default: 112 return 31; 113 } 114 } 115 116 /** 117 * kvm_mips_entry_setup() - Perform global setup for entry code. 118 * 119 * Perform global setup for entry code, such as choosing a scratch register. 120 * 121 * Returns: 0 on success. 122 * -errno on failure. 123 */ 124 int kvm_mips_entry_setup(void) 125 { 126 /* 127 * We prefer to use KScratchN registers if they are available over the 128 * defaults above, which may not work on all cores. 129 */ 130 unsigned int kscratch_mask = cpu_data[0].kscratch_mask; 131 132 if (pgd_reg != -1) 133 kscratch_mask &= ~BIT(pgd_reg); 134 135 /* Pick a scratch register for storing VCPU */ 136 if (kscratch_mask) { 137 scratch_vcpu[0] = c0_kscratch(); 138 scratch_vcpu[1] = ffs(kscratch_mask) - 1; 139 kscratch_mask &= ~BIT(scratch_vcpu[1]); 140 } 141 142 /* Pick a scratch register to use as a temp for saving state */ 143 if (kscratch_mask) { 144 scratch_tmp[0] = c0_kscratch(); 145 scratch_tmp[1] = ffs(kscratch_mask) - 1; 146 kscratch_mask &= ~BIT(scratch_tmp[1]); 147 } 148 149 return 0; 150 } 151 152 static void kvm_mips_build_save_scratch(u32 **p, unsigned int tmp, 153 unsigned int frame) 154 { 155 /* Save the VCPU scratch register value in cp0_epc of the stack frame */ 156 UASM_i_MFC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]); 157 UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame); 158 159 /* Save the temp scratch register value in cp0_cause of stack frame */ 160 if (scratch_tmp[0] == c0_kscratch()) { 161 UASM_i_MFC0(p, tmp, scratch_tmp[0], scratch_tmp[1]); 162 UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame); 163 } 164 } 165 166 static void kvm_mips_build_restore_scratch(u32 **p, unsigned int tmp, 167 unsigned int frame) 168 { 169 /* 170 * Restore host scratch register values saved by 171 * kvm_mips_build_save_scratch(). 172 */ 173 UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame); 174 UASM_i_MTC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]); 175 176 if (scratch_tmp[0] == c0_kscratch()) { 177 UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame); 178 UASM_i_MTC0(p, tmp, scratch_tmp[0], scratch_tmp[1]); 179 } 180 } 181 182 /** 183 * build_set_exc_base() - Assemble code to write exception base address. 184 * @p: Code buffer pointer. 185 * @reg: Source register (generated code may set WG bit in @reg). 186 * 187 * Assemble code to modify the exception base address in the EBase register, 188 * using the appropriately sized access and setting the WG bit if necessary. 189 */ 190 static inline void build_set_exc_base(u32 **p, unsigned int reg) 191 { 192 if (cpu_has_ebase_wg) { 193 /* Set WG so that all the bits get written */ 194 uasm_i_ori(p, reg, reg, MIPS_EBASE_WG); 195 UASM_i_MTC0(p, reg, C0_EBASE); 196 } else { 197 uasm_i_mtc0(p, reg, C0_EBASE); 198 } 199 } 200 201 /** 202 * kvm_mips_build_vcpu_run() - Assemble function to start running a guest VCPU. 203 * @addr: Address to start writing code. 204 * 205 * Assemble the start of the vcpu_run function to run a guest VCPU. The function 206 * conforms to the following prototype: 207 * 208 * int vcpu_run(struct kvm_vcpu *vcpu); 209 * 210 * The exit from the guest and return to the caller is handled by the code 211 * generated by kvm_mips_build_ret_to_host(). 212 * 213 * Returns: Next address after end of written function. 