xref: /openbmc/linux/arch/mips/kvm/entry.c (revision 738f6ba1)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Generation of main entry point for the guest, exception handling.
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  *
11  * Copyright (C) 2016 Imagination Technologies Ltd.
12  */
13 
14 #include <linux/kvm_host.h>
15 #include <linux/log2.h>
16 #include <asm/mmu_context.h>
17 #include <asm/msa.h>
18 #include <asm/setup.h>
19 #include <asm/tlbex.h>
20 #include <asm/uasm.h>
21 
22 /* Register names */
23 #define ZERO		0
24 #define AT		1
25 #define V0		2
26 #define V1		3
27 #define A0		4
28 #define A1		5
29 
30 #if _MIPS_SIM == _MIPS_SIM_ABI32
31 #define T0		8
32 #define T1		9
33 #define T2		10
34 #define T3		11
35 #endif /* _MIPS_SIM == _MIPS_SIM_ABI32 */
36 
37 #if _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32
38 #define T0		12
39 #define T1		13
40 #define T2		14
41 #define T3		15
42 #endif /* _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32 */
43 
44 #define S0		16
45 #define S1		17
46 #define T9		25
47 #define K0		26
48 #define K1		27
49 #define GP		28
50 #define SP		29
51 #define RA		31
52 
53 /* Some CP0 registers */
54 #define C0_PWBASE	5, 5
55 #define C0_HWRENA	7, 0
56 #define C0_BADVADDR	8, 0
57 #define C0_BADINSTR	8, 1
58 #define C0_BADINSTRP	8, 2
59 #define C0_PGD		9, 7
60 #define C0_ENTRYHI	10, 0
61 #define C0_GUESTCTL1	10, 4
62 #define C0_STATUS	12, 0
63 #define C0_GUESTCTL0	12, 6
64 #define C0_CAUSE	13, 0
65 #define C0_EPC		14, 0
66 #define C0_EBASE	15, 1
67 #define C0_CONFIG5	16, 5
68 #define C0_DDATA_LO	28, 3
69 #define C0_ERROREPC	30, 0
70 
71 #define CALLFRAME_SIZ   32
72 
73 #ifdef CONFIG_64BIT
74 #define ST0_KX_IF_64	ST0_KX
75 #else
76 #define ST0_KX_IF_64	0
77 #endif
78 
79 static unsigned int scratch_vcpu[2] = { C0_DDATA_LO };
80 static unsigned int scratch_tmp[2] = { C0_ERROREPC };
81 
82 enum label_id {
83 	label_fpu_1 = 1,
84 	label_msa_1,
85 	label_return_to_host,
86 	label_kernel_asid,
87 	label_exit_common,
88 };
89 
90 UASM_L_LA(_fpu_1)
91 UASM_L_LA(_msa_1)
92 UASM_L_LA(_return_to_host)
93 UASM_L_LA(_kernel_asid)
94 UASM_L_LA(_exit_common)
95 
96 static void *kvm_mips_build_enter_guest(void *addr);
97 static void *kvm_mips_build_ret_from_exit(void *addr);
98 static void *kvm_mips_build_ret_to_guest(void *addr);
99 static void *kvm_mips_build_ret_to_host(void *addr);
100 
101 /*
102  * The version of this function in tlbex.c uses current_cpu_type(), but for KVM
103  * we assume symmetry.
104  */
105 static int c0_kscratch(void)
106 {
107 	switch (boot_cpu_type()) {
108 	case CPU_XLP:
109 	case CPU_XLR:
110 		return 22;
111 	default:
112 		return 31;
113 	}
114 }
115 
116 /**
117  * kvm_mips_entry_setup() - Perform global setup for entry code.
118  *
119  * Perform global setup for entry code, such as choosing a scratch register.
120  *
121  * Returns:	0 on success.
122  *		-errno on failure.
123  */
124 int kvm_mips_entry_setup(void)
125 {
126 	/*
127 	 * We prefer to use KScratchN registers if they are available over the
128 	 * defaults above, which may not work on all cores.
