1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Generation of main entry point for the guest, exception handling. 7 * 8 * Copyright (C) 2012 MIPS Technologies, Inc. 9 * Authors: Sanjay Lal <sanjayl@kymasys.com> 10 * 11 * Copyright (C) 2016 Imagination Technologies Ltd. 12 */ 13 14 #include <linux/kvm_host.h> 15 #include <linux/log2.h> 16 #include <asm/mmu_context.h> 17 #include <asm/msa.h> 18 #include <asm/setup.h> 19 #include <asm/tlbex.h> 20 #include <asm/uasm.h> 21 22 /* Register names */ 23 #define ZERO 0 24 #define AT 1 25 #define V0 2 26 #define V1 3 27 #define A0 4 28 #define A1 5 29 30 #if _MIPS_SIM == _MIPS_SIM_ABI32 31 #define T0 8 32 #define T1 9 33 #define T2 10 34 #define T3 11 35 #endif /* _MIPS_SIM == _MIPS_SIM_ABI32 */ 36 37 #if _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32 38 #define T0 12 39 #define T1 13 40 #define T2 14 41 #define T3 15 42 #endif /* _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32 */ 43 44 #define S0 16 45 #define S1 17 46 #define T9 25 47 #define K0 26 48 #define K1 27 49 #define GP 28 50 #define SP 29 51 #define RA 31 52 53 /* Some CP0 registers */ 54 #define C0_PWBASE 5, 5 55 #define C0_HWRENA 7, 0 56 #define C0_BADVADDR 8, 0 57 #define C0_BADINSTR 8, 1 58 #define C0_BADINSTRP 8, 2 59 #define C0_PGD 9, 7 60 #define C0_ENTRYHI 10, 0 61 #define C0_GUESTCTL1 10, 4 62 #define C0_STATUS 12, 0 63 #define C0_GUESTCTL0 12, 6 64 #define C0_CAUSE 13, 0 65 #define C0_EPC 14, 0 66 #define C0_EBASE 15, 1 67 #define C0_CONFIG5 16, 5 68 #define C0_DDATA_LO 28, 3 69 #define C0_ERROREPC 30, 0 70 71 #define CALLFRAME_SIZ 32 72 73 #ifdef CONFIG_64BIT 74 #define ST0_KX_IF_64 ST0_KX 75 #else 76 #define ST0_KX_IF_64 0 77 #endif 78 79 static unsigned int scratch_vcpu[2] = { C0_DDATA_LO }; 80 static unsigned int scratch_tmp[2] = { C0_ERROREPC }; 81 82 enum label_id { 83 label_fpu_1 = 1, 84 label_msa_1, 85 label_return_to_host, 86 label_kernel_asid, 87 label_exit_common, 88 }; 89 90 UASM_L_LA(_fpu_1) 91 UASM_L_LA(_msa_1) 92 UASM_L_LA(_return_to_host) 93 UASM_L_LA(_kernel_asid) 94 UASM_L_LA(_exit_common) 95 96 static void *kvm_mips_build_enter_guest(void *addr); 97 static void *kvm_mips_build_ret_from_exit(void *addr); 98 static void *kvm_mips_build_ret_to_guest(void *addr); 99 static void *kvm_mips_build_ret_to_host(void *addr); 100 101 /* 102 * The version of this function in tlbex.c uses current_cpu_type(), but for KVM 103 * we assume symmetry. 104 */ 105 static int c0_kscratch(void) 106 { 107 switch (boot_cpu_type()) { 108 case CPU_XLP: 109 case CPU_XLR: 110 return 22; 111 default: 112 return 31; 113 } 114 } 115 116 /** 117 * kvm_mips_entry_setup() - Perform global setup for entry code. 118 * 119 * Perform global setup for entry code, such as choosing a scratch register. 120 * 121 * Returns: 0 on success. 122 * -errno on failure. 123 */ 124 int kvm_mips_entry_setup(void) 125 { 126 /* 127 * We prefer to use KScratchN registers if they are available over the 128 * defaults above, which may not work on all cores. 