1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * KVM/MIPS: Instruction/Exception emulation 7 * 8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved. 9 * Authors: Sanjay Lal <sanjayl@kymasys.com> 10 */ 11 12 #include <linux/errno.h> 13 #include <linux/err.h> 14 #include <linux/ktime.h> 15 #include <linux/kvm_host.h> 16 #include <linux/vmalloc.h> 17 #include <linux/fs.h> 18 #include <linux/memblock.h> 19 #include <linux/random.h> 20 #include <asm/page.h> 21 #include <asm/cacheflush.h> 22 #include <asm/cacheops.h> 23 #include <asm/cpu-info.h> 24 #include <asm/mmu_context.h> 25 #include <asm/tlbflush.h> 26 #include <asm/inst.h> 27 28 #undef CONFIG_MIPS_MT 29 #include <asm/r4kcache.h> 30 #define CONFIG_MIPS_MT 31 32 #include "interrupt.h" 33 #include "commpage.h" 34 35 #include "trace.h" 36 37 /* 38 * Compute the return address and do emulate branch simulation, if required. 39 * This function should be called only in branch delay slot active. 40 */ 41 static int kvm_compute_return_epc(struct kvm_vcpu *vcpu, unsigned long instpc, 42 unsigned long *out) 43 { 44 unsigned int dspcontrol; 45 union mips_instruction insn; 46 struct kvm_vcpu_arch *arch = &vcpu->arch; 47 long epc = instpc; 48 long nextpc; 49 int err; 50 51 if (epc & 3) { 52 kvm_err("%s: unaligned epc\n", __func__); 53 return -EINVAL; 54 } 55 56 /* Read the instruction */ 57 err = kvm_get_badinstrp((u32 *)epc, vcpu, &insn.word); 58 if (err) 59 return err; 60 61 switch (insn.i_format.opcode) { 62 /* jr and jalr are in r_format format. */ 63 case spec_op: 64 switch (insn.r_format.func) { 65 case jalr_op: 66 arch->gprs[insn.r_format.rd] = epc + 8; 67 fallthrough; 68 case jr_op: 69 nextpc = arch->gprs[insn.r_format.rs]; 70 break; 71 default: 72 return -EINVAL; 73 } 74 break; 75 76 /* 77 * This group contains: 78 * bltz_op, bgez_op, bltzl_op, bgezl_op, 79 * bltzal_op, bgezal_op, bltzall_op, bgezall_op. 80 */ 81 case bcond_op: 82 switch (insn.i_format.rt) { 83 case bltz_op: 84 case bltzl_op: 85 if ((long)arch->gprs[insn.i_format.rs] < 0) 86 epc = epc + 4 + (insn.i_format.simmediate << 2); 87 else 88 epc += 8; 89 nextpc = epc; 90 break; 91 92 case bgez_op: 93 case bgezl_op: 94 if ((long)arch->gprs[insn.i_format.rs] >= 0) 95 epc = epc + 4 + (insn.i_format.simmediate << 2); 96 else 97 epc += 8; 98 nextpc = epc; 99 break; 100 101 case bltzal_op: 102 case bltzall_op: 103 arch->gprs[31] = epc + 8; 104 if ((long)arch->gprs[insn.i_format.rs] < 0) 105 epc = epc + 4 + (insn.i_format.simmediate << 2); 106 else 107 epc += 8; 108 nextpc = epc; 109 break; 110 111 case bgezal_op: 112 case bgezall_op: 113 arch->gprs[31] = epc + 8; 114 if ((long)arch->gprs[insn.i_format.rs] >= 0) 115 epc = epc + 4 + (insn.i_format.simmediate << 2); 116 else 117 epc += 8; 118 nextpc = epc; 119 break; 120 case bposge32_op: 121 if (!cpu_has_dsp) { 122 kvm_err("%s: DSP branch but not DSP ASE\n", 123 __func__); 124 return -EINVAL; 125 } 126 127 dspcontrol = rddsp(0x01); 128 129 if (dspcontrol >= 32) 130 epc = epc + 4 + (insn.i_format.simmediate << 2); 131 else 132 epc += 8; 133 nextpc = epc; 134 break; 135 default: 136 return -EINVAL; 137 } 138 break; 139 140 /* These are unconditional and in j_format. */ 141 case jal_op: 142 arch->gprs[31] = instpc + 8; 143 fallthrough; 144 case j_op: 145 epc += 4; 146 epc >>= 28; 147 epc <<= 28; 148 epc |= (insn.j_format.target << 2); 149 nextpc = epc; 150 break; 151 152 /* These are conditional and in i_format. */ 153 case beq_op: 154 case beql_op: 155 if (arch->gprs[insn.i_format.rs] == 156 arch->gprs[insn.i_format.rt]) 157 epc = epc + 4 + (insn.i_format.simmediate << 2); 158 else 159 epc += 8; 160 nextpc = epc; 161 break; 162 163 case bne_op: 164 case bnel_op: 165 if (arch->gprs[insn.i_format.rs] != 166 arch->gprs[insn.i_format.rt]) 167 epc = epc + 4 + (insn.i_format.simmediate << 2); 168 else 169 epc += 8; 170 nextpc = epc; 171 break; 172 173 case blez_op: /* POP06 */ 174 #ifndef CONFIG_CPU_MIPSR6 175 case blezl_op: /* removed in R6 */ 176 #endif 177 if (insn.i_format.rt != 0) 178 goto compact_branch; 179 if ((long)arch->gprs[insn.i_format.rs] <= 0) 180 epc = epc + 4 + (insn.i_format.simmediate << 2); 181 else 182 epc += 8; 183 nextpc = epc; 184 break; 185 186 case bgtz_op: /* POP07 */ 187 #ifndef CONFIG_CPU_MIPSR6 188 case bgtzl_op: /* removed in R6 */ 189 #endif 190 if (insn.i_format.rt != 0) 191 goto compact_branch; 192 if ((long)arch->gprs[insn.i_format.rs] > 0) 193 epc = epc + 4 + (insn.i_format.simmediate << 2); 194 else 195 epc += 8; 196 nextpc = epc; 197 break; 198 199 /* And now the FPA/cp1 branch instructions. */ 200 case cop1_op: 201 kvm_err("%s: unsupported cop1_op\n", __func__); 202 return -EINVAL; 203 204 #ifdef CONFIG_CPU_MIPSR6 205 /* R6 added the following compact branches with forbidden slots */ 206 case blezl_op: /* POP26 */ 207 case bgtzl_op: /* POP27 */ 208 /* only rt == 0 isn't compact branch */ 209 if (insn.i_format.rt != 0) 210 goto compact_branch; 211 return -EINVAL; 212 case pop10_op: 213 case pop30_op: 214 /* only rs == rt == 0 is reserved, rest are compact branches */ 215 if (insn.i_format.rs != 0 || insn.i_format.rt != 0) 216 goto compact_branch; 217 return -EINVAL; 218 case pop66_op: 219 case pop76_op: 220 /* only rs == 0 isn't compact branch */ 221 if (insn.i_format.rs != 0) 222 goto compact_branch; 223 return -EINVAL; 224 compact_branch: 225 /* 226 * If we've hit an exception on the forbidden slot, then 227 * the branch must not have been taken. 228 */ 229 epc += 8; 230 nextpc = epc; 231 break; 232 #else 233 compact_branch: 234 /* Fall through - Compact branches not supported before R6 */ 235 #endif 236 default: 237 return -EINVAL; 238 } 239 240 *out = nextpc; 241 return 0; 242 } 243 244 enum emulation_result update_pc(struct kvm_vcpu *vcpu, u32 cause) 245 { 246 int err; 247 248 if (cause & CAUSEF_BD) { 249 err = kvm_compute_return_epc(vcpu, vcpu->arch.pc, 250 &vcpu->arch.pc); 251 if (err) 252 return EMULATE_FAIL; 253 } else { 254 vcpu->arch.pc += 4; 255 } 256 257 kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc); 258 259 return EMULATE_DONE; 260 } 261 262 /** 263 * kvm_get_badinstr() - Get bad instruction encoding. 264 * @opc: Guest pointer to faulting instruction. 265 * @vcpu: KVM VCPU information. 266 * 267 * Gets the instruction encoding of the faulting instruction, using the saved 268 * BadInstr register value if it exists, otherwise falling back to reading guest 269 * memory at @opc. 270 * 271 * Returns: The instruction encoding of the faulting instruction. 272 */ 273 int kvm_get_badinstr(u32 *opc, struct kvm_vcpu *vcpu, u32 *out) 274 { 275 if (cpu_has_badinstr) { 276 *out = vcpu->arch.host_cp0_badinstr; 277 return 0; 278 } else { 279 return kvm_get_inst(opc, vcpu, out); 280 } 281 } 282 283 /** 284 * kvm_get_badinstrp() - Get bad prior instruction encoding. 285 * @opc: Guest pointer to prior faulting instruction. 286 * @vcpu: KVM VCPU information. 287 * 288 * Gets the instruction encoding of the prior faulting instruction (the branch 289 * containing the delay slot which faulted), using the saved BadInstrP register 290 * value if it exists, otherwise falling back to reading guest memory at @opc. 291 * 292 * Returns: The instruction encoding of the prior faulting instruction. 293 */ 294 int kvm_get_badinstrp(u32 *opc, struct kvm_vcpu *vcpu, u32 *out) 295 { 296 if (cpu_has_badinstrp) { 297 *out = vcpu->arch.host_cp0_badinstrp; 298 return 0; 299 } else { 300 return kvm_get_inst(opc, vcpu, out); 301 } 302 } 303 304 /** 305 * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled. 306 * @vcpu: Virtual CPU. 307 * 308 * Returns: 1 if the CP0_Count timer is disabled by either the guest 309 * CP0_Cause.DC bit or the count_ctl.DC bit. 310 * 0 otherwise (in which case CP0_Count timer is running). 311 */ 312 int kvm_mips_count_disabled(struct kvm_vcpu *vcpu) 313 { 314 struct mips_coproc *cop0 = vcpu->arch.cop0; 315 316 return (vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) || 317 (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC); 318 } 319 320 /** 321 * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count. 322 * 323 * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias. 324 * 325 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running). 326 */ 327 static u32 kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now) 328 { 329 s64 now_ns, periods; 330 u64 delta; 331 332 now_ns = ktime_to_ns(now); 333 delta = now_ns + vcpu->arch.count_dyn_bias; 334 335 if (delta >= vcpu->arch.count_period) { 336 /* If delta is out of safe range the bias needs adjusting */ 337 periods = div64_s64(now_ns, vcpu->arch.count_period); 338 vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period; 339 /* Recalculate delta with new bias */ 340 delta = now_ns + vcpu->arch.count_dyn_bias; 341 } 342 343 /* 344 * We've ensured that: 345 * delta < count_period 346 * 347 * Therefore the intermediate delta*count_hz will never overflow since 348 * at the boundary condition: 349 * delta = count_period 350 * delta = NSEC_PER_SEC * 2^32 / count_hz 351 * delta * count_hz = NSEC_PER_SEC * 2^32 352 */ 353 return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC); 354 } 355 356 /** 357 * kvm_mips_count_time() - Get effective current time. 358 * @vcpu: Virtual CPU. 359 * 360 * Get effective monotonic ktime. This is usually a straightforward ktime_get(), 361 * except when the master disable bit is set in count_ctl, in which case it is 362 * count_resume, i.e. the time that the count was disabled. 363 * 364 * Returns: Effective monotonic ktime for CP0_Count. 365 */ 366 static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu) 367 { 368 if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)) 369 return vcpu->arch.count_resume; 370 371 return ktime_get(); 372 } 373 374 /** 375 * kvm_mips_read_count_running() - Read the current count value as if running. 376 * @vcpu: Virtual CPU. 377 * @now: Kernel time to read CP0_Count at. 378 * 379 * Returns the current guest CP0_Count register at time @now and handles if the 380 * timer interrupt is pending and hasn't been handled yet. 381 * 382 * Returns: The current value of the guest CP0_Count register. 383 */ 384 static u32 kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now) 385 { 386 struct mips_coproc *cop0 = vcpu->arch.cop0; 387 ktime_t expires, threshold; 388 u32 count, compare; 389 int running; 390 391 /* Calculate the biased and scaled guest CP0_Count */ 392 count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now); 393 compare = kvm_read_c0_guest_compare(cop0); 394 395 /* 396 * Find whether CP0_Count has reached the closest timer interrupt. If 397 * not, we shouldn't inject it. 398 */ 399 if ((s32)(count - compare) < 0) 400 return count; 401 402 /* 403 * The CP0_Count we're going to return has already reached the closest 404 * timer interrupt. Quickly check if it really is a new interrupt by 405 * looking at whether the interval until the hrtimer expiry time is 406 * less than 1/4 of the timer period. 407 */ 408 expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer); 409 threshold = ktime_add_ns(now, vcpu->arch.count_period / 4); 410 if (ktime_before(expires, threshold)) { 411 /* 412 * Cancel it while we handle it so there's no chance of 413 * interference with the timeout handler. 414 */ 415 running = hrtimer_cancel(&vcpu->arch.comparecount_timer); 416 417 /* Nothing should be waiting on the timeout */ 418 kvm_mips_callbacks->queue_timer_int(vcpu); 419 420 /* 421 * Restart the timer if it was running based on the expiry time 422 * we read, so that we don't push it back 2 periods. 423 */ 424 if (running) { 425 expires = ktime_add_ns(expires, 426 vcpu->arch.count_period); 427 hrtimer_start(&vcpu->arch.comparecount_timer, expires, 428 HRTIMER_MODE_ABS); 429 } 430 } 431 432 return count; 433 } 434 435 /** 436 * kvm_mips_read_count() - Read the current count value. 437 * @vcpu: Virtual CPU. 438 * 439 * Read the current guest CP0_Count value, taking into account whether the timer 440 * is stopped. 441 * 442 * Returns: The current guest CP0_Count value. 