214 */ 215 void *kvm_mips_build_vcpu_run(void *addr) 216 { 217 u32 *p = addr; 218 unsigned int i; 219 220 /* 221 * A0: vcpu 222 */ 223 224 /* k0/k1 not being used in host kernel context */ 225 UASM_i_ADDIU(&p, K1, SP, -(int)sizeof(struct pt_regs)); 226 for (i = 16; i < 32; ++i) { 227 if (i == 24) 228 i = 28; 229 UASM_i_SW(&p, i, offsetof(struct pt_regs, regs[i]), K1); 230 } 231 232 /* Save host status */ 233 uasm_i_mfc0(&p, V0, C0_STATUS); 234 UASM_i_SW(&p, V0, offsetof(struct pt_regs, cp0_status), K1); 235 236 /* Save scratch registers, will be used to store pointer to vcpu etc */ 237 kvm_mips_build_save_scratch(&p, V1, K1); 238 239 /* VCPU scratch register has pointer to vcpu */ 240 UASM_i_MTC0(&p, A0, scratch_vcpu[0], scratch_vcpu[1]); 241 242 /* Offset into vcpu->arch */ 243 UASM_i_ADDIU(&p, K1, A0, offsetof(struct kvm_vcpu, arch)); 244 245 /* 246 * Save the host stack to VCPU, used for exception processing 247 * when we exit from the Guest 248 */ 249 UASM_i_SW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1); 250 251 /* Save the kernel gp as well */ 252 UASM_i_SW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1); 253 254 /* 255 * Setup status register for running the guest in UM, interrupts 256 * are disabled 257 */ 258 UASM_i_LA(&p, K0, ST0_EXL | KSU_USER | ST0_BEV | ST0_KX_IF_64); 259 uasm_i_mtc0(&p, K0, C0_STATUS); 260 uasm_i_ehb(&p); 261 262 /* load up the new EBASE */ 263 UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1); 264 build_set_exc_base(&p, K0); 265 266 /* 267 * Now that the new EBASE has been loaded, unset BEV, set 268 * interrupt mask as it was but make sure that timer interrupts 269 * are enabled 270 */ 271 uasm_i_addiu(&p, K0, ZERO, ST0_EXL | KSU_USER | ST0_IE | ST0_KX_IF_64); 272 uasm_i_andi(&p, V0, V0, ST0_IM); 273 uasm_i_or(&p, K0, K0, V0); 274 uasm_i_mtc0(&p, K0, C0_STATUS); 275 uasm_i_ehb(&p); 276 277 p = kvm_mips_build_enter_guest(p); 278 279 return p; 280 } 281 282 /** 283 * kvm_mips_build_enter_guest() - Assemble code to resume guest execution. 284 * @addr: Address to start writing code. 285 * 286 * Assemble the code to resume guest execution. This code is common between the 287 * initial entry into the guest from the host, and returning from the exit 288 * handler back to the guest. 289 * 290 * Returns: Next address after end of written function. 291 */ 292 static void *kvm_mips_build_enter_guest(void *addr) 293 { 294 u32 *p = addr; 295 unsigned int i; 296 struct uasm_label labels[2]; 297 struct uasm_reloc relocs[2]; 298 struct uasm_label __maybe_unused *l = labels; 299 struct uasm_reloc __maybe_unused *r = relocs; 300 301 memset(labels, 0, sizeof(labels)); 302 memset(relocs, 0, sizeof(relocs)); 303 304 /* Set Guest EPC */ 305 UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, pc), K1); 306 UASM_i_MTC0(&p, T0, C0_EPC); 307 308 #ifdef CONFIG_KVM_MIPS_VZ 309 /* Save normal linux process pgd (VZ guarantees pgd_reg is set) */ 310 if (cpu_has_ldpte) 311 UASM_i_MFC0(&p, K0, C0_PWBASE); 312 else 313 UASM_i_MFC0(&p, K0, c0_kscratch(), pgd_reg); 314 UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_pgd), K1); 315 316 /* 317 * Set up KVM GPA pgd. 318 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD(): 319 * - call tlbmiss_handler_setup_pgd(mm->pgd) 320 * - write mm->pgd into CP0_PWBase 321 * 322 * We keep S0 pointing at struct kvm so we can load the ASID below. 