129 	 */
130 	unsigned int kscratch_mask = cpu_data[0].kscratch_mask;
131 
132 	if (pgd_reg != -1)
133 		kscratch_mask &= ~BIT(pgd_reg);
134 
135 	/* Pick a scratch register for storing VCPU */
136 	if (kscratch_mask) {
137 		scratch_vcpu[0] = c0_kscratch();
138 		scratch_vcpu[1] = ffs(kscratch_mask) - 1;
139 		kscratch_mask &= ~BIT(scratch_vcpu[1]);
140 	}
141 
142 	/* Pick a scratch register to use as a temp for saving state */
143 	if (kscratch_mask) {
144 		scratch_tmp[0] = c0_kscratch();
145 		scratch_tmp[1] = ffs(kscratch_mask) - 1;
146 		kscratch_mask &= ~BIT(scratch_tmp[1]);
147 	}
148 
149 	return 0;
150 }
151 
152 static void kvm_mips_build_save_scratch(u32 **p, unsigned int tmp,
153 					unsigned int frame)
154 {
155 	/* Save the VCPU scratch register value in cp0_epc of the stack frame */
156 	UASM_i_MFC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
157 	UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
158 
159 	/* Save the temp scratch register value in cp0_cause of stack frame */
160 	if (scratch_tmp[0] == c0_kscratch()) {
161 		UASM_i_MFC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
162 		UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
163 	}
164 }
165 
166 static void kvm_mips_build_restore_scratch(u32 **p, unsigned int tmp,
167 					   unsigned int frame)
168 {
169 	/*
170 	 * Restore host scratch register values saved by
171 	 * kvm_mips_build_save_scratch().
172 	 */
173 	UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
174 	UASM_i_MTC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
175 
176 	if (scratch_tmp[0] == c0_kscratch()) {
177 		UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
178 		UASM_i_MTC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
179 	}
180 }
181 
182 /**
183  * build_set_exc_base() - Assemble code to write exception base address.
184  * @p:		Code buffer pointer.
185  * @reg:	Source register (generated code may set WG bit in @reg).
186  *
187  * Assemble code to modify the exception base address in the EBase register,
188  * using the appropriately sized access and setting the WG bit if necessary.
189  */
190 static inline void build_set_exc_base(u32 **p, unsigned int reg)
191 {
192 	if (cpu_has_ebase_wg) {
193 		/* Set WG so that all the bits get written */
194 		uasm_i_ori(p, reg, reg, MIPS_EBASE_WG);
195 		UASM_i_MTC0(p, reg, C0_EBASE);
196 	} else {
197 		uasm_i_mtc0(p, reg, C0_EBASE);
198 	}
199 }
200 
201 /**
202  * kvm_mips_build_vcpu_run() - Assemble function to start running a guest VCPU.
203  * @addr:	Address to start writing code.
204  *
205  * Assemble the start of the vcpu_run function to run a guest VCPU. The function
206  * conforms to the following prototype:
207  *
208  * int vcpu_run(struct kvm_vcpu *vcpu);
209  *
210  * The exit from the guest and return to the caller is handled by the code
211  * generated by kvm_mips_build_ret_to_host().
212  *
213  * Returns:	Next address after end of written function.
214  */
215 void *kvm_mips_build_vcpu_run(void *addr)
216 {
217 	u32 *p = addr;
218 	unsigned int i;
219 
220 	/*
221 	 * A0: vcpu
222 	 */
223 
224 	/* k0/k1 not being used in host kernel context */
225 	UASM_i_ADDIU(&p, K1, SP, -(int)sizeof(struct pt_regs));
226 	for (i = 16; i < 32; ++i) {
227 		if (i == 24)
228 			i = 28;
229 		UASM_i_SW(&p, i, offsetof(struct pt_regs, regs[i]), K1);
230 	}
231 
232 	/* Save host status */
233 	uasm_i_mfc0(&p, V0, C0_STATUS);
234 	UASM_i_SW(&p, V0, offsetof(struct pt_regs, cp0_status), K1);
235 
236 	/* Save scratch registers, will be used to store pointer to vcpu etc */
237 	kvm_mips_build_save_scratch(&p, V1, K1);
238 
239 	/* VCPU scratch register has pointer to vcpu */
240 	UASM_i_MTC0(&p, A0, scratch_vcpu[0], scratch_vcpu[1]);
241 
242 	/* Offset into vcpu->arch */
243 	UASM_i_ADDIU(&p, K1, A0, offsetof(struct kvm_vcpu, arch));
244 
245 	/*
246 	 * Save the host stack to VCPU, used for exception processing
247 	 * when we exit from the Guest
248 	 */
249 	UASM_i_SW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1);
250 
251 	/* Save the kernel gp as well */
252 	UASM_i_SW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1);
253 
254 	/*
255 	 * Setup status register for running the guest in UM, interrupts
256 	 * are disabled
257 	 */
258 	UASM_i_LA(&p, K0, ST0_EXL | KSU_USER | ST0_BEV | ST0_KX_IF_64);
259 	uasm_i_mtc0(&p, K0, C0_STATUS);
260 	uasm_i_ehb(&p);
261 
262 	/* load up the new EBASE */
263 	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1);
264 	build_set_exc_base(&p, K0);
265 
266 	/*
267 	 * Now that the new EBASE has been loaded, unset BEV, set
268 	 * interrupt mask as it was but make sure that timer interrupts
269 	 * are enabled
270 	 */
271 	uasm_i_addiu(&p, K0, ZERO, ST0_EXL | KSU_USER | ST0_IE | ST0_KX_IF_64);
272 	uasm_i_andi(&p, V0, V0, ST0_IM);
273 	uasm_i_or(&p, K0, K0, V0);
274 	uasm_i_mtc0(&p, K0, C0_STATUS);
275 	uasm_i_ehb(&p);
276 
277 	p = kvm_mips_build_enter_guest(p);
278 
279 	return p;
280 }
281 
282 /**
283  * kvm_mips_build_enter_guest() - Assemble code to resume guest execution.
