xref: /openbmc/linux/arch/mips/kvm/entry.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Generation of main entry point for the guest, exception handling.
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  *
11  * Copyright (C) 2016 Imagination Technologies Ltd.
12  */
13 
14 #include <linux/kvm_host.h>
15 #include <linux/log2.h>
16 #include <asm/mmu_context.h>
17 #include <asm/msa.h>
18 #include <asm/setup.h>
19 #include <asm/tlbex.h>
20 #include <asm/uasm.h>
21 
22 /* Register names */
23 #define ZERO		0
24 #define AT		1
25 #define V0		2
26 #define V1		3
27 #define A0		4
28 #define A1		5
29 
30 #if _MIPS_SIM == _MIPS_SIM_ABI32
31 #define T0		8
32 #define T1		9
33 #define T2		10
34 #define T3		11
35 #endif /* _MIPS_SIM == _MIPS_SIM_ABI32 */
36 
37 #if _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32
38 #define T0		12
39 #define T1		13
40 #define T2		14
41 #define T3		15
42 #endif /* _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32 */
43 
44 #define S0		16
45 #define S1		17
46 #define T9		25
47 #define K0		26
48 #define K1		27
49 #define GP		28
50 #define SP		29
51 #define RA		31
52 
53 /* Some CP0 registers */
54 #define C0_PWBASE	5, 5
55 #define C0_HWRENA	7, 0
56 #define C0_BADVADDR	8, 0
57 #define C0_BADINSTR	8, 1
58 #define C0_BADINSTRP	8, 2
59 #define C0_ENTRYHI	10, 0
60 #define C0_GUESTCTL1	10, 4
61 #define C0_STATUS	12, 0
62 #define C0_GUESTCTL0	12, 6
63 #define C0_CAUSE	13, 0
64 #define C0_EPC		14, 0
65 #define C0_EBASE	15, 1
66 #define C0_CONFIG5	16, 5
67 #define C0_DDATA_LO	28, 3
68 #define C0_ERROREPC	30, 0
69 
70 #define CALLFRAME_SIZ   32
71 
72 #ifdef CONFIG_64BIT
73 #define ST0_KX_IF_64	ST0_KX
74 #else
75 #define ST0_KX_IF_64	0
76 #endif
77 
78 static unsigned int scratch_vcpu[2] = { C0_DDATA_LO };
79 static unsigned int scratch_tmp[2] = { C0_ERROREPC };
80 
81 enum label_id {
82 	label_fpu_1 = 1,
83 	label_msa_1,
84 	label_return_to_host,
85 	label_kernel_asid,
86 	label_exit_common,
87 };
88 
89 UASM_L_LA(_fpu_1)
90 UASM_L_LA(_msa_1)
91 UASM_L_LA(_return_to_host)
92 UASM_L_LA(_kernel_asid)
93 UASM_L_LA(_exit_common)
94 
95 static void *kvm_mips_build_enter_guest(void *addr);
96 static void *kvm_mips_build_ret_from_exit(void *addr);
97 static void *kvm_mips_build_ret_to_guest(void *addr);
98 static void *kvm_mips_build_ret_to_host(void *addr);
99 
100 /*
101  * The version of this function in tlbex.c uses current_cpu_type(), but for KVM
102  * we assume symmetry.
103  */
104 static int c0_kscratch(void)
105 {
106 	switch (boot_cpu_type()) {
107 	case CPU_XLP:
108 	case CPU_XLR:
109 		return 22;
110 	default:
111 		return 31;
112 	}
113 }
114 
115 /**
116  * kvm_mips_entry_setup() - Perform global setup for entry code.
117  *
118  * Perform global setup for entry code, such as choosing a scratch register.
119  *
120  * Returns:	0 on success.
121  *		-errno on failure.
122  */
123 int kvm_mips_entry_setup(void)
124 {
125 	/*
126 	 * We prefer to use KScratchN registers if they are available over the
127 	 * defaults above, which may not work on all cores.
