1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Generation of main entry point for the guest, exception handling.
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 *
11 * Copyright (C) 2016 Imagination Technologies Ltd.
12 */
13
14 #include <linux/kvm_host.h>
15 #include <linux/log2.h>
16 #include <asm/mmu_context.h>
17 #include <asm/msa.h>
18 #include <asm/setup.h>
19 #include <asm/tlbex.h>
20 #include <asm/uasm.h>
21
22 /* Register names */
23 #define ZERO 0
24 #define AT 1
25 #define V0 2
26 #define V1 3
27 #define A0 4
28 #define A1 5
29
30 #if _MIPS_SIM == _MIPS_SIM_ABI32
31 #define T0 8
32 #define T1 9
33 #define T2 10
34 #define T3 11
35 #endif /* _MIPS_SIM == _MIPS_SIM_ABI32 */
36
37 #if _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32
38 #define T0 12
39 #define T1 13
40 #define T2 14
41 #define T3 15
42 #endif /* _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32 */
43
44 #define S0 16
45 #define S1 17
46 #define T9 25
47 #define K0 26
48 #define K1 27
49 #define GP 28
50 #define SP 29
51 #define RA 31
52
53 /* Some CP0 registers */
54 #define C0_PWBASE 5, 5
55 #define C0_HWRENA 7, 0
56 #define C0_BADVADDR 8, 0
57 #define C0_BADINSTR 8, 1
58 #define C0_BADINSTRP 8, 2
59 #define C0_PGD 9, 7
60 #define C0_ENTRYHI 10, 0
61 #define C0_GUESTCTL1 10, 4
62 #define C0_STATUS 12, 0
63 #define C0_GUESTCTL0 12, 6
64 #define C0_CAUSE 13, 0
65 #define C0_EPC 14, 0
66 #define C0_EBASE 15, 1
67 #define C0_CONFIG5 16, 5
68 #define C0_DDATA_LO 28, 3
69 #define C0_ERROREPC 30, 0
70
71 #define CALLFRAME_SIZ 32
72
73 #ifdef CONFIG_64BIT
74 #define ST0_KX_IF_64 ST0_KX
75 #else
76 #define ST0_KX_IF_64 0
77 #endif
78
79 static unsigned int scratch_vcpu[2] = { C0_DDATA_LO };
80 static unsigned int scratch_tmp[2] = { C0_ERROREPC };
81
82 enum label_id {
83 label_fpu_1 = 1,
84 label_msa_1,
85 label_return_to_host,
86 label_kernel_asid,
87 label_exit_common,
88 };
89
90 UASM_L_LA(_fpu_1)
91 UASM_L_LA(_msa_1)
92 UASM_L_LA(_return_to_host)
93 UASM_L_LA(_kernel_asid)
94 UASM_L_LA(_exit_common)
95
96 static void *kvm_mips_build_enter_guest(void *addr);
97 static void *kvm_mips_build_ret_from_exit(void *addr);
98 static void *kvm_mips_build_ret_to_guest(void *addr);
99 static void *kvm_mips_build_ret_to_host(void *addr);
100
101 /*
102 * The version of this function in tlbex.c uses current_cpu_type(), but for KVM
103 * we assume symmetry.
104 */
c0_kscratch(void)105 static int c0_kscratch(void)
106 {
107 return 31;
108 }
109
110 /**
111 * kvm_mips_entry_setup() - Perform global setup for entry code.
112 *
113 * Perform global setup for entry code, such as choosing a scratch register.
114 *
115 * Returns: 0 on success.
116 * -errno on failure.
117 */
kvm_mips_entry_setup(void)118 int kvm_mips_entry_setup(void)
119 {
120 /*
121 * We prefer to use KScratchN registers if they are available over the
122 * defaults above, which may not work on all cores.