284  * @addr:	Address to start writing code.
285  *
286  * Assemble the code to resume guest execution. This code is common between the
287  * initial entry into the guest from the host, and returning from the exit
288  * handler back to the guest.
289  *
290  * Returns:	Next address after end of written function.
291  */
292 static void *kvm_mips_build_enter_guest(void *addr)
293 {
294 	u32 *p = addr;
295 	unsigned int i;
296 	struct uasm_label labels[2];
297 	struct uasm_reloc relocs[2];
298 	struct uasm_label __maybe_unused *l = labels;
299 	struct uasm_reloc __maybe_unused *r = relocs;
300 
301 	memset(labels, 0, sizeof(labels));
302 	memset(relocs, 0, sizeof(relocs));
303 
304 	/* Set Guest EPC */
305 	UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, pc), K1);
306 	UASM_i_MTC0(&p, T0, C0_EPC);
307 
308 #ifdef CONFIG_KVM_MIPS_VZ
309 	/* Save normal linux process pgd (VZ guarantees pgd_reg is set) */
310 	if (cpu_has_ldpte)
311 		UASM_i_MFC0(&p, K0, C0_PWBASE);
312 	else
313 		UASM_i_MFC0(&p, K0, c0_kscratch(), pgd_reg);
314 	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_pgd), K1);
315 
316 	/*
317 	 * Set up KVM GPA pgd.
318 	 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
319 	 * - call tlbmiss_handler_setup_pgd(mm->pgd)
320 	 * - write mm->pgd into CP0_PWBase
321 	 *
322 	 * We keep S0 pointing at struct kvm so we can load the ASID below.
323 	 */
324 	UASM_i_LW(&p, S0, (int)offsetof(struct kvm_vcpu, kvm) -
325 			  (int)offsetof(struct kvm_vcpu, arch), K1);
326 	UASM_i_LW(&p, A0, offsetof(struct kvm, arch.gpa_mm.pgd), S0);
327 	UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
328 	uasm_i_jalr(&p, RA, T9);
329 	/* delay slot */
330 	if (cpu_has_htw)
331 		UASM_i_MTC0(&p, A0, C0_PWBASE);
332 	else
333 		uasm_i_nop(&p);
334 
335 	/* Set GM bit to setup eret to VZ guest context */
336 	uasm_i_addiu(&p, V1, ZERO, 1);
337 	uasm_i_mfc0(&p, K0, C0_GUESTCTL0);
338 	uasm_i_ins(&p, K0, V1, MIPS_GCTL0_GM_SHIFT, 1);
339 	uasm_i_mtc0(&p, K0, C0_GUESTCTL0);
340 
341 	if (cpu_has_guestid) {
342 		/*
343 		 * Set root mode GuestID, so that root TLB refill handler can
344 		 * use the correct GuestID in the root TLB.
345 		 */
346 
347 		/* Get current GuestID */
348 		uasm_i_mfc0(&p, T0, C0_GUESTCTL1);
349 		/* Set GuestCtl1.RID = GuestCtl1.ID */
350 		uasm_i_ext(&p, T1, T0, MIPS_GCTL1_ID_SHIFT,
351 			   MIPS_GCTL1_ID_WIDTH);
352 		uasm_i_ins(&p, T0, T1, MIPS_GCTL1_RID_SHIFT,
353 			   MIPS_GCTL1_RID_WIDTH);
354 		uasm_i_mtc0(&p, T0, C0_GUESTCTL1);
355 
356 		/* GuestID handles dealiasing so we don't need to touch ASID */
357 		goto skip_asid_restore;
358 	}
359 
360 	/* Root ASID Dealias (RAD) */
361 
362 	/* Save host ASID */
363 	UASM_i_MFC0(&p, K0, C0_ENTRYHI);
364 	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi),
365 		  K1);
366 
367 	/* Set the root ASID for the Guest */
368 	UASM_i_ADDIU(&p, T1, S0,
369 		     offsetof(struct kvm, arch.gpa_mm.context.asid));
370 #else
371 	/* Set the ASID for the Guest Kernel or User */
372 	UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, cop0), K1);
373 	UASM_i_LW(&p, T0, offsetof(struct mips_coproc, reg[MIPS_CP0_STATUS][0]),
374 		  T0);
375 	uasm_i_andi(&p, T0, T0, KSU_USER | ST0_ERL | ST0_EXL);
376 	uasm_i_xori(&p, T0, T0, KSU_USER);
377 	uasm_il_bnez(&p, &r, T0, label_kernel_asid);
378 	 UASM_i_ADDIU(&p, T1, K1, offsetof(struct kvm_vcpu_arch,
379 					   guest_kernel_mm.context.asid));
380 	/* else user */
381 	UASM_i_ADDIU(&p, T1, K1, offsetof(struct kvm_vcpu_arch,
382 					  guest_user_mm.context.asid));
383 	uasm_l_kernel_asid(&l, p);
384 #endif
385 