128 	 */
129 	unsigned int kscratch_mask = cpu_data[0].kscratch_mask;
130 
131 	if (pgd_reg != -1)
132 		kscratch_mask &= ~BIT(pgd_reg);
133 
134 	/* Pick a scratch register for storing VCPU */
135 	if (kscratch_mask) {
136 		scratch_vcpu[0] = c0_kscratch();
137 		scratch_vcpu[1] = ffs(kscratch_mask) - 1;
138 		kscratch_mask &= ~BIT(scratch_vcpu[1]);
139 	}
140 
141 	/* Pick a scratch register to use as a temp for saving state */
142 	if (kscratch_mask) {
143 		scratch_tmp[0] = c0_kscratch();
144 		scratch_tmp[1] = ffs(kscratch_mask) - 1;
145 		kscratch_mask &= ~BIT(scratch_tmp[1]);
146 	}
147 
148 	return 0;
149 }
150 
151 static void kvm_mips_build_save_scratch(u32 **p, unsigned int tmp,
152 					unsigned int frame)
153 {
154 	/* Save the VCPU scratch register value in cp0_epc of the stack frame */
155 	UASM_i_MFC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
156 	UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
157 
158 	/* Save the temp scratch register value in cp0_cause of stack frame */
159 	if (scratch_tmp[0] == c0_kscratch()) {
160 		UASM_i_MFC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
161 		UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
162 	}
163 }
164 
165 static void kvm_mips_build_restore_scratch(u32 **p, unsigned int tmp,
166 					   unsigned int frame)
167 {
168 	/*
169 	 * Restore host scratch register values saved by
170 	 * kvm_mips_build_save_scratch().
171 	 */
172 	UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
173 	UASM_i_MTC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
174 
175 	if (scratch_tmp[0] == c0_kscratch()) {
176 		UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
177 		UASM_i_MTC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
178 	}
179 }
180 
181 /**
182  * build_set_exc_base() - Assemble code to write exception base address.
183  * @p:		Code buffer pointer.
184  * @reg:	Source register (generated code may set WG bit in @reg).
185  *
186  * Assemble code to modify the exception base address in the EBase register,
187  * using the appropriately sized access and setting the WG bit if necessary.
188  */
189 static inline void build_set_exc_base(u32 **p, unsigned int reg)
190 {
191 	if (cpu_has_ebase_wg) {
192 		/* Set WG so that all the bits get written */
193 		uasm_i_ori(p, reg, reg, MIPS_EBASE_WG);
194 		UASM_i_MTC0(p, reg, C0_EBASE);
195 	} else {
196 		uasm_i_mtc0(p, reg, C0_EBASE);
197 	}
198 }
199 
200 /**
201  * kvm_mips_build_vcpu_run() - Assemble function to start running a guest VCPU.
202  * @addr:	Address to start writing code.
203  *
204  * Assemble the start of the vcpu_run function to run a guest VCPU. The function
205  * conforms to the following prototype:
206  *
207  * int vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu);
208  *
209  * The exit from the guest and return to the caller is handled by the code
210  * generated by kvm_mips_build_ret_to_host().
211  *
212  * Returns:	Next address after end of written function.
213  */
214 void *kvm_mips_build_vcpu_run(void *addr)
215 {
216 	u32 *p = addr;
217 	unsigned int i;
218 
219 	/*
220 	 * A0: run
221 	 * A1: vcpu
222 	 */
223 
224 	/* k0/k1 not being used in host kernel context */
225 	UASM_i_ADDIU(&p, K1, SP, -(int)sizeof(struct pt_regs));
226 	for (i = 16; i < 32; ++i) {
227 		if (i == 24)
228 			i = 28;
229 		UASM_i_SW(&p, i, offsetof(struct pt_regs, regs[i]), K1);
230 	}
231 
232 	/* Save host status */
233 	uasm_i_mfc0(&p, V0, C0_STATUS);
234 	UASM_i_SW(&p, V0, offsetof(struct pt_regs, cp0_status), K1);
235 
236 	/* Save scratch registers, will be used to store pointer to vcpu etc */
237 	kvm_mips_build_save_scratch(&p, V1, K1);
238 
239 	/* VCPU scratch register has pointer to vcpu */
240 	UASM_i_MTC0(&p, A1, scratch_vcpu[0], scratch_vcpu[1]);
241 
242 	/* Offset into vcpu->arch */
243 	UASM_i_ADDIU(&p, K1, A1, offsetof(struct kvm_vcpu, arch));
244 
245 	/*
246 	 * Save the host stack to VCPU, used for exception processing
247 	 * when we exit from the Guest
248 	 */
249 	UASM_i_SW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1);
250 
251 	/* Save the kernel gp as well */
252 	UASM_i_SW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1);
253 
254 	/*
255 	 * Setup status register for running the guest in UM, interrupts
256 	 * are disabled
257 	 */
258 	UASM_i_LA(&p, K0, ST0_EXL | KSU_USER | ST0_BEV | ST0_KX_IF_64);
259 	uasm_i_mtc0(&p, K0, C0_STATUS);
260 	uasm_i_ehb(&p);
261 
262 	/* load up the new EBASE */
263 	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1);
264 	build_set_exc_base(&p, K0);
265 
266 	/*
267 	 * Now that the new EBASE has been loaded, unset BEV, set
268 	 * interrupt mask as it was but make sure that timer interrupts
269 	 * are enabled
270 	 */
271 	uasm_i_addiu(&p, K0, ZERO, ST0_EXL | KSU_USER | ST0_IE | ST0_KX_IF_64);
272 	uasm_i_andi(&p, V0, V0, ST0_IM);
273 	uasm_i_or(&p, K0, K0, V0);
274 	uasm_i_mtc0(&p, K0, C0_STATUS);
275 	uasm_i_ehb(&p);
276 
277 	p = kvm_mips_build_enter_guest(p);
278 
279 	return p;
280 }
281 
282 /**
283  * kvm_mips_build_enter_guest() - Assemble code to resume guest execution.