123 */
124 unsigned int kscratch_mask = cpu_data[0].kscratch_mask;
125
126 if (pgd_reg != -1)
127 kscratch_mask &= ~BIT(pgd_reg);
128
129 /* Pick a scratch register for storing VCPU */
130 if (kscratch_mask) {
131 scratch_vcpu[0] = c0_kscratch();
132 scratch_vcpu[1] = ffs(kscratch_mask) - 1;
133 kscratch_mask &= ~BIT(scratch_vcpu[1]);
134 }
135
136 /* Pick a scratch register to use as a temp for saving state */
137 if (kscratch_mask) {
138 scratch_tmp[0] = c0_kscratch();
139 scratch_tmp[1] = ffs(kscratch_mask) - 1;
140 kscratch_mask &= ~BIT(scratch_tmp[1]);
141 }
142
143 return 0;
144 }
145
kvm_mips_build_save_scratch(u32 ** p,unsigned int tmp,unsigned int frame)146 static void kvm_mips_build_save_scratch(u32 **p, unsigned int tmp,
147 unsigned int frame)
148 {
149 /* Save the VCPU scratch register value in cp0_epc of the stack frame */
150 UASM_i_MFC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
151 UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
152
153 /* Save the temp scratch register value in cp0_cause of stack frame */
154 if (scratch_tmp[0] == c0_kscratch()) {
155 UASM_i_MFC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
156 UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
157 }
158 }
159
kvm_mips_build_restore_scratch(u32 ** p,unsigned int tmp,unsigned int frame)160 static void kvm_mips_build_restore_scratch(u32 **p, unsigned int tmp,
161 unsigned int frame)
162 {
163 /*
164 * Restore host scratch register values saved by
165 * kvm_mips_build_save_scratch().
166 */
167 UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
168 UASM_i_MTC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
169
170 if (scratch_tmp[0] == c0_kscratch()) {
171 UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
172 UASM_i_MTC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
173 }
174 }
175
176 /**
177 * build_set_exc_base() - Assemble code to write exception base address.
178 * @p: Code buffer pointer.
179 * @reg: Source register (generated code may set WG bit in @reg).
180 *
181 * Assemble code to modify the exception base address in the EBase register,
182 * using the appropriately sized access and setting the WG bit if necessary.
183 */
build_set_exc_base(u32 ** p,unsigned int reg)184 static inline void build_set_exc_base(u32 **p, unsigned int reg)
185 {
186 if (cpu_has_ebase_wg) {
187 /* Set WG so that all the bits get written */
188 uasm_i_ori(p, reg, reg, MIPS_EBASE_WG);
189 UASM_i_MTC0(p, reg, C0_EBASE);
190 } else {
191 uasm_i_mtc0(p, reg, C0_EBASE);
192 }
193 }
194
195 /**
196 * kvm_mips_build_vcpu_run() - Assemble function to start running a guest VCPU.
197 * @addr: Address to start writing code.
198 *
199 * Assemble the start of the vcpu_run function to run a guest VCPU. The function
200 * conforms to the following prototype:
201 *
202 * int vcpu_run(struct kvm_vcpu *vcpu);
203 *
204 * The exit from the guest and return to the caller is handled by the code
205 * generated by kvm_mips_build_ret_to_host().
206 *
207 * Returns: Next address after end of written function.
208 */
kvm_mips_build_vcpu_run(void * addr)209 void *kvm_mips_build_vcpu_run(void *addr)
210 {
211 u32 *p = addr;
212 unsigned int i;
213
214 /*
215 * A0: vcpu
216 */
217
218 /* k0/k1 not being used in host kernel context */
219 UASM_i_ADDIU(&p, K1, SP, -(int)sizeof(struct pt_regs));
220 for (i = 16; i < 32; ++i) {
221 if (i == 24)
222 i = 28;
223 UASM_i_SW(&p, i, offsetof(struct pt_regs, regs[i]), K1);
224 }
225
226 /* Save host status */
227 uasm_i_mfc0(&p, V0, C0_STATUS);
228 UASM_i_SW(&p, V0, offsetof(struct pt_regs, cp0_status), K1);
229
230 /* Save scratch registers, will be used to store pointer to vcpu etc */
231 kvm_mips_build_save_scratch(&p, V1, K1);
232
233 /* VCPU scratch register has pointer to vcpu */
234 UASM_i_MTC0(&p, A0, scratch_vcpu[0], scratch_vcpu[1]);
235
236 /* Offset into vcpu->arch */
237 UASM_i_ADDIU(&p, K1, A0, offsetof(struct kvm_vcpu, arch));
238
239 /*
240 * Save the host stack to VCPU, used for exception processing
241 * when we exit from the Guest
242 */
243 UASM_i_SW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1);
244
245 /* Save the kernel gp as well */
246 UASM_i_SW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1);
247
248 /*
249 * Setup status register for running the guest in UM, interrupts
250 * are disabled
251 */
252 UASM_i_LA(&p, K0, ST0_EXL | KSU_USER | ST0_BEV | ST0_KX_IF_64);
253 uasm_i_mtc0(&p, K0, C0_STATUS);
254 uasm_i_ehb(&p);
255
256 /* load up the new EBASE */
257 UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1);
258 build_set_exc_base(&p, K0);
259
260 /*
261 * Now that the new EBASE has been loaded, unset BEV, set
262 * interrupt mask as it was but make sure that timer interrupts
263 * are enabled
264 */
265 uasm_i_addiu(&p, K0, ZERO, ST0_EXL | KSU_USER | ST0_IE | ST0_KX_IF_64);
266 uasm_i_andi(&p, V0, V0, ST0_IM);
267 uasm_i_or(&p, K0, K0, V0);
268 uasm_i_mtc0(&p, K0, C0_STATUS);
269 uasm_i_ehb(&p);
270
271 p = kvm_mips_build_enter_guest(p);
272
273 return p;
274 }
275
276 /**
277 * kvm_mips_build_enter_guest() - Assemble code to resume guest execution.
