xref: /openbmc/linux/arch/mips/kvm/entry.c (revision a8f4fcdd8ba7d191c29ae87a2315906fe90368d6)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Generation of main entry point for the guest, exception handling.
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  *
11  * Copyright (C) 2016 Imagination Technologies Ltd.
12  */
13 
14 #include <linux/kvm_host.h>
15 #include <linux/log2.h>
16 #include <asm/mmu_context.h>
17 #include <asm/msa.h>
18 #include <asm/setup.h>
19 #include <asm/tlbex.h>
20 #include <asm/uasm.h>
21 
22 /* Register names */
23 #define ZERO		0
24 #define AT		1
25 #define V0		2
26 #define V1		3
27 #define A0		4
28 #define A1		5
29 
30 #if _MIPS_SIM == _MIPS_SIM_ABI32
31 #define T0		8
32 #define T1		9
33 #define T2		10
34 #define T3		11
35 #endif /* _MIPS_SIM == _MIPS_SIM_ABI32 */
36 
37 #if _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32
38 #define T0		12
39 #define T1		13
40 #define T2		14
41 #define T3		15
42 #endif /* _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32 */
43 
44 #define S0		16
45 #define S1		17
46 #define T9		25
47 #define K0		26
48 #define K1		27
49 #define GP		28
50 #define SP		29
51 #define RA		31
52 
53 /* Some CP0 registers */
54 #define C0_PWBASE	5, 5
55 #define C0_HWRENA	7, 0
56 #define C0_BADVADDR	8, 0
57 #define C0_BADINSTR	8, 1
58 #define C0_BADINSTRP	8, 2
59 #define C0_PGD		9, 7
60 #define C0_ENTRYHI	10, 0
61 #define C0_GUESTCTL1	10, 4
62 #define C0_STATUS	12, 0
63 #define C0_GUESTCTL0	12, 6
64 #define C0_CAUSE	13, 0
65 #define C0_EPC		14, 0
66 #define C0_EBASE	15, 1
67 #define C0_CONFIG5	16, 5
68 #define C0_DDATA_LO	28, 3
69 #define C0_ERROREPC	30, 0
70 
71 #define CALLFRAME_SIZ   32
72 
73 #ifdef CONFIG_64BIT
74 #define ST0_KX_IF_64	ST0_KX
75 #else
76 #define ST0_KX_IF_64	0
77 #endif
78 
79 static unsigned int scratch_vcpu[2] = { C0_DDATA_LO };
80 static unsigned int scratch_tmp[2] = { C0_ERROREPC };
81 
82 enum label_id {
83 	label_fpu_1 = 1,
84 	label_msa_1,
85 	label_return_to_host,
86 	label_kernel_asid,
87 	label_exit_common,
88 };
89 
90 UASM_L_LA(_fpu_1)
91 UASM_L_LA(_msa_1)
92 UASM_L_LA(_return_to_host)
93 UASM_L_LA(_kernel_asid)
94 UASM_L_LA(_exit_common)
95 
96 static void *kvm_mips_build_enter_guest(void *addr);
97 static void *kvm_mips_build_ret_from_exit(void *addr);
98 static void *kvm_mips_build_ret_to_guest(void *addr);
99 static void *kvm_mips_build_ret_to_host(void *addr);
100 
101 /*
102  * The version of this function in tlbex.c uses current_cpu_type(), but for KVM
103  * we assume symmetry.
104  */
105 static int c0_kscratch(void)
106 {
107 	return 31;
108 }
109 
110 /**
111  * kvm_mips_entry_setup() - Perform global setup for entry code.
112  *
113  * Perform global setup for entry code, such as choosing a scratch register.
114  *
115  * Returns:	0 on success.
116  *		-errno on failure.
117  */
118 int kvm_mips_entry_setup(void)
119 {
120 	/*
121 	 * We prefer to use KScratchN registers if they are available over the
122 	 * defaults above, which may not work on all cores.