284  * @addr:	Address to start writing code.
285  *
286  * Assemble the code to resume guest execution. This code is common between the
287  * initial entry into the guest from the host, and returning from the exit
288  * handler back to the guest.
289  *
290  * Returns:	Next address after end of written function.
291  */
292 static void *kvm_mips_build_enter_guest(void *addr)
293 {
294 	u32 *p = addr;
295 	unsigned int i;
296 	struct uasm_label labels[2];
297 	struct uasm_reloc relocs[2];
298 	struct uasm_label __maybe_unused *l = labels;
299 	struct uasm_reloc __maybe_unused *r = relocs;
300 
301 	memset(labels, 0, sizeof(labels));
302 	memset(relocs, 0, sizeof(relocs));
303 
304 	/* Set Guest EPC */
305 	UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, pc), K1);
306 	UASM_i_MTC0(&p, T0, C0_EPC);
307 
308 #ifdef CONFIG_KVM_MIPS_VZ
309 	/* Save normal linux process pgd (VZ guarantees pgd_reg is set) */
310 	UASM_i_MFC0(&p, K0, c0_kscratch(), pgd_reg);
311 	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_pgd), K1);
312 
313 	/*
314 	 * Set up KVM GPA pgd.
315 	 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
316 	 * - call tlbmiss_handler_setup_pgd(mm->pgd)
317 	 * - write mm->pgd into CP0_PWBase
318 	 *
319 	 * We keep S0 pointing at struct kvm so we can load the ASID below.
320 	 */
321 	UASM_i_LW(&p, S0, (int)offsetof(struct kvm_vcpu, kvm) -
322 			  (int)offsetof(struct kvm_vcpu, arch), K1);
323 	UASM_i_LW(&p, A0, offsetof(struct kvm, arch.gpa_mm.pgd), S0);
324 	UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
325 	uasm_i_jalr(&p, RA, T9);
326 	/* delay slot */
327 	if (cpu_has_htw)
328 		UASM_i_MTC0(&p, A0, C0_PWBASE);
329 	else
330 		uasm_i_nop(&p);
331 
332 	/* Set GM bit to setup eret to VZ guest context */
333 	uasm_i_addiu(&p, V1, ZERO, 1);
334 	uasm_i_mfc0(&p, K0, C0_GUESTCTL0);
335 	uasm_i_ins(&p, K0, V1, MIPS_GCTL0_GM_SHIFT, 1);
336 	uasm_i_mtc0(&p, K0, C0_GUESTCTL0);
337 
338 	if (cpu_has_guestid) {
339 		/*
340 		 * Set root mode GuestID, so that root TLB refill handler can
341 		 * use the correct GuestID in the root TLB.
342 		 */
343 
344 		/* Get current GuestID */
345 		uasm_i_mfc0(&p, T0, C0_GUESTCTL1);
346 		/* Set GuestCtl1.RID = GuestCtl1.ID */
347 		uasm_i_ext(&p, T1, T0, MIPS_GCTL1_ID_SHIFT,
348 			   MIPS_GCTL1_ID_WIDTH);
349 		uasm_i_ins(&p, T0, T1, MIPS_GCTL1_RID_SHIFT,
350 			   MIPS_GCTL1_RID_WIDTH);
351 		uasm_i_mtc0(&p, T0, C0_GUESTCTL1);
352 
353 		/* GuestID handles dealiasing so we don't need to touch ASID */
354 		goto skip_asid_restore;
355 	}
356 
357 	/* Root ASID Dealias (RAD) */
358 
359 	/* Save host ASID */
360 	UASM_i_MFC0(&p, K0, C0_ENTRYHI);
361 	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi),
362 		  K1);
363 
364 	/* Set the root ASID for the Guest */
365 	UASM_i_ADDIU(&p, T1, S0,
366 		     offsetof(struct kvm, arch.gpa_mm.context.asid));
367 #else
368 	/* Set the ASID for the Guest Kernel or User */
369 	UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, cop0), K1);
370 	UASM_i_LW(&p, T0, offsetof(struct mips_coproc, reg[MIPS_CP0_STATUS][0]),
371 		  T0);
372 	uasm_i_andi(&p, T0, T0, KSU_USER | ST0_ERL | ST0_EXL);