443 */ 444 u32 kvm_mips_read_count(struct kvm_vcpu *vcpu) 445 { 446 struct mips_coproc *cop0 = vcpu->arch.cop0; 447 448 /* If count disabled just read static copy of count */ 449 if (kvm_mips_count_disabled(vcpu)) 450 return kvm_read_c0_guest_count(cop0); 451 452 return kvm_mips_read_count_running(vcpu, ktime_get()); 453 } 454 455 /** 456 * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer. 457 * @vcpu: Virtual CPU. 458 * @count: Output pointer for CP0_Count value at point of freeze. 459 * 460 * Freeze the hrtimer safely and return both the ktime and the CP0_Count value 461 * at the point it was frozen. It is guaranteed that any pending interrupts at 462 * the point it was frozen are handled, and none after that point. 463 * 464 * This is useful where the time/CP0_Count is needed in the calculation of the 465 * new parameters. 466 * 467 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running). 468 * 469 * Returns: The ktime at the point of freeze. 470 */ 471 ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu, u32 *count) 472 { 473 ktime_t now; 474 475 /* stop hrtimer before finding time */ 476 hrtimer_cancel(&vcpu->arch.comparecount_timer); 477 now = ktime_get(); 478 479 /* find count at this point and handle pending hrtimer */ 480 *count = kvm_mips_read_count_running(vcpu, now); 481 482 return now; 483 } 484 485 /** 486 * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry. 487 * @vcpu: Virtual CPU. 488 * @now: ktime at point of resume. 489 * @count: CP0_Count at point of resume. 490 * 491 * Resumes the timer and updates the timer expiry based on @now and @count. 492 * This can be used in conjunction with kvm_mips_freeze_timer() when timer 493 * parameters need to be changed. 494 * 495 * It is guaranteed that a timer interrupt immediately after resume will be 496 * handled, but not if CP_Compare is exactly at @count. That case is already 497 * handled by kvm_mips_freeze_timer(). 498 * 499 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running). 500 */ 501 static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu, 502 ktime_t now, u32 count) 503 { 504 struct mips_coproc *cop0 = vcpu->arch.cop0; 505 u32 compare; 506 u64 delta; 507 ktime_t expire; 508 509 /* Calculate timeout (wrap 0 to 2^32) */ 510 compare = kvm_read_c0_guest_compare(cop0); 511 delta = (u64)(u32)(compare - count - 1) + 1; 512 delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz); 513 expire = ktime_add_ns(now, delta); 514 515 /* Update hrtimer to use new timeout */ 516 hrtimer_cancel(&vcpu->arch.comparecount_timer); 517 hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS); 518 } 519 520 /** 521 * kvm_mips_restore_hrtimer() - Restore hrtimer after a gap, updating expiry. 522 * @vcpu: Virtual CPU. 523 * @before: Time before Count was saved, lower bound of drift calculation. 524 * @count: CP0_Count at point of restore. 525 * @min_drift: Minimum amount of drift permitted before correction. 526 * Must be <= 0. 527 * 528 * Restores the timer from a particular @count, accounting for drift. This can 529 * be used in conjunction with kvm_mips_freeze_timer() when a hardware timer is 530 * to be used for a period of time, but the exact ktime corresponding to the 531 * final Count that must be restored is not known. 532 * 533 * It is gauranteed that a timer interrupt immediately after restore will be 534 * handled, but not if CP0_Compare is exactly at @count. That case should 535 * already be handled when the hardware timer state is saved. 536 * 537 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is not 538 * stopped). 539 * 540 * Returns: Amount of correction to count_bias due to drift. 541 */ 542 int kvm_mips_restore_hrtimer(struct kvm_vcpu *vcpu, ktime_t before, 543 u32 count, int min_drift) 544 { 545 ktime_t now, count_time; 546 u32 now_count, before_count; 547 u64 delta; 548 int drift, ret = 0; 549 550 /* Calculate expected count at before */ 551 before_count = vcpu->arch.count_bias + 552 kvm_mips_ktime_to_count(vcpu, before); 553 554 /* 555 * Detect significantly negative drift, where count is lower than 556 * expected. Some negative drift is expected when hardware counter is 557 * set after kvm_mips_freeze_timer(), and it is harmless to allow the 558 * time to jump forwards a little, within reason. If the drift is too 559 * significant, adjust the bias to avoid a big Guest.CP0_Count jump. 560 */ 561 drift = count - before_count; 562 if (drift < min_drift) { 563 count_time = before; 564 vcpu->arch.count_bias += drift; 565 ret = drift; 566 goto resume; 567 } 568 569 /* Calculate expected count right now */ 570 now = ktime_get(); 571 now_count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now); 572 573 /* 574 * Detect positive drift, where count is higher than expected, and 575 * adjust the bias to avoid guest time going backwards. 576 */ 577 drift = count - now_count; 578 if (drift > 0) { 579 count_time = now; 580 vcpu->arch.count_bias += drift; 581 ret = drift; 582 goto resume; 583 } 584 585 /* Subtract nanosecond delta to find ktime when count was read */ 586 delta = (u64)(u32)(now_count - count); 587 delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz); 588 count_time = ktime_sub_ns(now, delta); 589 590 resume: 591 /* Resume using the calculated ktime */ 592 kvm_mips_resume_hrtimer(vcpu, count_time, count); 593 return ret; 594 } 595 596 /** 597 * kvm_mips_write_count() - Modify the count and update timer. 598 * @vcpu: Virtual CPU. 599 * @count: Guest CP0_Count value to set. 600 * 601 * Sets the CP0_Count value and updates the timer accordingly. 602 */ 603 void kvm_mips_write_count(struct kvm_vcpu *vcpu, u32 count) 604 { 605 struct mips_coproc *cop0 = vcpu->arch.cop0; 606 ktime_t now; 607 608 /* Calculate bias */ 609 now = kvm_mips_count_time(vcpu); 610 vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now); 611 612 if (kvm_mips_count_disabled(vcpu)) 613 /* The timer's disabled, adjust the static count */ 614 kvm_write_c0_guest_count(cop0, count); 615 else 616 /* Update timeout */ 617 kvm_mips_resume_hrtimer(vcpu, now, count); 618 } 619 620 /** 621 * kvm_mips_init_count() - Initialise timer. 622 * @vcpu: Virtual CPU. 623 * @count_hz: Frequency of timer. 624 * 625 * Initialise the timer to the specified frequency, zero it, and set it going if 626 * it's enabled. 627 */ 628 void kvm_mips_init_count(struct kvm_vcpu *vcpu, unsigned long count_hz) 629 { 630 vcpu->arch.count_hz = count_hz; 631 vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz); 632 vcpu->arch.count_dyn_bias = 0; 633 634 /* Starting at 0 */ 635 kvm_mips_write_count(vcpu, 0); 636 } 637 638 /** 639 * kvm_mips_set_count_hz() - Update the frequency of the timer. 640 * @vcpu: Virtual CPU. 641 * @count_hz: Frequency of CP0_Count timer in Hz. 642 * 643 * Change the frequency of the CP0_Count timer. This is done atomically so that 644 * CP0_Count is continuous and no timer interrupt is lost. 645 * 646 * Returns: -EINVAL if @count_hz is out of range. 647 * 0 on success. 648 */ 649 int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz) 650 { 651 struct mips_coproc *cop0 = vcpu->arch.cop0; 652 int dc; 653 ktime_t now; 654 u32 count; 655 656 /* ensure the frequency is in a sensible range... */ 657 if (count_hz <= 0 || count_hz > NSEC_PER_SEC) 658 return -EINVAL; 659 /* ... and has actually changed */ 660 if (vcpu->arch.count_hz == count_hz) 661 return 0; 662 663 /* Safely freeze timer so we can keep it continuous */ 664 dc = kvm_mips_count_disabled(vcpu); 665 if (dc) { 666 now = kvm_mips_count_time(vcpu); 667 count = kvm_read_c0_guest_count(cop0); 668 } else { 669 now = kvm_mips_freeze_hrtimer(vcpu, &count); 670 } 671 672 /* Update the frequency */ 673 vcpu->arch.count_hz = count_hz; 674 vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz); 675 vcpu->arch.count_dyn_bias = 0; 676 677 /* Calculate adjusted bias so dynamic count is unchanged */ 678 vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now); 679 680 /* Update and resume hrtimer */ 681 if (!dc) 682 kvm_mips_resume_hrtimer(vcpu, now, count); 683 return 0; 684 } 685 686 /** 687 * kvm_mips_write_compare() - Modify compare and update timer. 688 * @vcpu: Virtual CPU. 689 * @compare: New CP0_Compare value. 690 * @ack: Whether to acknowledge timer interrupt. 691 * 692 * Update CP0_Compare to a new value and update the timeout. 693 * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure 694 * any pending timer interrupt is preserved. 695 */ 696 void kvm_mips_write_compare(struct kvm_vcpu *vcpu, u32 compare, bool ack) 697 { 698 struct mips_coproc *cop0 = vcpu->arch.cop0; 699 int dc; 700 u32 old_compare = kvm_read_c0_guest_compare(cop0); 701 s32 delta = compare - old_compare; 702 u32 cause; 703 ktime_t now = ktime_set(0, 0); /* silence bogus GCC warning */ 704 u32 count; 705 706 /* if unchanged, must just be an ack */ 707 if (old_compare == compare) { 708 if (!ack) 709 return; 710 kvm_mips_callbacks->dequeue_timer_int(vcpu); 711 kvm_write_c0_guest_compare(cop0, compare); 712 return; 713 } 714 715 /* 716 * If guest CP0_Compare moves forward, CP0_GTOffset should be adjusted 717 * too to prevent guest CP0_Count hitting guest CP0_Compare. 718 * 719 * The new GTOffset corresponds to the new value of CP0_Compare, and is 720 * set prior to it being written into the guest context. We disable 721 * preemption until the new value is written to prevent restore of a 722 * GTOffset corresponding to the old CP0_Compare value. 723 */ 724 if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && delta > 0) { 725 preempt_disable(); 726 write_c0_gtoffset(compare - read_c0_count()); 727 back_to_back_c0_hazard(); 728 } 729 730 /* freeze_hrtimer() takes care of timer interrupts <= count */ 731 dc = kvm_mips_count_disabled(vcpu); 732 if (!dc) 733 now = kvm_mips_freeze_hrtimer(vcpu, &count); 734 735 if (ack) 736 kvm_mips_callbacks->dequeue_timer_int(vcpu); 737 else if (IS_ENABLED(CONFIG_KVM_MIPS_VZ)) 738 /* 739 * With VZ, writing CP0_Compare acks (clears) CP0_Cause.TI, so 740 * preserve guest CP0_Cause.TI if we don't want to ack it. 741 */ 742 cause = kvm_read_c0_guest_cause(cop0); 743 744 kvm_write_c0_guest_compare(cop0, compare); 745 746 if (IS_ENABLED(CONFIG_KVM_MIPS_VZ)) { 747 if (delta > 0) 748 preempt_enable(); 749 750 back_to_back_c0_hazard(); 751 752 if (!ack && cause & CAUSEF_TI) 753 kvm_write_c0_guest_cause(cop0, cause); 754 } 755 756 /* resume_hrtimer() takes care of timer interrupts > count */ 757 if (!dc) 758 kvm_mips_resume_hrtimer(vcpu, now, count); 759 760 /* 761 * If guest CP0_Compare is moving backward, we delay CP0_GTOffset change 762 * until after the new CP0_Compare is written, otherwise new guest 763 * CP0_Count could hit new guest CP0_Compare. 764 */ 765 if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && delta <= 0) 766 write_c0_gtoffset(compare - read_c0_count()); 767 } 768 769 /** 770 * kvm_mips_count_disable() - Disable count. 771 * @vcpu: Virtual CPU. 772 * 773 * Disable the CP0_Count timer. A timer interrupt on or before the final stop 774 * time will be handled but not after. 775 * 776 * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or 777 * count_ctl.DC has been set (count disabled). 778 * 779 * Returns: The time that the timer was stopped. 780 */ 781 static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu) 782 { 783 struct mips_coproc *cop0 = vcpu->arch.cop0; 784 u32 count; 785 ktime_t now; 786 787 /* Stop hrtimer */ 788 hrtimer_cancel(&vcpu->arch.comparecount_timer); 789 790 /* Set the static count from the dynamic count, handling pending TI */ 791 now = ktime_get(); 792 count = kvm_mips_read_count_running(vcpu, now); 793 kvm_write_c0_guest_count(cop0, count); 794 795 return now; 796 } 797 798 /** 799 * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC. 800 * @vcpu: Virtual CPU. 801 * 802 * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or 803 * before the final stop time will be handled if the timer isn't disabled by 804 * count_ctl.DC, but not after. 805 * 806 * Assumes CP0_Cause.DC is clear (count enabled). 