123 	 */
124 	unsigned int kscratch_mask = cpu_data[0].kscratch_mask;
125 
126 	if (pgd_reg != -1)
127 		kscratch_mask &= ~BIT(pgd_reg);
128 
129 	/* Pick a scratch register for storing VCPU */
130 	if (kscratch_mask) {
131 		scratch_vcpu[0] = c0_kscratch();
132 		scratch_vcpu[1] = ffs(kscratch_mask) - 1;
133 		kscratch_mask &= ~BIT(scratch_vcpu[1]);
134 	}
135 
136 	/* Pick a scratch register to use as a temp for saving state */
137 	if (kscratch_mask) {
138 		scratch_tmp[0] = c0_kscratch();
139 		scratch_tmp[1] = ffs(kscratch_mask) - 1;
140 		kscratch_mask &= ~BIT(scratch_tmp[1]);
141 	}
142 
143 	return 0;
144 }
145 
146 static void kvm_mips_build_save_scratch(u32 **p, unsigned int tmp,
147 					unsigned int frame)
148 {
149 	/* Save the VCPU scratch register value in cp0_epc of the stack frame */
150 	UASM_i_MFC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
151 	UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
152 
153 	/* Save the temp scratch register value in cp0_cause of stack frame */
154 	if (scratch_tmp[0] == c0_kscratch()) {
155 		UASM_i_MFC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
156 		UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
157 	}
158 }
159 
160 static void kvm_mips_build_restore_scratch(u32 **p, unsigned int tmp,
161 					   unsigned int frame)
162 {
163 	/*
164 	 * Restore host scratch register values saved by
165 	 * kvm_mips_build_save_scratch().
166 	 */
167 	UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
168 	UASM_i_MTC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
169 
170 	if (scratch_tmp[0] == c0_kscratch()) {
171 		UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
172 		UASM_i_MTC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
173 	}
174 }
175 
176 /**
177  * build_set_exc_base() - Assemble code to write exception base address.
178  * @p:		Code buffer pointer.
179  * @reg:	Source register (generated code may set WG bit in @reg).
180  *
181  * Assemble code to modify the exception base address in the EBase register,
182  * using the appropriately sized access and setting the WG bit if necessary.
183  */
184 static inline void build_set_exc_base(u32 **p, unsigned int reg)
185 {
186 	if (cpu_has_ebase_wg) {
187 		/* Set WG so that all the bits get written */
188 		uasm_i_ori(p, reg, reg, MIPS_EBASE_WG);
189 		UASM_i_MTC0(p, reg, C0_EBASE);
190 	} else {
191 		uasm_i_mtc0(p, reg, C0_EBASE);
192 	}
193 }
194 
195 /**
196  * kvm_mips_build_vcpu_run() - Assemble function to start running a guest VCPU.
197  * @addr:	Address to start writing code.
198  *
199  * Assemble the start of the vcpu_run function to run a guest VCPU. The function
200  * conforms to the following prototype:
201  *
202  * int vcpu_run(struct kvm_vcpu *vcpu);
203  *
204  * The exit from the guest and return to the caller is handled by the code
205  * generated by kvm_mips_build_ret_to_host().
206  *
207  * Returns:	Next address after end of written function.
208  */
209 void *kvm_mips_build_vcpu_run(void *addr)
210 {
211 	u32 *p = addr;
212 	unsigned int i;
213 
214 	/*
215 	 * A0: vcpu
216 	 */
217 
218 	/* k0/k1 not being used in host kernel context */
219 	UASM_i_ADDIU(&p, K1, SP, -(int)sizeof(struct pt_regs));
220 	for (i = 16; i < 32; ++i) {
221 		if (i == 24)
222 			i = 28;
223 		UASM_i_SW(&p, i, offsetof(struct pt_regs, regs[i]), K1);
224 	}
225 
226 	/* Save host status */
227 	uasm_i_mfc0(&p, V0, C0_STATUS);
228 	UASM_i_SW(&p, V0, offsetof(struct pt_regs, cp0_status), K1);
229 
230 	/* Save scratch registers, will be used to store pointer to vcpu etc */
231 	kvm_mips_build_save_scratch(&p, V1, K1);
232 
233 	/* VCPU scratch register has pointer to vcpu */
234 	UASM_i_MTC0(&p, A0, scratch_vcpu[0], scratch_vcpu[1]);
235 
236 	/* Offset into vcpu->arch */
237 	UASM_i_ADDIU(&p, K1, A0, offsetof(struct kvm_vcpu, arch));
238 
239 	/*
240 	 * Save the host stack to VCPU, used for exception processing
241 	 * when we exit from the Guest
242 	 */
243 	UASM_i_SW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1);
244 
245 	/* Save the kernel gp as well */
246 	UASM_i_SW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1);
247 
248 	/*
249 	 * Setup status register for running the guest in UM, interrupts
250 	 * are disabled
251 	 */
252 	UASM_i_LA(&p, K0, ST0_EXL | KSU_USER | ST0_BEV | ST0_KX_IF_64);
253 	uasm_i_mtc0(&p, K0, C0_STATUS);
254 	uasm_i_ehb(&p);
255 
256 	/* load up the new EBASE */
257 	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1);
258 	build_set_exc_base(&p, K0);
259 
260 	/*
261 	 * Now that the new EBASE has been loaded, unset BEV, set
262 	 * interrupt mask as it was but make sure that timer interrupts
263 	 * are enabled
264 	 */
265 	uasm_i_addiu(&p, K0, ZERO, ST0_EXL | KSU_USER | ST0_IE | ST0_KX_IF_64);
266 	uasm_i_andi(&p, V0, V0, ST0_IM);
267 	uasm_i_or(&p, K0, K0, V0);
268 	uasm_i_mtc0(&p, K0, C0_STATUS);
269 	uasm_i_ehb(&p);
270 
271 	p = kvm_mips_build_enter_guest(p);
272 
273 	return p;
274 }
275 
276 /**
277  * kvm_mips_build_enter_guest() - Assemble code to resume guest execution.