373 	uasm_i_xori(&p, T0, T0, KSU_USER);
374 	uasm_il_bnez(&p, &r, T0, label_kernel_asid);
375 	 UASM_i_ADDIU(&p, T1, K1, offsetof(struct kvm_vcpu_arch,
376 					   guest_kernel_mm.context.asid));
377 	/* else user */
378 	UASM_i_ADDIU(&p, T1, K1, offsetof(struct kvm_vcpu_arch,
379 					  guest_user_mm.context.asid));
380 	uasm_l_kernel_asid(&l, p);
381 #endif
382 
383 	/* t1: contains the base of the ASID array, need to get the cpu id  */
384 	/* smp_processor_id */
385 	uasm_i_lw(&p, T2, offsetof(struct thread_info, cpu), GP);
386 	/* index the ASID array */
387 	uasm_i_sll(&p, T2, T2, ilog2(sizeof(long)));
388 	UASM_i_ADDU(&p, T3, T1, T2);
389 	UASM_i_LW(&p, K0, 0, T3);
390 #ifdef CONFIG_MIPS_ASID_BITS_VARIABLE
391 	/*
392 	 * reuse ASID array offset
393 	 * cpuinfo_mips is a multiple of sizeof(long)
394 	 */
395 	uasm_i_addiu(&p, T3, ZERO, sizeof(struct cpuinfo_mips)/sizeof(long));
396 	uasm_i_mul(&p, T2, T2, T3);
397 
398 	UASM_i_LA_mostly(&p, AT, (long)&cpu_data[0].asid_mask);
399 	UASM_i_ADDU(&p, AT, AT, T2);
400 	UASM_i_LW(&p, T2, uasm_rel_lo((long)&cpu_data[0].asid_mask), AT);
401 	uasm_i_and(&p, K0, K0, T2);
402 #else
403 	uasm_i_andi(&p, K0, K0, MIPS_ENTRYHI_ASID);
404 #endif
405 
406 #ifndef CONFIG_KVM_MIPS_VZ
407 	/*
408 	 * Set up KVM T&E GVA pgd.
409 	 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
410 	 * - call tlbmiss_handler_setup_pgd(mm->pgd)
411 	 * - but skips write into CP0_PWBase for now
412 	 */
413 	UASM_i_LW(&p, A0, (int)offsetof(struct mm_struct, pgd) -
414 			  (int)offsetof(struct mm_struct, context.asid), T1);
415 
416 	UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
417 	uasm_i_jalr(&p, RA, T9);
418 	 uasm_i_mtc0(&p, K0, C0_ENTRYHI);
419 #else
420 	/* Set up KVM VZ root ASID (!guestid) */
421 	uasm_i_mtc0(&p, K0, C0_ENTRYHI);
422 skip_asid_restore:
423 #endif
424 	uasm_i_ehb(&p);
425 
426 	/* Disable RDHWR access */
427 	uasm_i_mtc0(&p, ZERO, C0_HWRENA);
428 
429 	/* load the guest context from VCPU and return */
430 	for (i = 1; i < 32; ++i) {
431 		/* Guest k0/k1 loaded later */
432 		if (i == K0 || i == K1)
433 			continue;
434 		UASM_i_LW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1);
435 	}
436 
437 #ifndef CONFIG_CPU_MIPSR6
438 	/* Restore hi/lo */
439 	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, hi), K1);
440 	uasm_i_mthi(&p, K0);
441 
442 	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, lo), K1);
443 	uasm_i_mtlo(&p, K0);
444 #endif
445 
446 	/* Restore the guest's k0/k1 registers */
447 	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1);
448 	UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1);
449 
450 	/* Jump to guest */
451 	uasm_i_eret(&p);
452 
453 	uasm_resolve_relocs(relocs, labels);
454 
455 	return p;
456 }
457 
458 /**
459  * kvm_mips_build_tlb_refill_exception() - Assemble TLB refill handler.
460  * @addr:	Address to start writing code.
461  * @handler:	Address of common handler (within range of @addr).
462  *
463  * Assemble TLB refill exception fast path handler for guest execution.
464  *
465  * Returns:	Next address after end of written function.