278 * @addr: Address to start writing code.
279 *
280 * Assemble the code to resume guest execution. This code is common between the
281 * initial entry into the guest from the host, and returning from the exit
282 * handler back to the guest.
283 *
284 * Returns: Next address after end of written function.
285 */
kvm_mips_build_enter_guest(void * addr)286 static void *kvm_mips_build_enter_guest(void *addr)
287 {
288 u32 *p = addr;
289 unsigned int i;
290 struct uasm_label labels[2];
291 struct uasm_reloc relocs[2];
292 struct uasm_label __maybe_unused *l = labels;
293 struct uasm_reloc __maybe_unused *r = relocs;
294
295 memset(labels, 0, sizeof(labels));
296 memset(relocs, 0, sizeof(relocs));
297
298 /* Set Guest EPC */
299 UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, pc), K1);
300 UASM_i_MTC0(&p, T0, C0_EPC);
301
302 /* Save normal linux process pgd (VZ guarantees pgd_reg is set) */
303 if (cpu_has_ldpte)
304 UASM_i_MFC0(&p, K0, C0_PWBASE);
305 else
306 UASM_i_MFC0(&p, K0, c0_kscratch(), pgd_reg);
307 UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_pgd), K1);
308
309 /*
310 * Set up KVM GPA pgd.
311 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
312 * - call tlbmiss_handler_setup_pgd(mm->pgd)
313 * - write mm->pgd into CP0_PWBase
314 *
315 * We keep S0 pointing at struct kvm so we can load the ASID below.
316 */
317 UASM_i_LW(&p, S0, (int)offsetof(struct kvm_vcpu, kvm) -
318 (int)offsetof(struct kvm_vcpu, arch), K1);
319 UASM_i_LW(&p, A0, offsetof(struct kvm, arch.gpa_mm.pgd), S0);
320 UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
321 uasm_i_jalr(&p, RA, T9);
322 /* delay slot */
323 if (cpu_has_htw)
324 UASM_i_MTC0(&p, A0, C0_PWBASE);
325 else
326 uasm_i_nop(&p);
327
328 /* Set GM bit to setup eret to VZ guest context */
329 uasm_i_addiu(&p, V1, ZERO, 1);
330 uasm_i_mfc0(&p, K0, C0_GUESTCTL0);
331 uasm_i_ins(&p, K0, V1, MIPS_GCTL0_GM_SHIFT, 1);
332 uasm_i_mtc0(&p, K0, C0_GUESTCTL0);
333
334 if (cpu_has_guestid) {
335 /*
336 * Set root mode GuestID, so that root TLB refill handler can
337 * use the correct GuestID in the root TLB.