278  * @addr:	Address to start writing code.
279  *
280  * Assemble the code to resume guest execution. This code is common between the
281  * initial entry into the guest from the host, and returning from the exit
282  * handler back to the guest.
283  *
284  * Returns:	Next address after end of written function.
285  */
286 static void *kvm_mips_build_enter_guest(void *addr)
287 {
288 	u32 *p = addr;
289 	unsigned int i;
290 	struct uasm_label labels[2];
291 	struct uasm_reloc relocs[2];
292 	struct uasm_label __maybe_unused *l = labels;
293 	struct uasm_reloc __maybe_unused *r = relocs;
294 
295 	memset(labels, 0, sizeof(labels));
296 	memset(relocs, 0, sizeof(relocs));
297 
298 	/* Set Guest EPC */
299 	UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, pc), K1);
300 	UASM_i_MTC0(&p, T0, C0_EPC);
301 
302 	/* Save normal linux process pgd (VZ guarantees pgd_reg is set) */
303 	if (cpu_has_ldpte)
304 		UASM_i_MFC0(&p, K0, C0_PWBASE);
305 	else
306 		UASM_i_MFC0(&p, K0, c0_kscratch(), pgd_reg);
307 	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_pgd), K1);
308 
309 	/*
310 	 * Set up KVM GPA pgd.
311 	 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
312 	 * - call tlbmiss_handler_setup_pgd(mm->pgd)
313 	 * - write mm->pgd into CP0_PWBase
314 	 *
315 	 * We keep S0 pointing at struct kvm so we can load the ASID below.
316 	 */
317 	UASM_i_LW(&p, S0, (int)offsetof(struct kvm_vcpu, kvm) -
318 			  (int)offsetof(struct kvm_vcpu, arch), K1);
319 	UASM_i_LW(&p, A0, offsetof(struct kvm, arch.gpa_mm.pgd), S0);
320 	UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
321 	uasm_i_jalr(&p, RA, T9);
322 	/* delay slot */
323 	if (cpu_has_htw)
324 		UASM_i_MTC0(&p, A0, C0_PWBASE);
325 	else
326 		uasm_i_nop(&p);
327 
328 	/* Set GM bit to setup eret to VZ guest context */
329 	uasm_i_addiu(&p, V1, ZERO, 1);
330 	uasm_i_mfc0(&p, K0, C0_GUESTCTL0);
331 	uasm_i_ins(&p, K0, V1, MIPS_GCTL0_GM_SHIFT, 1);
332 	uasm_i_mtc0(&p, K0, C0_GUESTCTL0);
333 
334 	if (cpu_has_guestid) {
335 		/*
336 		 * Set root mode GuestID, so that root TLB refill handler can
337 		 * use the correct GuestID in the root TLB.