323 */ 324 UASM_i_LW(&p, S0, (int)offsetof(struct kvm_vcpu, kvm) - 325 (int)offsetof(struct kvm_vcpu, arch), K1); 326 UASM_i_LW(&p, A0, offsetof(struct kvm, arch.gpa_mm.pgd), S0); 327 UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd); 328 uasm_i_jalr(&p, RA, T9); 329 /* delay slot */ 330 if (cpu_has_htw) 331 UASM_i_MTC0(&p, A0, C0_PWBASE); 332 else 333 uasm_i_nop(&p); 334 335 /* Set GM bit to setup eret to VZ guest context */ 336 uasm_i_addiu(&p, V1, ZERO, 1); 337 uasm_i_mfc0(&p, K0, C0_GUESTCTL0); 338 uasm_i_ins(&p, K0, V1, MIPS_GCTL0_GM_SHIFT, 1); 339 uasm_i_mtc0(&p, K0, C0_GUESTCTL0); 340 341 if (cpu_has_guestid) { 342 /* 343 * Set root mode GuestID, so that root TLB refill handler can 344 * use the correct GuestID in the root TLB. 345 */ 346 347 /* Get current GuestID */ 348 uasm_i_mfc0(&p, T0, C0_GUESTCTL1); 349 /* Set GuestCtl1.RID = GuestCtl1.ID */ 350 uasm_i_ext(&p, T1, T0, MIPS_GCTL1_ID_SHIFT, 351 MIPS_GCTL1_ID_WIDTH); 352 uasm_i_ins(&p, T0, T1, MIPS_GCTL1_RID_SHIFT, 353 MIPS_GCTL1_RID_WIDTH); 354 uasm_i_mtc0(&p, T0, C0_GUESTCTL1); 355 356 /* GuestID handles dealiasing so we don't need to touch ASID */ 357 goto skip_asid_restore; 358 } 359 360 /* Root ASID Dealias (RAD) */ 361 362 /* Save host ASID */ 363 UASM_i_MFC0(&p, K0, C0_ENTRYHI); 364 UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi), 365 K1); 366 367 /* Set the root ASID for the Guest */ 368 UASM_i_ADDIU(&p, T1, S0, 369 offsetof(struct kvm, arch.gpa_mm.context.asid)); 370 #else 371 /* Set the ASID for the Guest Kernel or User */ 372 UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, cop0), K1); 373 UASM_i_LW(&p, T0, offsetof(struct mips_coproc, reg[MIPS_CP0_STATUS][0]), 374 T0); 375 uasm_i_andi(&p, T0, T0, KSU_USER | ST0_ERL | ST0_EXL); 376 uasm_i_xori(&p, T0, T0, KSU_USER); 377 uasm_il_bnez(&p, &r, T0, label_kernel_asid); 378 UASM_i_ADDIU(&p, T1, K1, offsetof(struct kvm_vcpu_arch, 379 guest_kernel_mm.context.asid)); 380 /* else user */ 381 UASM_i_ADDIU(&p, T1, K1, offsetof(struct kvm_vcpu_arch, 382 guest_user_mm.context.asid)); 383 uasm_l_kernel_asid(&l, p); 384 #endif 385 386 /* t1: contains the base of the ASID array, need to get the cpu id */ 387 /* smp_processor_id */ 388 uasm_i_lw(&p, T2, offsetof(struct thread_info, cpu), GP); 389 /* index the ASID array */ 390 uasm_i_sll(&p, T2, T2, ilog2(sizeof(long))); 391 UASM_i_ADDU(&p, T3, T1, T2); 392 UASM_i_LW(&p, K0, 0, T3); 393 #ifdef CONFIG_MIPS_ASID_BITS_VARIABLE 394 /* 395 * reuse ASID array offset 396 * cpuinfo_mips is a multiple of sizeof(long) 397 */ 398 uasm_i_addiu(&p, T3, ZERO, sizeof(struct cpuinfo_mips)/sizeof(long)); 399 uasm_i_mul(&p, T2, T2, T3); 400 401 UASM_i_LA_mostly(&p, AT, (long)&cpu_data[0].asid_mask); 402 UASM_i_ADDU(&p, AT, AT, T2); 403 UASM_i_LW(&p, T2, uasm_rel_lo((long)&cpu_data[0].asid_mask), AT); 404 uasm_i_and(&p, K0, K0, T2); 405 #else 406 uasm_i_andi(&p, K0, K0, MIPS_ENTRYHI_ASID); 407 #endif 408 409 #ifndef CONFIG_KVM_MIPS_VZ 410 /* 411 * Set up KVM T&E GVA pgd. 412 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD(): 413 * - call tlbmiss_handler_setup_pgd(mm->pgd) 414 * - but skips write into CP0_PWBase for now 415 */ 416 UASM_i_LW(&p, A0, (int)offsetof(struct mm_struct, pgd) - 417 (int)offsetof(struct mm_struct, context.asid), T1); 418 419 UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd); 420 uasm_i_jalr(&p, RA, T9); 