338 */
339
340 /* Get current GuestID */
341 uasm_i_mfc0(&p, T0, C0_GUESTCTL1);
342 /* Set GuestCtl1.RID = GuestCtl1.ID */
343 uasm_i_ext(&p, T1, T0, MIPS_GCTL1_ID_SHIFT,
344 MIPS_GCTL1_ID_WIDTH);
345 uasm_i_ins(&p, T0, T1, MIPS_GCTL1_RID_SHIFT,
346 MIPS_GCTL1_RID_WIDTH);
347 uasm_i_mtc0(&p, T0, C0_GUESTCTL1);
348
349 /* GuestID handles dealiasing so we don't need to touch ASID */
350 goto skip_asid_restore;
351 }
352
353 /* Root ASID Dealias (RAD) */
354
355 /* Save host ASID */
356 UASM_i_MFC0(&p, K0, C0_ENTRYHI);
357 UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi),
358 K1);
359
360 /* Set the root ASID for the Guest */
361 UASM_i_ADDIU(&p, T1, S0,
362 offsetof(struct kvm, arch.gpa_mm.context.asid));
363
364 /* t1: contains the base of the ASID array, need to get the cpu id */
365 /* smp_processor_id */
366 uasm_i_lw(&p, T2, offsetof(struct thread_info, cpu), GP);
367 /* index the ASID array */
368 uasm_i_sll(&p, T2, T2, ilog2(sizeof(long)));
369 UASM_i_ADDU(&p, T3, T1, T2);
370 UASM_i_LW(&p, K0, 0, T3);
371 #ifdef CONFIG_MIPS_ASID_BITS_VARIABLE
372 /*
373 * reuse ASID array offset
374 * cpuinfo_mips is a multiple of sizeof(long)
375 */
376 uasm_i_addiu(&p, T3, ZERO, sizeof(struct cpuinfo_mips)/sizeof(long));
377 uasm_i_mul(&p, T2, T2, T3);
378
379 UASM_i_LA_mostly(&p, AT, (long)&cpu_data[0].asid_mask);
380 UASM_i_ADDU(&p, AT, AT, T2);
381 UASM_i_LW(&p, T2, uasm_rel_lo((long)&cpu_data[0].asid_mask), AT);
382 uasm_i_and(&p, K0, K0, T2);
383 #else
384 uasm_i_andi(&p, K0, K0, MIPS_ENTRYHI_ASID);
385 #endif
386
387 /* Set up KVM VZ root ASID (!guestid) */
388 uasm_i_mtc0(&p, K0, C0_ENTRYHI);
389 skip_asid_restore:
390 uasm_i_ehb(&p);
391
392 /* Disable RDHWR access */
393 uasm_i_mtc0(&p, ZERO, C0_HWRENA);
394
395 /* load the guest context from VCPU and return */
396 for (i = 1; i < 32; ++i) {
397 /* Guest k0/k1 loaded later */
398 if (i == K0 || i == K1)
399 continue;
400 UASM_i_LW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1);
401 }
402
403 #ifndef CONFIG_CPU_MIPSR6
404 /* Restore hi/lo */
405 UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, hi), K1);
406 uasm_i_mthi(&p, K0);
407
408 UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, lo), K1);
409 uasm_i_mtlo(&p, K0);
410 #endif
411
412 /* Restore the guest's k0/k1 registers */
413 UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1);
414 UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1);
415
416 /* Jump to guest */
417 uasm_i_eret(&p);
418
419 uasm_resolve_relocs(relocs, labels);
420
421 return p;
422 }
423
424 /**
425 * kvm_mips_build_tlb_refill_exception() - Assemble TLB refill handler.
426 * @addr: Address to start writing code.
427 * @handler: Address of common handler (within range of @addr).
428 *
429 * Assemble TLB refill exception fast path handler for guest execution.
430 *
431 * Returns: Next address after end of written function.
432 */
kvm_mips_build_tlb_refill_exception(void * addr,void * handler)433 void *kvm_mips_build_tlb_refill_exception(void *addr, void *handler)
434 {
435 u32 *p = addr;
436 struct uasm_label labels[2];
437 struct uasm_reloc relocs[2];
438 #ifndef CONFIG_CPU_LOONGSON64
439 struct uasm_label *l = labels;
440 struct uasm_reloc *r = relocs;
441 #endif
442
443 memset(labels, 0, sizeof(labels));
444 memset(relocs, 0, sizeof(relocs));
445
446 /* Save guest k1 into scratch register */
447 UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
448
449 /* Get the VCPU pointer from the VCPU scratch register */
450 UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
451
452 /* Save guest k0 into VCPU structure */
453 UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1);
454
455 /*
456 * Some of the common tlbex code uses current_cpu_type(). For KVM we
457 * assume symmetry and just disable preemption to silence the warning.