386 	/* t1: contains the base of the ASID array, need to get the cpu id  */
387 	/* smp_processor_id */
388 	uasm_i_lw(&p, T2, offsetof(struct thread_info, cpu), GP);
389 	/* index the ASID array */
390 	uasm_i_sll(&p, T2, T2, ilog2(sizeof(long)));
391 	UASM_i_ADDU(&p, T3, T1, T2);
392 	UASM_i_LW(&p, K0, 0, T3);
393 #ifdef CONFIG_MIPS_ASID_BITS_VARIABLE
394 	/*
395 	 * reuse ASID array offset
396 	 * cpuinfo_mips is a multiple of sizeof(long)
397 	 */
398 	uasm_i_addiu(&p, T3, ZERO, sizeof(struct cpuinfo_mips)/sizeof(long));
399 	uasm_i_mul(&p, T2, T2, T3);
400 
401 	UASM_i_LA_mostly(&p, AT, (long)&cpu_data[0].asid_mask);
402 	UASM_i_ADDU(&p, AT, AT, T2);
403 	UASM_i_LW(&p, T2, uasm_rel_lo((long)&cpu_data[0].asid_mask), AT);
404 	uasm_i_and(&p, K0, K0, T2);
405 #else
406 	uasm_i_andi(&p, K0, K0, MIPS_ENTRYHI_ASID);
407 #endif
408 
409 #ifndef CONFIG_KVM_MIPS_VZ
410 	/*
411 	 * Set up KVM T&E GVA pgd.
412 	 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
413 	 * - call tlbmiss_handler_setup_pgd(mm->pgd)
414 	 * - but skips write into CP0_PWBase for now
415 	 */
416 	UASM_i_LW(&p, A0, (int)offsetof(struct mm_struct, pgd) -
417 			  (int)offsetof(struct mm_struct, context.asid), T1);
418 
419 	UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
420 	uasm_i_jalr(&p, RA, T9);
421 	 uasm_i_mtc0(&p, K0, C0_ENTRYHI);
422 #else
423 	/* Set up KVM VZ root ASID (!guestid) */
424 	uasm_i_mtc0(&p, K0, C0_ENTRYHI);
425 skip_asid_restore:
426 #endif
427 	uasm_i_ehb(&p);
428 
429 	/* Disable RDHWR access */
430 	uasm_i_mtc0(&p, ZERO, C0_HWRENA);
431 
432 	/* load the guest context from VCPU and return */
433 	for (i = 1; i < 32; ++i) {
434 		/* Guest k0/k1 loaded later */
435 		if (i == K0 || i == K1)
436 			continue;
437 		UASM_i_LW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1);
438 	}
439 
440 #ifndef CONFIG_CPU_MIPSR6
441 	/* Restore hi/lo */
442 	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, hi), K1);
443 	uasm_i_mthi(&p, K0);
444 
445 	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, lo), K1);
446 	uasm_i_mtlo(&p, K0);
447 #endif
448 
449 	/* Restore the guest's k0/k1 registers */
450 	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1);
451 	UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1);
452 
453 	/* Jump to guest */
454 	uasm_i_eret(&p);
455 
456 	uasm_resolve_relocs(relocs, labels);
457 
458 	return p;
459 }
460 
461 /**
462  * kvm_mips_build_tlb_refill_exception() - Assemble TLB refill handler.
463  * @addr:	Address to start writing code.
464  * @handler:	Address of common handler (within range of @addr).
465  *
466  * Assemble TLB refill exception fast path handler for guest execution.
467  *
468  * Returns:	Next address after end of written function.
469  */
470 void *kvm_mips_build_tlb_refill_exception(void *addr, void *handler)
471 {
472 	u32 *p = addr;
473 	struct uasm_label labels[2];
474 	struct uasm_reloc relocs[2];
475 #ifndef CONFIG_CPU_LOONGSON64
476 	struct uasm_label *l = labels;
477 	struct uasm_reloc *r = relocs;
478 #endif
479 
480 	memset(labels, 0, sizeof(labels));
481 	memset(relocs, 0, sizeof(relocs));
482 
483 	/* Save guest k1 into scratch register */
484 	UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
485 
486 	/* Get the VCPU pointer from the VCPU scratch register */
487 	UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
488 
489 	/* Save guest k0 into VCPU structure */
490 	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1);
491 
492 	/*
493 	 * Some of the common tlbex code uses current_cpu_type(). For KVM we
494 	 * assume symmetry and just disable preemption to silence the warning.