807 */ 808 void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu) 809 { 810 struct mips_coproc *cop0 = vcpu->arch.cop0; 811 812 kvm_set_c0_guest_cause(cop0, CAUSEF_DC); 813 if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)) 814 kvm_mips_count_disable(vcpu); 815 } 816 817 /** 818 * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC. 819 * @vcpu: Virtual CPU. 820 * 821 * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after 822 * the start time will be handled if the timer isn't disabled by count_ctl.DC, 823 * potentially before even returning, so the caller should be careful with 824 * ordering of CP0_Cause modifications so as not to lose it. 825 * 826 * Assumes CP0_Cause.DC is set (count disabled). 827 */ 828 void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu) 829 { 830 struct mips_coproc *cop0 = vcpu->arch.cop0; 831 u32 count; 832 833 kvm_clear_c0_guest_cause(cop0, CAUSEF_DC); 834 835 /* 836 * Set the dynamic count to match the static count. 837 * This starts the hrtimer if count_ctl.DC allows it. 838 * Otherwise it conveniently updates the biases. 839 */ 840 count = kvm_read_c0_guest_count(cop0); 841 kvm_mips_write_count(vcpu, count); 842 } 843 844 /** 845 * kvm_mips_set_count_ctl() - Update the count control KVM register. 846 * @vcpu: Virtual CPU. 847 * @count_ctl: Count control register new value. 848 * 849 * Set the count control KVM register. The timer is updated accordingly. 850 * 851 * Returns: -EINVAL if reserved bits are set. 852 * 0 on success. 853 */ 854 int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl) 855 { 856 struct mips_coproc *cop0 = vcpu->arch.cop0; 857 s64 changed = count_ctl ^ vcpu->arch.count_ctl; 858 s64 delta; 859 ktime_t expire, now; 860 u32 count, compare; 861 862 /* Only allow defined bits to be changed */ 863 if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC)) 864 return -EINVAL; 865 866 /* Apply new value */ 867 vcpu->arch.count_ctl = count_ctl; 868 869 /* Master CP0_Count disable */ 870 if (changed & KVM_REG_MIPS_COUNT_CTL_DC) { 871 /* Is CP0_Cause.DC already disabling CP0_Count? */ 872 if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) { 873 if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) 874 /* Just record the current time */ 875 vcpu->arch.count_resume = ktime_get(); 876 } else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) { 877 /* disable timer and record current time */ 878 vcpu->arch.count_resume = kvm_mips_count_disable(vcpu); 879 } else { 880 /* 881 * Calculate timeout relative to static count at resume 882 * time (wrap 0 to 2^32). 883 */ 884 count = kvm_read_c0_guest_count(cop0); 885 compare = kvm_read_c0_guest_compare(cop0); 886 delta = (u64)(u32)(compare - count - 1) + 1; 887 delta = div_u64(delta * NSEC_PER_SEC, 888 vcpu->arch.count_hz); 889 expire = ktime_add_ns(vcpu->arch.count_resume, delta); 890 891 /* Handle pending interrupt */ 892 now = ktime_get(); 893 if (ktime_compare(now, expire) >= 0) 894 /* Nothing should be waiting on the timeout */ 895 kvm_mips_callbacks->queue_timer_int(vcpu); 896 897 /* Resume hrtimer without changing bias */ 898 count = kvm_mips_read_count_running(vcpu, now); 899 kvm_mips_resume_hrtimer(vcpu, now, count); 900 } 901 } 902 903 return 0; 904 } 905 906 /** 907 * kvm_mips_set_count_resume() - Update the count resume KVM register. 908 * @vcpu: Virtual CPU. 909 * @count_resume: Count resume register new value. 910 * 911 * Set the count resume KVM register. 912 * 913 * Returns: -EINVAL if out of valid range (0..now). 914 * 0 on success. 915 */ 916 int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume) 917 { 918 /* 919 * It doesn't make sense for the resume time to be in the future, as it 920 * would be possible for the next interrupt to be more than a full 921 * period in the future. 922 */ 923 if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get())) 924 return -EINVAL; 925 926 vcpu->arch.count_resume = ns_to_ktime(count_resume); 927 return 0; 928 } 929 930 /** 931 * kvm_mips_count_timeout() - Push timer forward on timeout. 932 * @vcpu: Virtual CPU. 933 * 934 * Handle an hrtimer event by push the hrtimer forward a period. 935 * 936 * Returns: The hrtimer_restart value to return to the hrtimer subsystem. 937 */ 938 enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu) 939 { 940 /* Add the Count period to the current expiry time */ 941 hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer, 942 vcpu->arch.count_period); 943 return HRTIMER_RESTART; 944 } 945 946 enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu) 947 { 948 struct mips_coproc *cop0 = vcpu->arch.cop0; 949 enum emulation_result er = EMULATE_DONE; 950 951 if (kvm_read_c0_guest_status(cop0) & ST0_ERL) { 952 kvm_clear_c0_guest_status(cop0, ST0_ERL); 953 vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0); 954 } else if (kvm_read_c0_guest_status(cop0) & ST0_EXL) { 955 kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc, 956 kvm_read_c0_guest_epc(cop0)); 957 kvm_clear_c0_guest_status(cop0, ST0_EXL); 958 vcpu->arch.pc = kvm_read_c0_guest_epc(cop0); 959 960 } else { 961 kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n", 962 vcpu->arch.pc); 963 er = EMULATE_FAIL; 964 } 965 966 return er; 967 } 968 969 enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu) 970 { 971 kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc, 972 vcpu->arch.pending_exceptions); 973 974 ++vcpu->stat.wait_exits; 975 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_WAIT); 976 if (!vcpu->arch.pending_exceptions) { 977 kvm_vz_lose_htimer(vcpu); 978 vcpu->arch.wait = 1; 979 kvm_vcpu_block(vcpu); 980 981 /* 982 * We we are runnable, then definitely go off to user space to 983 * check if any I/O interrupts are pending. 984 */ 985 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) { 986 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 987 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 988 } 989 } 990 991 return EMULATE_DONE; 992 } 993 994 static void kvm_mips_change_entryhi(struct kvm_vcpu *vcpu, 995 unsigned long entryhi) 996 { 997 struct mips_coproc *cop0 = vcpu->arch.cop0; 998 struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm; 999 int cpu, i; 1000 u32 nasid = entryhi & KVM_ENTRYHI_ASID; 1001 1002 if (((kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID) != nasid)) { 1003 trace_kvm_asid_change(vcpu, kvm_read_c0_guest_entryhi(cop0) & 1004 KVM_ENTRYHI_ASID, nasid); 1005 1006 /* 1007 * Flush entries from the GVA page tables. 1008 * Guest user page table will get flushed lazily on re-entry to 1009 * guest user if the guest ASID actually changes. 1010 */ 1011 kvm_mips_flush_gva_pt(kern_mm->pgd, KMF_KERN); 1012 1013 /* 1014 * Regenerate/invalidate kernel MMU context. 1015 * The user MMU context will be regenerated lazily on re-entry 1016 * to guest user if the guest ASID actually changes. 1017 */ 1018 preempt_disable(); 1019 cpu = smp_processor_id(); 1020 get_new_mmu_context(kern_mm); 1021 for_each_possible_cpu(i) 1022 if (i != cpu) 1023 set_cpu_context(i, kern_mm, 0); 1024 preempt_enable(); 1025 } 1026 kvm_write_c0_guest_entryhi(cop0, entryhi); 1027 } 1028 1029 enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu) 1030 { 1031 struct mips_coproc *cop0 = vcpu->arch.cop0; 1032 struct kvm_mips_tlb *tlb; 1033 unsigned long pc = vcpu->arch.pc; 1034 int index; 1035 1036 index = kvm_read_c0_guest_index(cop0); 1037 if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) { 1038 /* UNDEFINED */ 1039 kvm_debug("[%#lx] TLBR Index %#x out of range\n", pc, index); 1040 index &= KVM_MIPS_GUEST_TLB_SIZE - 1; 1041 } 1042 1043 tlb = &vcpu->arch.guest_tlb[index]; 1044 kvm_write_c0_guest_pagemask(cop0, tlb->tlb_mask); 1045 kvm_write_c0_guest_entrylo0(cop0, tlb->tlb_lo[0]); 1046 kvm_write_c0_guest_entrylo1(cop0, tlb->tlb_lo[1]); 1047 kvm_mips_change_entryhi(vcpu, tlb->tlb_hi); 1048 1049 return EMULATE_DONE; 1050 } 1051 1052 /** 1053 * kvm_mips_invalidate_guest_tlb() - Indicates a change in guest MMU map. 1054 * @vcpu: VCPU with changed mappings. 1055 * @tlb: TLB entry being removed. 1056 * 1057 * This is called to indicate a single change in guest MMU mappings, so that we 1058 * can arrange TLB flushes on this and other CPUs. 1059 */ 1060 static void kvm_mips_invalidate_guest_tlb(struct kvm_vcpu *vcpu, 1061 struct kvm_mips_tlb *tlb) 1062 { 1063 struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm; 1064 struct mm_struct *user_mm = &vcpu->arch.guest_user_mm; 1065 int cpu, i; 1066 bool user; 1067 1068 /* No need to flush for entries which are already invalid */ 1069 if (!((tlb->tlb_lo[0] | tlb->tlb_lo[1]) & ENTRYLO_V)) 1070 return; 1071 /* Don't touch host kernel page tables or TLB mappings */ 1072 if ((unsigned long)tlb->tlb_hi > 0x7fffffff) 1073 return; 1074 /* User address space doesn't need flushing for KSeg2/3 changes */ 1075 user = tlb->tlb_hi < KVM_GUEST_KSEG0; 1076 1077 preempt_disable(); 1078 1079 /* Invalidate page table entries */ 1080 kvm_trap_emul_invalidate_gva(vcpu, tlb->tlb_hi & VPN2_MASK, user); 1081 1082 /* 1083 * Probe the shadow host TLB for the entry being overwritten, if one 1084 * matches, invalidate it 1085 */ 1086 kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi, user, true); 1087 1088 /* Invalidate the whole ASID on other CPUs */ 1089 cpu = smp_processor_id(); 1090 for_each_possible_cpu(i) { 1091 if (i == cpu) 1092 continue; 1093 if (user) 1094 set_cpu_context(i, user_mm, 0); 1095 set_cpu_context(i, kern_mm, 0); 1096 } 1097 1098 preempt_enable(); 1099 } 1100 1101 /* Write Guest TLB Entry @ Index */ 1102 enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu) 1103 { 1104 struct mips_coproc *cop0 = vcpu->arch.cop0; 1105 int index = kvm_read_c0_guest_index(cop0); 1106 struct kvm_mips_tlb *tlb = NULL; 1107 unsigned long pc = vcpu->arch.pc; 1108 1109 if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) { 1110 kvm_debug("%s: illegal index: %d\n", __func__, index); 1111 kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n", 1112 pc, index, kvm_read_c0_guest_entryhi(cop0), 1113 kvm_read_c0_guest_entrylo0(cop0), 1114 kvm_read_c0_guest_entrylo1(cop0), 1115 kvm_read_c0_guest_pagemask(cop0)); 1116 index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE; 1117 } 1118 1119 tlb = &vcpu->arch.guest_tlb[index]; 1120 1121 kvm_mips_invalidate_guest_tlb(vcpu, tlb); 1122 1123 tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0); 1124 tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0); 1125 tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0); 1126 tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0); 1127 1128 kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n", 1129 pc, index, kvm_read_c0_guest_entryhi(cop0), 1130 kvm_read_c0_guest_entrylo0(cop0), 1131 kvm_read_c0_guest_entrylo1(cop0), 1132 kvm_read_c0_guest_pagemask(cop0)); 1133 1134 return EMULATE_DONE; 1135 } 1136 1137 /* Write Guest TLB Entry @ Random Index */ 1138 enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu) 1139 { 1140 struct mips_coproc *cop0 = vcpu->arch.cop0; 1141 struct kvm_mips_tlb *tlb = NULL; 1142 unsigned long pc = vcpu->arch.pc; 1143 int index; 1144 1145 index = prandom_u32_max(KVM_MIPS_GUEST_TLB_SIZE); 1146 tlb = &vcpu->arch.guest_tlb[index]; 1147 1148 kvm_mips_invalidate_guest_tlb(vcpu, tlb); 1149 1150 tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0); 1151 tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0); 1152 tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0); 1153 tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0); 1154 1155 kvm_debug("[%#lx] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n", 1156 pc, index, kvm_read_c0_guest_entryhi(cop0), 1157 kvm_read_c0_guest_entrylo0(cop0), 1158 kvm_read_c0_guest_entrylo1(cop0)); 1159 1160 return EMULATE_DONE; 1161 } 1162 1163 enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu) 1164 { 1165 struct mips_coproc *cop0 = vcpu->arch.cop0; 1166 long entryhi = kvm_read_c0_guest_entryhi(cop0); 1167 unsigned long pc = vcpu->arch.pc; 1168 int index = -1; 1169 1170 index = kvm_mips_guest_tlb_lookup(vcpu, entryhi); 1171 1172 kvm_write_c0_guest_index(cop0, index); 1173 1174 kvm_debug("[%#lx] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi, 1175 index); 1176 1177 return EMULATE_DONE; 1178 } 1179 1180 /** 1181 * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1 1182 * @vcpu: Virtual CPU. 1183 * 1184 * Finds the mask of bits which are writable in the guest's Config1 CP0 1185 * register, by userland (currently read-only to the guest). 