466  */
467 void *kvm_mips_build_tlb_refill_exception(void *addr, void *handler)
468 {
469 	u32 *p = addr;
470 	struct uasm_label labels[2];
471 	struct uasm_reloc relocs[2];
472 	struct uasm_label *l = labels;
473 	struct uasm_reloc *r = relocs;
474 
475 	memset(labels, 0, sizeof(labels));
476 	memset(relocs, 0, sizeof(relocs));
477 
478 	/* Save guest k1 into scratch register */
479 	UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
480 
481 	/* Get the VCPU pointer from the VCPU scratch register */
482 	UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
483 
484 	/* Save guest k0 into VCPU structure */
485 	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1);
486 
487 	/*
488 	 * Some of the common tlbex code uses current_cpu_type(). For KVM we
489 	 * assume symmetry and just disable preemption to silence the warning.
490 	 */
491 	preempt_disable();
492 
493 	/*
494 	 * Now for the actual refill bit. A lot of this can be common with the
495 	 * Linux TLB refill handler, however we don't need to handle so many
496 	 * cases. We only need to handle user mode refills, and user mode runs
497 	 * with 32-bit addressing.
498 	 *
499 	 * Therefore the branch to label_vmalloc generated by build_get_pmde64()
500 	 * that isn't resolved should never actually get taken and is harmless
501 	 * to leave in place for now.
502 	 */
503 
504 #ifdef CONFIG_64BIT
505 	build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
506 #else
507 	build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
508 #endif
509 
510 	/* we don't support huge pages yet */
511 
512 	build_get_ptep(&p, K0, K1);
513 	build_update_entries(&p, K0, K1);
514 	build_tlb_write_entry(&p, &l, &r, tlb_random);
515 
516 	preempt_enable();
517 
518 	/* Get the VCPU pointer from the VCPU scratch register again */
519 	UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
520 
521 	/* Restore the guest's k0/k1 registers */
522 	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1);
523 	uasm_i_ehb(&p);
524 	UASM_i_MFC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
525 
526 	/* Jump to guest */
527 	uasm_i_eret(&p);
528 
529 	return p;
530 }
531 
532 /**
533  * kvm_mips_build_exception() - Assemble first level guest exception handler.
534  * @addr:	Address to start writing code.
535  * @handler:	Address of common handler (within range of @addr).
536  *
537  * Assemble exception vector code for guest execution. The generated vector will
538  * branch to the common exception handler generated by kvm_mips_build_exit().
539  *
540  * Returns:	Next address after end of written function.
541  */
542 void *kvm_mips_build_exception(void *addr, void *handler)
543 {
544 	u32 *p = addr;
545 	struct uasm_label labels[2];
546 	struct uasm_reloc relocs[2];
547 	struct uasm_label *l = labels;
548 	struct uasm_reloc *r = relocs;
549 
550 	memset(labels, 0, sizeof(labels));
551 	memset(relocs, 0, sizeof(relocs));
552 
553 	/* Save guest k1 into scratch register */
554 	UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
555 
556 	/* Get the VCPU pointer from the VCPU scratch register */
557 	UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
558 	UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch));
559 
560 	/* Save guest k0 into VCPU structure */
561 	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1);
562 
563 	/* Branch to the common handler */
564 	uasm_il_b(&p, &r, label_exit_common);
565 	 uasm_i_nop(&p);
566 
567 	uasm_l_exit_common(&l, handler);
568 	uasm_resolve_relocs(relocs, labels);
569 
570 	return p;
571 }
572 
573 /**
574  * kvm_mips_build_exit() - Assemble common guest exit handler.
575  * @addr:	Address to start writing code.
576  *
577  * Assemble the generic guest exit handling code. This is called by the
578  * exception vectors (generated by kvm_mips_build_exception()), and calls
579  * kvm_mips_handle_exit(), then either resumes the guest or returns to the host
580  * depending on the return value.
581  *
582  * Returns:	Next address after end of written function.
583  */
584 void *kvm_mips_build_exit(void *addr)
585 {
586 	u32 *p = addr;
587 	unsigned int i;
588 	struct uasm_label labels[3];
589 	struct uasm_reloc relocs[3];
590 	struct uasm_label *l = labels;
591 	struct uasm_reloc *r = relocs;
592 
593 	memset(labels, 0, sizeof(labels));
594 	memset(relocs, 0, sizeof(relocs));
595 
596 	/*
597 	 * Generic Guest exception handler. We end up here when the guest
598 	 * does something that causes a trap to kernel mode.
599 	 *
600 	 * Both k0/k1 registers will have already been saved (k0 into the vcpu
601 	 * structure, and k1 into the scratch_tmp register).
602 	 *
603 	 * The k1 register will already contain the kvm_vcpu_arch pointer.