338 		 */
339 
340 		/* Get current GuestID */
341 		uasm_i_mfc0(&p, T0, C0_GUESTCTL1);
342 		/* Set GuestCtl1.RID = GuestCtl1.ID */
343 		uasm_i_ext(&p, T1, T0, MIPS_GCTL1_ID_SHIFT,
344 			   MIPS_GCTL1_ID_WIDTH);
345 		uasm_i_ins(&p, T0, T1, MIPS_GCTL1_RID_SHIFT,
346 			   MIPS_GCTL1_RID_WIDTH);
347 		uasm_i_mtc0(&p, T0, C0_GUESTCTL1);
348 
349 		/* GuestID handles dealiasing so we don't need to touch ASID */
350 		goto skip_asid_restore;
351 	}
352 
353 	/* Root ASID Dealias (RAD) */
354 
355 	/* Save host ASID */
356 	UASM_i_MFC0(&p, K0, C0_ENTRYHI);
357 	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi),
358 		  K1);
359 
360 	/* Set the root ASID for the Guest */
361 	UASM_i_ADDIU(&p, T1, S0,
362 		     offsetof(struct kvm, arch.gpa_mm.context.asid));
363 
364 	/* t1: contains the base of the ASID array, need to get the cpu id  */
365 	/* smp_processor_id */
366 	uasm_i_lw(&p, T2, offsetof(struct thread_info, cpu), GP);
367 	/* index the ASID array */
368 	uasm_i_sll(&p, T2, T2, ilog2(sizeof(long)));
369 	UASM_i_ADDU(&p, T3, T1, T2);
370 	UASM_i_LW(&p, K0, 0, T3);
371 #ifdef CONFIG_MIPS_ASID_BITS_VARIABLE
372 	/*
373 	 * reuse ASID array offset
374 	 * cpuinfo_mips is a multiple of sizeof(long)
375 	 */
376 	uasm_i_addiu(&p, T3, ZERO, sizeof(struct cpuinfo_mips)/sizeof(long));
377 	uasm_i_mul(&p, T2, T2, T3);
378 
379 	UASM_i_LA_mostly(&p, AT, (long)&cpu_data[0].asid_mask);
380 	UASM_i_ADDU(&p, AT, AT, T2);
381 	UASM_i_LW(&p, T2, uasm_rel_lo((long)&cpu_data[0].asid_mask), AT);
382 	uasm_i_and(&p, K0, K0, T2);
383 #else
384 	uasm_i_andi(&p, K0, K0, MIPS_ENTRYHI_ASID);
385 #endif
386 
387 	/* Set up KVM VZ root ASID (!guestid) */
388 	uasm_i_mtc0(&p, K0, C0_ENTRYHI);
389 skip_asid_restore:
390 	uasm_i_ehb(&p);
391 
392 	/* Disable RDHWR access */
393 	uasm_i_mtc0(&p, ZERO, C0_HWRENA);
394 
395 	/* load the guest context from VCPU and return */
396 	for (i = 1; i < 32; ++i) {
397 		/* Guest k0/k1 loaded later */
398 		if (i == K0 || i == K1)
399 			continue;
400 		UASM_i_LW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1);
401 	}
402 
403 #ifndef CONFIG_CPU_MIPSR6
404 	/* Restore hi/lo */
405 	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, hi), K1);
406 	uasm_i_mthi(&p, K0);
407 
408 	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, lo), K1);
409 	uasm_i_mtlo(&p, K0);
410 #endif
411 
412 	/* Restore the guest's k0/k1 registers */
413 	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1);
414 	UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1);
415 
416 	/* Jump to guest */
417 	uasm_i_eret(&p);
418 
419 	uasm_resolve_relocs(relocs, labels);
420 
421 	return p;
422 }
423 
424 /**
425  * kvm_mips_build_tlb_refill_exception() - Assemble TLB refill handler.
426  * @addr:	Address to start writing code.
427  * @handler:	Address of common handler (within range of @addr).
428  *
429  * Assemble TLB refill exception fast path handler for guest execution.
430  *
431  * Returns:	Next address after end of written function.
432  */
433 void *kvm_mips_build_tlb_refill_exception(void *addr, void *handler)
434 {
435 	u32 *p = addr;
436 	struct uasm_label labels[2];
437 	struct uasm_reloc relocs[2];
438 #ifndef CONFIG_CPU_LOONGSON64
439 	struct uasm_label *l = labels;
440 	struct uasm_reloc *r = relocs;
441 #endif
442 
443 	memset(labels, 0, sizeof(labels));
444 	memset(relocs, 0, sizeof(relocs));
445 
446 	/* Save guest k1 into scratch register */
447 	UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
448 
449 	/* Get the VCPU pointer from the VCPU scratch register */
450 	UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
451 
452 	/* Save guest k0 into VCPU structure */
453 	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1);
454 
455 	/*
456 	 * Some of the common tlbex code uses current_cpu_type(). For KVM we
457 	 * assume symmetry and just disable preemption to silence the warning.
458 	 */
459 	preempt_disable();
460 
461 #ifdef CONFIG_CPU_LOONGSON64
462 	UASM_i_MFC0(&p, K1, C0_PGD);
463 	uasm_i_lddir(&p, K0, K1, 3);  /* global page dir */
464 #ifndef __PAGETABLE_PMD_FOLDED
465 	uasm_i_lddir(&p, K1, K0, 1);  /* middle page dir */
466 #endif
467 	uasm_i_ldpte(&p, K1, 0);      /* even */
468 	uasm_i_ldpte(&p, K1, 1);      /* odd */
469 	uasm_i_tlbwr(&p);
470 #else
471 	/*
472 	 * Now for the actual refill bit. A lot of this can be common with the
473 	 * Linux TLB refill handler, however we don't need to handle so many
474 	 * cases. We only need to handle user mode refills, and user mode runs
475 	 * with 32-bit addressing.