129 */ 130 unsigned int kscratch_mask = cpu_data[0].kscratch_mask; 131 132 if (pgd_reg != -1) 133 kscratch_mask &= ~BIT(pgd_reg); 134 135 /* Pick a scratch register for storing VCPU */ 136 if (kscratch_mask) { 137 scratch_vcpu[0] = c0_kscratch(); 138 scratch_vcpu[1] = ffs(kscratch_mask) - 1; 139 kscratch_mask &= ~BIT(scratch_vcpu[1]); 140 } 141 142 /* Pick a scratch register to use as a temp for saving state */ 143 if (kscratch_mask) { 144 scratch_tmp[0] = c0_kscratch(); 145 scratch_tmp[1] = ffs(kscratch_mask) - 1; 146 kscratch_mask &= ~BIT(scratch_tmp[1]); 147 } 148 149 return 0; 150 } 151 152 static void kvm_mips_build_save_scratch(u32 **p, unsigned int tmp, 153 unsigned int frame) 154 { 155 /* Save the VCPU scratch register value in cp0_epc of the stack frame */ 156 UASM_i_MFC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]); 157 UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame); 158 159 /* Save the temp scratch register value in cp0_cause of stack frame */ 160 if (scratch_tmp[0] == c0_kscratch()) { 161 UASM_i_MFC0(p, tmp, scratch_tmp[0], scratch_tmp[1]); 162 UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame); 163 } 164 } 165 166 static void kvm_mips_build_restore_scratch(u32 **p, unsigned int tmp, 167 unsigned int frame) 168 { 169 /* 170 * Restore host scratch register values saved by 171 * kvm_mips_build_save_scratch(). 172 */ 173 UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame); 174 UASM_i_MTC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]); 175 176 if (scratch_tmp[0] == c0_kscratch()) { 177 UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame); 178 UASM_i_MTC0(p, tmp, scratch_tmp[0], scratch_tmp[1]); 179 } 180 } 181 182 /** 183 * build_set_exc_base() - Assemble code to write exception base address. 184 * @p: Code buffer pointer. 185 * @reg: Source register (generated code may set WG bit in @reg). 186 * 187 * Assemble code to modify the exception base address in the EBase register, 188 * using the appropriately sized access and setting the WG bit if necessary. 189 */ 190 static inline void build_set_exc_base(u32 **p, unsigned int reg) 191 { 192 if (cpu_has_ebase_wg) { 193 /* Set WG so that all the bits get written */ 194 uasm_i_ori(p, reg, reg, MIPS_EBASE_WG); 195 UASM_i_MTC0(p, reg, C0_EBASE); 196 } else { 197 uasm_i_mtc0(p, reg, C0_EBASE); 198 } 199 } 200 201 /** 202 * kvm_mips_build_vcpu_run() - Assemble function to start running a guest VCPU. 203 * @addr: Address to start writing code. 204 * 205 * Assemble the start of the vcpu_run function to run a guest VCPU. The function 206 * conforms to the following prototype: 207 * 208 * int vcpu_run(struct kvm_vcpu *vcpu); 209 * 210 * The exit from the guest and return to the caller is handled by the code 211 * generated by kvm_mips_build_ret_to_host(). 212 * 213 * Returns: Next address after end of written function. 214 */ 215 void *kvm_mips_build_vcpu_run(void *addr) 216 { 217 u32 *p = addr; 218 unsigned int i; 219 220 /* 221 * A0: vcpu 222 */ 223 224 /* k0/k1 not being used in host kernel context */ 225 UASM_i_ADDIU(&p, K1, SP, -(int)sizeof(struct pt_regs)); 226 for (i = 16; i < 32; ++i) { 227 if (i == 24) 228 i = 28; 229 UASM_i_SW(&p, i, offsetof(struct pt_regs, regs[i]), K1); 230 } 231 232 /* Save host status */ 233 uasm_i_mfc0(&p, V0, C0_STATUS); 234 UASM_i_SW(&p, V0, offsetof(struct pt_regs, cp0_status), K1); 235 236 /* Save scratch registers, will be used to store pointer to vcpu etc */ 237 kvm_mips_build_save_scratch(&p, V1, K1); 238 239 /* VCPU scratch register has pointer to vcpu */ 240 UASM_i_MTC0(&p, A0, scratch_vcpu[0], scratch_vcpu[1]); 241 242 /* Offset into vcpu->arch */ 243 UASM_i_ADDIU(&p, K1, A0, offsetof(struct kvm_vcpu, arch)); 244 245 /* 246 * Save the host stack to VCPU, used for exception processing 247 * when we exit from the Guest 248 */ 249 UASM_i_SW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1); 250 251 /* Save the kernel gp as well */ 252 UASM_i_SW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1); 253 254 /* 255 * Setup status register for running the guest in UM, interrupts 256 * are disabled 257 */ 258 UASM_i_LA(&p, K0, ST0_EXL | KSU_USER | ST0_BEV | ST0_KX_IF_64); 259 uasm_i_mtc0(&p, K0, C0_STATUS); 260 uasm_i_ehb(&p); 261 262 /* load up the new EBASE */ 263 UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1); 264 build_set_exc_base(&p, K0); 265 266 /* 267 * Now that the new EBASE has been loaded, unset BEV, set 268 * interrupt mask as it was but make sure that timer interrupts 269 * are enabled 270 */ 271 uasm_i_addiu(&p, K0, ZERO, ST0_EXL | KSU_USER | ST0_IE | ST0_KX_IF_64); 272 uasm_i_andi(&p, V0, V0, ST0_IM); 273 uasm_i_or(&p, K0, K0, V0); 274 uasm_i_mtc0(&p, K0, C0_STATUS); 275 uasm_i_ehb(&p); 276 277 p = kvm_mips_build_enter_guest(p); 278 279 return p; 280 } 281 282 /** 283 * kvm_mips_build_enter_guest() - Assemble code to resume guest execution. 284 * @addr: Address to start writing code. 285 * 286 * Assemble the code to resume guest execution. This code is common between the 287 * initial entry into the guest from the host, and returning from the exit 288 * handler back to the guest. 289 * 290 * Returns: Next address after end of written function. 291 */ 292 static void *kvm_mips_build_enter_guest(void *addr) 293 { 294 u32 *p = addr; 295 unsigned int i; 296 struct uasm_label labels[2]; 297 struct uasm_reloc relocs[2]; 298 struct uasm_label __maybe_unused *l = labels; 299 struct uasm_reloc __maybe_unused *r = relocs; 300 301 memset(labels, 0, sizeof(labels)); 302 memset(relocs, 0, sizeof(relocs)); 303 304 /* Set Guest EPC */ 305 UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, pc), K1); 306 UASM_i_MTC0(&p, T0, C0_EPC); 307 308 /* Save normal linux process pgd (VZ guarantees pgd_reg is set) */ 309 if (cpu_has_ldpte) 310 UASM_i_MFC0(&p, K0, C0_PWBASE); 311 else 312 UASM_i_MFC0(&p, K0, c0_kscratch(), pgd_reg); 313 UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_pgd), K1); 314 315 /* 316 * Set up KVM GPA pgd. 317 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD(): 318 * - call tlbmiss_handler_setup_pgd(mm->pgd) 319 * - write mm->pgd into CP0_PWBase 320 * 321 * We keep S0 pointing at struct kvm so we can load the ASID below. 322 */ 323 UASM_i_LW(&p, S0, (int)offsetof(struct kvm_vcpu, kvm) - 324 (int)offsetof(struct kvm_vcpu, arch), K1); 325 UASM_i_LW(&p, A0, offsetof(struct kvm, arch.gpa_mm.pgd), S0); 326 UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd); 327 uasm_i_jalr(&p, RA, T9); 328 /* delay slot */ 329 if (cpu_has_htw) 330 UASM_i_MTC0(&p, A0, C0_PWBASE); 331 else 332 uasm_i_nop(&p); 333 334 /* Set GM bit to setup eret to VZ guest context */ 335 uasm_i_addiu(&p, V1, ZERO, 1); 336 uasm_i_mfc0(&p, K0, C0_GUESTCTL0); 337 uasm_i_ins(&p, K0, V1, MIPS_GCTL0_GM_SHIFT, 1); 338 uasm_i_mtc0(&p, K0, C0_GUESTCTL0); 339 340 if (cpu_has_guestid) { 341 /* 342 * Set root mode GuestID, so that root TLB refill handler can 343 * use the correct GuestID in the root TLB. 344 */ 345 346 /* Get current GuestID */ 347 uasm_i_mfc0(&p, T0, C0_GUESTCTL1); 348 /* Set GuestCtl1.RID = GuestCtl1.ID */ 349 uasm_i_ext(&p, T1, T0, MIPS_GCTL1_ID_SHIFT, 350 MIPS_GCTL1_ID_WIDTH); 351 uasm_i_ins(&p, T0, T1, MIPS_GCTL1_RID_SHIFT, 352 MIPS_GCTL1_RID_WIDTH); 353 uasm_i_mtc0(&p, T0, C0_GUESTCTL1); 354 355 /* GuestID handles dealiasing so we don't need to touch ASID */ 356 goto skip_asid_restore; 357 } 358 359 /* Root ASID Dealias (RAD) */ 360 361 /* Save host ASID */ 362 UASM_i_MFC0(&p, K0, C0_ENTRYHI); 363 UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi), 