604 	 */
605 
606 	/* Start saving Guest context to VCPU */
607 	for (i = 0; i < 32; ++i) {
608 		/* Guest k0/k1 saved later */
609 		if (i == K0 || i == K1)
610 			continue;
611 		UASM_i_SW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1);
612 	}
613 
614 #ifndef CONFIG_CPU_MIPSR6
615 	/* We need to save hi/lo and restore them on the way out */
616 	uasm_i_mfhi(&p, T0);
617 	UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, hi), K1);
618 
619 	uasm_i_mflo(&p, T0);
620 	UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, lo), K1);
621 #endif
622 
623 	/* Finally save guest k1 to VCPU */
624 	uasm_i_ehb(&p);
625 	UASM_i_MFC0(&p, T0, scratch_tmp[0], scratch_tmp[1]);
626 	UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1);
627 
628 	/* Now that context has been saved, we can use other registers */
629 
630 	/* Restore vcpu */
631 	UASM_i_MFC0(&p, S1, scratch_vcpu[0], scratch_vcpu[1]);
632 
633 	/* Restore run (vcpu->run) */
634 	UASM_i_LW(&p, S0, offsetof(struct kvm_vcpu, run), S1);
635 
636 	/*
637 	 * Save Host level EPC, BadVaddr and Cause to VCPU, useful to process
638 	 * the exception
639 	 */
640 	UASM_i_MFC0(&p, K0, C0_EPC);
641 	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, pc), K1);
642 
643 	UASM_i_MFC0(&p, K0, C0_BADVADDR);
644 	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_badvaddr),
645 		  K1);
646 
647 	uasm_i_mfc0(&p, K0, C0_CAUSE);
648 	uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_cause), K1);
649 
650 	if (cpu_has_badinstr) {
651 		uasm_i_mfc0(&p, K0, C0_BADINSTR);
652 		uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch,
653 					   host_cp0_badinstr), K1);
654 	}
655 
656 	if (cpu_has_badinstrp) {
657 		uasm_i_mfc0(&p, K0, C0_BADINSTRP);
658 		uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch,
659 					   host_cp0_badinstrp), K1);
660 	}
661 
662 	/* Now restore the host state just enough to run the handlers */
663 
664 	/* Switch EBASE to the one used by Linux */
665 	/* load up the host EBASE */
666 	uasm_i_mfc0(&p, V0, C0_STATUS);
667 
668 	uasm_i_lui(&p, AT, ST0_BEV >> 16);
669 	uasm_i_or(&p, K0, V0, AT);
670 
671 	uasm_i_mtc0(&p, K0, C0_STATUS);
672 	uasm_i_ehb(&p);
673 
674 	UASM_i_LA_mostly(&p, K0, (long)&ebase);
675 	UASM_i_LW(&p, K0, uasm_rel_lo((long)&ebase), K0);
676 	build_set_exc_base(&p, K0);
677 
678 	if (raw_cpu_has_fpu) {
679 		/*
680 		 * If FPU is enabled, save FCR31 and clear it so that later
681 		 * ctc1's don't trigger FPE for pending exceptions.
682 		 */
683 		uasm_i_lui(&p, AT, ST0_CU1 >> 16);
684 		uasm_i_and(&p, V1, V0, AT);
685 		uasm_il_beqz(&p, &r, V1, label_fpu_1);
686 		 uasm_i_nop(&p);
687 		uasm_i_cfc1(&p, T0, 31);
688 		uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.fcr31),
689 			  K1);
690 		uasm_i_ctc1(&p, ZERO, 31);
691 		uasm_l_fpu_1(&l, p);
692 	}
693 
694 	if (cpu_has_msa) {
695 		/*
696 		 * If MSA is enabled, save MSACSR and clear it so that later
697 		 * instructions don't trigger MSAFPE for pending exceptions.
698 		 */
699 		uasm_i_mfc0(&p, T0, C0_CONFIG5);
700 		uasm_i_ext(&p, T0, T0, 27, 1); /* MIPS_CONF5_MSAEN */
701 		uasm_il_beqz(&p, &r, T0, label_msa_1);
702 		 uasm_i_nop(&p);
703 		uasm_i_cfcmsa(&p, T0, MSA_CSR);
704 		uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.msacsr),
705 			  K1);
706 		uasm_i_ctcmsa(&p, MSA_CSR, ZERO);
707 		uasm_l_msa_1(&l, p);
708 	}
709 
710 #ifdef CONFIG_KVM_MIPS_VZ
711 	/* Restore host ASID */
712 	if (!cpu_has_guestid) {
713 		UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi),
714 			  K1);
715 		UASM_i_MTC0(&p, K0, C0_ENTRYHI);
716 	}
717 
718 	/*
719 	 * Set up normal Linux process pgd.