1186 */ 1187 unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu) 1188 { 1189 unsigned int mask = 0; 1190 1191 /* Permit FPU to be present if FPU is supported */ 1192 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) 1193 mask |= MIPS_CONF1_FP; 1194 1195 return mask; 1196 } 1197 1198 /** 1199 * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3 1200 * @vcpu: Virtual CPU. 1201 * 1202 * Finds the mask of bits which are writable in the guest's Config3 CP0 1203 * register, by userland (currently read-only to the guest). 1204 */ 1205 unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu) 1206 { 1207 /* Config4 and ULRI are optional */ 1208 unsigned int mask = MIPS_CONF_M | MIPS_CONF3_ULRI; 1209 1210 /* Permit MSA to be present if MSA is supported */ 1211 if (kvm_mips_guest_can_have_msa(&vcpu->arch)) 1212 mask |= MIPS_CONF3_MSA; 1213 1214 return mask; 1215 } 1216 1217 /** 1218 * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4 1219 * @vcpu: Virtual CPU. 1220 * 1221 * Finds the mask of bits which are writable in the guest's Config4 CP0 1222 * register, by userland (currently read-only to the guest). 1223 */ 1224 unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu) 1225 { 1226 /* Config5 is optional */ 1227 unsigned int mask = MIPS_CONF_M; 1228 1229 /* KScrExist */ 1230 mask |= 0xfc << MIPS_CONF4_KSCREXIST_SHIFT; 1231 1232 return mask; 1233 } 1234 1235 /** 1236 * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5 1237 * @vcpu: Virtual CPU. 1238 * 1239 * Finds the mask of bits which are writable in the guest's Config5 CP0 1240 * register, by the guest itself. 1241 */ 1242 unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu) 1243 { 1244 unsigned int mask = 0; 1245 1246 /* Permit MSAEn changes if MSA supported and enabled */ 1247 if (kvm_mips_guest_has_msa(&vcpu->arch)) 1248 mask |= MIPS_CONF5_MSAEN; 1249 1250 /* 1251 * Permit guest FPU mode changes if FPU is enabled and the relevant 1252 * feature exists according to FIR register. 1253 */ 1254 if (kvm_mips_guest_has_fpu(&vcpu->arch)) { 1255 if (cpu_has_fre) 1256 mask |= MIPS_CONF5_FRE; 1257 /* We don't support UFR or UFE */ 1258 } 1259 1260 return mask; 1261 } 1262 1263 enum emulation_result kvm_mips_emulate_CP0(union mips_instruction inst, 1264 u32 *opc, u32 cause, 1265 struct kvm_vcpu *vcpu) 1266 { 1267 struct mips_coproc *cop0 = vcpu->arch.cop0; 1268 enum emulation_result er = EMULATE_DONE; 1269 u32 rt, rd, sel; 1270 unsigned long curr_pc; 1271 1272 /* 1273 * Update PC and hold onto current PC in case there is 1274 * an error and we want to rollback the PC 1275 */ 1276 curr_pc = vcpu->arch.pc; 1277 er = update_pc(vcpu, cause); 1278 if (er == EMULATE_FAIL) 1279 return er; 1280 1281 if (inst.co_format.co) { 1282 switch (inst.co_format.func) { 1283 case tlbr_op: /* Read indexed TLB entry */ 1284 er = kvm_mips_emul_tlbr(vcpu); 1285 break; 1286 case tlbwi_op: /* Write indexed */ 1287 er = kvm_mips_emul_tlbwi(vcpu); 1288 break; 1289 case tlbwr_op: /* Write random */ 1290 er = kvm_mips_emul_tlbwr(vcpu); 1291 break; 1292 case tlbp_op: /* TLB Probe */ 1293 er = kvm_mips_emul_tlbp(vcpu); 1294 break; 1295 case rfe_op: 1296 kvm_err("!!!COP0_RFE!!!\n"); 1297 break; 1298 case eret_op: 1299 er = kvm_mips_emul_eret(vcpu); 1300 goto dont_update_pc; 1301 case wait_op: 1302 er = kvm_mips_emul_wait(vcpu); 1303 break; 1304 case hypcall_op: 1305 er = kvm_mips_emul_hypcall(vcpu, inst); 1306 break; 1307 } 1308 } else { 1309 rt = inst.c0r_format.rt; 1310 rd = inst.c0r_format.rd; 1311 sel = inst.c0r_format.sel; 1312 1313 switch (inst.c0r_format.rs) { 1314 case mfc_op: 1315 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS 1316 cop0->stat[rd][sel]++; 1317 #endif 1318 /* Get reg */ 1319 if ((rd == MIPS_CP0_COUNT) && (sel == 0)) { 1320 vcpu->arch.gprs[rt] = 1321 (s32)kvm_mips_read_count(vcpu); 1322 } else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) { 1323 vcpu->arch.gprs[rt] = 0x0; 1324 #ifdef CONFIG_KVM_MIPS_DYN_TRANS 1325 kvm_mips_trans_mfc0(inst, opc, vcpu); 1326 #endif 1327 } else { 1328 vcpu->arch.gprs[rt] = (s32)cop0->reg[rd][sel]; 1329 1330 #ifdef CONFIG_KVM_MIPS_DYN_TRANS 1331 kvm_mips_trans_mfc0(inst, opc, vcpu); 1332 #endif 1333 } 1334 1335 trace_kvm_hwr(vcpu, KVM_TRACE_MFC0, 1336 KVM_TRACE_COP0(rd, sel), 1337 vcpu->arch.gprs[rt]); 1338 break; 1339 1340 case dmfc_op: 1341 vcpu->arch.gprs[rt] = cop0->reg[rd][sel]; 1342 1343 trace_kvm_hwr(vcpu, KVM_TRACE_DMFC0, 1344 KVM_TRACE_COP0(rd, sel), 1345 vcpu->arch.gprs[rt]); 1346 break; 1347 1348 case mtc_op: 1349 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS 1350 cop0->stat[rd][sel]++; 1351 #endif 1352 trace_kvm_hwr(vcpu, KVM_TRACE_MTC0, 1353 KVM_TRACE_COP0(rd, sel), 1354 vcpu->arch.gprs[rt]); 1355 1356 if ((rd == MIPS_CP0_TLB_INDEX) 1357 && (vcpu->arch.gprs[rt] >= 1358 KVM_MIPS_GUEST_TLB_SIZE)) { 1359 kvm_err("Invalid TLB Index: %ld", 1360 vcpu->arch.gprs[rt]); 1361 er = EMULATE_FAIL; 1362 break; 1363 } 1364 if ((rd == MIPS_CP0_PRID) && (sel == 1)) { 1365 /* 1366 * Preserve core number, and keep the exception 1367 * base in guest KSeg0. 1368 */ 1369 kvm_change_c0_guest_ebase(cop0, 0x1ffff000, 1370 vcpu->arch.gprs[rt]); 1371 } else if (rd == MIPS_CP0_TLB_HI && sel == 0) { 1372 kvm_mips_change_entryhi(vcpu, 1373 vcpu->arch.gprs[rt]); 1374 } 1375 /* Are we writing to COUNT */ 1376 else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) { 1377 kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]); 1378 goto done; 1379 } else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) { 1380 /* If we are writing to COMPARE */ 1381 /* Clear pending timer interrupt, if any */ 1382 kvm_mips_write_compare(vcpu, 1383 vcpu->arch.gprs[rt], 1384 true); 1385 } else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) { 1386 unsigned int old_val, val, change; 1387 1388 old_val = kvm_read_c0_guest_status(cop0); 1389 val = vcpu->arch.gprs[rt]; 1390 change = val ^ old_val; 1391 1392 /* Make sure that the NMI bit is never set */ 1393 val &= ~ST0_NMI; 1394 1395 /* 1396 * Don't allow CU1 or FR to be set unless FPU 1397 * capability enabled and exists in guest 1398 * configuration. 1399 */ 1400 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 1401 val &= ~(ST0_CU1 | ST0_FR); 1402 1403 /* 1404 * Also don't allow FR to be set if host doesn't 1405 * support it. 1406 */ 1407 if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64)) 1408 val &= ~ST0_FR; 1409 1410 1411 /* Handle changes in FPU mode */ 1412 preempt_disable(); 1413 1414 /* 1415 * FPU and Vector register state is made 1416 * UNPREDICTABLE by a change of FR, so don't 1417 * even bother saving it. 1418 */ 1419 if (change & ST0_FR) 1420 kvm_drop_fpu(vcpu); 1421 1422 /* 1423 * If MSA state is already live, it is undefined 1424 * how it interacts with FR=0 FPU state, and we 1425 * don't want to hit reserved instruction 1426 * exceptions trying to save the MSA state later 1427 * when CU=1 && FR=1, so play it safe and save 1428 * it first. 1429 */ 1430 if (change & ST0_CU1 && !(val & ST0_FR) && 1431 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) 1432 kvm_lose_fpu(vcpu); 1433 1434 /* 1435 * Propagate CU1 (FPU enable) changes 1436 * immediately if the FPU context is already 1437 * loaded. When disabling we leave the context 1438 * loaded so it can be quickly enabled again in 1439 * the near future. 1440 */ 1441 if (change & ST0_CU1 && 1442 vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) 1443 change_c0_status(ST0_CU1, val); 1444 1445 preempt_enable(); 1446 1447 kvm_write_c0_guest_status(cop0, val); 1448 1449 #ifdef CONFIG_KVM_MIPS_DYN_TRANS 1450 /* 1451 * If FPU present, we need CU1/FR bits to take 1452 * effect fairly soon. 1453 */ 1454 if (!kvm_mips_guest_has_fpu(&vcpu->arch)) 1455 kvm_mips_trans_mtc0(inst, opc, vcpu); 1456 #endif 1457 } else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) { 1458 unsigned int old_val, val, change, wrmask; 1459 1460 old_val = kvm_read_c0_guest_config5(cop0); 1461 val = vcpu->arch.gprs[rt]; 1462 1463 /* Only a few bits are writable in Config5 */ 1464 wrmask = kvm_mips_config5_wrmask(vcpu); 1465 change = (val ^ old_val) & wrmask; 1466 val = old_val ^ change; 1467 1468 1469 /* Handle changes in FPU/MSA modes */ 1470 preempt_disable(); 1471 1472 /* 1473 * Propagate FRE changes immediately if the FPU 1474 * context is already loaded. 1475 */ 1476 if (change & MIPS_CONF5_FRE && 1477 vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) 1478 change_c0_config5(MIPS_CONF5_FRE, val); 1479 1480 /* 1481 * Propagate MSAEn changes immediately if the 1482 * MSA context is already loaded. When disabling 1483 * we leave the context loaded so it can be 1484 * quickly enabled again in the near future. 1485 */ 1486 if (change & MIPS_CONF5_MSAEN && 1487 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) 1488 change_c0_config5(MIPS_CONF5_MSAEN, 1489 val); 1490 1491 preempt_enable(); 1492 1493 kvm_write_c0_guest_config5(cop0, val); 1494 } else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) { 1495 u32 old_cause, new_cause; 1496 1497 old_cause = kvm_read_c0_guest_cause(cop0); 1498 new_cause = vcpu->arch.gprs[rt]; 1499 /* Update R/W bits */ 1500 kvm_change_c0_guest_cause(cop0, 0x08800300, 1501 new_cause); 1502 /* DC bit enabling/disabling timer? */ 1503 if ((old_cause ^ new_cause) & CAUSEF_DC) { 1504 if (new_cause & CAUSEF_DC) 1505 kvm_mips_count_disable_cause(vcpu); 1506 else 1507 kvm_mips_count_enable_cause(vcpu); 1508 } 1509 } else if ((rd == MIPS_CP0_HWRENA) && (sel == 0)) { 1510 u32 mask = MIPS_HWRENA_CPUNUM | 1511 MIPS_HWRENA_SYNCISTEP | 1512 MIPS_HWRENA_CC | 1513 MIPS_HWRENA_CCRES; 1514 1515 if (kvm_read_c0_guest_config3(cop0) & 1516 MIPS_CONF3_ULRI) 1517 mask |= MIPS_HWRENA_ULR; 1518 cop0->reg[rd][sel] = vcpu->arch.gprs[rt] & mask; 1519 } else { 1520 cop0->reg[rd][sel] = vcpu->arch.gprs[rt]; 1521 #ifdef CONFIG_KVM_MIPS_DYN_TRANS 1522 kvm_mips_trans_mtc0(inst, opc, vcpu); 1523 #endif 1524 } 1525 break; 1526 1527 case dmtc_op: 1528 kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n", 1529 vcpu->arch.pc, rt, rd, sel); 1530 trace_kvm_hwr(vcpu, KVM_TRACE_DMTC0, 1531 KVM_TRACE_COP0(rd, sel), 1532 vcpu->arch.gprs[rt]); 1533 er = EMULATE_FAIL; 1534 break; 1535 1536 case mfmc0_op: 1537 #ifdef KVM_MIPS_DEBUG_COP0_COUNTERS 1538 cop0->stat[MIPS_CP0_STATUS][0]++; 1539 #endif 1540 if (rt != 0) 1541 vcpu->arch.gprs[rt] = 1542 kvm_read_c0_guest_status(cop0); 1543 /* EI */ 1544 if (inst.mfmc0_format.sc) { 1545 kvm_debug("[%#lx] mfmc0_op: EI\n", 1546 vcpu->arch.pc); 1547 kvm_set_c0_guest_status(cop0, ST0_IE); 1548 } else { 1549 kvm_debug("[%#lx] mfmc0_op: DI\n", 1550 vcpu->arch.pc); 1551 kvm_clear_c0_guest_status(cop0, ST0_IE); 1552 } 1553 1554 break; 1555 1556 case wrpgpr_op: 1557 { 1558 u32 css = cop0->reg[MIPS_CP0_STATUS][2] & 0xf; 1559 u32 pss = 1560 (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf; 1561 /* 1562 * We don't support any shadow register sets, so 1563 * SRSCtl[PSS] == SRSCtl[CSS] = 0 1564 */ 1565 if (css || pss) { 1566 er = EMULATE_FAIL; 1567 break; 1568 } 1569 kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd, 1570 vcpu->arch.gprs[rt]); 1571 vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt]; 1572 } 1573 break; 1574 default: 1575 kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n", 1576 vcpu->arch.pc, inst.c0r_format.rs); 1577 er = EMULATE_FAIL; 1578 break; 1579 } 1580 } 1581 1582 done: 1583 /* Rollback PC only if emulation was unsuccessful */ 1584 if (er == EMULATE_FAIL) 1585 vcpu->arch.pc = curr_pc; 1586 1587 dont_update_pc: 1588 /* 1589 * This is for special instructions whose emulation 1590 * updates the PC, so do not overwrite the PC under 1591 * any circumstances 1592 */ 1593 1594 return er; 1595 } 1596 1597 enum emulation_result kvm_mips_emulate_store(union mips_instruction inst, 1598 u32 cause, 1599 struct kvm_vcpu *vcpu) 1600 { 1601 int r; 1602 enum emulation_result er; 1603 u32 rt; 1604 struct kvm_run *run = vcpu->run; 1605 void *data = run->mmio.data; 1606 unsigned int imme; 1607 unsigned long curr_pc; 1608 1609 /* 1610 * Update PC and hold onto current PC in case there is 1611 * an error and we want to rollback the PC 1612 */ 1613 curr_pc = vcpu->arch.pc; 1614 er = update_pc(vcpu, cause); 1615 if (er == EMULATE_FAIL) 1616 return er; 1617 1618 rt = inst.i_format.rt; 1619 1620 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( 1621 vcpu->arch.host_cp0_badvaddr); 1622 if (run->mmio.phys_addr == KVM_INVALID_ADDR) 1623 goto out_fail; 1624 1625 switch (inst.i_format.opcode) { 1626 #if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ) 1627 case sd_op: 1628 run->mmio.len = 8; 1629 *(u64 *)data = vcpu->arch.gprs[rt]; 1630 1631 kvm_debug("[%#lx] OP_SD: eaddr: %#lx, gpr: %#lx, data: %#llx\n", 1632 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, 1633 vcpu->arch.gprs[rt], *(u64 *)data); 1634 break; 1635 #endif 1636 1637 case sw_op: 1638 run->mmio.len = 4; 1639 *(u32 *)data = vcpu->arch.gprs[rt]; 1640 1641 kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n", 1642 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, 1643 vcpu->arch.gprs[rt], *(u32 *)data); 1644 break; 1645 1646 case sh_op: 1647 run->mmio.len = 2; 1648 *(u16 *)data = vcpu->arch.gprs[rt]; 1649 1650 kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n", 1651 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, 1652 vcpu->arch.gprs[rt], *(u16 *)data); 1653 break; 1654 1655 case sb_op: 1656 run->mmio.len = 1; 1657 *(u8 *)data = vcpu->arch.gprs[rt]; 1658 1659 kvm_debug("[%#lx] OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n", 1660 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, 1661 vcpu->arch.gprs[rt], *(u8 *)data); 1662 break; 1663 1664 case swl_op: 1665 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( 1666 vcpu->arch.host_cp0_badvaddr) & (~0x3); 1667 run->mmio.len = 4; 1668 imme = vcpu->arch.host_cp0_badvaddr & 0x3; 1669 switch (imme) { 1670 case 0: 1671 *(u32 *)data = ((*(u32 *)data) & 0xffffff00) | 1672 (vcpu->arch.gprs[rt] >> 24); 1673 break; 1674 case 1: 1675 *(u32 *)data = ((*(u32 *)data) & 0xffff0000) | 1676 (vcpu->arch.gprs[rt] >> 16); 1677 break; 1678 case 2: 1679 *(u32 *)data = ((*(u32 *)data) & 0xff000000) | 1680 (vcpu->arch.gprs[rt] >> 8); 1681 break; 1682 case 3: 1683 *(u32 *)data = vcpu->arch.gprs[rt]; 1684 break; 1685 default: 1686 break; 1687 } 1688 1689 kvm_debug("[%#lx] OP_SWL: eaddr: %#lx, gpr: %#lx, data: %#x\n", 1690 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, 1691 vcpu->arch.gprs[rt], *(u32 *)data); 1692 break; 1693 1694 case swr_op: 1695 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( 1696 vcpu->arch.host_cp0_badvaddr) & (~0x3); 1697 run->mmio.len = 4; 1698 imme = vcpu->arch.host_cp0_badvaddr & 0x3; 1699 switch (imme) { 1700 case 0: 1701 *(u32 *)data = vcpu->arch.gprs[rt]; 1702 break; 1703 case 1: 1704 *(u32 *)data = ((*(u32 *)data) & 0xff) | 1705 (vcpu->arch.gprs[rt] << 8); 1706 break; 1707 case 2: 1708 *(u32 *)data = ((*(u32 *)data) & 0xffff) | 1709 (vcpu->arch.gprs[rt] << 16); 1710 break; 1711 case 3: 1712 *(u32 *)data = ((*(u32 *)data) & 0xffffff) | 1713 (vcpu->arch.gprs[rt] << 24); 1714 break; 1715 default: 1716 break; 1717 } 1718 1719 kvm_debug("[%#lx] OP_SWR: eaddr: %#lx, gpr: %#lx, data: %#x\n", 1720 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, 1721 vcpu->arch.gprs[rt], *(u32 *)data); 1722 break; 1723 1724 #if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ) 1725 case sdl_op: 1726 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( 1727 vcpu->arch.host_cp0_badvaddr) & (~0x7); 1728 1729 run->mmio.len = 8; 1730 imme = vcpu->arch.host_cp0_badvaddr & 0x7; 1731 switch (imme) { 1732 case 0: 1733 *(u64 *)data = ((*(u64 *)data) & 0xffffffffffffff00) | 1734 ((vcpu->arch.gprs[rt] >> 56) & 0xff); 1735 break; 1736 case 1: 1737 *(u64 *)data = ((*(u64 *)data) & 0xffffffffffff0000) | 1738 ((vcpu->arch.gprs[rt] >> 48) & 0xffff); 1739 break; 1740 case 2: 1741 *(u64 *)data = ((*(u64 *)data) & 0xffffffffff000000) | 1742 ((vcpu->arch.gprs[rt] >> 40) & 0xffffff); 1743 break; 1744 case 3: 1745 *(u64 *)data = ((*(u64 *)data) & 0xffffffff00000000) | 1746 ((vcpu->arch.gprs[rt] >> 32) & 0xffffffff); 1747 break; 1748 case 4: 1749 *(u64 *)data = ((*(u64 *)data) & 0xffffff0000000000) | 1750 ((vcpu->arch.gprs[rt] >> 24) & 0xffffffffff); 1751 break; 1752 case 5: 1753 *(u64 *)data = ((*(u64 *)data) & 0xffff000000000000) | 1754 ((vcpu->arch.gprs[rt] >> 16) & 0xffffffffffff); 1755 break; 1756 case 6: 1757 *(u64 *)data = ((*(u64 *)data) & 0xff00000000000000) | 1758 ((vcpu->arch.gprs[rt] >> 8) & 0xffffffffffffff); 1759 break; 1760 case 7: 1761 *(u64 *)data = vcpu->arch.gprs[rt]; 1762 break; 1763 default: 1764 break; 1765 } 1766 1767 kvm_debug("[%#lx] OP_SDL: eaddr: %#lx, gpr: %#lx, data: %llx\n", 1768 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, 1769 vcpu->arch.gprs[rt], *(u64 *)data); 1770 break; 1771 1772 case sdr_op: 1773 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( 1774 vcpu->arch.host_cp0_badvaddr) & (~0x7); 1775 1776 run->mmio.len = 8; 1777 imme = vcpu->arch.host_cp0_badvaddr & 0x7; 1778 switch (imme) { 1779 case 0: 1780 *(u64 *)data = vcpu->arch.gprs[rt]; 1781 break; 1782 case 1: 1783 *(u64 *)data = ((*(u64 *)data) & 0xff) | 1784 (vcpu->arch.gprs[rt] << 8); 1785 break; 1786 case 2: 1787 *(u64 *)data = ((*(u64 *)data) & 0xffff) | 1788 (vcpu->arch.gprs[rt] << 16); 1789 break; 1790 case 3: 1791 *(u64 *)data = ((*(u64 *)data) & 0xffffff) | 1792 (vcpu->arch.gprs[rt] << 24); 1793 break; 1794 case 4: 1795 *(u64 *)data = ((*(u64 *)data) & 0xffffffff) | 1796 (vcpu->arch.gprs[rt] << 32); 1797 break; 1798 case 5: 1799 *(u64 *)data = ((*(u64 *)data) & 0xffffffffff) | 1800 (vcpu->arch.gprs[rt] << 40); 1801 break; 1802 case 6: 1803 *(u64 *)data = ((*(u64 *)data) & 0xffffffffffff) | 1804 (vcpu->arch.gprs[rt] << 48); 1805 break; 1806 case 7: 1807 *(u64 *)data = ((*(u64 *)data) & 0xffffffffffffff) | 1808 (vcpu->arch.gprs[rt] << 56); 1809 break; 1810 default: 1811 break; 1812 } 1813 1814 kvm_debug("[%#lx] OP_SDR: eaddr: %#lx, gpr: %#lx, data: %llx\n", 1815 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, 1816 vcpu->arch.gprs[rt], *(u64 *)data); 1817 break; 1818 #endif 1819 1820 #ifdef CONFIG_CPU_LOONGSON64 1821 case sdc2_op: 1822 rt = inst.loongson3_lsdc2_format.rt; 1823 switch (inst.loongson3_lsdc2_format.opcode1) { 1824 /* 1825 * Loongson-3 overridden sdc2 instructions. 1826 * opcode1 instruction 1827 * 0x0 gssbx: store 1 bytes from GPR 1828 * 0x1 gsshx: store 2 bytes from GPR 1829 * 0x2 gsswx: store 4 bytes from GPR 1830 * 0x3 gssdx: store 8 bytes from GPR 1831 */ 1832 case 0x0: 1833 run->mmio.len = 1; 1834 *(u8 *)data = vcpu->arch.gprs[rt]; 1835 1836 kvm_debug("[%#lx] OP_GSSBX: eaddr: %#lx, gpr: %#lx, data: %#x\n", 1837 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, 1838 vcpu->arch.gprs[rt], *(u8 *)data); 1839 break; 1840 case 0x1: 1841 run->mmio.len = 2; 1842 *(u16 *)data = vcpu->arch.gprs[rt]; 1843 1844 kvm_debug("[%#lx] OP_GSSSHX: eaddr: %#lx, gpr: %#lx, data: %#x\n", 1845 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, 1846 vcpu->arch.gprs[rt], *(u16 *)data); 1847 break; 1848 case 0x2: 1849 run->mmio.len = 4; 1850 *(u32 *)data = vcpu->arch.gprs[rt]; 1851 1852 kvm_debug("[%#lx] OP_GSSWX: eaddr: %#lx, gpr: %#lx, data: %#x\n", 1853 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, 1854 vcpu->arch.gprs[rt], *(u32 *)data); 1855 break; 1856 case 0x3: 1857 run->mmio.len = 8; 1858 *(u64 *)data = vcpu->arch.gprs[rt]; 1859 1860 kvm_debug("[%#lx] OP_GSSDX: eaddr: %#lx, gpr: %#lx, data: %#llx\n", 1861 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, 1862 vcpu->arch.gprs[rt], *(u64 *)data); 1863 break; 1864 default: 1865 kvm_err("Godson Extended GS-Store not yet supported (inst=0x%08x)\n", 1866 inst.word); 1867 break; 1868 } 1869 break; 1870 #endif 1871 default: 1872 kvm_err("Store not yet supported (inst=0x%08x)\n", 1873 inst.word); 1874 goto out_fail; 1875 } 1876 1877 vcpu->mmio_needed = 1; 1878 run->mmio.is_write = 1; 1879 vcpu->mmio_is_write = 1; 1880 1881 r = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, 1882 run->mmio.phys_addr, run->mmio.len, data); 1883 1884 if (!r) { 1885 vcpu->mmio_needed = 0; 1886 return EMULATE_DONE; 1887 } 1888 1889 return EMULATE_DO_MMIO; 1890 1891 out_fail: 1892 /* Rollback PC if emulation was unsuccessful */ 1893 vcpu->arch.pc = curr_pc; 1894 return EMULATE_FAIL; 1895 } 1896 1897 enum emulation_result kvm_mips_emulate_load(union mips_instruction inst, 1898 u32 cause, struct kvm_vcpu *vcpu) 1899 { 1900 struct kvm_run *run = vcpu->run; 1901 int r; 1902 enum emulation_result er; 1903 unsigned long curr_pc; 1904 u32 op, rt; 1905 unsigned int imme; 1906 1907 rt = inst.i_format.rt; 1908 op = inst.i_format.opcode; 1909 1910 /* 1911 * Find the resume PC now while we have safe and easy access to the 1912 * prior branch instruction, and save it for 1913 * kvm_mips_complete_mmio_load() to restore later. 1914 */ 1915 curr_pc = vcpu->arch.pc; 1916 er = update_pc(vcpu, cause); 1917 if (er == EMULATE_FAIL) 1918 return er; 1919 vcpu->arch.io_pc = vcpu->arch.pc; 1920 vcpu->arch.pc = curr_pc; 1921 1922 vcpu->arch.io_gpr = rt; 1923 1924 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( 1925 vcpu->arch.host_cp0_badvaddr); 1926 if (run->mmio.phys_addr == KVM_INVALID_ADDR) 1927 return EMULATE_FAIL; 1928 1929 vcpu->mmio_needed = 2; /* signed */ 1930 switch (op) { 1931 #if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ) 1932 case ld_op: 1933 run->mmio.len = 8; 1934 break; 1935 1936 case lwu_op: 1937 vcpu->mmio_needed = 1; /* unsigned */ 1938 fallthrough; 1939 #endif 1940 case lw_op: 1941 run->mmio.len = 4; 1942 break; 1943 1944 case lhu_op: 1945 vcpu->mmio_needed = 1; /* unsigned */ 1946 fallthrough; 1947 case lh_op: 1948 run->mmio.len = 2; 1949 break; 1950 1951 case lbu_op: 1952 vcpu->mmio_needed = 1; /* unsigned */ 1953 fallthrough; 1954 case lb_op: 1955 run->mmio.len = 1; 1956 break; 1957 1958 case lwl_op: 1959 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( 1960 vcpu->arch.host_cp0_badvaddr) & (~0x3); 1961 1962 run->mmio.len = 4; 1963 imme = vcpu->arch.host_cp0_badvaddr & 0x3; 1964 switch (imme) { 1965 case 0: 1966 vcpu->mmio_needed = 3; /* 1 byte */ 1967 break; 1968 case 1: 1969 vcpu->mmio_needed = 4; /* 2 bytes */ 1970 break; 1971 case 2: 1972 vcpu->mmio_needed = 5; /* 3 bytes */ 1973 break; 1974 case 3: 1975 vcpu->mmio_needed = 6; /* 4 bytes */ 1976 break; 1977 default: 1978 break; 1979 } 1980 break; 1981 1982 case lwr_op: 1983 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( 1984 vcpu->arch.host_cp0_badvaddr) & (~0x3); 1985 1986 run->mmio.len = 4; 1987 imme = vcpu->arch.host_cp0_badvaddr & 0x3; 1988 switch (imme) { 1989 case 0: 1990 vcpu->mmio_needed = 7; /* 4 bytes */ 1991 break; 1992 case 1: 1993 vcpu->mmio_needed = 8; /* 3 bytes */ 1994 break; 1995 case 2: 1996 vcpu->mmio_needed = 9; /* 2 bytes */ 1997 break; 1998 case 3: 1999 vcpu->mmio_needed = 10; /* 1 byte */ 2000 break; 2001 default: 2002 break; 2003 } 2004 break; 2005 2006 #if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ) 2007 case ldl_op: 2008 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( 2009 vcpu->arch.host_cp0_badvaddr) & (~0x7); 2010 2011 run->mmio.len = 8; 2012 imme = vcpu->arch.host_cp0_badvaddr & 0x7; 2013 switch (imme) { 2014 case 0: 2015 vcpu->mmio_needed = 11; /* 1 byte */ 2016 break; 2017 case 1: 2018 vcpu->mmio_needed = 12; /* 2 bytes */ 2019 break; 2020 case 2: 2021 vcpu->mmio_needed = 13; /* 3 bytes */ 2022 break; 2023 case 3: 2024 vcpu->mmio_needed = 14; /* 4 bytes */ 2025 break; 2026 case 4: 2027 vcpu->mmio_needed = 15; /* 5 bytes */ 2028 break; 2029 case 5: 2030 vcpu->mmio_needed = 16; /* 6 bytes */ 2031 break; 2032 case 6: 2033 vcpu->mmio_needed = 17; /* 7 bytes */ 2034 break; 2035 case 7: 2036 vcpu->mmio_needed = 18; /* 8 bytes */ 2037 break; 2038 default: 2039 break; 2040 } 2041 break; 2042 2043 case ldr_op: 2044 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( 2045 vcpu->arch.host_cp0_badvaddr) & (~0x7); 2046 2047 run->mmio.len = 8; 2048 imme = vcpu->arch.host_cp0_badvaddr & 0x7; 2049 switch (imme) { 2050 case 0: 2051 vcpu->mmio_needed = 19; /* 8 bytes */ 2052 break; 2053 case 1: 2054 vcpu->mmio_needed = 20; /* 7 bytes */ 2055 break; 2056 case 2: 2057 vcpu->mmio_needed = 21; /* 6 bytes */ 2058 break; 2059 case 3: 2060 vcpu->mmio_needed = 22; /* 5 bytes */ 2061 break; 2062 case 4: 2063 vcpu->mmio_needed = 23; /* 4 bytes */ 2064 break; 2065 case 5: 2066 vcpu->mmio_needed = 24; /* 3 bytes */ 2067 break; 2068 case 6: 2069 vcpu->mmio_needed = 25; /* 2 bytes */ 2070 break; 2071 case 7: 2072 vcpu->mmio_needed = 26; /* 1 byte */ 2073 break; 2074 default: 2075 break; 2076 } 2077 break; 2078 #endif 2079 2080 #ifdef CONFIG_CPU_LOONGSON64 2081 case ldc2_op: 2082 rt = inst.loongson3_lsdc2_format.rt; 2083 switch (inst.loongson3_lsdc2_format.opcode1) { 2084 /* 2085 * Loongson-3 overridden ldc2 instructions. 