476 	 *
477 	 * Therefore the branch to label_vmalloc generated by build_get_pmde64()
478 	 * that isn't resolved should never actually get taken and is harmless
479 	 * to leave in place for now.
480 	 */
481 
482 #ifdef CONFIG_64BIT
483 	build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
484 #else
485 	build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
486 #endif
487 
488 	/* we don't support huge pages yet */
489 
490 	build_get_ptep(&p, K0, K1);
491 	build_update_entries(&p, K0, K1);
492 	build_tlb_write_entry(&p, &l, &r, tlb_random);
493 #endif
494 
495 	preempt_enable();
496 
497 	/* Get the VCPU pointer from the VCPU scratch register again */
498 	UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
499 
500 	/* Restore the guest's k0/k1 registers */
501 	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1);
502 	uasm_i_ehb(&p);
503 	UASM_i_MFC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
504 
505 	/* Jump to guest */
506 	uasm_i_eret(&p);
507 
508 	return p;
509 }
510 
511 /**
512  * kvm_mips_build_exception() - Assemble first level guest exception handler.
513  * @addr:	Address to start writing code.
514  * @handler:	Address of common handler (within range of @addr).
515  *
516  * Assemble exception vector code for guest execution. The generated vector will
517  * branch to the common exception handler generated by kvm_mips_build_exit().
518  *
519  * Returns:	Next address after end of written function.
520  */
521 void *kvm_mips_build_exception(void *addr, void *handler)
522 {
523 	u32 *p = addr;
524 	struct uasm_label labels[2];
525 	struct uasm_reloc relocs[2];
526 	struct uasm_label *l = labels;
527 	struct uasm_reloc *r = relocs;
528 
529 	memset(labels, 0, sizeof(labels));
530 	memset(relocs, 0, sizeof(relocs));
531 
532 	/* Save guest k1 into scratch register */
533 	UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
534 
535 	/* Get the VCPU pointer from the VCPU scratch register */
536 	UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
537 	UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch));
538 
539 	/* Save guest k0 into VCPU structure */
540 	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1);
541 
542 	/* Branch to the common handler */
543 	uasm_il_b(&p, &r, label_exit_common);
544 	 uasm_i_nop(&p);
545 
546 	uasm_l_exit_common(&l, handler);
547 	uasm_resolve_relocs(relocs, labels);
548 
549 	return p;
550 }
551 
552 /**
553  * kvm_mips_build_exit() - Assemble common guest exit handler.
554  * @addr:	Address to start writing code.
555  *
556  * Assemble the generic guest exit handling code. This is called by the
557  * exception vectors (generated by kvm_mips_build_exception()), and calls
558  * kvm_mips_handle_exit(), then either resumes the guest or returns to the host
559  * depending on the return value.
560  *
561  * Returns:	Next address after end of written function.
562  */
563 void *kvm_mips_build_exit(void *addr)
564 {
565 	u32 *p = addr;
566 	unsigned int i;
567 	struct uasm_label labels[3];
568 	struct uasm_reloc relocs[3];
569 	struct uasm_label *l = labels;
570 	struct uasm_reloc *r = relocs;
571 
572 	memset(labels, 0, sizeof(labels));
573 	memset(relocs, 0, sizeof(relocs));
574 
575 	/*
576 	 * Generic Guest exception handler. We end up here when the guest
577 	 * does something that causes a trap to kernel mode.
578 	 *
579 	 * Both k0/k1 registers will have already been saved (k0 into the vcpu
580 	 * structure, and k1 into the scratch_tmp register).
581 	 *
582 	 * The k1 register will already contain the kvm_vcpu_arch pointer.