720 	 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
721 	 * - call tlbmiss_handler_setup_pgd(mm->pgd)
722 	 * - write mm->pgd into CP0_PWBase
723 	 */
724 	UASM_i_LW(&p, A0,
725 		  offsetof(struct kvm_vcpu_arch, host_pgd), K1);
726 	UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
727 	uasm_i_jalr(&p, RA, T9);
728 	/* delay slot */
729 	if (cpu_has_htw)
730 		UASM_i_MTC0(&p, A0, C0_PWBASE);
731 	else
732 		uasm_i_nop(&p);
733 
734 	/* Clear GM bit so we don't enter guest mode when EXL is cleared */
735 	uasm_i_mfc0(&p, K0, C0_GUESTCTL0);
736 	uasm_i_ins(&p, K0, ZERO, MIPS_GCTL0_GM_SHIFT, 1);
737 	uasm_i_mtc0(&p, K0, C0_GUESTCTL0);
738 
739 	/* Save GuestCtl0 so we can access GExcCode after CPU migration */
740 	uasm_i_sw(&p, K0,
741 		  offsetof(struct kvm_vcpu_arch, host_cp0_guestctl0), K1);
742 
743 	if (cpu_has_guestid) {
744 		/*
745 		 * Clear root mode GuestID, so that root TLB operations use the
746 		 * root GuestID in the root TLB.
747 		 */
748 		uasm_i_mfc0(&p, T0, C0_GUESTCTL1);
749 		/* Set GuestCtl1.RID = MIPS_GCTL1_ROOT_GUESTID (i.e. 0) */
750 		uasm_i_ins(&p, T0, ZERO, MIPS_GCTL1_RID_SHIFT,
751 			   MIPS_GCTL1_RID_WIDTH);
752 		uasm_i_mtc0(&p, T0, C0_GUESTCTL1);
753 	}
754 #endif
755 
756 	/* Now that the new EBASE has been loaded, unset BEV and KSU_USER */
757 	uasm_i_addiu(&p, AT, ZERO, ~(ST0_EXL | KSU_USER | ST0_IE));
758 	uasm_i_and(&p, V0, V0, AT);
759 	uasm_i_lui(&p, AT, ST0_CU0 >> 16);
760 	uasm_i_or(&p, V0, V0, AT);
761 #ifdef CONFIG_64BIT
762 	uasm_i_ori(&p, V0, V0, ST0_SX | ST0_UX);
763 #endif
764 	uasm_i_mtc0(&p, V0, C0_STATUS);
765 	uasm_i_ehb(&p);
766 
767 	/* Load up host GP */
768 	UASM_i_LW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1);
769 
770 	/* Need a stack before we can jump to "C" */
771 	UASM_i_LW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1);
772 
773 	/* Saved host state */
774 	UASM_i_ADDIU(&p, SP, SP, -(int)sizeof(struct pt_regs));
775 
776 	/*
777 	 * XXXKYMA do we need to load the host ASID, maybe not because the
778 	 * kernel entries are marked GLOBAL, need to verify
779 	 */
780 
781 	/* Restore host scratch registers, as we'll have clobbered them */
782 	kvm_mips_build_restore_scratch(&p, K0, SP);
783 
784 	/* Restore RDHWR access */
785 	UASM_i_LA_mostly(&p, K0, (long)&hwrena);
786 	uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0);
787 	uasm_i_mtc0(&p, K0, C0_HWRENA);
788 
789 	/* Jump to handler */
790 	/*
791 	 * XXXKYMA: not sure if this is safe, how large is the stack??
792 	 * Now jump to the kvm_mips_handle_exit() to see if we can deal
793 	 * with this in the kernel
794 	 */
795 	uasm_i_move(&p, A0, S0);
796 	uasm_i_move(&p, A1, S1);
797 	UASM_i_LA(&p, T9, (unsigned long)kvm_mips_handle_exit);
798 	uasm_i_jalr(&p, RA, T9);
799 	 UASM_i_ADDIU(&p, SP, SP, -CALLFRAME_SIZ);
800 
801 	uasm_resolve_relocs(relocs, labels);
802 
803 	p = kvm_mips_build_ret_from_exit(p);
804 
805 	return p;
806 }
807 
808 /**
809  * kvm_mips_build_ret_from_exit() - Assemble guest exit return handler.
810  * @addr:	Address to start writing code.
811  *
812  * Assemble the code to handle the return from kvm_mips_handle_exit(), either
813  * resuming the guest or returning to the host depending on the return value.
814  *
815  * Returns:	Next address after end of written function.