364 K1); 365 366 /* Set the root ASID for the Guest */ 367 UASM_i_ADDIU(&p, T1, S0, 368 offsetof(struct kvm, arch.gpa_mm.context.asid)); 369 370 /* t1: contains the base of the ASID array, need to get the cpu id */ 371 /* smp_processor_id */ 372 uasm_i_lw(&p, T2, offsetof(struct thread_info, cpu), GP); 373 /* index the ASID array */ 374 uasm_i_sll(&p, T2, T2, ilog2(sizeof(long))); 375 UASM_i_ADDU(&p, T3, T1, T2); 376 UASM_i_LW(&p, K0, 0, T3); 377 #ifdef CONFIG_MIPS_ASID_BITS_VARIABLE 378 /* 379 * reuse ASID array offset 380 * cpuinfo_mips is a multiple of sizeof(long) 381 */ 382 uasm_i_addiu(&p, T3, ZERO, sizeof(struct cpuinfo_mips)/sizeof(long)); 383 uasm_i_mul(&p, T2, T2, T3); 384 385 UASM_i_LA_mostly(&p, AT, (long)&cpu_data[0].asid_mask); 386 UASM_i_ADDU(&p, AT, AT, T2); 387 UASM_i_LW(&p, T2, uasm_rel_lo((long)&cpu_data[0].asid_mask), AT); 388 uasm_i_and(&p, K0, K0, T2); 389 #else 390 uasm_i_andi(&p, K0, K0, MIPS_ENTRYHI_ASID); 391 #endif 392 393 /* Set up KVM VZ root ASID (!guestid) */ 394 uasm_i_mtc0(&p, K0, C0_ENTRYHI); 395 skip_asid_restore: 396 uasm_i_ehb(&p); 397 398 /* Disable RDHWR access */ 399 uasm_i_mtc0(&p, ZERO, C0_HWRENA); 400 401 /* load the guest context from VCPU and return */ 402 for (i = 1; i < 32; ++i) { 403 /* Guest k0/k1 loaded later */ 404 if (i == K0 || i == K1) 405 continue; 406 UASM_i_LW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1); 407 } 408 409 #ifndef CONFIG_CPU_MIPSR6 410 /* Restore hi/lo */ 411 UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, hi), K1); 412 uasm_i_mthi(&p, K0); 413 414 UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, lo), K1); 415 uasm_i_mtlo(&p, K0); 416 #endif 417 418 /* Restore the guest's k0/k1 registers */ 419 UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1); 420 UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1); 421 422 /* Jump to guest */ 423 uasm_i_eret(&p); 424 425 uasm_resolve_relocs(relocs, labels); 426 427 return p; 428 } 429 430 /** 431 * kvm_mips_build_tlb_refill_exception() - Assemble TLB refill handler. 432 * @addr: Address to start writing code. 433 * @handler: Address of common handler (within range of @addr). 434 * 435 * Assemble TLB refill exception fast path handler for guest execution. 436 * 437 * Returns: Next address after end of written function. 438 */ 439 void *kvm_mips_build_tlb_refill_exception(void *addr, void *handler) 440 { 441 u32 *p = addr; 442 struct uasm_label labels[2]; 443 struct uasm_reloc relocs[2]; 444 #ifndef CONFIG_CPU_LOONGSON64 445 struct uasm_label *l = labels; 446 struct uasm_reloc *r = relocs; 447 #endif 448 449 memset(labels, 0, sizeof(labels)); 450 memset(relocs, 0, sizeof(relocs)); 451 452 /* Save guest k1 into scratch register */ 453 UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]); 454 455 /* Get the VCPU pointer from the VCPU scratch register */ 456 UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]); 457 458 /* Save guest k0 into VCPU structure */ 459 UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1); 460 461 /* 462 * Some of the common tlbex code uses current_cpu_type(). For KVM we 463 * assume symmetry and just disable preemption to silence the warning. 464 */ 465 preempt_disable(); 466 467 #ifdef CONFIG_CPU_LOONGSON64 468 UASM_i_MFC0(&p, K1, C0_PGD); 469 uasm_i_lddir(&p, K0, K1, 3); /* global page dir */ 470 #ifndef __PAGETABLE_PMD_FOLDED 471 uasm_i_lddir(&p, K1, K0, 1); /* middle page dir */ 472 #endif 473 uasm_i_ldpte(&p, K1, 0); /* even */ 474 uasm_i_ldpte(&p, K1, 1); /* odd */ 475 uasm_i_tlbwr(&p); 476 #else 477 /* 478 * Now for the actual refill bit. A lot of this can be common with the 479 * Linux TLB refill handler, however we don't need to handle so many 480 * cases. We only need to handle user mode refills, and user mode runs 481 * with 32-bit addressing. 