2086 * opcode1 instruction 2087 * 0x0 gslbx: store 1 bytes from GPR 2088 * 0x1 gslhx: store 2 bytes from GPR 2089 * 0x2 gslwx: store 4 bytes from GPR 2090 * 0x3 gsldx: store 8 bytes from GPR 2091 */ 2092 case 0x0: 2093 run->mmio.len = 1; 2094 vcpu->mmio_needed = 27; /* signed */ 2095 break; 2096 case 0x1: 2097 run->mmio.len = 2; 2098 vcpu->mmio_needed = 28; /* signed */ 2099 break; 2100 case 0x2: 2101 run->mmio.len = 4; 2102 vcpu->mmio_needed = 29; /* signed */ 2103 break; 2104 case 0x3: 2105 run->mmio.len = 8; 2106 vcpu->mmio_needed = 30; /* signed */ 2107 break; 2108 default: 2109 kvm_err("Godson Extended GS-Load for float not yet supported (inst=0x%08x)\n", 2110 inst.word); 2111 break; 2112 } 2113 break; 2114 #endif 2115 2116 default: 2117 kvm_err("Load not yet supported (inst=0x%08x)\n", 2118 inst.word); 2119 vcpu->mmio_needed = 0; 2120 return EMULATE_FAIL; 2121 } 2122 2123 run->mmio.is_write = 0; 2124 vcpu->mmio_is_write = 0; 2125 2126 r = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, 2127 run->mmio.phys_addr, run->mmio.len, run->mmio.data); 2128 2129 if (!r) { 2130 kvm_mips_complete_mmio_load(vcpu); 2131 vcpu->mmio_needed = 0; 2132 return EMULATE_DONE; 2133 } 2134 2135 return EMULATE_DO_MMIO; 2136 } 2137 2138 #ifndef CONFIG_KVM_MIPS_VZ 2139 static enum emulation_result kvm_mips_guest_cache_op(int (*fn)(unsigned long), 2140 unsigned long curr_pc, 2141 unsigned long addr, 2142 struct kvm_vcpu *vcpu, 2143 u32 cause) 2144 { 2145 int err; 2146 2147 for (;;) { 2148 /* Carefully attempt the cache operation */ 2149 kvm_trap_emul_gva_lockless_begin(vcpu); 2150 err = fn(addr); 2151 kvm_trap_emul_gva_lockless_end(vcpu); 2152 2153 if (likely(!err)) 2154 return EMULATE_DONE; 2155 2156 /* 2157 * Try to handle the fault and retry, maybe we just raced with a 2158 * GVA invalidation. 2159 */ 2160 switch (kvm_trap_emul_gva_fault(vcpu, addr, false)) { 2161 case KVM_MIPS_GVA: 2162 case KVM_MIPS_GPA: 2163 /* bad virtual or physical address */ 2164 return EMULATE_FAIL; 2165 case KVM_MIPS_TLB: 2166 /* no matching guest TLB */ 2167 vcpu->arch.host_cp0_badvaddr = addr; 2168 vcpu->arch.pc = curr_pc; 2169 kvm_mips_emulate_tlbmiss_ld(cause, NULL, vcpu); 2170 return EMULATE_EXCEPT; 2171 case KVM_MIPS_TLBINV: 2172 /* invalid matching guest TLB */ 2173 vcpu->arch.host_cp0_badvaddr = addr; 2174 vcpu->arch.pc = curr_pc; 2175 kvm_mips_emulate_tlbinv_ld(cause, NULL, vcpu); 2176 return EMULATE_EXCEPT; 2177 default: 2178 break; 2179 } 2180 } 2181 } 2182 2183 enum emulation_result kvm_mips_emulate_cache(union mips_instruction inst, 2184 u32 *opc, u32 cause, 2185 struct kvm_vcpu *vcpu) 2186 { 2187 enum emulation_result er = EMULATE_DONE; 2188 u32 cache, op_inst, op, base; 2189 s16 offset; 2190 struct kvm_vcpu_arch *arch = &vcpu->arch; 2191 unsigned long va; 2192 unsigned long curr_pc; 2193 2194 /* 2195 * Update PC and hold onto current PC in case there is 2196 * an error and we want to rollback the PC 2197 */ 2198 curr_pc = vcpu->arch.pc; 2199 er = update_pc(vcpu, cause); 2200 if (er == EMULATE_FAIL) 2201 return er; 2202 2203 base = inst.i_format.rs; 2204 op_inst = inst.i_format.rt; 2205 if (cpu_has_mips_r6) 2206 offset = inst.spec3_format.simmediate; 2207 else 2208 offset = inst.i_format.simmediate; 2209 cache = op_inst & CacheOp_Cache; 2210 op = op_inst & CacheOp_Op; 2211 2212 va = arch->gprs[base] + offset; 2213 2214 kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n", 2215 cache, op, base, arch->gprs[base], offset); 2216 2217 /* 2218 * Treat INDEX_INV as a nop, basically issued by Linux on startup to 2219 * invalidate the caches entirely by stepping through all the 2220 * ways/indexes 2221 */ 2222 if (op == Index_Writeback_Inv) { 2223 kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n", 2224 vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base, 2225 arch->gprs[base], offset); 2226 2227 if (cache == Cache_D) { 2228 #ifdef CONFIG_CPU_R4K_CACHE_TLB 2229 r4k_blast_dcache(); 2230 #else 2231 switch (boot_cpu_type()) { 2232 case CPU_CAVIUM_OCTEON3: 2233 /* locally flush icache */ 2234 local_flush_icache_range(0, 0); 2235 break; 2236 default: 2237 __flush_cache_all(); 2238 break; 2239 } 2240 #endif 2241 } else if (cache == Cache_I) { 2242 #ifdef CONFIG_CPU_R4K_CACHE_TLB 2243 r4k_blast_icache(); 2244 #else 2245 switch (boot_cpu_type()) { 2246 case CPU_CAVIUM_OCTEON3: 2247 /* locally flush icache */ 2248 local_flush_icache_range(0, 0); 2249 break; 2250 default: 2251 flush_icache_all(); 2252 break; 2253 } 2254 #endif 2255 } else { 2256 kvm_err("%s: unsupported CACHE INDEX operation\n", 2257 __func__); 2258 return EMULATE_FAIL; 2259 } 2260 2261 #ifdef CONFIG_KVM_MIPS_DYN_TRANS 2262 kvm_mips_trans_cache_index(inst, opc, vcpu); 2263 #endif 2264 goto done; 2265 } 2266 2267 /* XXXKYMA: Only a subset of cache ops are supported, used by Linux */ 2268 if (op_inst == Hit_Writeback_Inv_D || op_inst == Hit_Invalidate_D) { 2269 /* 2270 * Perform the dcache part of icache synchronisation on the 2271 * guest's behalf. 2272 */ 2273 er = kvm_mips_guest_cache_op(protected_writeback_dcache_line, 2274 curr_pc, va, vcpu, cause); 2275 if (er != EMULATE_DONE) 2276 goto done; 2277 #ifdef CONFIG_KVM_MIPS_DYN_TRANS 2278 /* 2279 * Replace the CACHE instruction, with a SYNCI, not the same, 2280 * but avoids a trap 2281 */ 2282 kvm_mips_trans_cache_va(inst, opc, vcpu); 2283 #endif 2284 } else if (op_inst == Hit_Invalidate_I) { 2285 /* Perform the icache synchronisation on the guest's behalf */ 2286 er = kvm_mips_guest_cache_op(protected_writeback_dcache_line, 2287 curr_pc, va, vcpu, cause); 2288 if (er != EMULATE_DONE) 2289 goto done; 2290 er = kvm_mips_guest_cache_op(protected_flush_icache_line, 2291 curr_pc, va, vcpu, cause); 2292 if (er != EMULATE_DONE) 2293 goto done; 2294 2295 #ifdef CONFIG_KVM_MIPS_DYN_TRANS 2296 /* Replace the CACHE instruction, with a SYNCI */ 2297 kvm_mips_trans_cache_va(inst, opc, vcpu); 2298 #endif 2299 } else { 2300 kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n", 2301 cache, op, base, arch->gprs[base], offset); 2302 er = EMULATE_FAIL; 2303 } 2304 2305 done: 2306 /* Rollback PC only if emulation was unsuccessful */ 2307 if (er == EMULATE_FAIL) 2308 vcpu->arch.pc = curr_pc; 2309 /* Guest exception needs guest to resume */ 2310 if (er == EMULATE_EXCEPT) 2311 er = EMULATE_DONE; 2312 2313 return er; 2314 } 2315 2316 enum emulation_result kvm_mips_emulate_inst(u32 cause, u32 *opc, 2317 struct kvm_vcpu *vcpu) 2318 { 2319 union mips_instruction inst; 2320 enum emulation_result er = EMULATE_DONE; 2321 int err; 2322 2323 /* Fetch the instruction. */ 2324 if (cause & CAUSEF_BD) 2325 opc += 1; 2326 err = kvm_get_badinstr(opc, vcpu, &inst.word); 2327 if (err) 2328 return EMULATE_FAIL; 2329 2330 switch (inst.r_format.opcode) { 2331 case cop0_op: 2332 er = kvm_mips_emulate_CP0(inst, opc, cause, vcpu); 2333 break; 2334 2335 #ifndef CONFIG_CPU_MIPSR6 2336 case cache_op: 2337 ++vcpu->stat.cache_exits; 2338 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE); 2339 er = kvm_mips_emulate_cache(inst, opc, cause, vcpu); 2340 break; 2341 #else 2342 case spec3_op: 2343 switch (inst.spec3_format.func) { 2344 case cache6_op: 2345 ++vcpu->stat.cache_exits; 2346 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE); 2347 er = kvm_mips_emulate_cache(inst, opc, cause, 2348 vcpu); 2349 break; 2350 default: 2351 goto unknown; 2352 } 2353 break; 2354 unknown: 2355 #endif 2356 2357 default: 2358 kvm_err("Instruction emulation not supported (%p/%#x)\n", opc, 2359 inst.word); 2360 kvm_arch_vcpu_dump_regs(vcpu); 2361 er = EMULATE_FAIL; 2362 break; 2363 } 2364 2365 return er; 2366 } 2367 #endif /* CONFIG_KVM_MIPS_VZ */ 2368 2369 /** 2370 * kvm_mips_guest_exception_base() - Find guest exception vector base address. 2371 * 2372 * Returns: The base address of the current guest exception vector, taking 2373 * both Guest.CP0_Status.BEV and Guest.CP0_EBase into account. 2374 */ 2375 long kvm_mips_guest_exception_base(struct kvm_vcpu *vcpu) 2376 { 2377 struct mips_coproc *cop0 = vcpu->arch.cop0; 2378 2379 if (kvm_read_c0_guest_status(cop0) & ST0_BEV) 2380 return KVM_GUEST_CKSEG1ADDR(0x1fc00200); 2381 else 2382 return kvm_read_c0_guest_ebase(cop0) & MIPS_EBASE_BASE; 2383 } 2384 2385 enum emulation_result kvm_mips_emulate_syscall(u32 cause, 2386 u32 *opc, 2387 struct kvm_vcpu *vcpu) 2388 { 2389 struct mips_coproc *cop0 = vcpu->arch.cop0; 2390 struct kvm_vcpu_arch *arch = &vcpu->arch; 2391 enum emulation_result er = EMULATE_DONE; 2392 2393 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { 2394 /* save old pc */ 2395 kvm_write_c0_guest_epc(cop0, arch->pc); 2396 kvm_set_c0_guest_status(cop0, ST0_EXL); 2397 2398 if (cause & CAUSEF_BD) 2399 kvm_set_c0_guest_cause(cop0, CAUSEF_BD); 2400 else 2401 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); 2402 2403 kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc); 2404 2405 kvm_change_c0_guest_cause(cop0, (0xff), 2406 (EXCCODE_SYS << CAUSEB_EXCCODE)); 2407 2408 /* Set PC to the exception entry point */ 2409 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; 2410 2411 } else { 2412 kvm_err("Trying to deliver SYSCALL when EXL is already set\n"); 2413 er = EMULATE_FAIL; 2414 } 2415 2416 return er; 2417 } 2418 2419 enum emulation_result kvm_mips_emulate_tlbmiss_ld(u32 cause, 2420 u32 *opc, 2421 struct kvm_vcpu *vcpu) 2422 { 2423 struct mips_coproc *cop0 = vcpu->arch.cop0; 2424 struct kvm_vcpu_arch *arch = &vcpu->arch; 2425 unsigned long entryhi = (vcpu->arch. host_cp0_badvaddr & VPN2_MASK) | 2426 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID); 2427 2428 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { 2429 /* save old pc */ 2430 kvm_write_c0_guest_epc(cop0, arch->pc); 2431 kvm_set_c0_guest_status(cop0, ST0_EXL); 2432 2433 if (cause & CAUSEF_BD) 2434 kvm_set_c0_guest_cause(cop0, CAUSEF_BD); 2435 else 2436 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); 2437 2438 kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n", 2439 arch->pc); 2440 2441 /* set pc to the exception entry point */ 2442 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x0; 2443 2444 } else { 2445 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n", 2446 arch->pc); 2447 2448 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; 2449 } 2450 2451 kvm_change_c0_guest_cause(cop0, (0xff), 2452 (EXCCODE_TLBL << CAUSEB_EXCCODE)); 2453 2454 /* setup badvaddr, context and entryhi registers for the guest */ 2455 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr); 2456 /* XXXKYMA: is the context register used by linux??? */ 2457 kvm_write_c0_guest_entryhi(cop0, entryhi); 2458 2459 return EMULATE_DONE; 2460 } 2461 2462 enum emulation_result kvm_mips_emulate_tlbinv_ld(u32 cause, 2463 u32 *opc, 2464 struct kvm_vcpu *vcpu) 2465 { 2466 struct mips_coproc *cop0 = vcpu->arch.cop0; 2467 struct kvm_vcpu_arch *arch = &vcpu->arch; 2468 unsigned long entryhi = 2469 (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) | 2470 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID); 2471 2472 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { 2473 /* save old pc */ 2474 kvm_write_c0_guest_epc(cop0, arch->pc); 2475 kvm_set_c0_guest_status(cop0, ST0_EXL); 2476 2477 if (cause & CAUSEF_BD) 2478 kvm_set_c0_guest_cause(cop0, CAUSEF_BD); 2479 else 2480 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); 2481 2482 kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n", 2483 arch->pc); 2484 } else { 2485 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n", 2486 arch->pc); 2487 } 2488 2489 /* set pc to the exception entry point */ 2490 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; 2491 2492 kvm_change_c0_guest_cause(cop0, (0xff), 