458 */
459 preempt_disable();
460
461 #ifdef CONFIG_CPU_LOONGSON64
462 UASM_i_MFC0(&p, K1, C0_PGD);
463 uasm_i_lddir(&p, K0, K1, 3); /* global page dir */
464 #ifndef __PAGETABLE_PMD_FOLDED
465 uasm_i_lddir(&p, K1, K0, 1); /* middle page dir */
466 #endif
467 uasm_i_ldpte(&p, K1, 0); /* even */
468 uasm_i_ldpte(&p, K1, 1); /* odd */
469 uasm_i_tlbwr(&p);
470 #else
471 /*
472 * Now for the actual refill bit. A lot of this can be common with the
473 * Linux TLB refill handler, however we don't need to handle so many
474 * cases. We only need to handle user mode refills, and user mode runs
475 * with 32-bit addressing.
476 *
477 * Therefore the branch to label_vmalloc generated by build_get_pmde64()
478 * that isn't resolved should never actually get taken and is harmless
479 * to leave in place for now.
480 */
481
482 #ifdef CONFIG_64BIT
483 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
484 #else
485 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
486 #endif
487
488 /* we don't support huge pages yet */
489
490 build_get_ptep(&p, K0, K1);
491 build_update_entries(&p, K0, K1);
492 build_tlb_write_entry(&p, &l, &r, tlb_random);
493 #endif
494
495 preempt_enable();
496
497 /* Get the VCPU pointer from the VCPU scratch register again */
498 UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
499
500 /* Restore the guest's k0/k1 registers */
501 UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1);
502 uasm_i_ehb(&p);
503 UASM_i_MFC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
504
505 /* Jump to guest */
506 uasm_i_eret(&p);
507
508 return p;
509 }
510
511 /**
512 * kvm_mips_build_exception() - Assemble first level guest exception handler.
513 * @addr: Address to start writing code.
514 * @handler: Address of common handler (within range of @addr).
515 *
516 * Assemble exception vector code for guest execution. The generated vector will
517 * branch to the common exception handler generated by kvm_mips_build_exit().
518 *
519 * Returns: Next address after end of written function.
520 */
kvm_mips_build_exception(void * addr,void * handler)521 void *kvm_mips_build_exception(void *addr, void *handler)
522 {
523 u32 *p = addr;
524 struct uasm_label labels[2];
525 struct uasm_reloc relocs[2];
526 struct uasm_label *l = labels;
527 struct uasm_reloc *r = relocs;
528
529 memset(labels, 0, sizeof(labels));
530 memset(relocs, 0, sizeof(relocs));
531
532 /* Save guest k1 into scratch register */
533 UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
534
535 /* Get the VCPU pointer from the VCPU scratch register */
536 UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
537 UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch));
538
539 /* Save guest k0 into VCPU structure */
540 UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1);
541
542 /* Branch to the common handler */
543 uasm_il_b(&p, &r, label_exit_common);
544 uasm_i_nop(&p);
545
546 uasm_l_exit_common(&l, handler);
547 uasm_resolve_relocs(relocs, labels);
548
549 return p;
550 }
551
552 /**
553 * kvm_mips_build_exit() - Assemble common guest exit handler.
554 * @addr: Address to start writing code.
555 *
556 * Assemble the generic guest exit handling code. This is called by the
557 * exception vectors (generated by kvm_mips_build_exception()), and calls
558 * kvm_mips_handle_exit(), then either resumes the guest or returns to the host
559 * depending on the return value.
560 *
561 * Returns: Next address after end of written function.
562 */
kvm_mips_build_exit(void * addr)563 void *kvm_mips_build_exit(void *addr)
564 {
565 u32 *p = addr;
566 unsigned int i;
567 struct uasm_label labels[3];
568 struct uasm_reloc relocs[3];
569 struct uasm_label *l = labels;
570 struct uasm_reloc *r = relocs;
571
572 memset(labels, 0, sizeof(labels));
573 memset(relocs, 0, sizeof(relocs));
574
575 /*
576 * Generic Guest exception handler. We end up here when the guest
577 * does something that causes a trap to kernel mode.
578 *
579 * Both k0/k1 registers will have already been saved (k0 into the vcpu
580 * structure, and k1 into the scratch_tmp register).
581 *
582 * The k1 register will already contain the kvm_vcpu_arch pointer.