421 uasm_i_mtc0(&p, K0, C0_ENTRYHI); 422 #else 423 /* Set up KVM VZ root ASID (!guestid) */ 424 uasm_i_mtc0(&p, K0, C0_ENTRYHI); 425 skip_asid_restore: 426 #endif 427 uasm_i_ehb(&p); 428 429 /* Disable RDHWR access */ 430 uasm_i_mtc0(&p, ZERO, C0_HWRENA); 431 432 /* load the guest context from VCPU and return */ 433 for (i = 1; i < 32; ++i) { 434 /* Guest k0/k1 loaded later */ 435 if (i == K0 || i == K1) 436 continue; 437 UASM_i_LW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1); 438 } 439 440 #ifndef CONFIG_CPU_MIPSR6 441 /* Restore hi/lo */ 442 UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, hi), K1); 443 uasm_i_mthi(&p, K0); 444 445 UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, lo), K1); 446 uasm_i_mtlo(&p, K0); 447 #endif 448 449 /* Restore the guest's k0/k1 registers */ 450 UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1); 451 UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1); 452 453 /* Jump to guest */ 454 uasm_i_eret(&p); 455 456 uasm_resolve_relocs(relocs, labels); 457 458 return p; 459 } 460 461 /** 462 * kvm_mips_build_tlb_refill_exception() - Assemble TLB refill handler. 463 * @addr: Address to start writing code. 464 * @handler: Address of common handler (within range of @addr). 465 * 466 * Assemble TLB refill exception fast path handler for guest execution. 467 * 468 * Returns: Next address after end of written function. 469 */ 470 void *kvm_mips_build_tlb_refill_exception(void *addr, void *handler) 471 { 472 u32 *p = addr; 473 struct uasm_label labels[2]; 474 struct uasm_reloc relocs[2]; 475 #ifndef CONFIG_CPU_LOONGSON64 476 struct uasm_label *l = labels; 477 struct uasm_reloc *r = relocs; 478 #endif 479 480 memset(labels, 0, sizeof(labels)); 481 memset(relocs, 0, sizeof(relocs)); 482 483 /* Save guest k1 into scratch register */ 484 UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]); 485 486 /* Get the VCPU pointer from the VCPU scratch register */ 487 UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]); 488 489 /* Save guest k0 into VCPU structure */ 490 UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1); 491 492 /* 493 * Some of the common tlbex code uses current_cpu_type(). For KVM we 494 * assume symmetry and just disable preemption to silence the warning. 495 */ 496 preempt_disable(); 497 498 #ifdef CONFIG_CPU_LOONGSON64 499 UASM_i_MFC0(&p, K1, C0_PGD); 500 uasm_i_lddir(&p, K0, K1, 3); /* global page dir */ 501 #ifndef __PAGETABLE_PMD_FOLDED 502 uasm_i_lddir(&p, K1, K0, 1); /* middle page dir */ 503 #endif 504 uasm_i_ldpte(&p, K1, 0); /* even */ 505 uasm_i_ldpte(&p, K1, 1); /* odd */ 506 uasm_i_tlbwr(&p); 507 #else 508 /* 509 * Now for the actual refill bit. A lot of this can be common with the 510 * Linux TLB refill handler, however we don't need to handle so many 511 * cases. We only need to handle user mode refills, and user mode runs 512 * with 32-bit addressing. 