482 * 483 * Therefore the branch to label_vmalloc generated by build_get_pmde64() 484 * that isn't resolved should never actually get taken and is harmless 485 * to leave in place for now. 486 */ 487 488 #ifdef CONFIG_64BIT 489 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */ 490 #else 491 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */ 492 #endif 493 494 /* we don't support huge pages yet */ 495 496 build_get_ptep(&p, K0, K1); 497 build_update_entries(&p, K0, K1); 498 build_tlb_write_entry(&p, &l, &r, tlb_random); 499 #endif 500 501 preempt_enable(); 502 503 /* Get the VCPU pointer from the VCPU scratch register again */ 504 UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]); 505 506 /* Restore the guest's k0/k1 registers */ 507 UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1); 508 uasm_i_ehb(&p); 509 UASM_i_MFC0(&p, K1, scratch_tmp[0], scratch_tmp[1]); 510 511 /* Jump to guest */ 512 uasm_i_eret(&p); 513 514 return p; 515 } 516 517 /** 518 * kvm_mips_build_exception() - Assemble first level guest exception handler. 519 * @addr: Address to start writing code. 520 * @handler: Address of common handler (within range of @addr). 521 * 522 * Assemble exception vector code for guest execution. The generated vector will 523 * branch to the common exception handler generated by kvm_mips_build_exit(). 524 * 525 * Returns: Next address after end of written function. 526 */ 527 void *kvm_mips_build_exception(void *addr, void *handler) 528 { 529 u32 *p = addr; 530 struct uasm_label labels[2]; 531 struct uasm_reloc relocs[2]; 532 struct uasm_label *l = labels; 533 struct uasm_reloc *r = relocs; 534 535 memset(labels, 0, sizeof(labels)); 536 memset(relocs, 0, sizeof(relocs)); 537 538 /* Save guest k1 into scratch register */ 539 UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]); 540 541 /* Get the VCPU pointer from the VCPU scratch register */ 542 UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]); 543 UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch)); 544 545 /* Save guest k0 into VCPU structure */ 546 UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1); 547 548 /* Branch to the common handler */ 549 uasm_il_b(&p, &r, label_exit_common); 550 uasm_i_nop(&p); 551 552 uasm_l_exit_common(&l, handler); 553 uasm_resolve_relocs(relocs, labels); 554 555 return p; 556 } 557 558 /** 559 * kvm_mips_build_exit() - Assemble common guest exit handler. 560 * @addr: Address to start writing code. 561 * 562 * Assemble the generic guest exit handling code. This is called by the 563 * exception vectors (generated by kvm_mips_build_exception()), and calls 564 * kvm_mips_handle_exit(), then either resumes the guest or returns to the host 565 * depending on the return value. 566 * 567 * Returns: Next address after end of written function. 568 */ 569 void *kvm_mips_build_exit(void *addr) 570 { 571 u32 *p = addr; 572 unsigned int i; 573 struct uasm_label labels[3]; 574 struct uasm_reloc relocs[3]; 575 struct uasm_label *l = labels; 576 struct uasm_reloc *r = relocs; 577 578 memset(labels, 0, sizeof(labels)); 579 memset(relocs, 0, sizeof(relocs)); 580 581 /* 582 * Generic Guest exception handler. We end up here when the guest 583 * does something that causes a trap to kernel mode. 584 * 585 * Both k0/k1 registers will have already been saved (k0 into the vcpu 586 * structure, and k1 into the scratch_tmp register). 