2493 (EXCCODE_TLBL << CAUSEB_EXCCODE)); 2494 2495 /* setup badvaddr, context and entryhi registers for the guest */ 2496 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr); 2497 /* XXXKYMA: is the context register used by linux??? */ 2498 kvm_write_c0_guest_entryhi(cop0, entryhi); 2499 2500 return EMULATE_DONE; 2501 } 2502 2503 enum emulation_result kvm_mips_emulate_tlbmiss_st(u32 cause, 2504 u32 *opc, 2505 struct kvm_vcpu *vcpu) 2506 { 2507 struct mips_coproc *cop0 = vcpu->arch.cop0; 2508 struct kvm_vcpu_arch *arch = &vcpu->arch; 2509 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) | 2510 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID); 2511 2512 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { 2513 /* save old pc */ 2514 kvm_write_c0_guest_epc(cop0, arch->pc); 2515 kvm_set_c0_guest_status(cop0, ST0_EXL); 2516 2517 if (cause & CAUSEF_BD) 2518 kvm_set_c0_guest_cause(cop0, CAUSEF_BD); 2519 else 2520 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); 2521 2522 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n", 2523 arch->pc); 2524 2525 /* Set PC to the exception entry point */ 2526 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x0; 2527 } else { 2528 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n", 2529 arch->pc); 2530 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; 2531 } 2532 2533 kvm_change_c0_guest_cause(cop0, (0xff), 2534 (EXCCODE_TLBS << CAUSEB_EXCCODE)); 2535 2536 /* setup badvaddr, context and entryhi registers for the guest */ 2537 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr); 2538 /* XXXKYMA: is the context register used by linux??? */ 2539 kvm_write_c0_guest_entryhi(cop0, entryhi); 2540 2541 return EMULATE_DONE; 2542 } 2543 2544 enum emulation_result kvm_mips_emulate_tlbinv_st(u32 cause, 2545 u32 *opc, 2546 struct kvm_vcpu *vcpu) 2547 { 2548 struct mips_coproc *cop0 = vcpu->arch.cop0; 2549 struct kvm_vcpu_arch *arch = &vcpu->arch; 2550 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) | 2551 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID); 2552 2553 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { 2554 /* save old pc */ 2555 kvm_write_c0_guest_epc(cop0, arch->pc); 2556 kvm_set_c0_guest_status(cop0, ST0_EXL); 2557 2558 if (cause & CAUSEF_BD) 2559 kvm_set_c0_guest_cause(cop0, CAUSEF_BD); 2560 else 2561 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); 2562 2563 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n", 2564 arch->pc); 2565 } else { 2566 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n", 2567 arch->pc); 2568 } 2569 2570 /* Set PC to the exception entry point */ 2571 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; 2572 2573 kvm_change_c0_guest_cause(cop0, (0xff), 2574 (EXCCODE_TLBS << CAUSEB_EXCCODE)); 2575 2576 /* setup badvaddr, context and entryhi registers for the guest */ 2577 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr); 2578 /* XXXKYMA: is the context register used by linux??? */ 2579 kvm_write_c0_guest_entryhi(cop0, entryhi); 2580 2581 return EMULATE_DONE; 2582 } 2583 2584 enum emulation_result kvm_mips_emulate_tlbmod(u32 cause, 2585 u32 *opc, 2586 struct kvm_vcpu *vcpu) 2587 { 2588 struct mips_coproc *cop0 = vcpu->arch.cop0; 2589 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) | 2590 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID); 2591 struct kvm_vcpu_arch *arch = &vcpu->arch; 2592 2593 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { 2594 /* save old pc */ 2595 kvm_write_c0_guest_epc(cop0, arch->pc); 2596 kvm_set_c0_guest_status(cop0, ST0_EXL); 2597 2598 if (cause & CAUSEF_BD) 2599 kvm_set_c0_guest_cause(cop0, CAUSEF_BD); 2600 else 2601 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); 2602 2603 kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n", 2604 arch->pc); 2605 } else { 2606 kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n", 2607 arch->pc); 2608 } 2609 2610 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; 2611 2612 kvm_change_c0_guest_cause(cop0, (0xff), 2613 (EXCCODE_MOD << CAUSEB_EXCCODE)); 2614 2615 /* setup badvaddr, context and entryhi registers for the guest */ 2616 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr); 2617 /* XXXKYMA: is the context register used by linux??? */ 2618 kvm_write_c0_guest_entryhi(cop0, entryhi); 2619 2620 return EMULATE_DONE; 2621 } 2622 2623 enum emulation_result kvm_mips_emulate_fpu_exc(u32 cause, 2624 u32 *opc, 2625 struct kvm_vcpu *vcpu) 2626 { 2627 struct mips_coproc *cop0 = vcpu->arch.cop0; 2628 struct kvm_vcpu_arch *arch = &vcpu->arch; 2629 2630 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { 2631 /* save old pc */ 2632 kvm_write_c0_guest_epc(cop0, arch->pc); 2633 kvm_set_c0_guest_status(cop0, ST0_EXL); 2634 2635 if (cause & CAUSEF_BD) 2636 kvm_set_c0_guest_cause(cop0, CAUSEF_BD); 2637 else 2638 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); 2639 2640 } 2641 2642 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; 2643 2644 kvm_change_c0_guest_cause(cop0, (0xff), 2645 (EXCCODE_CPU << CAUSEB_EXCCODE)); 2646 kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE)); 2647 2648 return EMULATE_DONE; 2649 } 2650 2651 enum emulation_result kvm_mips_emulate_ri_exc(u32 cause, 2652 u32 *opc, 2653 struct kvm_vcpu *vcpu) 2654 { 2655 struct mips_coproc *cop0 = vcpu->arch.cop0; 2656 struct kvm_vcpu_arch *arch = &vcpu->arch; 2657 enum emulation_result er = EMULATE_DONE; 2658 2659 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { 2660 /* save old pc */ 2661 kvm_write_c0_guest_epc(cop0, arch->pc); 2662 kvm_set_c0_guest_status(cop0, ST0_EXL); 2663 2664 if (cause & CAUSEF_BD) 2665 kvm_set_c0_guest_cause(cop0, CAUSEF_BD); 2666 else 2667 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); 2668 2669 kvm_debug("Delivering RI @ pc %#lx\n", arch->pc); 2670 2671 kvm_change_c0_guest_cause(cop0, (0xff), 2672 (EXCCODE_RI << CAUSEB_EXCCODE)); 2673 2674 /* Set PC to the exception entry point */ 2675 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; 2676 2677 } else { 2678 kvm_err("Trying to deliver RI when EXL is already set\n"); 2679 er = EMULATE_FAIL; 2680 } 2681 2682 return er; 2683 } 2684 2685 enum emulation_result kvm_mips_emulate_bp_exc(u32 cause, 2686 u32 *opc, 2687 struct kvm_vcpu *vcpu) 2688 { 2689 struct mips_coproc *cop0 = vcpu->arch.cop0; 2690 struct kvm_vcpu_arch *arch = &vcpu->arch; 2691 enum emulation_result er = EMULATE_DONE; 2692 2693 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { 2694 /* save old pc */ 2695 kvm_write_c0_guest_epc(cop0, arch->pc); 2696 kvm_set_c0_guest_status(cop0, ST0_EXL); 2697 2698 if (cause & CAUSEF_BD) 2699 kvm_set_c0_guest_cause(cop0, CAUSEF_BD); 2700 else 2701 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); 2702 2703 kvm_debug("Delivering BP @ pc %#lx\n", arch->pc); 2704 2705 kvm_change_c0_guest_cause(cop0, (0xff), 2706 (EXCCODE_BP << CAUSEB_EXCCODE)); 2707 2708 /* Set PC to the exception entry point */ 2709 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; 2710 2711 } else { 2712 kvm_err("Trying to deliver BP when EXL is already set\n"); 2713 er = EMULATE_FAIL; 2714 } 2715 2716 return er; 2717 } 2718 2719 enum emulation_result kvm_mips_emulate_trap_exc(u32 cause, 2720 u32 *opc, 2721 struct kvm_vcpu *vcpu) 2722 { 2723 struct mips_coproc *cop0 = vcpu->arch.cop0; 2724 struct kvm_vcpu_arch *arch = &vcpu->arch; 2725 enum emulation_result er = EMULATE_DONE; 2726 2727 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { 2728 /* save old pc */ 2729 kvm_write_c0_guest_epc(cop0, arch->pc); 2730 kvm_set_c0_guest_status(cop0, ST0_EXL); 2731 2732 if (cause & CAUSEF_BD) 2733 kvm_set_c0_guest_cause(cop0, CAUSEF_BD); 2734 else 2735 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); 2736 2737 kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc); 2738 2739 kvm_change_c0_guest_cause(cop0, (0xff), 2740 (EXCCODE_TR << CAUSEB_EXCCODE)); 2741 2742 /* Set PC to the exception entry point */ 2743 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; 2744 2745 } else { 2746 kvm_err("Trying to deliver TRAP when EXL is already set\n"); 2747 er = EMULATE_FAIL; 2748 } 2749 2750 return er; 2751 } 2752 2753 enum emulation_result kvm_mips_emulate_msafpe_exc(u32 cause, 2754 u32 *opc, 2755 struct kvm_vcpu *vcpu) 2756 { 2757 struct mips_coproc *cop0 = vcpu->arch.cop0; 2758 struct kvm_vcpu_arch *arch = &vcpu->arch; 2759 enum emulation_result er = EMULATE_DONE; 2760 2761 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { 2762 /* save old pc */ 2763 kvm_write_c0_guest_epc(cop0, arch->pc); 2764 kvm_set_c0_guest_status(cop0, ST0_EXL); 2765 2766 if (cause & CAUSEF_BD) 2767 kvm_set_c0_guest_cause(cop0, CAUSEF_BD); 2768 else 2769 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); 2770 2771 kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc); 2772 2773 kvm_change_c0_guest_cause(cop0, (0xff), 2774 (EXCCODE_MSAFPE << CAUSEB_EXCCODE)); 2775 2776 /* Set PC to the exception entry point */ 2777 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; 2778 2779 } else { 2780 kvm_err("Trying to deliver MSAFPE when EXL is already set\n"); 2781 er = EMULATE_FAIL; 2782 } 2783 2784 return er; 2785 } 2786 2787 enum emulation_result kvm_mips_emulate_fpe_exc(u32 cause, 2788 u32 *opc, 2789 struct kvm_vcpu *vcpu) 2790 { 2791 struct mips_coproc *cop0 = vcpu->arch.cop0; 2792 struct kvm_vcpu_arch *arch = &vcpu->arch; 2793 enum emulation_result er = EMULATE_DONE; 2794 2795 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { 2796 /* save old pc */ 2797 kvm_write_c0_guest_epc(cop0, arch->pc); 2798 kvm_set_c0_guest_status(cop0, ST0_EXL); 2799 2800 if (cause & CAUSEF_BD) 2801 kvm_set_c0_guest_cause(cop0, CAUSEF_BD); 2802 else 2803 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); 2804 2805 kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc); 2806 2807 kvm_change_c0_guest_cause(cop0, (0xff), 2808 (EXCCODE_FPE << CAUSEB_EXCCODE)); 2809 2810 /* Set PC to the exception entry point */ 2811 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; 2812 2813 } else { 2814 kvm_err("Trying to deliver FPE when EXL is already set\n"); 2815 er = EMULATE_FAIL; 2816 } 2817 2818 return er; 2819 } 2820 2821 enum emulation_result kvm_mips_emulate_msadis_exc(u32 cause, 2822 u32 *opc, 2823 struct kvm_vcpu *vcpu) 2824 { 2825 struct mips_coproc *cop0 = vcpu->arch.cop0; 2826 struct kvm_vcpu_arch *arch = &vcpu->arch; 2827 enum emulation_result er = EMULATE_DONE; 2828 2829 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { 2830 /* save old pc */ 2831 kvm_write_c0_guest_epc(cop0, arch->pc); 2832 kvm_set_c0_guest_status(cop0, ST0_EXL); 2833 2834 if (cause & CAUSEF_BD) 2835 kvm_set_c0_guest_cause(cop0, CAUSEF_BD); 2836 else 2837 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); 2838 2839 kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc); 2840 2841 kvm_change_c0_guest_cause(cop0, (0xff), 2842 (EXCCODE_MSADIS << CAUSEB_EXCCODE)); 2843 2844 /* Set PC to the exception entry point */ 2845 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; 2846 2847 } else { 2848 kvm_err("Trying to deliver MSADIS when EXL is already set\n"); 2849 er = EMULATE_FAIL; 2850 } 2851 2852 return er; 2853 } 2854 2855 enum emulation_result kvm_mips_handle_ri(u32 cause, u32 *opc, 2856 struct kvm_vcpu *vcpu) 2857 { 2858 struct mips_coproc *cop0 = vcpu->arch.cop0; 2859 struct kvm_vcpu_arch *arch = &vcpu->arch; 2860 enum emulation_result er = EMULATE_DONE; 2861 unsigned long curr_pc; 2862 union mips_instruction inst; 2863 int err; 2864 2865 /* 2866 * Update PC and hold onto current PC in case there is 2867 * an error and we want to rollback the PC 2868 */ 2869 curr_pc = vcpu->arch.pc; 2870 er = update_pc(vcpu, cause); 2871 if (er == EMULATE_FAIL) 2872 return er; 2873 2874 /* Fetch the instruction. */ 2875 if (cause & CAUSEF_BD) 2876 opc += 1; 2877 err = kvm_get_badinstr(opc, vcpu, &inst.word); 2878 if (err) { 2879 kvm_err("%s: Cannot get inst @ %p (%d)\n", __func__, opc, err); 2880 return EMULATE_FAIL; 2881 } 2882 2883 if (inst.r_format.opcode == spec3_op && 2884 inst.r_format.func == rdhwr_op && 2885 inst.r_format.rs == 0 && 2886 (inst.r_format.re >> 3) == 0) { 2887 int usermode = !KVM_GUEST_KERNEL_MODE(vcpu); 