513 * 514 * Therefore the branch to label_vmalloc generated by build_get_pmde64() 515 * that isn't resolved should never actually get taken and is harmless 516 * to leave in place for now. 517 */ 518 519 #ifdef CONFIG_64BIT 520 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */ 521 #else 522 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */ 523 #endif 524 525 /* we don't support huge pages yet */ 526 527 build_get_ptep(&p, K0, K1); 528 build_update_entries(&p, K0, K1); 529 build_tlb_write_entry(&p, &l, &r, tlb_random); 530 #endif 531 532 preempt_enable(); 533 534 /* Get the VCPU pointer from the VCPU scratch register again */ 535 UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]); 536 537 /* Restore the guest's k0/k1 registers */ 538 UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1); 539 uasm_i_ehb(&p); 540 UASM_i_MFC0(&p, K1, scratch_tmp[0], scratch_tmp[1]); 541 542 /* Jump to guest */ 543 uasm_i_eret(&p); 544 545 return p; 546 } 547 548 /** 549 * kvm_mips_build_exception() - Assemble first level guest exception handler. 550 * @addr: Address to start writing code. 551 * @handler: Address of common handler (within range of @addr). 552 * 553 * Assemble exception vector code for guest execution. The generated vector will 554 * branch to the common exception handler generated by kvm_mips_build_exit(). 555 * 556 * Returns: Next address after end of written function. 557 */ 558 void *kvm_mips_build_exception(void *addr, void *handler) 559 { 560 u32 *p = addr; 561 struct uasm_label labels[2]; 562 struct uasm_reloc relocs[2]; 563 struct uasm_label *l = labels; 564 struct uasm_reloc *r = relocs; 565 566 memset(labels, 0, sizeof(labels)); 567 memset(relocs, 0, sizeof(relocs)); 568 569 /* Save guest k1 into scratch register */ 570 UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]); 571 572 /* Get the VCPU pointer from the VCPU scratch register */ 573 UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]); 574 UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch)); 575 576 /* Save guest k0 into VCPU structure */ 577 UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1); 578 579 /* Branch to the common handler */ 580 uasm_il_b(&p, &r, label_exit_common); 581 uasm_i_nop(&p); 582 583 uasm_l_exit_common(&l, handler); 584 uasm_resolve_relocs(relocs, labels); 585 586 return p; 587 } 588 589 /** 590 * kvm_mips_build_exit() - Assemble common guest exit handler. 591 * @addr: Address to start writing code. 592 * 593 * Assemble the generic guest exit handling code. This is called by the 594 * exception vectors (generated by kvm_mips_build_exception()), and calls 595 * kvm_mips_handle_exit(), then either resumes the guest or returns to the host 596 * depending on the return value. 597 * 598 * Returns: Next address after end of written function. 599 */ 600 void *kvm_mips_build_exit(void *addr) 601 { 602 u32 *p = addr; 603 unsigned int i; 604 struct uasm_label labels[3]; 605 struct uasm_reloc relocs[3]; 606 struct uasm_label *l = labels; 607 struct uasm_reloc *r = relocs; 608 609 memset(labels, 0, sizeof(labels)); 610 memset(relocs, 0, sizeof(relocs)); 611 612 /* 613 * Generic Guest exception handler. We end up here when the guest 614 * does something that causes a trap to kernel mode. 615 * 616 * Both k0/k1 registers will have already been saved (k0 into the vcpu 617 * structure, and k1 into the scratch_tmp register). 618 * 619 * The k1 register will already contain the kvm_vcpu_arch pointer. 