587 * 588 * The k1 register will already contain the kvm_vcpu_arch pointer. 589 */ 590 591 /* Start saving Guest context to VCPU */ 592 for (i = 0; i < 32; ++i) { 593 /* Guest k0/k1 saved later */ 594 if (i == K0 || i == K1) 595 continue; 596 UASM_i_SW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1); 597 } 598 599 #ifndef CONFIG_CPU_MIPSR6 600 /* We need to save hi/lo and restore them on the way out */ 601 uasm_i_mfhi(&p, T0); 602 UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, hi), K1); 603 604 uasm_i_mflo(&p, T0); 605 UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, lo), K1); 606 #endif 607 608 /* Finally save guest k1 to VCPU */ 609 uasm_i_ehb(&p); 610 UASM_i_MFC0(&p, T0, scratch_tmp[0], scratch_tmp[1]); 611 UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1); 612 613 /* Now that context has been saved, we can use other registers */ 614 615 /* Restore vcpu */ 616 UASM_i_MFC0(&p, S0, scratch_vcpu[0], scratch_vcpu[1]); 617 618 /* 619 * Save Host level EPC, BadVaddr and Cause to VCPU, useful to process 620 * the exception 621 */ 622 UASM_i_MFC0(&p, K0, C0_EPC); 623 UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, pc), K1); 624 625 UASM_i_MFC0(&p, K0, C0_BADVADDR); 626 UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_badvaddr), 627 K1); 628 629 uasm_i_mfc0(&p, K0, C0_CAUSE); 630 uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_cause), K1); 631 632 if (cpu_has_badinstr) { 633 uasm_i_mfc0(&p, K0, C0_BADINSTR); 634 uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch, 635 host_cp0_badinstr), K1); 636 } 637 638 if (cpu_has_badinstrp) { 639 uasm_i_mfc0(&p, K0, C0_BADINSTRP); 640 uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch, 641 host_cp0_badinstrp), K1); 642 } 643 644 /* Now restore the host state just enough to run the handlers */ 645 646 /* Switch EBASE to the one used by Linux */ 647 /* load up the host EBASE */ 648 uasm_i_mfc0(&p, V0, C0_STATUS); 649 650 uasm_i_lui(&p, AT, ST0_BEV >> 16); 651 uasm_i_or(&p, K0, V0, AT); 652 653 uasm_i_mtc0(&p, K0, C0_STATUS); 654 uasm_i_ehb(&p); 655 656 UASM_i_LA_mostly(&p, K0, (long)&ebase); 657 UASM_i_LW(&p, K0, uasm_rel_lo((long)&ebase), K0); 658 build_set_exc_base(&p, K0); 659 660 if (raw_cpu_has_fpu) { 661 /* 662 * If FPU is enabled, save FCR31 and clear it so that later 663 * ctc1's don't trigger FPE for pending exceptions. 664 */ 665 uasm_i_lui(&p, AT, ST0_CU1 >> 16); 666 uasm_i_and(&p, V1, V0, AT); 667 uasm_il_beqz(&p, &r, V1, label_fpu_1); 668 uasm_i_nop(&p); 669 uasm_i_cfc1(&p, T0, 31); 670 uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.fcr31), 671 K1); 672 uasm_i_ctc1(&p, ZERO, 31); 673 uasm_l_fpu_1(&l, p); 674 } 675 676 if (cpu_has_msa) { 677 /* 678 * If MSA is enabled, save MSACSR and clear it so that later 679 * instructions don't trigger MSAFPE for pending exceptions. 