583 	 */
584 
585 	/* Start saving Guest context to VCPU */
586 	for (i = 0; i < 32; ++i) {
587 		/* Guest k0/k1 saved later */
588 		if (i == K0 || i == K1)
589 			continue;
590 		UASM_i_SW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1);
591 	}
592 
593 #ifndef CONFIG_CPU_MIPSR6
594 	/* We need to save hi/lo and restore them on the way out */
595 	uasm_i_mfhi(&p, T0);
596 	UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, hi), K1);
597 
598 	uasm_i_mflo(&p, T0);
599 	UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, lo), K1);
600 #endif
601 
602 	/* Finally save guest k1 to VCPU */
603 	uasm_i_ehb(&p);
604 	UASM_i_MFC0(&p, T0, scratch_tmp[0], scratch_tmp[1]);
605 	UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1);
606 
607 	/* Now that context has been saved, we can use other registers */
608 
609 	/* Restore vcpu */
610 	UASM_i_MFC0(&p, S0, scratch_vcpu[0], scratch_vcpu[1]);
611 
612 	/*
613 	 * Save Host level EPC, BadVaddr and Cause to VCPU, useful to process
614 	 * the exception
615 	 */
616 	UASM_i_MFC0(&p, K0, C0_EPC);
617 	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, pc), K1);
618 
619 	UASM_i_MFC0(&p, K0, C0_BADVADDR);
620 	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_badvaddr),
621 		  K1);
622 
623 	uasm_i_mfc0(&p, K0, C0_CAUSE);
624 	uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_cause), K1);
625 
626 	if (cpu_has_badinstr) {
627 		uasm_i_mfc0(&p, K0, C0_BADINSTR);
628 		uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch,
629 					   host_cp0_badinstr), K1);
630 	}
631 
632 	if (cpu_has_badinstrp) {
633 		uasm_i_mfc0(&p, K0, C0_BADINSTRP);
634 		uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch,
635 					   host_cp0_badinstrp), K1);
636 	}
637 
638 	/* Now restore the host state just enough to run the handlers */
639 
640 	/* Switch EBASE to the one used by Linux */
641 	/* load up the host EBASE */
642 	uasm_i_mfc0(&p, V0, C0_STATUS);
643 
644 	uasm_i_lui(&p, AT, ST0_BEV >> 16);
645 	uasm_i_or(&p, K0, V0, AT);
646 
647 	uasm_i_mtc0(&p, K0, C0_STATUS);
648 	uasm_i_ehb(&p);
649 
650 	UASM_i_LA_mostly(&p, K0, (long)&ebase);
651 	UASM_i_LW(&p, K0, uasm_rel_lo((long)&ebase), K0);
652 	build_set_exc_base(&p, K0);
653 
654 	if (raw_cpu_has_fpu) {
655 		/*
656 		 * If FPU is enabled, save FCR31 and clear it so that later
657 		 * ctc1's don't trigger FPE for pending exceptions.
658 		 */
659 		uasm_i_lui(&p, AT, ST0_CU1 >> 16);
660 		uasm_i_and(&p, V1, V0, AT);
661 		uasm_il_beqz(&p, &r, V1, label_fpu_1);
662 		 uasm_i_nop(&p);
663 		uasm_i_cfc1(&p, T0, 31);
664 		uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.fcr31),
665 			  K1);
666 		uasm_i_ctc1(&p, ZERO, 31);
667 		uasm_l_fpu_1(&l, p);
668 	}
669 
670 	if (cpu_has_msa) {
671 		/*
672 		 * If MSA is enabled, save MSACSR and clear it so that later
673 		 * instructions don't trigger MSAFPE for pending exceptions.
674 		 */
675 		uasm_i_mfc0(&p, T0, C0_CONFIG5);
676 		uasm_i_ext(&p, T0, T0, 27, 1); /* MIPS_CONF5_MSAEN */
677 		uasm_il_beqz(&p, &r, T0, label_msa_1);
678 		 uasm_i_nop(&p);
679 		uasm_i_cfcmsa(&p, T0, MSA_CSR);
680 		uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.msacsr),
681 			  K1);
682 		uasm_i_ctcmsa(&p, MSA_CSR, ZERO);
683 		uasm_l_msa_1(&l, p);
684 	}
685 
686 	/* Restore host ASID */
687 	if (!cpu_has_guestid) {
688 		UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi),
689 			  K1);
690 		UASM_i_MTC0(&p, K0, C0_ENTRYHI);
691 	}
692 
693 	/*
694 	 * Set up normal Linux process pgd.