620 */ 621 622 /* Start saving Guest context to VCPU */ 623 for (i = 0; i < 32; ++i) { 624 /* Guest k0/k1 saved later */ 625 if (i == K0 || i == K1) 626 continue; 627 UASM_i_SW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1); 628 } 629 630 #ifndef CONFIG_CPU_MIPSR6 631 /* We need to save hi/lo and restore them on the way out */ 632 uasm_i_mfhi(&p, T0); 633 UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, hi), K1); 634 635 uasm_i_mflo(&p, T0); 636 UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, lo), K1); 637 #endif 638 639 /* Finally save guest k1 to VCPU */ 640 uasm_i_ehb(&p); 641 UASM_i_MFC0(&p, T0, scratch_tmp[0], scratch_tmp[1]); 642 UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1); 643 644 /* Now that context has been saved, we can use other registers */ 645 646 /* Restore vcpu */ 647 UASM_i_MFC0(&p, S0, scratch_vcpu[0], scratch_vcpu[1]); 648 649 /* 650 * Save Host level EPC, BadVaddr and Cause to VCPU, useful to process 651 * the exception 652 */ 653 UASM_i_MFC0(&p, K0, C0_EPC); 654 UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, pc), K1); 655 656 UASM_i_MFC0(&p, K0, C0_BADVADDR); 657 UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_badvaddr), 658 K1); 659 660 uasm_i_mfc0(&p, K0, C0_CAUSE); 661 uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_cause), K1); 662 663 if (cpu_has_badinstr) { 664 uasm_i_mfc0(&p, K0, C0_BADINSTR); 665 uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch, 666 host_cp0_badinstr), K1); 667 } 668 669 if (cpu_has_badinstrp) { 670 uasm_i_mfc0(&p, K0, C0_BADINSTRP); 671 uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch, 672 host_cp0_badinstrp), K1); 673 } 674 675 /* Now restore the host state just enough to run the handlers */ 676 677 /* Switch EBASE to the one used by Linux */ 678 /* load up the host EBASE */ 679 uasm_i_mfc0(&p, V0, C0_STATUS); 680 681 uasm_i_lui(&p, AT, ST0_BEV >> 16); 682 uasm_i_or(&p, K0, V0, AT); 683 684 uasm_i_mtc0(&p, K0, C0_STATUS); 685 uasm_i_ehb(&p); 686 687 UASM_i_LA_mostly(&p, K0, (long)&ebase); 688 UASM_i_LW(&p, K0, uasm_rel_lo((long)&ebase), K0); 689 build_set_exc_base(&p, K0); 690 691 if (raw_cpu_has_fpu) { 692 /* 693 * If FPU is enabled, save FCR31 and clear it so that later 694 * ctc1's don't trigger FPE for pending exceptions. 695 */ 696 uasm_i_lui(&p, AT, ST0_CU1 >> 16); 697 uasm_i_and(&p, V1, V0, AT); 698 uasm_il_beqz(&p, &r, V1, label_fpu_1); 699 uasm_i_nop(&p); 700 uasm_i_cfc1(&p, T0, 31); 701 uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.fcr31), 702 K1); 703 uasm_i_ctc1(&p, ZERO, 31); 704 uasm_l_fpu_1(&l, p); 705 } 706 707 if (cpu_has_msa) { 708 /* 709 * If MSA is enabled, save MSACSR and clear it so that later 710 * instructions don't trigger MSAFPE for pending exceptions. 711 */ 712 uasm_i_mfc0(&p, T0, C0_CONFIG5); 713 uasm_i_ext(&p, T0, T0, 27, 1); /* MIPS_CONF5_MSAEN */ 714 uasm_il_beqz(&p, &r, T0, label_msa_1); 715 uasm_i_nop(&p); 716 uasm_i_cfcmsa(&p, T0, MSA_CSR); 717 uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.msacsr), 718 K1); 719 uasm_i_ctcmsa(&p, MSA_CSR, ZERO); 720 uasm_l_msa_1(&l, p); 721 } 722 723 #ifdef CONFIG_KVM_MIPS_VZ 724 /* Restore host ASID */ 725 if (!cpu_has_guestid) { 726 UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi), 727 K1); 728 UASM_i_MTC0(&p, K0, C0_ENTRYHI); 729 } 730 731 /* 732 * Set up normal Linux process pgd. 733 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD(): 734 * - call tlbmiss_handler_setup_pgd(mm->pgd) 735 * - write mm->pgd into CP0_PWBase 736 */ 737 UASM_i_LW(&p, A0, 738 offsetof(struct kvm_vcpu_arch, host_pgd), K1); 739 UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd); 740 