2888 int rd = inst.r_format.rd; 2889 int rt = inst.r_format.rt; 2890 int sel = inst.r_format.re & 0x7; 2891 2892 /* If usermode, check RDHWR rd is allowed by guest HWREna */ 2893 if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) { 2894 kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n", 2895 rd, opc); 2896 goto emulate_ri; 2897 } 2898 switch (rd) { 2899 case MIPS_HWR_CPUNUM: /* CPU number */ 2900 arch->gprs[rt] = vcpu->vcpu_id; 2901 break; 2902 case MIPS_HWR_SYNCISTEP: /* SYNCI length */ 2903 arch->gprs[rt] = min(current_cpu_data.dcache.linesz, 2904 current_cpu_data.icache.linesz); 2905 break; 2906 case MIPS_HWR_CC: /* Read count register */ 2907 arch->gprs[rt] = (s32)kvm_mips_read_count(vcpu); 2908 break; 2909 case MIPS_HWR_CCRES: /* Count register resolution */ 2910 switch (current_cpu_data.cputype) { 2911 case CPU_20KC: 2912 case CPU_25KF: 2913 arch->gprs[rt] = 1; 2914 break; 2915 default: 2916 arch->gprs[rt] = 2; 2917 } 2918 break; 2919 case MIPS_HWR_ULR: /* Read UserLocal register */ 2920 arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0); 2921 break; 2922 2923 default: 2924 kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc); 2925 goto emulate_ri; 2926 } 2927 2928 trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR, KVM_TRACE_HWR(rd, sel), 2929 vcpu->arch.gprs[rt]); 2930 } else { 2931 kvm_debug("Emulate RI not supported @ %p: %#x\n", 2932 opc, inst.word); 2933 goto emulate_ri; 2934 } 2935 2936 return EMULATE_DONE; 2937 2938 emulate_ri: 2939 /* 2940 * Rollback PC (if in branch delay slot then the PC already points to 2941 * branch target), and pass the RI exception to the guest OS. 2942 */ 2943 vcpu->arch.pc = curr_pc; 2944 return kvm_mips_emulate_ri_exc(cause, opc, vcpu); 2945 } 2946 2947 enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu) 2948 { 2949 struct kvm_run *run = vcpu->run; 2950 unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr]; 2951 enum emulation_result er = EMULATE_DONE; 2952 2953 if (run->mmio.len > sizeof(*gpr)) { 2954 kvm_err("Bad MMIO length: %d", run->mmio.len); 2955 er = EMULATE_FAIL; 2956 goto done; 2957 } 2958 2959 /* Restore saved resume PC */ 2960 vcpu->arch.pc = vcpu->arch.io_pc; 2961 2962 switch (run->mmio.len) { 2963 case 8: 2964 switch (vcpu->mmio_needed) { 2965 case 11: 2966 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffffff) | 2967 (((*(s64 *)run->mmio.data) & 0xff) << 56); 2968 break; 2969 case 12: 2970 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffff) | 2971 (((*(s64 *)run->mmio.data) & 0xffff) << 48); 2972 break; 2973 case 13: 2974 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffff) | 2975 (((*(s64 *)run->mmio.data) & 0xffffff) << 40); 2976 break; 2977 case 14: 2978 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffff) | 2979 (((*(s64 *)run->mmio.data) & 0xffffffff) << 32); 2980 break; 2981 case 15: 2982 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff) | 2983 (((*(s64 *)run->mmio.data) & 0xffffffffff) << 24); 2984 break; 2985 case 16: 2986 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff) | 2987 (((*(s64 *)run->mmio.data) & 0xffffffffffff) << 16); 2988 break; 2989 case 17: 2990 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff) | 2991 (((*(s64 *)run->mmio.data) & 0xffffffffffffff) << 8); 2992 break; 2993 case 18: 2994 case 19: 2995 *gpr = *(s64 *)run->mmio.data; 2996 break; 2997 case 20: 2998 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff00000000000000) | 2999 ((((*(s64 *)run->mmio.data)) >> 8) & 0xffffffffffffff); 3000 break; 3001 case 21: 3002 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff000000000000) | 3003 ((((*(s64 *)run->mmio.data)) >> 16) & 0xffffffffffff); 3004 break; 3005 case 22: 3006 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff0000000000) | 3007 ((((*(s64 *)run->mmio.data)) >> 24) & 0xffffffffff); 3008 break; 3009 case 23: 3010 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffff00000000) | 3011 ((((*(s64 *)run->mmio.data)) >> 32) & 0xffffffff); 3012 break; 3013 case 24: 3014 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffff000000) | 3015 ((((*(s64 *)run->mmio.data)) >> 40) & 0xffffff); 3016 break; 3017 case 25: 3018 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffff0000) | 3019 ((((*(s64 *)run->mmio.data)) >> 48) & 0xffff); 3020 break; 3021 case 26: 3022 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffffff00) | 3023 ((((*(s64 *)run->mmio.data)) >> 56) & 0xff); 3024 break; 3025 default: 3026 *gpr = *(s64 *)run->mmio.data; 3027 } 3028 break; 3029 3030 case 4: 3031 switch (vcpu->mmio_needed) { 3032 case 1: 3033 *gpr = *(u32 *)run->mmio.data; 3034 break; 3035 case 2: 3036 *gpr = *(s32 *)run->mmio.data; 3037 break; 3038 case 3: 3039 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff) | 3040 (((*(s32 *)run->mmio.data) & 0xff) << 24); 3041 break; 3042 case 4: 3043 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff) | 3044 (((*(s32 *)run->mmio.data) & 0xffff) << 16); 3045 break; 3046 case 5: 3047 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff) | 3048 (((*(s32 *)run->mmio.data) & 0xffffff) << 8); 3049 break; 3050 case 6: 3051 case 7: 3052 *gpr = *(s32 *)run->mmio.data; 3053 break; 3054 case 8: 3055 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff000000) | 3056 ((((*(s32 *)run->mmio.data)) >> 8) & 0xffffff); 3057 break; 3058 case 9: 3059 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff0000) | 3060 ((((*(s32 *)run->mmio.data)) >> 16) & 0xffff); 3061 break; 3062 case 10: 3063 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff00) | 3064 ((((*(s32 *)run->mmio.data)) >> 24) & 0xff); 3065 break; 3066 default: 3067 *gpr = *(s32 *)run->mmio.data; 3068 } 3069 break; 3070 3071 case 2: 3072 if (vcpu->mmio_needed == 1) 3073 *gpr = *(u16 *)run->mmio.data; 3074 else 3075 *gpr = *(s16 *)run->mmio.data; 3076 3077 break; 3078 case 1: 3079 if (vcpu->mmio_needed == 1) 3080 *gpr = *(u8 *)run->mmio.data; 3081 else 3082 *gpr = *(s8 *)run->mmio.data; 3083 break; 3084 } 3085 3086 done: 3087 return er; 3088 } 3089 3090 static enum emulation_result kvm_mips_emulate_exc(u32 cause, 3091 u32 *opc, 3092 struct kvm_vcpu *vcpu) 3093 { 3094 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f; 3095 struct mips_coproc *cop0 = vcpu->arch.cop0; 3096 struct kvm_vcpu_arch *arch = &vcpu->arch; 3097 enum emulation_result er = EMULATE_DONE; 3098 3099 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { 3100 /* save old pc */ 3101 kvm_write_c0_guest_epc(cop0, arch->pc); 3102 kvm_set_c0_guest_status(cop0, ST0_EXL); 3103 3104 if (cause & CAUSEF_BD) 3105 kvm_set_c0_guest_cause(cop0, CAUSEF_BD); 3106 else 3107 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); 3108 3109 kvm_change_c0_guest_cause(cop0, (0xff), 3110 (exccode << CAUSEB_EXCCODE)); 3111 3112 /* Set PC to the exception entry point */ 3113 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; 3114 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr); 3115 3116 kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n", 3117 exccode, kvm_read_c0_guest_epc(cop0), 3118 kvm_read_c0_guest_badvaddr(cop0)); 3119 } else { 3120 kvm_err("Trying to deliver EXC when EXL is already set\n"); 3121 er = EMULATE_FAIL; 3122 } 3123 3124 return er; 3125 } 3126 3127 enum emulation_result kvm_mips_check_privilege(u32 cause, 3128 u32 *opc, 3129 struct kvm_vcpu *vcpu) 3130 { 3131 enum emulation_result er = EMULATE_DONE; 3132 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f; 3133 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr; 3134 3135 int usermode = !KVM_GUEST_KERNEL_MODE(vcpu); 3136 3137 if (usermode) { 3138 switch (exccode) { 3139 case EXCCODE_INT: 3140 case EXCCODE_SYS: 3141 case EXCCODE_BP: 3142 case EXCCODE_RI: 3143 case EXCCODE_TR: 3144 case EXCCODE_MSAFPE: 3145 case EXCCODE_FPE: 3146 case EXCCODE_MSADIS: 3147 break; 3148 3149 case EXCCODE_CPU: 3150 if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0) 3151 er = EMULATE_PRIV_FAIL; 3152 break; 3153 3154 case EXCCODE_MOD: 3155 break; 3156 3157 case EXCCODE_TLBL: 3158 /* 3159 * We we are accessing Guest kernel space, then send an 3160 * address error exception to the guest 3161 */ 3162 if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) { 3163 kvm_debug("%s: LD MISS @ %#lx\n", __func__, 3164 badvaddr); 3165 cause &= ~0xff; 3166 cause |= (EXCCODE_ADEL << CAUSEB_EXCCODE); 3167 er = EMULATE_PRIV_FAIL; 3168 } 3169 break; 3170 3171 case EXCCODE_TLBS: 3172 /* 3173 * We we are accessing Guest kernel space, then send an 3174 * address error exception to the guest 3175 */ 3176 if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) { 3177 kvm_debug("%s: ST MISS @ %#lx\n", __func__, 3178 badvaddr); 3179 cause &= ~0xff; 3180 cause |= (EXCCODE_ADES << CAUSEB_EXCCODE); 3181 er = EMULATE_PRIV_FAIL; 3182 } 3183 break; 3184 3185 case EXCCODE_ADES: 3186 kvm_debug("%s: address error ST @ %#lx\n", __func__, 3187 badvaddr); 3188 if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) { 3189 cause &= ~0xff; 3190 cause |= (EXCCODE_TLBS << CAUSEB_EXCCODE); 3191 } 3192 er = EMULATE_PRIV_FAIL; 3193 break; 3194 case EXCCODE_ADEL: 3195 kvm_debug("%s: address error LD @ %#lx\n", __func__, 3196 badvaddr); 3197 if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) { 3198 cause &= ~0xff; 3199 cause |= (EXCCODE_TLBL << CAUSEB_EXCCODE); 3200 } 3201 er = EMULATE_PRIV_FAIL; 3202 break; 3203 default: 3204 er = EMULATE_PRIV_FAIL; 3205 break; 3206 } 3207 } 3208 3209 if (er == EMULATE_PRIV_FAIL) 3210 kvm_mips_emulate_exc(cause, opc, vcpu); 3211 3212 return er; 3213 } 3214 3215 /* 3216 * User Address (UA) fault, this could happen if 3217 * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this 3218 * case we pass on the fault to the guest kernel and let it handle it. 3219 * (2) TLB entry is present in the Guest TLB but not in the shadow, in this 3220 * case we inject the TLB from the Guest TLB into the shadow host TLB 3221 */ 3222 enum emulation_result kvm_mips_handle_tlbmiss(u32 cause, 3223 u32 *opc, 3224 struct kvm_vcpu *vcpu, 3225 bool write_fault) 3226 { 3227 enum emulation_result er = EMULATE_DONE; 3228 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f; 3229 unsigned long va = vcpu->arch.host_cp0_badvaddr; 3230 int index; 3231 3232 kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx\n", 3233 vcpu->arch.host_cp0_badvaddr); 3234 3235 /* 3236 * KVM would not have got the exception if this entry was valid in the 3237 * shadow host TLB. Check the Guest TLB, if the entry is not there then 3238 * send the guest an exception. The guest exc handler should then inject 3239 * an entry into the guest TLB. 3240 */ 3241 index = kvm_mips_guest_tlb_lookup(vcpu, 3242 (va & VPN2_MASK) | 3243 (kvm_read_c0_guest_entryhi(vcpu->arch.cop0) & 3244 KVM_ENTRYHI_ASID)); 3245 if (index < 0) { 3246 if (exccode == EXCCODE_TLBL) { 3247 er = kvm_mips_emulate_tlbmiss_ld(cause, opc, vcpu); 3248 } else if (exccode == EXCCODE_TLBS) { 3249 er = kvm_mips_emulate_tlbmiss_st(cause, opc, vcpu); 3250 } else { 3251 kvm_err("%s: invalid exc code: %d\n", __func__, 3252 exccode); 3253 er = EMULATE_FAIL; 3254 } 3255 } else { 3256 struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index]; 3257 3258 /* 3259 * Check if the entry is valid, if not then setup a TLB invalid 3260 * exception to the guest 3261 */ 3262 if (!TLB_IS_VALID(*tlb, va)) { 3263 if (exccode == EXCCODE_TLBL) { 3264 er = kvm_mips_emulate_tlbinv_ld(cause, opc, 3265 vcpu); 3266 } else if (exccode == EXCCODE_TLBS) { 3267 er = kvm_mips_emulate_tlbinv_st(cause, opc, 3268 vcpu); 3269 } else { 3270 kvm_err("%s: invalid exc code: %d\n", __func__, 3271 exccode); 3272 er = EMULATE_FAIL; 3273 } 3274 } else { 3275 kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n", 3276 tlb->tlb_hi, tlb->tlb_lo[0], tlb->tlb_lo[1]); 3277 /* 3278 * OK we have a Guest TLB entry, now inject it into the 3279 * shadow host TLB 3280 */ 3281 if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, va, 3282 write_fault)) { 3283 kvm_err("%s: handling mapped seg tlb fault for %lx, index: %u, vcpu: %p, ASID: %#lx\n", 3284 __func__, va, index, vcpu, 3285 read_c0_entryhi()); 3286 er = EMULATE_FAIL; 3287 } 3288 } 3289 } 3290 3291 return er; 3292 } 3293