695 	 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
696 	 * - call tlbmiss_handler_setup_pgd(mm->pgd)
697 	 * - write mm->pgd into CP0_PWBase
698 	 */
699 	UASM_i_LW(&p, A0,
700 		  offsetof(struct kvm_vcpu_arch, host_pgd), K1);
701 	UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
702 	uasm_i_jalr(&p, RA, T9);
703 	/* delay slot */
704 	if (cpu_has_htw)
705 		UASM_i_MTC0(&p, A0, C0_PWBASE);
706 	else
707 		uasm_i_nop(&p);
708 
709 	/* Clear GM bit so we don't enter guest mode when EXL is cleared */
710 	uasm_i_mfc0(&p, K0, C0_GUESTCTL0);
711 	uasm_i_ins(&p, K0, ZERO, MIPS_GCTL0_GM_SHIFT, 1);
712 	uasm_i_mtc0(&p, K0, C0_GUESTCTL0);
713 
714 	/* Save GuestCtl0 so we can access GExcCode after CPU migration */
715 	uasm_i_sw(&p, K0,
716 		  offsetof(struct kvm_vcpu_arch, host_cp0_guestctl0), K1);
717 
718 	if (cpu_has_guestid) {
719 		/*
720 		 * Clear root mode GuestID, so that root TLB operations use the
721 		 * root GuestID in the root TLB.
722 		 */
723 		uasm_i_mfc0(&p, T0, C0_GUESTCTL1);
724 		/* Set GuestCtl1.RID = MIPS_GCTL1_ROOT_GUESTID (i.e. 0) */
725 		uasm_i_ins(&p, T0, ZERO, MIPS_GCTL1_RID_SHIFT,
726 			   MIPS_GCTL1_RID_WIDTH);
727 		uasm_i_mtc0(&p, T0, C0_GUESTCTL1);
728 	}
729 
730 	/* Now that the new EBASE has been loaded, unset BEV and KSU_USER */
731 	uasm_i_addiu(&p, AT, ZERO, ~(ST0_EXL | KSU_USER | ST0_IE));
732 	uasm_i_and(&p, V0, V0, AT);
733 	uasm_i_lui(&p, AT, ST0_CU0 >> 16);
734 	uasm_i_or(&p, V0, V0, AT);
735 #ifdef CONFIG_64BIT
736 	uasm_i_ori(&p, V0, V0, ST0_SX | ST0_UX);
737 #endif
738 	uasm_i_mtc0(&p, V0, C0_STATUS);
739 	uasm_i_ehb(&p);
740 
741 	/* Load up host GP */
742 	UASM_i_LW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1);
743 
744 	/* Need a stack before we can jump to "C" */
745 	UASM_i_LW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1);
746 
747 	/* Saved host state */
748 	UASM_i_ADDIU(&p, SP, SP, -(int)sizeof(struct pt_regs));
749 
750 	/*
751 	 * XXXKYMA do we need to load the host ASID, maybe not because the
752 	 * kernel entries are marked GLOBAL, need to verify
753 	 */
754 
755 	/* Restore host scratch registers, as we'll have clobbered them */
756 	kvm_mips_build_restore_scratch(&p, K0, SP);
757 
758 	/* Restore RDHWR access */
759 	UASM_i_LA_mostly(&p, K0, (long)&hwrena);
760 	uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0);
761 	uasm_i_mtc0(&p, K0, C0_HWRENA);
762 
763 	/* Jump to handler */
764 	/*
765 	 * XXXKYMA: not sure if this is safe, how large is the stack??
766 	 * Now jump to the kvm_mips_handle_exit() to see if we can deal
767 	 * with this in the kernel
768 	 */
769 	uasm_i_move(&p, A0, S0);
770 	UASM_i_LA(&p, T9, (unsigned long)kvm_mips_handle_exit);
771 	uasm_i_jalr(&p, RA, T9);
772 	 UASM_i_ADDIU(&p, SP, SP, -CALLFRAME_SIZ);
773 
774 	uasm_resolve_relocs(relocs, labels);
775 
776 	p = kvm_mips_build_ret_from_exit(p);
777 
778 	return p;
779 }
780 
781 /**
782  * kvm_mips_build_ret_from_exit() - Assemble guest exit return handler.
783  * @addr:	Address to start writing code.
784  *
785  * Assemble the code to handle the return from kvm_mips_handle_exit(), either
786  * resuming the guest or returning to the host depending on the return value.
787  *
788  * Returns:	Next address after end of written function.