495 	 */
496 	preempt_disable();
497 
498 #ifdef CONFIG_CPU_LOONGSON64
499 	UASM_i_MFC0(&p, K1, C0_PGD);
500 	uasm_i_lddir(&p, K0, K1, 3);  /* global page dir */
501 #ifndef __PAGETABLE_PMD_FOLDED
502 	uasm_i_lddir(&p, K1, K0, 1);  /* middle page dir */
503 #endif
504 	uasm_i_ldpte(&p, K1, 0);      /* even */
505 	uasm_i_ldpte(&p, K1, 1);      /* odd */
506 	uasm_i_tlbwr(&p);
507 #else
508 	/*
509 	 * Now for the actual refill bit. A lot of this can be common with the
510 	 * Linux TLB refill handler, however we don't need to handle so many
511 	 * cases. We only need to handle user mode refills, and user mode runs
512 	 * with 32-bit addressing.
513 	 *
514 	 * Therefore the branch to label_vmalloc generated by build_get_pmde64()
515 	 * that isn't resolved should never actually get taken and is harmless
516 	 * to leave in place for now.
517 	 */
518 
519 #ifdef CONFIG_64BIT
520 	build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
521 #else
522 	build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
523 #endif
524 
525 	/* we don't support huge pages yet */
526 
527 	build_get_ptep(&p, K0, K1);
528 	build_update_entries(&p, K0, K1);
529 	build_tlb_write_entry(&p, &l, &r, tlb_random);
530 #endif
531 
532 	preempt_enable();
533 
534 	/* Get the VCPU pointer from the VCPU scratch register again */
535 	UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
536 
537 	/* Restore the guest's k0/k1 registers */
538 	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1);
539 	uasm_i_ehb(&p);
540 	UASM_i_MFC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
541 
542 	/* Jump to guest */
543 	uasm_i_eret(&p);
544 
545 	return p;
546 }
547 
548 /**
549  * kvm_mips_build_exception() - Assemble first level guest exception handler.
550  * @addr:	Address to start writing code.
551  * @handler:	Address of common handler (within range of @addr).
552  *
553  * Assemble exception vector code for guest execution. The generated vector will
554  * branch to the common exception handler generated by kvm_mips_build_exit().
555  *
556  * Returns:	Next address after end of written function.
557  */
558 void *kvm_mips_build_exception(void *addr, void *handler)
559 {
560 	u32 *p = addr;
561 	struct uasm_label labels[2];
562 	struct uasm_reloc relocs[2];
563 	struct uasm_label *l = labels;
564 	struct uasm_reloc *r = relocs;
565 
566 	memset(labels, 0, sizeof(labels));
567 	memset(relocs, 0, sizeof(relocs));
568 
569 	/* Save guest k1 into scratch register */
570 	UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
571 
572 	/* Get the VCPU pointer from the VCPU scratch register */
573 	UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
574 	UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch));
575 
576 	/* Save guest k0 into VCPU structure */
577 	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1);
578 
579 	/* Branch to the common handler */
580 	uasm_il_b(&p, &r, label_exit_common);
581 	 uasm_i_nop(&p);
582 
583 	uasm_l_exit_common(&l, handler);
584 	uasm_resolve_relocs(relocs, labels);
585 
586 	return p;
587 }
588 
589 /**
590  * kvm_mips_build_exit() - Assemble common guest exit handler.
591  * @addr:	Address to start writing code.
592  *
593  * Assemble the generic guest exit handling code. This is called by the
594  * exception vectors (generated by kvm_mips_build_exception()), and calls
595  * kvm_mips_handle_exit(), then either resumes the guest or returns to the host
596  * depending on the return value.
597  *
598  * Returns:	Next address after end of written function.
599  */
600 void *kvm_mips_build_exit(void *addr)
601 {
602 	u32 *p = addr;
603 	unsigned int i;
604 	struct uasm_label labels[3];
605 	struct uasm_reloc relocs[3];
606 	struct uasm_label *l = labels;
607 	struct uasm_reloc *r = relocs;
608 
609 	memset(labels, 0, sizeof(labels));
610 	memset(relocs, 0, sizeof(relocs));
611 
612 	/*
613 	 * Generic Guest exception handler. We end up here when the guest
614 	 * does something that causes a trap to kernel mode.
615 	 *
616 	 * Both k0/k1 registers will have already been saved (k0 into the vcpu
617 	 * structure, and k1 into the scratch_tmp register).