583 */
584
585 /* Start saving Guest context to VCPU */
586 for (i = 0; i < 32; ++i) {
587 /* Guest k0/k1 saved later */
588 if (i == K0 || i == K1)
589 continue;
590 UASM_i_SW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1);
591 }
592
593 #ifndef CONFIG_CPU_MIPSR6
594 /* We need to save hi/lo and restore them on the way out */
595 uasm_i_mfhi(&p, T0);
596 UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, hi), K1);
597
598 uasm_i_mflo(&p, T0);
599 UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, lo), K1);
600 #endif
601
602 /* Finally save guest k1 to VCPU */
603 uasm_i_ehb(&p);
604 UASM_i_MFC0(&p, T0, scratch_tmp[0], scratch_tmp[1]);
605 UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1);
606
607 /* Now that context has been saved, we can use other registers */
608
609 /* Restore vcpu */
610 UASM_i_MFC0(&p, S0, scratch_vcpu[0], scratch_vcpu[1]);
611
612 /*
613 * Save Host level EPC, BadVaddr and Cause to VCPU, useful to process
614 * the exception
615 */
616 UASM_i_MFC0(&p, K0, C0_EPC);
617 UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, pc), K1);
618
619 UASM_i_MFC0(&p, K0, C0_BADVADDR);
620 UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_badvaddr),
621 K1);
622
623 uasm_i_mfc0(&p, K0, C0_CAUSE);
624 uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_cause), K1);
625
626 if (cpu_has_badinstr) {
627 uasm_i_mfc0(&p, K0, C0_BADINSTR);
628 uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch,
629 host_cp0_badinstr), K1);
630 }
631
632 if (cpu_has_badinstrp) {
633 uasm_i_mfc0(&p, K0, C0_BADINSTRP);
634 uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch,
635 host_cp0_badinstrp), K1);
636 }
637
638 /* Now restore the host state just enough to run the handlers */
639
640 /* Switch EBASE to the one used by Linux */
641 /* load up the host EBASE */
642 uasm_i_mfc0(&p, V0, C0_STATUS);
643
644 uasm_i_lui(&p, AT, ST0_BEV >> 16);
645 uasm_i_or(&p, K0, V0, AT);
646
647 uasm_i_mtc0(&p, K0, C0_STATUS);
648 uasm_i_ehb(&p);
649
650 UASM_i_LA_mostly(&p, K0, (long)&ebase);
651 UASM_i_LW(&p, K0, uasm_rel_lo((long)&ebase), K0);
652 build_set_exc_base(&p, K0);
653
654 if (raw_cpu_has_fpu) {
655 /*
656 * If FPU is enabled, save FCR31 and clear it so that later
657 * ctc1's don't trigger FPE for pending exceptions.
658 */
659 uasm_i_lui(&p, AT, ST0_CU1 >> 16);
660 uasm_i_and(&p, V1, V0, AT);
661 uasm_il_beqz(&p, &r, V1, label_fpu_1);
662 uasm_i_nop(&p);
663 uasm_i_cfc1(&p, T0, 31);
664 uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.fcr31),
665 K1);
666 uasm_i_ctc1(&p, ZERO, 31);
667 uasm_l_fpu_1(&l, p);
668 }
669
670 if (cpu_has_msa) {
671 /*
672 * If MSA is enabled, save MSACSR and clear it so that later
673 * instructions don't trigger MSAFPE for pending exceptions.
674 */
675 uasm_i_mfc0(&p, T0, C0_CONFIG5);
676 uasm_i_ext(&p, T0, T0, 27, 1); /* MIPS_CONF5_MSAEN */
677 uasm_il_beqz(&p, &r, T0, label_msa_1);
678 uasm_i_nop(&p);
679 uasm_i_cfcmsa(&p, T0, MSA_CSR);
680 uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.msacsr),
681 K1);
682 uasm_i_ctcmsa(&p, MSA_CSR, ZERO);
683 uasm_l_msa_1(&l, p);
684 }
685
686 /* Restore host ASID */
687 if (!cpu_has_guestid) {
688 UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi),
689 K1);
690 UASM_i_MTC0(&p, K0, C0_ENTRYHI);
691 }
692
693 /*
694 * Set up normal Linux process pgd.