uasm_i_jalr(&p, RA, T9); 741 /* delay slot */ 742 if (cpu_has_htw) 743 UASM_i_MTC0(&p, A0, C0_PWBASE); 744 else 745 uasm_i_nop(&p); 746 747 /* Clear GM bit so we don't enter guest mode when EXL is cleared */ 748 uasm_i_mfc0(&p, K0, C0_GUESTCTL0); 749 uasm_i_ins(&p, K0, ZERO, MIPS_GCTL0_GM_SHIFT, 1); 750 uasm_i_mtc0(&p, K0, C0_GUESTCTL0); 751 752 /* Save GuestCtl0 so we can access GExcCode after CPU migration */ 753 uasm_i_sw(&p, K0, 754 offsetof(struct kvm_vcpu_arch, host_cp0_guestctl0), K1); 755 756 if (cpu_has_guestid) { 757 /* 758 * Clear root mode GuestID, so that root TLB operations use the 759 * root GuestID in the root TLB. 760 */ 761 uasm_i_mfc0(&p, T0, C0_GUESTCTL1); 762 /* Set GuestCtl1.RID = MIPS_GCTL1_ROOT_GUESTID (i.e. 0) */ 763 uasm_i_ins(&p, T0, ZERO, MIPS_GCTL1_RID_SHIFT, 764 MIPS_GCTL1_RID_WIDTH); 765 uasm_i_mtc0(&p, T0, C0_GUESTCTL1); 766 } 767 #endif 768 769 /* Now that the new EBASE has been loaded, unset BEV and KSU_USER */ 770 uasm_i_addiu(&p, AT, ZERO, ~(ST0_EXL | KSU_USER | ST0_IE)); 771 uasm_i_and(&p, V0, V0, AT); 772 uasm_i_lui(&p, AT, ST0_CU0 >> 16); 773 uasm_i_or(&p, V0, V0, AT); 774 #ifdef CONFIG_64BIT 775 uasm_i_ori(&p, V0, V0, ST0_SX | ST0_UX); 776 #endif 777 uasm_i_mtc0(&p, V0, C0_STATUS); 778 uasm_i_ehb(&p); 779 780 /* Load up host GP */ 781 UASM_i_LW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1); 782 783 /* Need a stack before we can jump to "C" */ 784 UASM_i_LW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1); 785 786 /* Saved host state */ 787 UASM_i_ADDIU(&p, SP, SP, -(int)sizeof(struct pt_regs)); 788 789 /* 790 * XXXKYMA do we need to load the host ASID, maybe not because the 791 * kernel entries are marked GLOBAL, need to verify 792 */ 793 794 /* Restore host scratch registers, as we'll have clobbered them */ 795 kvm_mips_build_restore_scratch(&p, K0, SP); 796 797 /* Restore RDHWR access */ 798 UASM_i_LA_mostly(&p, K0, (long)&hwrena); 799 uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0); 800 uasm_i_mtc0(&p, K0, C0_HWRENA); 801 802 /* Jump to handler */ 803 /* 804 * XXXKYMA: not sure if this is safe, how large is the stack?? 805 * Now jump to the kvm_mips_handle_exit() to see if we can deal 806 * with this in the kernel 807 */ 808 uasm_i_move(&p, A0, S0); 809 UASM_i_LA(&p, T9, (unsigned long)kvm_mips_handle_exit); 810 uasm_i_jalr(&p, RA, T9); 811 UASM_i_ADDIU(&p, SP, SP, -CALLFRAME_SIZ); 812 813 uasm_resolve_relocs(relocs, labels); 814 815 p = kvm_mips_build_ret_from_exit(p); 816 817 return p; 818 } 819 820 /** 821 * kvm_mips_build_ret_from_exit() - Assemble guest exit return handler. 822 * @addr: Address to start writing code. 823 * 824 * Assemble the code to handle the return from kvm_mips_handle_exit(), either 825 * resuming the guest or returning to the host depending on the return value. 826 * 827 * Returns: Next address after end of written function. 