618 	 *
619 	 * The k1 register will already contain the kvm_vcpu_arch pointer.
620 	 */
621 
622 	/* Start saving Guest context to VCPU */
623 	for (i = 0; i < 32; ++i) {
624 		/* Guest k0/k1 saved later */
625 		if (i == K0 || i == K1)
626 			continue;
627 		UASM_i_SW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1);
628 	}
629 
630 #ifndef CONFIG_CPU_MIPSR6
631 	/* We need to save hi/lo and restore them on the way out */
632 	uasm_i_mfhi(&p, T0);
633 	UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, hi), K1);
634 
635 	uasm_i_mflo(&p, T0);
636 	UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, lo), K1);
637 #endif
638 
639 	/* Finally save guest k1 to VCPU */
640 	uasm_i_ehb(&p);
641 	UASM_i_MFC0(&p, T0, scratch_tmp[0], scratch_tmp[1]);
642 	UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1);
643 
644 	/* Now that context has been saved, we can use other registers */
645 
646 	/* Restore vcpu */
647 	UASM_i_MFC0(&p, S0, scratch_vcpu[0], scratch_vcpu[1]);
648 
649 	/*
650 	 * Save Host level EPC, BadVaddr and Cause to VCPU, useful to process
651 	 * the exception
652 	 */
653 	UASM_i_MFC0(&p, K0, C0_EPC);
654 	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, pc), K1);
655 
656 	UASM_i_MFC0(&p, K0, C0_BADVADDR);
657 	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_badvaddr),
658 		  K1);
659 
660 	uasm_i_mfc0(&p, K0, C0_CAUSE);
661 	uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_cause), K1);
662 
663 	if (cpu_has_badinstr) {
664 		uasm_i_mfc0(&p, K0, C0_BADINSTR);
665 		uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch,
666 					   host_cp0_badinstr), K1);
667 	}
668 
669 	if (cpu_has_badinstrp) {
670 		uasm_i_mfc0(&p, K0, C0_BADINSTRP);
671 		uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch,
672 					   host_cp0_badinstrp), K1);
673 	}
674 
675 	/* Now restore the host state just enough to run the handlers */
676 
677 	/* Switch EBASE to the one used by Linux */
678 	/* load up the host EBASE */
679 	uasm_i_mfc0(&p, V0, C0_STATUS);
680 
681 	uasm_i_lui(&p, AT, ST0_BEV >> 16);
682 	uasm_i_or(&p, K0, V0, AT);
683 
684 	uasm_i_mtc0(&p, K0, C0_STATUS);
685 	uasm_i_ehb(&p);
686 
687 	UASM_i_LA_mostly(&p, K0, (long)&ebase);
688 	UASM_i_LW(&p, K0, uasm_rel_lo((long)&ebase), K0);
689 	build_set_exc_base(&p, K0);
690 
691 	if (raw_cpu_has_fpu) {
692 		/*
693 		 * If FPU is enabled, save FCR31 and clear it so that later
694 		 * ctc1's don't trigger FPE for pending exceptions.
695 		 */
696 		uasm_i_lui(&p, AT, ST0_CU1 >> 16);
697 		uasm_i_and(&p, V1, V0, AT);
698 		uasm_il_beqz(&p, &r, V1, label_fpu_1);
699 		 uasm_i_nop(&p);
700 		uasm_i_cfc1(&p, T0, 31);
701 		uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.fcr31),
702 			  K1);
703 		uasm_i_ctc1(&p, ZERO, 31);
704 		uasm_l_fpu_1(&l, p);
705 	}
706 
707 	if (cpu_has_msa) {
708 		/*
709 		 * If MSA is enabled, save MSACSR and clear it so that later
710 		 * instructions don't trigger MSAFPE for pending exceptions.
711 		 */
712 		uasm_i_mfc0(&p, T0, C0_CONFIG5);
713 		uasm_i_ext(&p, T0, T0, 27, 1); /* MIPS_CONF5_MSAEN */
714 		uasm_il_beqz(&p, &r, T0, label_msa_1);
715 		 uasm_i_nop(&p);
716 		uasm_i_cfcmsa(&p, T0, MSA_CSR);
717 		uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.msacsr),
718 			  K1);
719 		uasm_i_ctcmsa(&p, MSA_CSR, ZERO);
720 		uasm_l_msa_1(&l, p);
721 	}
722 
723 #ifdef CONFIG_KVM_MIPS_VZ
724 	/* Restore host ASID */
725 	if (!cpu_has_guestid) {
726 		UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi),
727 			  K1);
728 		UASM_i_MTC0(&p, K0, C0_ENTRYHI);
729 	}
730 
731 	/*
732 	 * Set up normal Linux process pgd.