695 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
696 * - call tlbmiss_handler_setup_pgd(mm->pgd)
697 * - write mm->pgd into CP0_PWBase
698 */
699 UASM_i_LW(&p, A0,
700 offsetof(struct kvm_vcpu_arch, host_pgd), K1);
701 UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
702 uasm_i_jalr(&p, RA, T9);
703 /* delay slot */
704 if (cpu_has_htw)
705 UASM_i_MTC0(&p, A0, C0_PWBASE);
706 else
707 uasm_i_nop(&p);
708
709 /* Clear GM bit so we don't enter guest mode when EXL is cleared */
710 uasm_i_mfc0(&p, K0, C0_GUESTCTL0);
711 uasm_i_ins(&p, K0, ZERO, MIPS_GCTL0_GM_SHIFT, 1);
712 uasm_i_mtc0(&p, K0, C0_GUESTCTL0);
713
714 /* Save GuestCtl0 so we can access GExcCode after CPU migration */
715 uasm_i_sw(&p, K0,
716 offsetof(struct kvm_vcpu_arch, host_cp0_guestctl0), K1);
717
718 if (cpu_has_guestid) {
719 /*
720 * Clear root mode GuestID, so that root TLB operations use the
721 * root GuestID in the root TLB.
722 */
723 uasm_i_mfc0(&p, T0, C0_GUESTCTL1);
724 /* Set GuestCtl1.RID = MIPS_GCTL1_ROOT_GUESTID (i.e. 0) */
725 uasm_i_ins(&p, T0, ZERO, MIPS_GCTL1_RID_SHIFT,
726 MIPS_GCTL1_RID_WIDTH);
727 uasm_i_mtc0(&p, T0, C0_GUESTCTL1);
728 }
729
730 /* Now that the new EBASE has been loaded, unset BEV and KSU_USER */
731 uasm_i_addiu(&p, AT, ZERO, ~(ST0_EXL | KSU_USER | ST0_IE));
732 uasm_i_and(&p, V0, V0, AT);
733 uasm_i_lui(&p, AT, ST0_CU0 >> 16);
734 uasm_i_or(&p, V0, V0, AT);
735 #ifdef CONFIG_64BIT
736 uasm_i_ori(&p, V0, V0, ST0_SX | ST0_UX);
737 #endif
738 uasm_i_mtc0(&p, V0, C0_STATUS);
739 uasm_i_ehb(&p);
740
741 /* Load up host GP */
742 UASM_i_LW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1);
743
744 /* Need a stack before we can jump to "C" */
745 UASM_i_LW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1);
746
747 /* Saved host state */
748 UASM_i_ADDIU(&p, SP, SP, -(int)sizeof(struct pt_regs));
749
750 /*
751 * XXXKYMA do we need to load the host ASID, maybe not because the
752 * kernel entries are marked GLOBAL, need to verify
753 */
754
755 /* Restore host scratch registers, as we'll have clobbered them */
756 kvm_mips_build_restore_scratch(&p, K0, SP);
757
758 /* Restore RDHWR access */
759 UASM_i_LA_mostly(&p, K0, (long)&hwrena);
760 uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0);
761 uasm_i_mtc0(&p, K0, C0_HWRENA);
762
763 /* Jump to handler */
764 /*
765 * XXXKYMA: not sure if this is safe, how large is the stack??
766 * Now jump to the kvm_mips_handle_exit() to see if we can deal
767 * with this in the kernel
768 */
769 uasm_i_move(&p, A0, S0);
770 UASM_i_LA(&p, T9, (unsigned long)kvm_mips_handle_exit);
771 uasm_i_jalr(&p, RA, T9);
772 UASM_i_ADDIU(&p, SP, SP, -CALLFRAME_SIZ);
773
774 uasm_resolve_relocs(relocs, labels);
775
776 p = kvm_mips_build_ret_from_exit(p);
777
778 return p;
779 }
780
781 /**
782 * kvm_mips_build_ret_from_exit() - Assemble guest exit return handler.
783 * @addr: Address to start writing code.
784 *
785 * Assemble the code to handle the return from kvm_mips_handle_exit(), either
786 * resuming the guest or returning to the host depending on the return value.
787 *
788 * Returns: Next address after end of written function.