680 */ 681 uasm_i_mfc0(&p, T0, C0_CONFIG5); 682 uasm_i_ext(&p, T0, T0, 27, 1); /* MIPS_CONF5_MSAEN */ 683 uasm_il_beqz(&p, &r, T0, label_msa_1); 684 uasm_i_nop(&p); 685 uasm_i_cfcmsa(&p, T0, MSA_CSR); 686 uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.msacsr), 687 K1); 688 uasm_i_ctcmsa(&p, MSA_CSR, ZERO); 689 uasm_l_msa_1(&l, p); 690 } 691 692 /* Restore host ASID */ 693 if (!cpu_has_guestid) { 694 UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi), 695 K1); 696 UASM_i_MTC0(&p, K0, C0_ENTRYHI); 697 } 698 699 /* 700 * Set up normal Linux process pgd. 701 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD(): 702 * - call tlbmiss_handler_setup_pgd(mm->pgd) 703 * - write mm->pgd into CP0_PWBase 704 */ 705 UASM_i_LW(&p, A0, 706 offsetof(struct kvm_vcpu_arch, host_pgd), K1); 707 UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd); 708 uasm_i_jalr(&p, RA, T9); 709 /* delay slot */ 710 if (cpu_has_htw) 711 UASM_i_MTC0(&p, A0, C0_PWBASE); 712 else 713 uasm_i_nop(&p); 714 715 /* Clear GM bit so we don't enter guest mode when EXL is cleared */ 716 uasm_i_mfc0(&p, K0, C0_GUESTCTL0); 717 uasm_i_ins(&p, K0, ZERO, MIPS_GCTL0_GM_SHIFT, 1); 718 uasm_i_mtc0(&p, K0, C0_GUESTCTL0); 719 720 /* Save GuestCtl0 so we can access GExcCode after CPU migration */ 721 uasm_i_sw(&p, K0, 722 offsetof(struct kvm_vcpu_arch, host_cp0_guestctl0), K1); 723 724 if (cpu_has_guestid) { 725 /* 726 * Clear root mode GuestID, so that root TLB operations use the 727 * root GuestID in the root TLB. 728 */ 729 uasm_i_mfc0(&p, T0, C0_GUESTCTL1); 730 /* Set GuestCtl1.RID = MIPS_GCTL1_ROOT_GUESTID (i.e. 0) */ 731 uasm_i_ins(&p, T0, ZERO, MIPS_GCTL1_RID_SHIFT, 732 MIPS_GCTL1_RID_WIDTH); 733 uasm_i_mtc0(&p, T0, C0_GUESTCTL1); 734 } 735 736 /* Now that the new EBASE has been loaded, unset BEV and KSU_USER */ 737 uasm_i_addiu(&p, AT, ZERO, ~(ST0_EXL | KSU_USER | ST0_IE)); 738 uasm_i_and(&p, V0, V0, AT); 739 uasm_i_lui(&p, AT, ST0_CU0 >> 16); 740 uasm_i_or(&p, V0, V0, AT); 741 #ifdef CONFIG_64BIT 742 uasm_i_ori(&p, V0, V0, ST0_SX | ST0_UX); 743 #endif 744 uasm_i_mtc0(&p, V0, C0_STATUS); 745 uasm_i_ehb(&p); 746 747 /* Load up host GP */ 748 UASM_i_LW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1); 749 750 /* Need a stack before we can jump to "C" */ 751 UASM_i_LW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1); 752 753 /* Saved host state */ 754 UASM_i_ADDIU(&p, SP, SP, -(int)sizeof(struct pt_regs)); 755 756 /* 757 * XXXKYMA do we need to load the host ASID, maybe not because the 758 * kernel entries are marked GLOBAL, need to verify 759 */ 760 761 /* Restore host scratch registers, as we'll have clobbered them */ 762 kvm_mips_build_restore_scratch(&p, K0, SP); 763 764 /* Restore RDHWR access */ 765 UASM_i_LA_mostly(&p, K0, (long)&hwrena); 766 uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0); 767 uasm_i_mtc0(&p, K0, C0_HWRENA); 768 769 /* Jump to handler */ 770 /* 771 * XXXKYMA: not sure if this is safe, how large is the stack?? 772 * Now jump to the kvm_mips_handle_exit() to see if we can deal 773 * with this in the kernel 774 */ 775 uasm_i_move(&p, A0, S0); 776 UASM_i_LA(&p, T9, (unsigned long)kvm_mips_handle_exit); 777 uasm_i_jalr(&p, RA, T9); 778 UASM_i_ADDIU(&p, SP, SP, -CALLFRAME_SIZ); 779 780 uasm_resolve_relocs(relocs, labels); 781 782 p = kvm_mips_build_ret_from_exit(p); 783 784 return p; 785 } 786 787 /** 788 * kvm_mips_build_ret_from_exit() - Assemble guest exit return handler. 789 * @addr: Address to start writing code. 790 * 791 * Assemble the code to handle the return from kvm_mips_handle_exit(), either 792 * resuming the guest or returning to the host depending on the return value. 793 * 794 * Returns: Next address after end of written function. 