733 	 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
734 	 * - call tlbmiss_handler_setup_pgd(mm->pgd)
735 	 * - write mm->pgd into CP0_PWBase
736 	 */
737 	UASM_i_LW(&p, A0,
738 		  offsetof(struct kvm_vcpu_arch, host_pgd), K1);
739 	UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
740 	uasm_i_jalr(&p, RA, T9);
741 	/* delay slot */
742 	if (cpu_has_htw)
743 		UASM_i_MTC0(&p, A0, C0_PWBASE);
744 	else
745 		uasm_i_nop(&p);
746 
747 	/* Clear GM bit so we don't enter guest mode when EXL is cleared */
748 	uasm_i_mfc0(&p, K0, C0_GUESTCTL0);
749 	uasm_i_ins(&p, K0, ZERO, MIPS_GCTL0_GM_SHIFT, 1);
750 	uasm_i_mtc0(&p, K0, C0_GUESTCTL0);
751 
752 	/* Save GuestCtl0 so we can access GExcCode after CPU migration */
753 	uasm_i_sw(&p, K0,
754 		  offsetof(struct kvm_vcpu_arch, host_cp0_guestctl0), K1);
755 
756 	if (cpu_has_guestid) {
757 		/*
758 		 * Clear root mode GuestID, so that root TLB operations use the
759 		 * root GuestID in the root TLB.
760 		 */
761 		uasm_i_mfc0(&p, T0, C0_GUESTCTL1);
762 		/* Set GuestCtl1.RID = MIPS_GCTL1_ROOT_GUESTID (i.e. 0) */
763 		uasm_i_ins(&p, T0, ZERO, MIPS_GCTL1_RID_SHIFT,
764 			   MIPS_GCTL1_RID_WIDTH);
765 		uasm_i_mtc0(&p, T0, C0_GUESTCTL1);
766 	}
767 #endif
768 
769 	/* Now that the new EBASE has been loaded, unset BEV and KSU_USER */
770 	uasm_i_addiu(&p, AT, ZERO, ~(ST0_EXL | KSU_USER | ST0_IE));
771 	uasm_i_and(&p, V0, V0, AT);
772 	uasm_i_lui(&p, AT, ST0_CU0 >> 16);
773 	uasm_i_or(&p, V0, V0, AT);
774 #ifdef CONFIG_64BIT
775 	uasm_i_ori(&p, V0, V0, ST0_SX | ST0_UX);
776 #endif
777 	uasm_i_mtc0(&p, V0, C0_STATUS);
778 	uasm_i_ehb(&p);
779 
780 	/* Load up host GP */
781 	UASM_i_LW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1);
782 
783 	/* Need a stack before we can jump to "C" */
784 	UASM_i_LW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1);
785 
786 	/* Saved host state */
787 	UASM_i_ADDIU(&p, SP, SP, -(int)sizeof(struct pt_regs));
788 
789 	/*
790 	 * XXXKYMA do we need to load the host ASID, maybe not because the
791 	 * kernel entries are marked GLOBAL, need to verify
792 	 */
793 
794 	/* Restore host scratch registers, as we'll have clobbered them */
795 	kvm_mips_build_restore_scratch(&p, K0, SP);
796 
797 	/* Restore RDHWR access */
798 	UASM_i_LA_mostly(&p, K0, (long)&hwrena);
799 	uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0);
800 	uasm_i_mtc0(&p, K0, C0_HWRENA);
801 
802 	/* Jump to handler */
803 	/*
804 	 * XXXKYMA: not sure if this is safe, how large is the stack??
805 	 * Now jump to the kvm_mips_handle_exit() to see if we can deal
806 	 * with this in the kernel
807 	 */
808 	uasm_i_move(&p, A0, S0);
809 	UASM_i_LA(&p, T9, (unsigned long)kvm_mips_handle_exit);
810 	uasm_i_jalr(&p, RA, T9);
811 	 UASM_i_ADDIU(&p, SP, SP, -CALLFRAME_SIZ);
812 
813 	uasm_resolve_relocs(relocs, labels);
814 
815 	p = kvm_mips_build_ret_from_exit(p);
816 
817 	return p;
818 }
819 
820 /**
821  * kvm_mips_build_ret_from_exit() - Assemble guest exit return handler.
822  * @addr:	Address to start writing code.
823  *
824  * Assemble the code to handle the return from kvm_mips_handle_exit(), either
825  * resuming the guest or returning to the host depending on the return value.
826  *
827  * Returns:	Next address after end of written function.