828 */ 829 static void *kvm_mips_build_ret_from_exit(void *addr) 830 { 831 u32 *p = addr; 832 struct uasm_label labels[2]; 833 struct uasm_reloc relocs[2]; 834 struct uasm_label *l = labels; 835 struct uasm_reloc *r = relocs; 836 837 memset(labels, 0, sizeof(labels)); 838 memset(relocs, 0, sizeof(relocs)); 839 840 /* Return from handler Make sure interrupts are disabled */ 841 uasm_i_di(&p, ZERO); 842 uasm_i_ehb(&p); 843 844 /* 845 * XXXKYMA: k0/k1 could have been blown away if we processed 846 * an exception while we were handling the exception from the 847 * guest, reload k1 848 */ 849 850 uasm_i_move(&p, K1, S0); 851 UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch)); 852 853 /* 854 * Check return value, should tell us if we are returning to the 855 * host (handle I/O etc)or resuming the guest 856 */ 857 uasm_i_andi(&p, T0, V0, RESUME_HOST); 858 uasm_il_bnez(&p, &r, T0, label_return_to_host); 859 uasm_i_nop(&p); 860 861 p = kvm_mips_build_ret_to_guest(p); 862 863 uasm_l_return_to_host(&l, p); 864 p = kvm_mips_build_ret_to_host(p); 865 866 uasm_resolve_relocs(relocs, labels); 867 868 return p; 869 } 870 871 /** 872 * kvm_mips_build_ret_to_guest() - Assemble code to return to the guest. 873 * @addr: Address to start writing code. 874 * 875 * Assemble the code to handle return from the guest exit handler 876 * (kvm_mips_handle_exit()) back to the guest. 877 * 878 * Returns: Next address after end of written function. 879 */ 880 static void *kvm_mips_build_ret_to_guest(void *addr) 881 { 882 u32 *p = addr; 883 884 /* Put the saved pointer to vcpu (s0) back into the scratch register */ 885 UASM_i_MTC0(&p, S0, scratch_vcpu[0], scratch_vcpu[1]); 886 887 /* Load up the Guest EBASE to minimize the window where BEV is set */ 888 UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1); 889 890 /* Switch EBASE back to the one used by KVM */ 891 uasm_i_mfc0(&p, V1, C0_STATUS); 892 uasm_i_lui(&p, AT, ST0_BEV >> 16); 893 uasm_i_or(&p, K0, V1, AT); 894 uasm_i_mtc0(&p, K0, C0_STATUS); 895 uasm_i_ehb(&p); 896 build_set_exc_base(&p, T0); 897 898 /* Setup status register for running guest in UM */ 899 uasm_i_ori(&p, V1, V1, ST0_EXL | KSU_USER | ST0_IE); 900 UASM_i_LA(&p, AT, ~(ST0_CU0 | ST0_MX | ST0_SX | ST0_UX)); 901 uasm_i_and(&p, V1, V1, AT); 902 uasm_i_mtc0(&p, V1, C0_STATUS); 903 uasm_i_ehb(&p); 904 905 p = kvm_mips_build_enter_guest(p); 906 907 return p; 908 } 909 910 /** 911 * kvm_mips_build_ret_to_host() - Assemble code to return to the host. 912 * @addr: Address to start writing code. 913 * 914 * Assemble the code to handle return from the guest exit handler 915 * (kvm_mips_handle_exit()) back to the host, i.e. to the caller of the vcpu_run 916 * function generated by kvm_mips_build_vcpu_run(). 917 * 918 * Returns: Next address after end of written function. 919 */ 920 static void *kvm_mips_build_ret_to_host(void *addr) 921 { 922 u32 *p = addr; 923 unsigned int i; 924 925 /* EBASE is already pointing to Linux */ 926 UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, host_stack), K1); 927 UASM_i_ADDIU(&p, K1, K1, -(int)sizeof(struct pt_regs)); 928 929 /* 930 * r2/v0 is the return code, shift it down by 2 (arithmetic) 931 * to recover the err code 932 */ 933 uasm_i_sra(&p, K0, V0, 2); 934 uasm_i_move(&p, V0, K0); 935 936 /* Load context saved on the host stack */ 937 for (i = 16; i < 31; ++i) { 938 if (i == 24) 939 i = 28; 940 UASM_i_LW(&p, i, offsetof(struct pt_regs, regs[i]), K1); 941 } 942 943 /* Restore RDHWR access */ 944 UASM_i_LA_mostly(&p, K0, (long)&hwrena); 945 uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0); 946 uasm_i_mtc0(&p, K0, C0_HWRENA); 947 948 /* Restore RA, which is the address we will return to */ 949 UASM_i_LW(&p, RA, offsetof(struct pt_regs, regs[RA]), K1); 950 uasm_i_jr(&p, RA); 951 uasm_i_nop(&p); 952 953 return p; 954 } 955 956