789  */
790 static void *kvm_mips_build_ret_from_exit(void *addr)
791 {
792 	u32 *p = addr;
793 	struct uasm_label labels[2];
794 	struct uasm_reloc relocs[2];
795 	struct uasm_label *l = labels;
796 	struct uasm_reloc *r = relocs;
797 
798 	memset(labels, 0, sizeof(labels));
799 	memset(relocs, 0, sizeof(relocs));
800 
801 	/* Return from handler Make sure interrupts are disabled */
802 	uasm_i_di(&p, ZERO);
803 	uasm_i_ehb(&p);
804 
805 	/*
806 	 * XXXKYMA: k0/k1 could have been blown away if we processed
807 	 * an exception while we were handling the exception from the
808 	 * guest, reload k1
809 	 */
810 
811 	uasm_i_move(&p, K1, S0);
812 	UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch));
813 
814 	/*
815 	 * Check return value, should tell us if we are returning to the
816 	 * host (handle I/O etc)or resuming the guest
817 	 */
818 	uasm_i_andi(&p, T0, V0, RESUME_HOST);
819 	uasm_il_bnez(&p, &r, T0, label_return_to_host);
820 	 uasm_i_nop(&p);
821 
822 	p = kvm_mips_build_ret_to_guest(p);
823 
824 	uasm_l_return_to_host(&l, p);
825 	p = kvm_mips_build_ret_to_host(p);
826 
827 	uasm_resolve_relocs(relocs, labels);
828 
829 	return p;
830 }
831 
832 /**
833  * kvm_mips_build_ret_to_guest() - Assemble code to return to the guest.
834  * @addr:	Address to start writing code.
835  *
836  * Assemble the code to handle return from the guest exit handler
837  * (kvm_mips_handle_exit()) back to the guest.
838  *
839  * Returns:	Next address after end of written function.
840  */
841 static void *kvm_mips_build_ret_to_guest(void *addr)
842 {
843 	u32 *p = addr;
844 
845 	/* Put the saved pointer to vcpu (s0) back into the scratch register */
846 	UASM_i_MTC0(&p, S0, scratch_vcpu[0], scratch_vcpu[1]);
847 
848 	/* Load up the Guest EBASE to minimize the window where BEV is set */
849 	UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1);
850 
851 	/* Switch EBASE back to the one used by KVM */
852 	uasm_i_mfc0(&p, V1, C0_STATUS);
853 	uasm_i_lui(&p, AT, ST0_BEV >> 16);
854 	uasm_i_or(&p, K0, V1, AT);
855 	uasm_i_mtc0(&p, K0, C0_STATUS);
856 	uasm_i_ehb(&p);
857 	build_set_exc_base(&p, T0);
858 
859 	/* Setup status register for running guest in UM */
860 	uasm_i_ori(&p, V1, V1, ST0_EXL | KSU_USER | ST0_IE);
861 	UASM_i_LA(&p, AT, ~(ST0_CU0 | ST0_MX | ST0_SX | ST0_UX));
862 	uasm_i_and(&p, V1, V1, AT);
863 	uasm_i_mtc0(&p, V1, C0_STATUS);
864 	uasm_i_ehb(&p);
865 
866 	p = kvm_mips_build_enter_guest(p);
867 
868 	return p;
869 }
870 
871 /**
872  * kvm_mips_build_ret_to_host() - Assemble code to return to the host.
873  * @addr:	Address to start writing code.
874  *
875  * Assemble the code to handle return from the guest exit handler
876  * (kvm_mips_handle_exit()) back to the host, i.e. to the caller of the vcpu_run
877  * function generated by kvm_mips_build_vcpu_run().
878  *
879  * Returns:	Next address after end of written function.
880  */
881 static void *kvm_mips_build_ret_to_host(void *addr)
882 {
883 	u32 *p = addr;
884 	unsigned int i;
885 
886 	/* EBASE is already pointing to Linux */
887 	UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, host_stack), K1);
888 	UASM_i_ADDIU(&p, K1, K1, -(int)sizeof(struct pt_regs));
889 
890 	/*
891 	 * r2/v0 is the return code, shift it down by 2 (arithmetic)
892 	 * to recover the err code
893 	 */
894 	uasm_i_sra(&p, K0, V0, 2);
895 	uasm_i_move(&p, V0, K0);
896 
897 	/* Load context saved on the host stack */
898 	for (i = 16; i < 31; ++i) {
899 		if (i == 24)
900 			i = 28;
901 		UASM_i_LW(&p, i, offsetof(struct pt_regs, regs[i]), K1);
902 	}
903 
904 	/* Restore RDHWR access */
905 	UASM_i_LA_mostly(&p, K0, (long)&hwrena);
906 	uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0);
907 	uasm_i_mtc0(&p, K0, C0_HWRENA);
908 
909 	/* Restore RA, which is the address we will return to */
910 	UASM_i_LW(&p, RA, offsetof(struct pt_regs, regs[RA]), K1);
911 	uasm_i_jr(&p, RA);
912 	 uasm_i_nop(&p);
913 
914 	return p;
915 }
916 
917