789 */
kvm_mips_build_ret_from_exit(void * addr)790 static void *kvm_mips_build_ret_from_exit(void *addr)
791 {
792 u32 *p = addr;
793 struct uasm_label labels[2];
794 struct uasm_reloc relocs[2];
795 struct uasm_label *l = labels;
796 struct uasm_reloc *r = relocs;
797
798 memset(labels, 0, sizeof(labels));
799 memset(relocs, 0, sizeof(relocs));
800
801 /* Return from handler Make sure interrupts are disabled */
802 uasm_i_di(&p, ZERO);
803 uasm_i_ehb(&p);
804
805 /*
806 * XXXKYMA: k0/k1 could have been blown away if we processed
807 * an exception while we were handling the exception from the
808 * guest, reload k1
809 */
810
811 uasm_i_move(&p, K1, S0);
812 UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch));
813
814 /*
815 * Check return value, should tell us if we are returning to the
816 * host (handle I/O etc)or resuming the guest
817 */
818 uasm_i_andi(&p, T0, V0, RESUME_HOST);
819 uasm_il_bnez(&p, &r, T0, label_return_to_host);
820 uasm_i_nop(&p);
821
822 p = kvm_mips_build_ret_to_guest(p);
823
824 uasm_l_return_to_host(&l, p);
825 p = kvm_mips_build_ret_to_host(p);
826
827 uasm_resolve_relocs(relocs, labels);
828
829 return p;
830 }
831
832 /**
833 * kvm_mips_build_ret_to_guest() - Assemble code to return to the guest.
834 * @addr: Address to start writing code.
835 *
836 * Assemble the code to handle return from the guest exit handler
837 * (kvm_mips_handle_exit()) back to the guest.
838 *
839 * Returns: Next address after end of written function.
840 */
kvm_mips_build_ret_to_guest(void * addr)841 static void *kvm_mips_build_ret_to_guest(void *addr)
842 {
843 u32 *p = addr;
844
845 /* Put the saved pointer to vcpu (s0) back into the scratch register */
846 UASM_i_MTC0(&p, S0, scratch_vcpu[0], scratch_vcpu[1]);
847
848 /* Load up the Guest EBASE to minimize the window where BEV is set */
849 UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1);
850
851 /* Switch EBASE back to the one used by KVM */
852 uasm_i_mfc0(&p, V1, C0_STATUS);
853 uasm_i_lui(&p, AT, ST0_BEV >> 16);
854 uasm_i_or(&p, K0, V1, AT);
855 uasm_i_mtc0(&p, K0, C0_STATUS);
856 uasm_i_ehb(&p);
857 build_set_exc_base(&p, T0);
858
859 /* Setup status register for running guest in UM */
860 uasm_i_ori(&p, V1, V1, ST0_EXL | KSU_USER | ST0_IE);
861 UASM_i_LA(&p, AT, ~(ST0_CU0 | ST0_MX | ST0_SX | ST0_UX));
862 uasm_i_and(&p, V1, V1, AT);
863 uasm_i_mtc0(&p, V1, C0_STATUS);
864 uasm_i_ehb(&p);
865
866 p = kvm_mips_build_enter_guest(p);
867
868 return p;
869 }
870
871 /**
872 * kvm_mips_build_ret_to_host() - Assemble code to return to the host.
873 * @addr: Address to start writing code.
874 *
875 * Assemble the code to handle return from the guest exit handler
876 * (kvm_mips_handle_exit()) back to the host, i.e. to the caller of the vcpu_run
877 * function generated by kvm_mips_build_vcpu_run().
878 *
879 * Returns: Next address after end of written function.
880 */
kvm_mips_build_ret_to_host(void * addr)881 static void *kvm_mips_build_ret_to_host(void *addr)
882 {
883 u32 *p = addr;
884 unsigned int i;
885
886 /* EBASE is already pointing to Linux */
887 UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, host_stack), K1);
888 UASM_i_ADDIU(&p, K1, K1, -(int)sizeof(struct pt_regs));
889
890 /*
891 * r2/v0 is the return code, shift it down by 2 (arithmetic)
892 * to recover the err code
893 */
894 uasm_i_sra(&p, K0, V0, 2);
895 uasm_i_move(&p, V0, K0);
896
897 /* Load context saved on the host stack */
898 for (i = 16; i < 31; ++i) {
899 if (i == 24)
900 i = 28;
901 UASM_i_LW(&p, i, offsetof(struct pt_regs, regs[i]), K1);
902 }
903
904 /* Restore RDHWR access */
905 UASM_i_LA_mostly(&p, K0, (long)&hwrena);
906 uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0);
907 uasm_i_mtc0(&p, K0, C0_HWRENA);
908
909 /* Restore RA, which is the address we will return to */
910 UASM_i_LW(&p, RA, offsetof(struct pt_regs, regs[RA]), K1);
911 uasm_i_jr(&p, RA);
912 uasm_i_nop(&p);
913
914 return p;
915 }
916
917