816  */
817 static void *kvm_mips_build_ret_from_exit(void *addr)
818 {
819 	u32 *p = addr;
820 	struct uasm_label labels[2];
821 	struct uasm_reloc relocs[2];
822 	struct uasm_label *l = labels;
823 	struct uasm_reloc *r = relocs;
824 
825 	memset(labels, 0, sizeof(labels));
826 	memset(relocs, 0, sizeof(relocs));
827 
828 	/* Return from handler Make sure interrupts are disabled */
829 	uasm_i_di(&p, ZERO);
830 	uasm_i_ehb(&p);
831 
832 	/*
833 	 * XXXKYMA: k0/k1 could have been blown away if we processed
834 	 * an exception while we were handling the exception from the
835 	 * guest, reload k1
836 	 */
837 
838 	uasm_i_move(&p, K1, S1);
839 	UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch));
840 
841 	/*
842 	 * Check return value, should tell us if we are returning to the
843 	 * host (handle I/O etc)or resuming the guest
844 	 */
845 	uasm_i_andi(&p, T0, V0, RESUME_HOST);
846 	uasm_il_bnez(&p, &r, T0, label_return_to_host);
847 	 uasm_i_nop(&p);
848 
849 	p = kvm_mips_build_ret_to_guest(p);
850 
851 	uasm_l_return_to_host(&l, p);
852 	p = kvm_mips_build_ret_to_host(p);
853 
854 	uasm_resolve_relocs(relocs, labels);
855 
856 	return p;
857 }
858 
859 /**
860  * kvm_mips_build_ret_to_guest() - Assemble code to return to the guest.
861  * @addr:	Address to start writing code.
862  *
863  * Assemble the code to handle return from the guest exit handler
864  * (kvm_mips_handle_exit()) back to the guest.
865  *
866  * Returns:	Next address after end of written function.
867  */
868 static void *kvm_mips_build_ret_to_guest(void *addr)
869 {
870 	u32 *p = addr;
871 
872 	/* Put the saved pointer to vcpu (s1) back into the scratch register */
873 	UASM_i_MTC0(&p, S1, scratch_vcpu[0], scratch_vcpu[1]);
874 
875 	/* Load up the Guest EBASE to minimize the window where BEV is set */
876 	UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1);
877 
878 	/* Switch EBASE back to the one used by KVM */
879 	uasm_i_mfc0(&p, V1, C0_STATUS);
880 	uasm_i_lui(&p, AT, ST0_BEV >> 16);
881 	uasm_i_or(&p, K0, V1, AT);
882 	uasm_i_mtc0(&p, K0, C0_STATUS);
883 	uasm_i_ehb(&p);
884 	build_set_exc_base(&p, T0);
885 
886 	/* Setup status register for running guest in UM */
887 	uasm_i_ori(&p, V1, V1, ST0_EXL | KSU_USER | ST0_IE);
888 	UASM_i_LA(&p, AT, ~(ST0_CU0 | ST0_MX | ST0_SX | ST0_UX));
889 	uasm_i_and(&p, V1, V1, AT);
890 	uasm_i_mtc0(&p, V1, C0_STATUS);
891 	uasm_i_ehb(&p);
892 
893 	p = kvm_mips_build_enter_guest(p);
894 
895 	return p;
896 }
897 
898 /**
899  * kvm_mips_build_ret_to_host() - Assemble code to return to the host.
900  * @addr:	Address to start writing code.
901  *
902  * Assemble the code to handle return from the guest exit handler
903  * (kvm_mips_handle_exit()) back to the host, i.e. to the caller of the vcpu_run
904  * function generated by kvm_mips_build_vcpu_run().
905  *
906  * Returns:	Next address after end of written function.
907  */
908 static void *kvm_mips_build_ret_to_host(void *addr)
909 {
910 	u32 *p = addr;
911 	unsigned int i;
912 
913 	/* EBASE is already pointing to Linux */
914 	UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, host_stack), K1);
915 	UASM_i_ADDIU(&p, K1, K1, -(int)sizeof(struct pt_regs));
916 
917 	/*
918 	 * r2/v0 is the return code, shift it down by 2 (arithmetic)
919 	 * to recover the err code
920 	 */
921 	uasm_i_sra(&p, K0, V0, 2);
922 	uasm_i_move(&p, V0, K0);
923 
924 	/* Load context saved on the host stack */
925 	for (i = 16; i < 31; ++i) {
926 		if (i == 24)
927 			i = 28;
928 		UASM_i_LW(&p, i, offsetof(struct pt_regs, regs[i]), K1);
929 	}
930 
931 	/* Restore RDHWR access */
932 	UASM_i_LA_mostly(&p, K0, (long)&hwrena);
933 	uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0);
934 	uasm_i_mtc0(&p, K0, C0_HWRENA);
935 
936 	/* Restore RA, which is the address we will return to */
937 	UASM_i_LW(&p, RA, offsetof(struct pt_regs, regs[RA]), K1);
938 	uasm_i_jr(&p, RA);
939 	 uasm_i_nop(&p);
940 
941 	return p;
942 }
943 
944