795 */ 796 static void *kvm_mips_build_ret_from_exit(void *addr) 797 { 798 u32 *p = addr; 799 struct uasm_label labels[2]; 800 struct uasm_reloc relocs[2]; 801 struct uasm_label *l = labels; 802 struct uasm_reloc *r = relocs; 803 804 memset(labels, 0, sizeof(labels)); 805 memset(relocs, 0, sizeof(relocs)); 806 807 /* Return from handler Make sure interrupts are disabled */ 808 uasm_i_di(&p, ZERO); 809 uasm_i_ehb(&p); 810 811 /* 812 * XXXKYMA: k0/k1 could have been blown away if we processed 813 * an exception while we were handling the exception from the 814 * guest, reload k1 815 */ 816 817 uasm_i_move(&p, K1, S0); 818 UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch)); 819 820 /* 821 * Check return value, should tell us if we are returning to the 822 * host (handle I/O etc)or resuming the guest 823 */ 824 uasm_i_andi(&p, T0, V0, RESUME_HOST); 825 uasm_il_bnez(&p, &r, T0, label_return_to_host); 826 uasm_i_nop(&p); 827 828 p = kvm_mips_build_ret_to_guest(p); 829 830 uasm_l_return_to_host(&l, p); 831 p = kvm_mips_build_ret_to_host(p); 832 833 uasm_resolve_relocs(relocs, labels); 834 835 return p; 836 } 837 838 /** 839 * kvm_mips_build_ret_to_guest() - Assemble code to return to the guest. 840 * @addr: Address to start writing code. 841 * 842 * Assemble the code to handle return from the guest exit handler 843 * (kvm_mips_handle_exit()) back to the guest. 844 * 845 * Returns: Next address after end of written function. 846 */ 847 static void *kvm_mips_build_ret_to_guest(void *addr) 848 { 849 u32 *p = addr; 850 851 /* Put the saved pointer to vcpu (s0) back into the scratch register */ 852 UASM_i_MTC0(&p, S0, scratch_vcpu[0], scratch_vcpu[1]); 853 854 /* Load up the Guest EBASE to minimize the window where BEV is set */ 855 UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1); 856 857 /* Switch EBASE back to the one used by KVM */ 858 uasm_i_mfc0(&p, V1, C0_STATUS); 859 uasm_i_lui(&p, AT, ST0_BEV >> 16); 860 uasm_i_or(&p, K0, V1, AT); 861 uasm_i_mtc0(&p, K0, C0_STATUS); 862 uasm_i_ehb(&p); 863 build_set_exc_base(&p, T0); 864 865 /* Setup status register for running guest in UM */ 866 uasm_i_ori(&p, V1, V1, ST0_EXL | KSU_USER | ST0_IE); 867 UASM_i_LA(&p, AT, ~(ST0_CU0 | ST0_MX | ST0_SX | ST0_UX)); 868 uasm_i_and(&p, V1, V1, AT); 869 uasm_i_mtc0(&p, V1, C0_STATUS); 870 uasm_i_ehb(&p); 871 872 p = kvm_mips_build_enter_guest(p); 873 874 return p; 875 } 876 877 /** 878 * kvm_mips_build_ret_to_host() - Assemble code to return to the host. 879 * @addr: Address to start writing code. 880 * 881 * Assemble the code to handle return from the guest exit handler 882 * (kvm_mips_handle_exit()) back to the host, i.e. to the caller of the vcpu_run 883 * function generated by kvm_mips_build_vcpu_run(). 884 * 885 * Returns: Next address after end of written function. 886 */ 887 static void *kvm_mips_build_ret_to_host(void *addr) 888 { 889 u32 *p = addr; 890 unsigned int i; 891 892 /* EBASE is already pointing to Linux */ 893 UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, host_stack), K1); 894 UASM_i_ADDIU(&p, K1, K1, -(int)sizeof(struct pt_regs)); 895 896 /* 897 * r2/v0 is the return code, shift it down by 2 (arithmetic) 898 * to recover the err code 899 */ 900 uasm_i_sra(&p, K0, V0, 2); 901 uasm_i_move(&p, V0, K0); 902 903 /* Load context saved on the host stack */ 904 for (i = 16; i < 31; ++i) { 905 if (i == 24) 906 i = 28; 907 UASM_i_LW(&p, i, offsetof(struct pt_regs, regs[i]), K1); 908 } 909 910 /* Restore RDHWR access */ 911 UASM_i_LA_mostly(&p, K0, (long)&hwrena); 912 uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0); 913 uasm_i_mtc0(&p, K0, C0_HWRENA); 914 915 /* Restore RA, which is the address we will return to */ 916 UASM_i_LW(&p, RA, offsetof(struct pt_regs, regs[RA]), K1); 917 uasm_i_jr(&p, RA); 918 uasm_i_nop(&p); 919 920 return p; 921 } 922 923