828  */
829 static void *kvm_mips_build_ret_from_exit(void *addr)
830 {
831 	u32 *p = addr;
832 	struct uasm_label labels[2];
833 	struct uasm_reloc relocs[2];
834 	struct uasm_label *l = labels;
835 	struct uasm_reloc *r = relocs;
836 
837 	memset(labels, 0, sizeof(labels));
838 	memset(relocs, 0, sizeof(relocs));
839 
840 	/* Return from handler Make sure interrupts are disabled */
841 	uasm_i_di(&p, ZERO);
842 	uasm_i_ehb(&p);
843 
844 	/*
845 	 * XXXKYMA: k0/k1 could have been blown away if we processed
846 	 * an exception while we were handling the exception from the
847 	 * guest, reload k1
848 	 */
849 
850 	uasm_i_move(&p, K1, S0);
851 	UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch));
852 
853 	/*
854 	 * Check return value, should tell us if we are returning to the
855 	 * host (handle I/O etc)or resuming the guest
856 	 */
857 	uasm_i_andi(&p, T0, V0, RESUME_HOST);
858 	uasm_il_bnez(&p, &r, T0, label_return_to_host);
859 	 uasm_i_nop(&p);
860 
861 	p = kvm_mips_build_ret_to_guest(p);
862 
863 	uasm_l_return_to_host(&l, p);
864 	p = kvm_mips_build_ret_to_host(p);
865 
866 	uasm_resolve_relocs(relocs, labels);
867 
868 	return p;
869 }
870 
871 /**
872  * kvm_mips_build_ret_to_guest() - Assemble code to return to the guest.
873  * @addr:	Address to start writing code.
874  *
875  * Assemble the code to handle return from the guest exit handler
876  * (kvm_mips_handle_exit()) back to the guest.
877  *
878  * Returns:	Next address after end of written function.
879  */
880 static void *kvm_mips_build_ret_to_guest(void *addr)
881 {
882 	u32 *p = addr;
883 
884 	/* Put the saved pointer to vcpu (s0) back into the scratch register */
885 	UASM_i_MTC0(&p, S0, scratch_vcpu[0], scratch_vcpu[1]);
886 
887 	/* Load up the Guest EBASE to minimize the window where BEV is set */
888 	UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1);
889 
890 	/* Switch EBASE back to the one used by KVM */
891 	uasm_i_mfc0(&p, V1, C0_STATUS);
892 	uasm_i_lui(&p, AT, ST0_BEV >> 16);
893 	uasm_i_or(&p, K0, V1, AT);
894 	uasm_i_mtc0(&p, K0, C0_STATUS);
895 	uasm_i_ehb(&p);
896 	build_set_exc_base(&p, T0);
897 
898 	/* Setup status register for running guest in UM */
899 	uasm_i_ori(&p, V1, V1, ST0_EXL | KSU_USER | ST0_IE);
900 	UASM_i_LA(&p, AT, ~(ST0_CU0 | ST0_MX | ST0_SX | ST0_UX));
901 	uasm_i_and(&p, V1, V1, AT);
902 	uasm_i_mtc0(&p, V1, C0_STATUS);
903 	uasm_i_ehb(&p);
904 
905 	p = kvm_mips_build_enter_guest(p);
906 
907 	return p;
908 }
909 
910 /**
911  * kvm_mips_build_ret_to_host() - Assemble code to return to the host.
912  * @addr:	Address to start writing code.
913  *
914  * Assemble the code to handle return from the guest exit handler
915  * (kvm_mips_handle_exit()) back to the host, i.e. to the caller of the vcpu_run
916  * function generated by kvm_mips_build_vcpu_run().
917  *
918  * Returns:	Next address after end of written function.
919  */
920 static void *kvm_mips_build_ret_to_host(void *addr)
921 {
922 	u32 *p = addr;
923 	unsigned int i;
924 
925 	/* EBASE is already pointing to Linux */
926 	UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, host_stack), K1);
927 	UASM_i_ADDIU(&p, K1, K1, -(int)sizeof(struct pt_regs));
928 
929 	/*
930 	 * r2/v0 is the return code, shift it down by 2 (arithmetic)
931 	 * to recover the err code
932 	 */
933 	uasm_i_sra(&p, K0, V0, 2);
934 	uasm_i_move(&p, V0, K0);
935 
936 	/* Load context saved on the host stack */
937 	for (i = 16; i < 31; ++i) {
938 		if (i == 24)
939 			i = 28;
940 		UASM_i_LW(&p, i, offsetof(struct pt_regs, regs[i]), K1);
941 	}
942 
943 	/* Restore RDHWR access */
944 	UASM_i_LA_mostly(&p, K0, (long)&hwrena);
945 	uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0);
946 	uasm_i_mtc0(&p, K0, C0_HWRENA);
947 
948 	/* Restore RA, which is the address we will return to */
949 	UASM_i_LW(&p, RA, offsetof(struct pt_regs, regs[RA]), K1);
950 	uasm_i_jr(&p, RA);
951 	 uasm_i_nop(&p);
952 
953 	return p;
954 }
955 
956